1
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
2
|
Prunicki M, Cauwenberghs N, Lee J, Zhou X, Movassagh H, Noth E, Lurmann F, Hammond SK, Balmes JR, Desai M, Wu JC, Nadeau KC. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Sci Rep 2021; 11:4067. [PMID: 33603036 PMCID: PMC7893154 DOI: 10.1038/s41598-021-83577-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Ambient air pollution exposure is associated with cardiovascular dysregulation and immune system alterations, yet no study has investigated both simultaneously in children. Understanding the multifaceted impacts may provide early clues for clinical intervention prior to actual disease presentation. We therefore determined the associations between exposure to multiple air pollutants and both immunological outcomes (methylation and protein expression of immune cell types associated with immune regulation) and cardiovascular outcomes (blood pressure) in a cohort of school-aged children (6–8 years; n = 221) living in a city with known elevated pollution levels. Exposure to fine particular matter (PM2.5), carbon monoxide (CO), and ozone (O3) was linked to altered methylation of most CpG sites for genes Foxp3, IL-4, IL-10 and IFN-g, all involved in immune regulation (e.g. higher PM2.5 exposure 1 month prior to the study visit was independently associated with methylation of the IL-4 CpG24 site (est = 0.16; P = 0.0095). Also, immune T helper cell types (Th1, Th2 and Th17) were associated with short-term exposure to PM2.5, O3 and CO (e.g. Th1 cells associated with PM2.5 at 30 days: est = − 0.34, P < 0.0001). Both B cells (est = − 0.19) and CD4+ cells (est = 0.16) were associated with 1 day NO2 exposure (P ≤ 0.031), whereas CD4+ and CD8+ cells were associated with chronic exposure to PAH456, NOx and/or NO2 (P ≤ 0.038 for all). Finally, diastolic BP (DBP) was inversely associated with long-term exposures to both CO and PAH456, and both systolic and pulse pressure were associated with short-term NO2 and chronic NOx exposure. Our findings demonstrate links between air pollution exposure and methylation of immunoregulatory genes, immune cell profiles and blood pressure, suggesting that even at a young age, the immune and cardiovascular systems are negatively impacted by exposure to air pollution.
Collapse
Affiliation(s)
- Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Justin Lee
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Quantitative Sciences Unit, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoying Zhou
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth Noth
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, 94954, USA
| | - S Katharine Hammond
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - John R Balmes
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Manisha Desai
- Quantitative Sciences Unit, Stanford University, Stanford, CA, 94305, USA
| | - Joseph C Wu
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford University School of Medicine, 269 Campus Drive, CCSR 3215, MC 5366, Stanford, CA, 94305-5101, USA.
| |
Collapse
|
3
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
4
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
5
|
Transient Receptor Potential Channel Canonical Type 3 Deficiency Antagonizes Myofibroblast Transdifferentiation In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1202189. [PMID: 32219126 PMCID: PMC7077044 DOI: 10.1155/2020/1202189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
Objective Myofibroblast transformation has been shown to be associated with the reactive oxygen species- (ROS-) producing enzyme NADPH oxidase (Nox4). Inhibition of transient receptor potential channel canonical type 3 (TRPC3) attenuates mitochondrial calcium handling and ROS production in the vasculature of hypertensive rats. However, it remains elusive whether TRPC3 regulates mitochondrial calcium and ROS production and participates in myofibroblast transdifferentiation during wound healing. Methods and Results In this study, we demonstrated that activation of TRPC3 by transforming growth factor β (TGFβ (TGFαSMA). Inhibition of TRPC3 with its specific inhibitor, Pyr3, significantly decreased TGFβ (TGFαSMA). Inhibition of TRPC3 with its specific inhibitor, Pyr3, significantly decreased TGFβ (TGFβ (TGFTrpc3−/− mice exhibited significantly attenuated myofibroblast transdifferentiation, as demonstrated by decreased αSMA). Inhibition of TRPC3 with its specific inhibitor, Pyr3, significantly decreased TGFβ (TGFβ (TGFTrpc3−/− mice exhibited significantly attenuated myofibroblast transdifferentiation, as demonstrated by decreased Trpc3+/+ mice. In addition, Trpc3−/− mice exhibited significantly attenuated myofibroblast transdifferentiation, as demonstrated by decreased Conclusions Our data indicate that TGFβ1-mediated activation of TRPC3 enhances mitochondrial calcium and ROS production, which promotes myofibroblast transdifferentiation and HTS formation. Inhibition of the TRPC3-mediated Nox4/pSmad2/3 pathway may be a useful strategy to limit HTS formation after injury.β (TGF
Collapse
|
6
|
Hu Y, Xia W, Li Y, Wang Q, Lin S, Wang B, Zhou C, Cui Y, Jiang Y, Pu X, Wei X, Wu H, Zhang H, Zhu Z, Liu D, Li Z. High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients. Hypertens Res 2020; 43:679-687. [PMID: 32037396 DOI: 10.1038/s41440-020-0409-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Enhanced transient receptor potential canonical subtype 3 (TRPC3) expression and TRPC3-mediated calcium influx in monocytes from hypertensive rats and patients are associated with increased blood pressure. Daily salt intake is closely related to hypertension, but the relationship between TRPC3 expression and salt intake has not yet been evaluated in hypertensive patients. Using reverse transcription-polymerase chain reaction, we studied the expression of TRPC3 and TRPC3-related store-operated calcium entry (SOCE) in peripheral blood mononuclear cells (PBMCs) from hypertensive and normotensive control subjects. Measurement of SOCE was performed using the fluorescent dye Fura-2 AM. Participants were divided into a low-salt group (<9 g) and a high-salt group (≥9 g) based on 24-h urinary sodium excretion. Increased TRPC3 mRNA expression levels and SOCE were observed in THP-1 cells after high-NaCl treatment. However, administration of the TRPC3-specific inhibitor Pyr3 significantly decreased the effect. Furthermore, the TRPC3 mRNA expression levels in PBMCs from high-salt intake patients with essential hypertension were significantly higher than those in low-salt intake patients compared with those in normotensive control subjects. We also observed significantly increased TRPC3-mediated SOCE in PBMCs from hypertensive subjects (but not from normotensive control subjects), with calcium concentration correlating with salt intake. More importantly, TRPC3 mRNA levels showed a significant correlation with salt intake and systolic blood pressure in patients with essential hypertension. This study demonstrated, for the first time, that increased TRPC3 mRNA levels are associated with elevated salt intake and systolic blood pressure in hypertensive patients.
Collapse
Affiliation(s)
- Yingru Hu
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Weijie Xia
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingsha Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Bin Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Cui Zhou
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yanli Jiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Xiaona Pu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Xiao Wei
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hao Wu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hengshu Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| | - Zhiyong Li
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
7
|
Upregulation of Transient Receptor Potential Canonical Type 3 Channel via AT1R/TGF- β1/Smad2/3 Induces Atrial Fibrosis in Aging and Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4025496. [PMID: 31871548 PMCID: PMC6906806 DOI: 10.1155/2019/4025496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Fibroblast proliferation and migration are central in atrial fibrillation (AF) promoting structure remodeling, which is strongly associated with aging and hypertension. Transient receptor potential canonical-3 channel (TRPC3) is a key mediator of cardiac fibrosis and the pathogenesis of AF. Here, we have observed the increased TRPC3 expression that induced atrial fibrosis which possibly is either mediated by the aging process or related to hypertensive progression. In this study, we measured the pathological structure remodeling by H&E staining, Masson staining, and transmission electron microscope (TEM). The protein expression levels of fibrotic biomarkers and TRPC3 were measured by Western blotting with atrial tissues from normotensive Wistar Kyoto rats (WKY 4m-o (4 months old)), old WKY (WKY 24m-o (24 months old)), spontaneously hypertensive rat (SHR 4m-o (4 months old)), and old SHR (SHR 24m-o (24 months old)). To illuminate the molecular mechanism of TRPC3 in atrial fibrosis of aging rats and SHR, we detected the inhibited role of TRPC3 selective blocker ethyl-1-(4-(2,3,3-trichloroacrylamide) phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate,pyrazole-3 (Pyr3) on angiotensin II (Ang II) induced fibrosis in neonatal rat atrial fibroblasts. The pathological examination showed that the extracellular matrix (ECM) and collagen fibrils were markedly increased in atrial tissues from aged and hypertensive rats. The protein expressions of fibrotic biomarkers (collagen I, collagen III, and transforming growth factor-β1 (TGF-β1)) were significantly upregulated in atrial tissues from the WKY 24m-o group, SHR 4m-o group, and SHR 24m-o group compared with the WKY 4m-o group. Meanwhile, the expression level of TRPC3 was significantly upregulated in WKY 24m-o and SHR 4m-o atrial tissues compared to WKY 4m-o rats. In isolated and cultured neonatal rat atrial fibroblasts, Ang II induced the atrial fibroblast migration and proliferation and upregulated the expression levels of TRPC3 and fibrotic biomarkers. TRPC3 selected blocker Pyr3 attenuated the migration and proliferation in neonatal rat atrial fibroblasts. Furthermore, Pyr3 significantly alleviated Ang II-induced upregulation of TRPC3, collagen I, collagen III, and TGF-β1 through the molecular mechanism of the TGF-β/Smad2/3 signaling pathway. Similarly, knocking down TRPC3 using short hairpin RNA (shTRPC3) also attenuated Ang II-induced upregulation of TGF-β1. Pyr3 preconditioning decreased Ang II-induced intracellular Ca2+ transient amplitude elevation. Furthermore, AT1 receptor was involved in Ang II-induced TRPC3 upregulation. Hence, upregulation of TRPC3 in aging and hypertension is involved in an atrial fibrosis process. Inhibition of TRPC3 contributes to reverse Ang II-induced fibrosis. TRPC3 may be a potential therapeutic target for preventing fibrosis in aging and hypertension.
Collapse
|
8
|
Thiel CS, Tauber S, Christoffel S, Huge A, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Raig C, Layer LE, Ullrich O. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8:13267. [PMID: 30185876 PMCID: PMC6125427 DOI: 10.1038/s41598-018-31596-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, 48149, Muenster, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
- Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | | | - Christiane Raig
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Alexander MR, Norlander AE, Elijovich F, Atreya RV, Gaye A, Gnecco JS, Laffer CL, Galindo CL, Madhur MS. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br J Pharmacol 2018; 176:2015-2027. [PMID: 29774543 DOI: 10.1111/bph.14364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Monocytes play a critical role in hypertension. The purpose of our study was to use an unbiased approach to determine whether hypertensive individuals on conventional therapy exhibit an altered monocyte gene expression profile and to perform validation studies of selected genes to identify novel therapeutic targets for hypertension. EXPERIMENTAL APPROACH Next generation RNA sequencing identified differentially expressed genes in a small discovery cohort of normotensive and hypertensive individuals. Several of these genes were further investigated for association with hypertension in multiple validation cohorts using qRT-PCR, regression analysis, phenome-wide association study and case-control analysis of a missense polymorphism. KEY RESULTS We identified 60 genes that were significantly differentially expressed in hypertensive monocytes, many of which are related to IL-1β. Uni- and multivariate regression analyses of the expression of these genes with mean arterial pressure (MAP) revealed four genes that significantly correlated with MAP in normotensive and/or hypertensive individuals. Of these, lactoferrin (LTF), peptidoglycan recognition protein 1 and IL-18 receptor accessory protein (IL18RAP) remained significantly elevated in peripheral monocytes of hypertensive individuals in a separate validation cohort. Interestingly, IL18RAP expression associated with MAP in a cohort of African Americans. Furthermore, homozygosity for a missense single nucleotide polymorphism in LTF that decreases antimicrobial function and increases protein levels (rs1126478) was over-represented in patients with hypertension relative to controls (odds ratio 1.16). CONCLUSIONS AND IMPLICATIONS These data demonstrate that monocytes exhibit enhanced pro-inflammatory gene expression in hypertensive individuals and identify IL18RAP and LTF as potential novel mediators of human hypertension. LINKED ARTICLES This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Matthew R Alexander
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison E Norlander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ravi V Atreya
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amadou Gaye
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Juan S Gnecco
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristi L Galindo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meena S Madhur
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191:45-63. [PMID: 29172035 PMCID: PMC5733698 DOI: 10.1016/j.trsl.2017.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, Iowa City, IA; Center for Immunology and Immune Based Diseases, Iowa City, IA; Abboud Cardiovascular Research Center, Iowa City, Io.
| |
Collapse
|
11
|
Abstract
TRPC channels play important roles in neuronal death/survival in ischemic stroke, vasospasm in hemorrhagic stroke, thrombin-induced astrocyte pathological changes, and also in the initiation of stroke by affecting blood pressure and atherogenesis. TRPCs' unique channel characters and downstream pathways make them possible new targets for stroke therapy. TRPC proteins have different functions in different cell types. Considering TRPCs' extensive distribution in various tissues and cell types, drugs targeting them could induce more complicated effects. More specific agonists/antagonists and antibodies are required for future study of TRPCs as potential targets for stroke therapy.
Collapse
|
12
|
Belkacemi T, Niermann A, Hofmann L, Wissenbach U, Birnbaumer L, Leidinger P, Backes C, Meese E, Keller A, Bai X, Scheller A, Kirchhoff F, Philipp SE, Weissgerber P, Flockerzi V, Beck A. TRPC1- and TRPC3-dependent Ca 2+ signaling in mouse cortical astrocytes affects injury-evoked astrogliosis in vivo. Glia 2017. [PMID: 28636132 DOI: 10.1002/glia.23180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Following brain injury astrocytes change into a reactive state, proliferate and grow into the site of lesion, a process called astrogliosis, initiated and regulated by changes in cytoplasmic Ca2+ . Transient receptor potential canonical (TRPC) channels may contribute to Ca2+ influx but their presence and possible function in astrocytes is not known. By RT-PCR and RNA sequencing we identified transcripts of Trpc1, Trpc2, Trpc3, and Trpc4 in FACS-sorted glutamate aspartate transporter (GLAST)-positive cultured mouse cortical astrocytes and subcloned full-length Trpc1 and Trpc3 cDNAs from these cells. Ca2+ entry in cortical astrocytes depended on TRPC3 and was increased in the absence of Trpc1. After co-expression of Trpc1 and Trpc3 in HEK-293 cells both proteins co-immunoprecipitate and form functional heteromeric channels, with TRPC1 reducing TRPC3 activity. In vitro, lack of Trpc3 reduced astrocyte proliferation and migration whereas the TRPC3 gain-of-function moonwalker mutation and Trpc1 deficiency increased astrocyte migration. In vivo, astrogliosis and cortex edema following stab wound injury were reduced in Trpc3-/- but increased in Trpc1-/- mice. In summary, our results show a decisive contribution of TRPC3 to astrocyte Ca2+ signaling, which is even augmented in the absence of Trpc1, in particular following brain injury. Targeted therapies to reduce TRPC3 channel activity in astrocytes might therefore be beneficial in traumatic brain injury.
Collapse
Affiliation(s)
- Thabet Belkacemi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Alexander Niermann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Ulrich Wissenbach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, C1107AFF, Argentina
| | | | - Christina Backes
- Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, 66123, Germany
| | - Eckart Meese
- Institut für Humangenetik, Homburg, 66421, Germany
| | - Andreas Keller
- Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, 66123, Germany
| | - Xianshu Bai
- Molekulare Physiologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Anja Scheller
- Molekulare Physiologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Frank Kirchhoff
- Molekulare Physiologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany
| | - Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie, Homburg, 66421, Germany.,Zentrum für Human- und Molekularbiologie, Homburg, 66421, Germany
| |
Collapse
|
13
|
Kumarasamy S, Solanki S, Atolagbe OT, Joe B, Birnbaumer L, Vazquez G. Deep Transcriptomic Profiling of M1 Macrophages Lacking Trpc3. Sci Rep 2017; 7:39867. [PMID: 28051144 PMCID: PMC5209678 DOI: 10.1038/srep39867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 01/18/2023] Open
Abstract
In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., Toledo, Ohio 43614 USA
| | - Sumeet Solanki
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., Toledo, Ohio 43614 USA
| | - Oluwatomisin T Atolagbe
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., Toledo, Ohio 43614 USA
| | - Bina Joe
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., Toledo, Ohio 43614 USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, North Carolina 27709 USA.,Institute of Biomedical Research (BIOMED UCA-CONICET), Faculty of Medical Sciences, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Guillermo Vazquez
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., Toledo, Ohio 43614 USA
| |
Collapse
|
14
|
Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells. PLoS One 2015; 10:e0138581. [PMID: 26390131 PMCID: PMC4577111 DOI: 10.1371/journal.pone.0138581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.
Collapse
|
15
|
Girault A, Chebli J, Privé A, Trinh NTN, Maillé E, Grygorczyk R, Brochiero E. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair. Respir Res 2015; 16:100. [PMID: 26335442 PMCID: PMC4558634 DOI: 10.1186/s12931-015-0263-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. RESULTS Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. CONCLUSION Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.
Collapse
Affiliation(s)
- Alban Girault
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada. .,Département de médecine, Université de Montréal, CP6128, Succursale Centre-ville, Montréal, Québec, H3C3J7, Canada.
| | - Jasmine Chebli
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada. .,Département de médecine, Université de Montréal, CP6128, Succursale Centre-ville, Montréal, Québec, H3C3J7, Canada.
| | - Anik Privé
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada.
| | - Nguyen Thu Ngan Trinh
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada. .,Département de médecine, Université de Montréal, CP6128, Succursale Centre-ville, Montréal, Québec, H3C3J7, Canada.
| | - Emilie Maillé
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada.
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada. .,Département de médecine, Université de Montréal, CP6128, Succursale Centre-ville, Montréal, Québec, H3C3J7, Canada.
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X0A9, Canada. .,Département de médecine, Université de Montréal, CP6128, Succursale Centre-ville, Montréal, Québec, H3C3J7, Canada.
| |
Collapse
|
16
|
Kumar A, Kumari S, Majhi RK, Swain N, Yadav M, Goswami C. Regulation of TRP channels by steroids: Implications in physiology and diseases. Gen Comp Endocrinol 2015; 220:23-32. [PMID: 25449179 DOI: 10.1016/j.ygcen.2014.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.
Collapse
Affiliation(s)
- Ashutosh Kumar
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Shikha Kumari
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Rakesh Kumar Majhi
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Nirlipta Swain
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Manoj Yadav
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Chandan Goswami
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India.
| |
Collapse
|
17
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
18
|
Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol 2015; 36:9209-13. [PMID: 26088448 DOI: 10.1007/s13277-015-3577-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal forms of cancer in humans, with a median survival of 10 to 12 months. Glioblastoma is highly malignant since the cells are supported by a great number of blood vessels. Although new treatments have been developed by increasing knowledge of molecular nature of the disease, surgical operation remains the standard of care. The TRP (transient receptor potential) superfamily consists of cation-selective channels that have roles in sensory physiology such as thermo- and osmosensation and in several complex diseases such as cancer, cardiovascular, and neuronal diseases. The aim of this study was to investigate the expression levels of TRP channel genes in patients with glioblastoma multiforme and to evaluate the relationship between TRP gene expressions and survival of the patients. Thirty-three patients diagnosed with glioblastoma were enrolled to the study. The expression levels of 21 TRP genes were quantified by using qRT-PCR with dynamic array 48 × 48 chip (BioMark HD System, Fluidigm, South San Francisco, CA, USA). TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1, and TRPV2 were found significantly higher in glioblastoma patients. Moreover, there was a significant relationship between the overexpression of TRP genes and the survival of the patients. These results demonstrate for the first time that TRP channels contribute to the progression and survival of the glioblastoma patients.
Collapse
Affiliation(s)
- M Alptekin
- Department of Neurosurgery, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - S Eroglu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - E Tutar
- Department of Pathology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - S Sencan
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - M A Geyik
- Department of Neurosurgery, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - M Ulasli
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - A T Demiryurek
- Department of Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | - C Camci
- Department of Medical Oncology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey.
| |
Collapse
|
19
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
20
|
Association between the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene and postoperative analgesic requirements. J Pharmacol Sci 2015; 127:391-3. [PMID: 25837939 DOI: 10.1016/j.jphs.2015.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022] Open
Abstract
An association between postoperative analgesic requirements in subjects who underwent orthognathic surgery and the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene was suggested by our previous genome-wide association study. To verify this association, we analyzed the association between the rs1465040 SNP and analgesic requirements, including opioid requirements, after open abdominal surgery. The association between the rs1465040 SNP and postoperative analgesic requirements was confirmed in the open abdominal surgery group (P = 0.036), suggesting that the TRPC3 SNP may contribute to predicting postoperative analgesic requirements.
Collapse
|
21
|
Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries. PLoS One 2014; 9:e110413. [PMID: 25310225 PMCID: PMC4195735 DOI: 10.1371/journal.pone.0110413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/17/2014] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries.
Collapse
|
22
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
23
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Ho KW, Lambert WS, Calkins DJ. Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. Glia 2014; 62:1435-51. [PMID: 24838827 DOI: 10.1002/glia.22691] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
Astrocytes provide metabolic, structural, and synaptic support to neurons in normal physiology and also contribute widely to pathogenic processes in response to stress or injury. Reactive astrocytes can undergo cytoskeletal reorganization and increase migration through changes in intracellular Ca(2+) mediated by a variety of potential modulators. Here we tested whether migration of isolated retinal astrocytes following mechanical injury (scratch wound) involves the transient receptor potential vanilloid-1 channel (TRPV1), which contributes to Ca(2+)-mediated cytoskeletal rearrangement and migration in other systems. Application of the TRPV1-specific antagonists, capsazepine (CPZ) or 5'-iodoresiniferatoxin (IRTX), slowed migration by as much as 44%, depending on concentration. In contrast, treatment with the TRPV1-specific agonists, capsaicin (CAP) or resiniferatoxin (RTX) produced only a slight acceleration over a range of concentrations. Chelation of extracellular Ca(2+) with EGTA (1 mM) slowed astrocyte migration by 35%. Ratiometric imaging indicated that scratch wound induced a sharp 20% rise in astrocyte Ca(2+) that dissipated with distance from the wound. Treatment with IRTX both slowed and dramatically reduced the scratch-induced Ca(2+) increase. Both CPZ and IRTX influenced astrocyte cytoskeletal organization, especially near the wound edge. Taken together, our results indicate that astrocyte mobilization in response to mechanical stress involves influx of extracellular Ca(2+) and cytoskeletal changes in part mediated by TRPV1 activation.
Collapse
Affiliation(s)
- Karen W Ho
- Vanderbilt Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
25
|
Transient receptor potential canonical type 3 channels--their evolving role in hypertension and its related complications. J Cardiovasc Pharmacol 2013; 61:455-60. [PMID: 23364606 DOI: 10.1097/fjc.0b013e31828748a1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Recent studies indicate that transient receptor potential canonical type 3 (TRPC3) channels contribute to the regulation of blood pressure and vascular and renal function. Several studies show that TRPC3 dysfunction is associated with hypertension, atherosclerosis, cardiac hypertrophy, and cerebrovascular events. In this review, we summarize the role of TRPC3 channels in the cardiovascular system, and we focus on their pathophysiological role in hypertension and related target organ damages. We provide new insight into the involvement of TRPC3 channels in the development of hypertension and its related complications.
Collapse
|
26
|
Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M. Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 2012; 5:ra91. [PMID: 23233529 DOI: 10.1126/scisignal.2003173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular cells respond to supraphysiological amounts of stretch with a characteristic phenotypic change that results in dysfunctional remodeling of the affected arteries. Although the pathophysiological consequences of stretch-induced signaling are well characterized, the mechanism of mechanotransduction is unclear. We focused on the mechanotransducer zyxin, which translocates to the nucleus to drive gene expression in response to stretch. In cultured human endothelial cells and perfused femoral arteries isolated from wild-type and several knockout mouse strains, we characterized a multistep signaling pathway whereby stretch led to a transient receptor potential channel 3-mediated release of the endothelial vasoconstrictor peptide endothelin-1 (ET-1). ET-1, through autocrine activation of its B-type receptor, elicited the release of pro-atrial natriuretic peptide (ANP), which caused the autocrine activation of the ANP receptor guanylyl cyclase A (GC-A). Activation of GC-A, in turn, led to protein kinase G-mediated phosphorylation of zyxin at serine 142, thereby triggering the translocation of zyxin to the nucleus, where it was required for stretch-induced gene expression. Thus, we have identified a stretch-induced signaling pathway in vascular cells that leads to the activation of zyxin, a cytoskeletal protein specifically involved in transducing mechanical stimuli.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Tano JYK, Lee RH, Vazquez G. Macrophage function in atherosclerosis: potential roles of TRP channels. Channels (Austin) 2012; 6:141-8. [PMID: 22909953 DOI: 10.4161/chan.20292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cation channels of the Transient Receptor Potential Canonical (TRPC) group, which belong to the larger TRP superfamily of channel proteins, are critical players in cardiovascular disease. Recent studies underscored a role of TRPC3 in macrophage survival and efferocytosis, two critical events in atherosclerosis lesion development. Also, other members of the TRP channel superfamily are found expressed in monocytes/macrophages, where they participate in processes that might be of significance to atherogenesis. These observations set a framework for future studies aimed at defining the ultimate functions not only of TRPC3, but probably other TRP channels, in macrophage biology. The purpose of this manuscript is to provide a timely revision of existing evidence on the role of members of the TRP channel superfamily, in particular TRPCs, in macrophages and discuss it in the context of the macrophage's function in atherogenesis.
Collapse
Affiliation(s)
- Jean-Yves K Tano
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, OH, USA
| | | | | |
Collapse
|