1
|
Zhou L, Wen R, Bai C, Li Z, Zheng K, Yu Y, Zhang T, Jia H, Peng Z, Zhu X, Lou Z, Hao L, Yu G, Yang F, Zhang W. Spatial transcriptomic revealed intratumor heterogeneity and cancer stem cell enrichment in colorectal cancer metastasis. Cancer Lett 2024; 602:217181. [PMID: 39159882 DOI: 10.1016/j.canlet.2024.217181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
Metastasis is the main cause of mortality in colorectal cancer (CRC) patients. Exploring the mechanisms of metastasis is of great importance in both clinical and fundamental CRC research. CRC is a highly heterogeneous disease with variable therapeutic outcomes of treatment. In this study, we applied spatial transcriptomics (ST) to generate a tissue-wide transcriptome from two primary colorectal cancer tissues and their matched liver metastatic tissues. Spatial RNA information showed intratumoral heterogeneity (ITH) of both primary and metastatic tissues. The comparison of gene expressions across tissues revealed an apparent enrichment of cancer stem cells (CSCs) in metastatic tissues and identified FOXD1 as a novel metastatic CSC marker. Trajectory and pseudo-time analyses revealed distinct evolutionary trajectories and a dedifferentiation-differentiation process during metastasis. CellphoneDB analysis suggested a dominant interaction of CD74-MIF with tumor cells in metastatic tissues. Further analysis confirmed FOXD1 as a maker of CSCs and the predictor of patient survival, especially in metastatic diseases. Our study found ITH of primary and metastatic tissues and provides novel insights into the cellular mechanisms underlying liver metastasis of CRC and foundations for therapeutic strategies for CRC metastasis.
Collapse
Affiliation(s)
- Leqi Zhou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chenguang Bai
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Kuo Zheng
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Yue Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianshuai Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Jia
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiyin Peng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoming Zhu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Lou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liqiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Chen C, Wang W, Ning C, Lu Z, Zhang M, Zhu Y, Tian J, Li H, Ge Y, Yang B, Miao X. Integrated systematic functional screen and fine-mapping decipher the role and genetic regulation of RPS19 in colorectal cancer development. Arch Toxicol 2024; 98:3453-3465. [PMID: 39012505 DOI: 10.1007/s00204-024-03822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Despite genome-wide association studies (GWAS) have identified more than 200 risk loci associated with colorectal cancer (CRC), the causal genes or risk variants within these loci and their biological functions remain not fully revealed. Recently, the genomic locus 19q13.2, with the lead SNP rs1800469 was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here we employed an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk locus 19q13.2. Notably, we found that RPS19 exhibited the most significant effect among the identified genes and acted as a critical oncogene facilitating CRC cell proliferation. Subsequently, combining integrative fine-mapping analysis and a large-scale population study consisting of 6027 cases and 6099 controls, we prioritized rs1025497 as a potential causal candidate for CRC risk, demonstrating that rs1025497[A] allele significantly reduced the risk of CRC (OR 0.70, 95% confidence interval = 0.56-0.83, P = 1.12 × 10-6), which was further validated in UK Biobank cohort comprising 5,313 cases and 21,252 controls. Mechanistically, we experimentally elucidated that variant rs1025497 might acted as an allele-specific silencer, inhibiting the expression level of oncogene RPS19 mediated by the transcription suppressive factor HBP1. Taken together, our sturdy unveils the significant role of RPS19 during CRC pathogenesis and delineates its distal regulatory mechanism mediated by rs1025497, advancing our understanding of the etiology of CRC and provided new insights into the personalized medicine of human cancer.
Collapse
Affiliation(s)
- Can Chen
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haijie Li
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Ge
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Beifang Yang
- Hubei Institute for Infectious Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Adebamowo SN, Adeyemo A, Adebayo A, Achara P, Alabi B, Bakare RA, Famooto AO, Obende K, Offiong R, Olaniyan O, Ologun S, Rotimi C, Adebamowo CA. Genome, HLA and polygenic risk score analyses for prevalent and persistent cervical human papillomavirus (HPV) infections. Eur J Hum Genet 2024; 32:708-716. [PMID: 38200081 PMCID: PMC11153215 DOI: 10.1038/s41431-023-01521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic variants that underlie susceptibility to cervical high-risk human papillomavirus (hrHPV) infections are largely unknown. We conducted discovery genome-wide association studies (GWAS), replication, meta-analysis and colocalization, generated polygenic risk scores (PRS) and examined the association of classical HLA alleles and cervical hrHPV infections in a cohort of over 10,000 women. We identified genome-wide significant variants for prevalent hrHPV around LDB2 and for persistent hrHPV near TPTE2, SMAD2, and CDH12, which code for proteins that are significantly expressed in the human endocervix. Genetic variants associated with persistent hrHPV are in genes enriched for the antigen processing and presentation gene set. HLA-DRB1*13:02, HLA-DQB1*05:02 and HLA-DRB1*03:01 were associated with increased risk, and HLA-DRB1*15:03 was associated with decreased risk of persistent hrHPV. The analyses of peptide binding predictions showed that HLA-DRB1 alleles that were positively associated with persistent hrHPV showed weaker binding with peptides derived from hrHPV proteins and vice versa. The PRS for persistent hrHPV with the best model fit, had a P-value threshold (PT) of 0.001 and a p-value of 0.06 (-log10(0.06) = 1.22). The findings of this study expand our understanding of genetic risk factors for hrHPV infection and persistence and highlight the roles of MHC class II molecules in hrHPV infection.
Collapse
Affiliation(s)
- Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | - Rasheed A Bakare
- Department of Microbiology, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | | | | | - Richard Offiong
- University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | | | | | - Charles Rotimi
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Institute of Human Virology Nigeria, Abuja, Nigeria.
| |
Collapse
|
4
|
Mukherjee A, Ye Y, Wiener HW, Kuniholm MH, Minkoff H, Michel K, Palefsky J, D'Souza G, Rahangdale L, Butler KR, Kempf MC, Sudenga SL, Aouizerat BE, Ojesina AI, Shrestha S. Variations in Genes Encoding Human Papillomavirus Binding Receptors and Susceptibility to Cervical Precancer. Cancer Epidemiol Biomarkers Prev 2023; 32:1190-1197. [PMID: 37410084 PMCID: PMC10472094 DOI: 10.1158/1055-9965.epi-23-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Cervical cancer oncogenesis starts with human papillomavirus (HPV) cell entry after binding to host cell surface receptors; however, the mechanism is not fully known. We examined polymorphisms in receptor genes hypothesized to be necessary for HPV cell entry and assessed their associations with clinical progression to precancer. METHODS African American women (N = 1,728) from the MACS/WIHS Combined Cohort Study were included. Two case-control study designs were used-cases with histology-based precancer (CIN3+) and controls without; and cases with cytology-based precancer [high-grade squamous intraepithelial lesions (HSIL)] and controls without. SNPs in candidate genes (SDC1, SDC2, SDC3, SDC4, GPC1, GPC2, GPC3, GPC4, GPC5, GPC6, and ITGA6) were genotyped using an Illumina Omni2.5-quad beadchip. Logistic regression was used to assess the associations in all participants and by HPV genotypes, after adjusting for age, human immunodeficiency virus serostatus, CD4 T cells, and three principal components for ancestry. RESULTS Minor alleles in SNPs rs77122854 (SDC3), rs73971695, rs79336862 (ITGA6), rs57528020, rs201337456, rs11987725 (SDC2), rs115880588, rs115738853, and rs9301825 (GPC5) were associated with increased odds of both CIN3+ and HSIL, whereas, rs35927186 (GPC5) was found to decrease the odds for both outcomes (P value ≤ 0.01). Among those infected with Alpha-9 HPV types, rs722377 (SDC3), rs16860468, rs2356798 (ITGA6), rs11987725 (SDC2), and rs3848051 (GPC5) were associated with increased odds of both precancer outcomes. CONCLUSIONS Polymorphisms in genes that encode binding receptors for HPV cell entry may play a role in cervical precancer progression. IMPACT Our findings are hypothesis generating and support further exploration of mechanisms of HPV entry genes that may help prevent progression to cervical precancer.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuanfan Ye
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Howard W. Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark H. Kuniholm
- Department of Epidemiology & Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| | - Howard Minkoff
- Department of Obstetrics & Gynecology, Maimonides Medical Center, Brooklyn, New York
| | - Kate Michel
- Department of Medicine, Georgetown University Medical Center, Washington, DC
| | - Joel Palefsky
- Department of Medicine, University of California, San Francisco, California
| | - Gypsyamber D'Souza
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Lisa Rahangdale
- Department of Obstetrics & Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kenneth R. Butler
- Division of Geriatric Medicine/Gerontology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mirjam-Colette Kempf
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
- Schools of Nursing and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Staci L. Sudenga
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bradley E. Aouizerat
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Akinyemi I. Ojesina
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060977. [PMID: 34207367 PMCID: PMC8234473 DOI: 10.3390/antiox10060977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced production of reactive oxygen species (ROS) triggered by various stimuli, including viral infections, has attributed much attention in the past years. It has been shown that different viruses that cause acute or chronic diseases induce oxidative stress in infected cells and dysregulate antioxidant its antioxidant capacity. However, most studies focused on catalase and superoxide dismutases, whereas a family of peroxiredoxins (Prdx), the most effective peroxide scavengers, were given little or no attention. In the current review, we demonstrate that peroxiredoxins scavenge hydrogen and organic peroxides at their physiological concentrations at various cell compartments, unlike many other antioxidant enzymes, and discuss their recycling. We also provide data on the regulation of their expression by various transcription factors, as they can be compared with the imprint of viruses on transcriptional machinery. Next, we discuss the involvement of peroxiredoxins in transferring signals from ROS on specific proteins by promoting the oxidation of target cysteine groups, as well as briefly demonstrate evidence of nonenzymatic, chaperone, functions of Prdx. Finally, we give an account of the current state of research of peroxiredoxins for various viruses. These data clearly show that Prdx have not been given proper attention despite all the achievements in general redox biology.
Collapse
|
6
|
Atovaquone Suppresses Triple-Negative Breast Tumor Growth by Reducing Immune-Suppressive Cells. Int J Mol Sci 2021; 22:ijms22105150. [PMID: 34068008 PMCID: PMC8152242 DOI: 10.3390/ijms22105150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.
Collapse
|
7
|
Adebamowo SN, Adeyemo AA, Rotimi CN, Olaniyan O, Offiong R, Adebamowo CA. Genome-wide association study of prevalent and persistent cervical high-risk human papillomavirus (HPV) infection. BMC MEDICAL GENETICS 2020; 21:231. [PMID: 33225922 PMCID: PMC7682060 DOI: 10.1186/s12881-020-01156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2020] [Indexed: 01/20/2023]
Abstract
Background Genetic factors may influence the susceptibility to high-risk (hr) human papillomavirus (HPV) infection and persistence. We conducted the first genome-wide association study (GWAS) to identify variants associated with cervical hrHPV infection and persistence. Methods Participants were 517 Nigerian women evaluated at baseline and 6 months follow-up visits for HPV. HPV was characterized using SPF10/LiPA25. hrHPV infection was positive if at least one carcinogenic HPV genotype was detected in a sample provided at the baseline visit and persistent if at least one carcinogenic HPV genotype was detected in each of the samples provided at the baseline and follow-up visits. Genotyping was done using the Illumina Multi-Ethnic Genotyping Array (MEGA) and imputation was done using the African Genome Resources Haplotype Reference Panel. Association analysis was done for hrHPV infection (125 cases/392 controls) and for persistent hrHPV infection (51 cases/355 controls) under additive genetic models adjusted for age, HIV status and the first principal component (PC) of the genotypes. Results The mean (±SD) age of the study participants was 38 (±8) years, 48% were HIV negative, 24% were hrHPV positive and 10% had persistent hrHPV infections. No single variant reached genome-wide significance (p < 5 X 10− 8). The top three variants associated with hrHPV infections were intronic variants clustered in KLF12 (all OR: 7.06, p = 1.43 × 10− 6). The top variants associated with cervical hrHPV persistence were in DAP (OR: 6.86, p = 7.15 × 10− 8), NR5A2 (OR: 3.65, p = 2.03 × 10− 7) and MIR365–2 (OR: 7.71, p = 2.63 × 10− 7) gene regions. Conclusions This exploratory GWAS yielded suggestive candidate risk loci for cervical hrHPV infection and persistence. The identified loci have biological annotation and functional data supporting their role in hrHPV infection and persistence. Given our limited sample size, larger discovery and replication studies are warranted to further characterize the reported associations. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01156-1.
Collapse
Affiliation(s)
- Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA. .,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olayinka Olaniyan
- Department of Obstetrics and Gynecology, National Hospital Abuja, Abuja, Nigeria
| | - Richard Offiong
- Department of Obstetrics and Gynecology, University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood Street, Howard Hall, Room 119, Baltimore, MD, 21201, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | | |
Collapse
|
8
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
9
|
Ebrahimi S, Soltani A, Hashemy SI. Oxidative stress in cervical cancer pathogenesis and resistance to therapy. J Cell Biochem 2019; 120:6868-6877. [PMID: 30426530 DOI: 10.1002/jcb.28007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Cervical cancer (CC) is one of the most common cancers among females, and it is most notable in developing countries. The exact etiology of CC is poorly understood; but, smoking, oral contraceptives, immunosuppression, and infection with human papillomavirus (HPV) may increase the risk of CC. There is also an association between CC and oxidative stress. Oxidative stress is caused by a disturbed oxidant-antioxidant balance in favor of the former, leading to an excessive generation of free radicals, particularly reactive oxygen species (ROS), and subsequently to biological damages. Thus, redox enzymatic and nonenzymatic regulators are required to maintain the redox homeostasis. Dysregulated antioxidants system and the pathogenic role of oxidative stress in CC have been investigated in several clinical and preclinical studies. In this study, we reviewed studies that have addressed the cross-talk between oxidative stress and CC pathogenesis and resistance to therapy.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Feng M, Xu L, He Y, Sun L, Zhang Y, Wang W. Clinical significance of PD-L1 (CD274) enhanced expression in cervical squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5370-5378. [PMID: 31949618 PMCID: PMC6963033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 06/10/2023]
Abstract
Programmed death ligand 1 (PD-L1) is a trans-membrane protein that can reduce the immune response in both infectious diseases and cancers and is commonly expressed in various solid tumors. Despite the success of immunotherapy directed at inhibiting of PD-L1/PD-1 signaling, it is not established that whether PD-L1 expression correlates with the clinical response and outcome in cervical squamous cell carcinoma. To investigate the clinical significance of PD-L1 expression in cervical cancer, we analyzed the expression of PD-L1 in 219 cervical squamous cell cancers and 30 healthy controls,characterized the expression level of PDL-1 in tumor-infiltrating lymphocytes (TILs), and assessed the relationship between them and prognosis of cervical cancers. The expression of PD-L1 was observed in 32.4% (71/219) cervical carcinomas and 10.0% (22/219) in partial TILs. However, there was no expression of PD-L1 in normal cervical epithelium. Statistical analysis showed that increased PD-L1 expression was significantly associated with high TNM stage, reduced number of TILs, and worse prognosis in cervical carcinomas, but there was no significant statistic difference in age, tumor size, HPV infection and other clinicopathology features. PD-L1 expression in TILs was found significantly associated with the TILs amount. Furthermore, the presence of prominent lymphocytic infiltrates was also significantly associated with a clear trend towards longer survival. In conclusion, these data suggested that PD-L1 could act as a significant biomarker in the worse prognosis and adverse clinicopathologic features of cervical cancer. Anti-PD-L1 therapy may have a role in the treatment of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Min Feng
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| | - Ying He
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| | - Liang Sun
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| | - Yan Zhang
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan UniversityChengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, P. R. China
| |
Collapse
|
11
|
da Rocha Boeira T, Coser J, Wolf JM, Cardinal BKM, Grivicich I, Simon D, Lunge VR. Polymorphism Located in the Upstream Region of the RPS19 Gene (rs2305809) Is Associated With Cervical Cancer: A Case-control Study. J Cancer Prev 2018; 23:147-152. [PMID: 30370260 PMCID: PMC6197843 DOI: 10.15430/jcp.2018.23.3.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
Cervical cancer (CC) is caused by persistent human papillomavirus (HPV) infection and affects women worldwide. The progression of an HPV persistent infection to CC is influenced by genetic factors. Three single nucleotide polymorphisms (SNPs) in TP53, NQO1 and RPS19 genes (rs1042522, rs1800566, rs2305809, respectively) were previously associated with CC in European and North American populations. The present case-control study aimed to investigate the association of the SNPs rs1042522, rs1800566, and rs2305809 with CC in an admixed population in southern Brazil. A total of 435 women (106 CC patients and 329 controls) were recruited for this study. All women were interviewed and underwent clinical sampling. SNPs rs1042522 and rs1800566 were evaluated by PCR-RFLP. SNP rs2305809 was determined by real-time PCR. The crude and adjusted ORs with 95% CI were estimated. The recessive genetic model (C/C + C/T) for rs2305809 was more frequent in the control group (79.9%) compared to the cases (69.8%), being associated with CC protection (adjustedOR = 0.49; 95% CI: 0.27–0.90). However, the other polymorphisms evaluated did not present significant differences between cases and controls. This study detected a protective association for the recessive genetic model in rs2305809. These results suggest a potential role of the RPS19 gene in CC.
Collapse
Affiliation(s)
- Thaís da Rocha Boeira
- Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Janaina Coser
- Biomedicine Course, University of Cruz Alta (UNICRUZ), Cruz Alta, Brazil.,Graduate Program in Integral Health Care, University of Cruz Alta/Regional University of the Northwestern Rio Grande do Sul state (UNICRUZ/UNIJUÍ), Cruz Alta/Ijuí, Brazil
| | - Jonas Michel Wolf
- Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Ivana Grivicich
- Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Daniel Simon
- Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Vagner Ricardo Lunge
- Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
12
|
Tan MS, Chang SW, Cheah PL, Yap HJ. Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ 2018; 6:e5285. [PMID: 30065881 PMCID: PMC6064203 DOI: 10.7717/peerj.5285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
Although most of the cervical cancer cases are reported to be closely related to the Human Papillomavirus (HPV) infection, there is a need to study genes that stand up differentially in the final actualization of cervical cancers following HPV infection. In this study, we proposed an integrative machine learning approach to analyse multiple gene expression profiles in cervical cancer in order to identify a set of genetic markers that are associated with and may eventually aid in the diagnosis or prognosis of cervical cancers. The proposed integrative analysis is composed of three steps: namely, (i) gene expression analysis of individual dataset; (ii) meta-analysis of multiple datasets; and (iii) feature selection and machine learning analysis. As a result, 21 gene expressions were identified through the integrative machine learning analysis which including seven supervised and one unsupervised methods. A functional analysis with GSEA (Gene Set Enrichment Analysis) was performed on the selected 21-gene expression set and showed significant enrichment in a nine-potential gene expression signature, namely PEG3, SPON1, BTD and RPLP2 (upregulated genes) and PRDX3, COPB2, LSM3, SLC5A3 and AS1B (downregulated genes).
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Phaik Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hwa Jen Yap
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal 2018; 26:1180-1191. [PMID: 29976410 PMCID: PMC9303038 DOI: 10.1016/j.jfda.2018.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Flavonoids luteolin and quercetin can inhibit growth and metastasis of cancer cells. In our previous report, luteolin and quercetin was shown to block Akt/mTOR/c-Myc signaling. Here, we found luteolin and quercetin reduced protein level and transactivation activity of RPS19 in A431-III cells, which is isolated from parental A431 (A431-P) cell line. Further investigation the inhibitory mechanism of luteolin and quercetin on RPS19, we found c-Myc binding sites on RPS19 promoter. The Akt inhibitor LY294002, mTOR inhibitor rapamycin and c-Myc inhibitor 10058-F4 significantly suppressed RPS19 expression and transactivation activities. Overexpression and knockdown of c-Myc in cancer cells show RPS19 expression was regulated by c-Myc. Furthermore, Knockdown and overexpression of RPS19 was used to analyze of the function of RPS19 in cancer cells. The epithelial-mesenchymal transition (EMT) markers and metastasis abilities of cancer cells were also regulated by RPS19. These data suggest that luteolin and quercetin might inhibit metastasis of cancer cells by blocking Akt/mTOR/c-Myc signaling pathway to suppress RPS19-activated EMT signaling.
Collapse
|
14
|
Bahrami A, Hasanzadeh M, Shahidsales S, Farazestanian M, Hassanian SM, Moetamani Ahmadi M, Maftouh M, Gharib M, Yousefi Z, Kadkhodayan S, Ferns GA, Avan A. Genetic susceptibility in cervical cancer: From bench to bedside. J Cell Physiol 2017; 233:1929-1939. [PMID: 28542881 DOI: 10.1002/jcp.26019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
Cervical cancer (CC) is the third most common malignancy in women globally, and persistent infection with the oncogenic human papillomaviruses (HPV) is recognized as the major risk factor. The pathogenesis of CC relies on the interplay between the tumorigenic properties of the HPV and host factors. Host-related genetic factors, including the presence of susceptibility loci for cervix tumor is substantial importance. Preclinical and genome-wide association studies (GWAS) have reported the associations of genetic variations in several susceptibility loci for the development of cervical cancer. However, many of these reports are inconsistent. In this review, we discuss the findings to date of candidate gene association studies, and GWAS in cervical cancer. The associations between these genetic variations with response to chemotherapy are also discussed.
Collapse
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student research committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Marjaneh Farazestanian
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Moetamani Ahmadi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Yousefi
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Kadkhodayan
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
McKay J, Tenet V, Franceschi S, Chabrier A, Gheit T, Gaborieau V, Chopin S, Avogbe PH, Tommasino M, Ainouze M, Hasan U, Vaccarella S. Immuno-related polymorphisms and cervical cancer risk: The IARC multicentric case-control study. PLoS One 2017; 12:e0177775. [PMID: 28505207 PMCID: PMC5432183 DOI: 10.1371/journal.pone.0177775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
A small proportion of women who are exposed to infection with human-papillomavirus (HPV) develop cervical cancer (CC). Genetic factors may affect the risk of progression from HPV infection to cervical precancer and cancer. We used samples from the International Agency for Research on Cancer (IARC) multicentric case-control study to evaluate the association of selected genetic variants with CC. Overall, 790 CC cases and 717 controls from Algeria, Morocco, India and Thailand were included. Cervical exfoliated cells were obtained from control women and cervical exfoliated cells or biopsy specimens from cases. HPV-positivity was determined using a general primer GP5+/6+ mediated PCR. Unconditional logistic regression was used to estimate odds ratios (OR) and corresponding 95% confidence intervals (CI) of host genotypes with CC risk, using the homozygous wild type genotype as the referent category and adjusting by age and study centre. The association of polymorphisms with the risk of high-risk HPV-positivity among controls was also evaluated. A statistically significant association was observed between single nucleotide polymorphism (SNP) CHR6 rs2844511 and CC risk: the OR for carriers of the GA or GG genotypes was 0.70 (95% CI: 0.43-1.14) and 0.61 (95% CI: 0.38-0.98), respectively, relative to carriers of AA genotype (p-value for trend 0.03). We also observed associations of borderline significance with the TIPARP rs2665390 polymorphism, which was previously found to be associated with ovarian and breast cancer, and with the EXOC1 rs13117307 polymorphism, which has been linked to cervical cancer in a large study in a Chinese population. We confirmed the association between CC and the rs2844511 polymorphism previously identified in a GWAS study in a Swedish population. The major histocompatibility region of chromosome 6, or perhaps other SNPs in linkage disequilibrium, may be involved in CC onset.
Collapse
Affiliation(s)
- James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Vanessa Tenet
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Tarik Gheit
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | - Michelle Ainouze
- Centre International de Recherche en Infectiologie, International Center for Infectiology Research (CIRI), Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- University Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, International Center for Infectiology Research (CIRI), Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- University Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | | |
Collapse
|
16
|
Markiewski MM, Vadrevu SK, Sharma SK, Chintala NK, Ghouse S, Cho JH, Fairlie DP, Paterson Y, Astrinidis A, Karbowniczek M. The Ribosomal Protein S19 Suppresses Antitumor Immune Responses via the Complement C5a Receptor 1. THE JOURNAL OF IMMUNOLOGY 2017; 198:2989-2999. [PMID: 28228558 DOI: 10.4049/jimmunol.1602057] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023]
Abstract
Relatively little is known about factors that initiate immunosuppression in tumors and act at the interface between tumor cells and host cells. In this article, we report novel immunosuppressive properties of the ribosomal protein S19 (RPS19), which is upregulated in human breast and ovarian cancer cells and released from apoptotic tumor cells, whereupon it interacts with the complement C5a receptor 1 expressed on tumor infiltrating myeloid-derived suppressor cells. This interaction promotes tumor growth by facilitating recruitment of these cells to tumors. RPS19 also induces the production of immunosuppressive cytokines, including TGF-β, by myeloid-derived suppressor cells in tumor-draining lymph nodes, leading to T cell responses skewed toward Th2 phenotypes. RPS19 promotes generation of regulatory T cells while reducing infiltration of CD8+ T cells into tumors. Reducing RPS19 in tumor cells or blocking the C5a receptor 1-RPS19 interaction decreases RPS19-mediated immunosuppression, impairs tumor growth, and delays the development of tumors in a transgenic model of breast cancer. This work provides initial preclinical evidence for targeting RPS19 for anticancer therapy enhancing antitumor T cell responses.
Collapse
Affiliation(s)
- Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601;
| | - Surya Kumari Vadrevu
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - Sharad K Sharma
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - Navin Kumar Chintala
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - Shanawaz Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - Jun-Hung Cho
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - Yvonne Paterson
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aristotelis Astrinidis
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, TX 79601;
| |
Collapse
|
17
|
Céspedes-Garro C, Naranjo MEG, Rodrigues-Soares F, LLerena A, Duconge J, Montané-Jaime LK, Roblejo H, Fariñas H, Campos MDLA, Ramírez R, Serrano V, Villagrán CI, Peñas-LLedó EM. Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics 2016; 17:1707-1724. [PMID: 27633613 DOI: 10.2217/pgs-2016-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The present review was aimed at analyzing the pharmacogenetic scientific activity in Central America and the Caribbean. MATERIALS & METHODS A literature search for pharmacogenetic studies in each country of the region was conducted on three databases using a list of the most relevant pharmacogenetic biomarkers including 'phenotyping probe drugs' for major drug metabolizing enzymes. The review included 132 papers involving 47 biomarkers and 35,079 subjects (11,129 healthy volunteers and 23,950 patients). RESULTS The country with the most intensive pharmacogenetic research was Costa Rica. The most studied medical therapeutic area was oncology, and the most investigated biomarkers were CYP2D6 and HLA-A/B. Conclusion: Research activity on pharmacogenetics in Central American and the Caribbean populations is limited or absent. Therefore, strategies to promote effective collaborations, and foster interregional initiatives and research efforts among countries from the region could help for the rational clinical implementation of pharmacogenetics and personalized medicine.
Collapse
Affiliation(s)
- Carolina Céspedes-Garro
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, Genetics Section, School of Biology, University of Costa Rica, San José, Costa Rica
| | - María-Eugenia G Naranjo
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Fernanda Rodrigues-Soares
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Jorge Duconge
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Pharmaceutical Sciences Department, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Lazara K Montané-Jaime
- Pharmacology Unit Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of West Indies, St Augustine, Trinidad & Tobago
| | - Hilda Roblejo
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, National Center of Medical Genetics, Havana, Cuba
| | - Humberto Fariñas
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - María de Los A Campos
- Secretaría Ejecutiva del Consejo de Ministros de Salud de Centroamérica y República Dominicana, Ciudad Merliot, El Salvador
| | - Ronald Ramírez
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Medicina, UNAN Universidad Autónoma Nacional de Nicaragua, León, Nicaragua
| | - Víctor Serrano
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,CIIMET Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de Medicina, Universidad de Panamá, Panamá, Panamá
| | - Carmen I Villagrán
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Ciencias Médicas, Dirección de Investigación, Universidad de San Carlos de Guatemala, Guatemala
| | - Eva M Peñas-LLedó
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| |
Collapse
|
18
|
Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett 2015; 366:150-9. [PMID: 26170166 DOI: 10.1016/j.canlet.2015.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Lisha Wu
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
19
|
Griffiths SJ, Dunnigan CM, Russell CD, Haas JG. The Role of Interferon-λ Locus Polymorphisms in Hepatitis C and Other Infectious Diseases. J Innate Immun 2015; 7:231-42. [PMID: 25634147 PMCID: PMC6738896 DOI: 10.1159/000369902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 12/19/2022] Open
Abstract
Since its discovery in 2003, the type III interferon-λ (IFN-λ) family has been found to contribute significantly to the host response to infection. Whilst IFN-λ shares many features with type I IFN induction and signalling pathways, the tissue-specific restricted expression of its receptor, IL28RA, makes IFN-λ a major mediator of host innate immunity in tissues and organs with a high epithelial cell content. Host susceptibility and responses to infection are known to be heterogeneous, and the identification of common genetic variants linked to disease outcome by genome-wide association studies (GWAS) has underscored the significance of host polymorphisms in responses to infection. Several such GWAS have highlighted the IFN-λ locus on chromosome 19q13 as an area of genetic variation significantly associated with hepatitis C virus (HCV) infection, and the rs12979860 genotype can be used in clinical practice as a biomarker for predicting a successful response to treatment with pegylated IFN and ribavarin. Here, we discuss IFN-λ genetic polymorphisms and their role in HCV and other infectious diseases as well as their potential impact on clinical diagnostics, patient stratification and therapy. Finally, the broader role of IFN-λ in the immunopathogenesis of non-infectious inflammatory diseases is considered.
Collapse
Affiliation(s)
- Samantha J Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | | | | | | |
Collapse
|
20
|
Lobert S, Graichen ME, Hamilton RD, Pitman KT, Garrett MR, Hicks C, Koganti T. Prognostic biomarkers for HNSCC using quantitative real-time PCR and microarray analysis: β-tubulin isotypes and the p53 interactome. Cytoskeleton (Hoboken) 2014; 71:628-37. [PMID: 25355403 DOI: 10.1002/cm.21195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
In 2014, more than 40,000 people in the United States will be diagnosed with head and neck squamous cell cancer (HNSCC) and nearly 8400 people will die of the disease (www.cancer.org/acs/groups). Little is known regarding molecular targets that might lead to better therapies and improved outcomes for these patients. The incorporation of taxanes into the standard cisplatin/5-fluouracil initial chemotherapy for HNSCC has been associated with improved response rate and survival. Taxanes target the β-subunit of the tubulin heterodimers, the major protein in microtubules, and halt cell division at G2/M phase. Both laboratory and clinical research suggest a link between β-tubulin expression and cancer patient survival, indicating that patterns of expression for β-tubulin isotypes along with activity of tumor suppressors such as p53 or micro-RNAs could be useful prognostic biomarkers and could suggest therapeutic targets. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends Genet 2014; 31:41-54. [PMID: 25467628 DOI: 10.1016/j.tig.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
Cervical cancer has a heritable genetic component. A large number of genetic associations with cervical cancer have been reported in hypothesis-driven candidate gene studies, but many of these results are either inconsistent or have failed to be independently replicated. Genome-wide association studies (GWAS) have identified additional susceptibility loci previously not implicated in cervical cancer development, highlighting the power of genome-wide unbiased association analyses. Post-GWAS analyses including pathway-based analysis and functional characterization of associated variants have provided new insights into the pathogenesis of cervical cancer. In this review we summarize findings from candidate gene association studies, GWAS, and post-GWAS analyses of cervical cancer. We also discuss gaps in our understanding, possible clinical implications of the findings, and lessons for studies of other complex diseases.
Collapse
Affiliation(s)
- Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden.
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Banister CE, Messersmith AR, Cai B, Spiryda LB, Glover SH, Pirisi L, Creek KE. Disparity in the persistence of high-risk human papillomavirus genotypes between African American and European American women of college age. J Infect Dis 2014; 211:100-8. [PMID: 25028692 DOI: 10.1093/infdis/jiu394] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cervical cancer incidence and mortality rates are higher in African Americans than in European Americans (white, non-Hispanic of European ancestry). The reasons for this disparity are not known. METHODS We recruited a population-based longitudinal cohort of 326 European American and 113 African American female college freshmen in Columbia, South Carolina, to compare clearance of high-risk human papillomavirus (HR-HPV) infection between ethnicities. HPV testing and typing from samples obtained for Papanicolaou testing occurred every 6 months. RESULTS African American participants had an increased risk of testing positive for HR-HPV, compared with European American participants, but the frequency of incident HPV infection was the same in African American and European American women. Thus, exposure to HPV could not explain the higher rate of HPV positivity among African American women. The time required for 50% of participants to clear HR-HPV infection was 601 days for African American women (n = 63) and 316 days for European American women (n = 178; odds ratio [OR], 1.61; 95% confidence interval [CI], 1.08-2.53). African American women were more likely than European American women to have an abnormal result of a Papanicolaou test (OR, 1.58; 95% CI, 1.05-2.39). CONCLUSIONS We propose that the longer time to clearance of HR-HPV among African American women leads to increased rates of abnormal results of Papanicolaou tests and contributes to the increased rates of cervical cancer observed in African American women.
Collapse
Affiliation(s)
- Carolyn E Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy
| | - Amy R Messersmith
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy
| | - Bo Cai
- Department of Epidemiology and Biostatistics
| | | | - Saundra H Glover
- Department of Health Services Policy and Management Institute for Partnerships to Eliminate Health Disparities, Arnold School of Public Health
| | - Lucia Pirisi
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy
| |
Collapse
|
23
|
Johanneson B, Chen D, Enroth S, Cui T, Gyllensten U. Systematic validation of hypothesis-driven candidate genes for cervical cancer in a genome-wide association study. Carcinogenesis 2014; 35:2084-8. [DOI: 10.1093/carcin/bgu125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
25
|
Miura K, Mishima H, Kinoshita A, Hayashida C, Abe S, Tokunaga K, Masuzaki H, Yoshiura KI. Genome-wide association study of HPV-associated cervical cancer in Japanese women. J Med Virol 2014; 86:1153-8. [DOI: 10.1002/jmv.23943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Kiyonori Miura
- Department of Obstetrics and Gynecology; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Hiroyuki Mishima
- Department of Human Genetics; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Akira Kinoshita
- Department of Human Genetics; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Chisa Hayashida
- Department of Human Genetics; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Shuhei Abe
- Department of Obstetrics and Gynecology; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Katsushi Tokunaga
- Department of Human Genetics; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics; Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| |
Collapse
|
26
|
Mi Y, Wang L, Zong L, Pei M, Lu Q, Huang P. Genetic variants in microRNA target sites of 37 selected cancer-related genes and the risk of cervical cancer. PLoS One 2014; 9:e86061. [PMID: 24465869 PMCID: PMC3899132 DOI: 10.1371/journal.pone.0086061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Single nucleotide polymorphisms (SNPs) in putative microRNA binding sites (miRSNPs) modulate cancer susceptibility via affecting miRNA binding. Here, we sought to investigate the association between miRSNPs and cervical cancer risk. Methods We first genotyped 41 miRSNPs of 37 cancer-related genes in 338 patients and 334 controls (Study 1), and replicated the significant associations in 502 patients and 600 controls (Study 2). We tested the effects of miRSNPs on microRNA-mRNA interaction by luciferase reporter assay. Results Five SNPs displayed notable association with cervical cancer risk in Study 1. Only IL-16 rs1131445 maintained a significant association with cervical cancer (CT/CC vs. TT, adjusted OR = 1.51, P = 0.001) in Study 2. This association was more evident in the combined data of two studies (adjusted OR = 1.49, P = 0.00007). We also found that miR-135b mimics interacted with IL-16 3′-UTR to reduce gene expression and that the rs1131445 T to C substitution within the putative binding site impaired the interaction of miR-135b with IL-16 3′-UTR. An ELISA indicated that the serum IL-16 of patients with cervical cancer was elevated (vs. controls, P = 0.001) and correlated with the rs1131445 genotype. Patients who carried the rs1131445 C allele had higher serum IL-16 than non-carriers (P<0.001). Conclusions These results support our hypothesis that miRSNPs constitute a susceptibility factor for cervical cancers. rs1131445 affects IL-16 expression by interfering with the suppressive function of miR135b and this variant is significantly associated with cervical cancer risk.
Collapse
Affiliation(s)
- Yang Mi
- Obstetrical department, Maternal and Child Health Hospital of Shaanxi Province, Xi'an, ShaanXi, Peoples' Republic of China
| | - Lijuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, ShaanXi, Peoples' Republic of China
- * E-mail: (L.J.W); (P.H)
| | - Lu Zong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, ShaanXi, Peoples' Republic of China
| | - Meili Pei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, ShaanXi, Peoples' Republic of China
| | - Qingyang Lu
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, ShanDong, Peoples' Republic of China
| | - Pu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, ShaanXi, Peoples' Republic of China
- * E-mail: (L.J.W); (P.H)
| |
Collapse
|
27
|
Wang YG, Li L, Liu CH, Hong S, Zhang MJ. Peroxiredoxin 3 is resistant to oxidation-induced apoptosis of Hep-3b cells. Clin Transl Oncol 2013; 16:561-6. [DOI: 10.1007/s12094-013-1117-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
|
28
|
Sudenga SL, Wiener HW, Shendre A, Wilson CM, Tang J, Shrestha S. Variants in interleukin family of cytokines genes influence clearance of high risk HPV in HIV-1 coinfected African-American adolescents. Hum Immunol 2013; 74:1696-700. [PMID: 23973891 DOI: 10.1016/j.humimm.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/19/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
Our work aimed to examine the potential influence of variants in interleukin/interleukin receptors genes on high-risk (HR-HPV) HPV clearance. Clearance of genital HR-HPV infection was evaluated for 134 HIV-1 seropositive African-American female adolescents from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort. Genotyping targeted 225 single nucleotide polymorphisms (SNPs) within the exons, 5' untranslated region (UTR) and 3' UTR sequences of 27 immune-related candidate genes encoding interleukin family of cytokines. Cox proportional hazard models were used to determine the association of type-specific HPV clearance adjusting for time-varying CD4+ T-cell count and low-risk (LR-HPV) HPV co-infections. HR-HPV clearance rates were significantly (p < 0.001) associated with five SNPs (rs228942, rs419598, rs315950, rs7737000, and rs9292618) mapped to coding and regulatory regions in three genes (IL2RB, IL1RN, and IL7R). These data suggest that the analyzed genetic variants in interleukin family of cytokines modulate HR-HPV clearance in HIV-1 seropositive African-Americans that warrants replication.
Collapse
Affiliation(s)
- Staci L Sudenga
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | | | | | | |
Collapse
|
29
|
Famooto A, Almujtaba M, Dareng E, Akarolo-Anthony S, Ogbonna C, Offiong R, Olaniyan O, Wheeler CM, Doumatey A, Rotimi CN, Adeyemo A, Adebamowo CA. RPS19 and TYMS SNPs and Prevalent High Risk Human Papilloma Virus Infection in Nigerian Women. PLoS One 2013; 8:e66930. [PMID: 23826176 PMCID: PMC3694982 DOI: 10.1371/journal.pone.0066930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/10/2013] [Indexed: 11/24/2022] Open
Abstract
High risk HPV (hrHPV) infection is a necessary cause of cervical cancer but the host genetic determinants of infection are poorly understood. We enrolled 267 women who presented to our cervical cancer screening program in Abuja, Nigeria between April 2012 and August 2012. We collected information on demographic characteristics, risk factors of cervical cancer and obtained samples of blood and cervical exfoliated cells from all participants. We used Roche Linear Array HPV Genotyping Test® to characterize the prevalent HPV according to manufacturer's instruction; Sequenom Mass Array to test 21 SNPs in genes/regions previously associated with hrHPV and regression models to examine independent factors associated with HPV infection. We considered a p<0.05 as significant because this is a replication study. There were 65 women with and 202 women without hrHPV infection. Under the allelic model, we found significant association between two SNPs, rs2305809 on RPS19 and rs2342700 on TYMS, and prevalent hrHPV infection. Multivariate analysis of hrHPV risk adjusted for age, body mass index, smoking, age of menarche, age at sexual debut, lifetime total number of sexual partners and the total number of pregnancies as covariates, yielded a p-value of 0.071 and 0.010 for rs2305809 and rs2342700, respectively. Our findings in this unique population suggest that a number of genetic risk variants for hrHPV are shared with other population groups. Definitive studies with larger sample sizes and using genome wide approaches are needed to understand the genetic architecture of hrHPV risk in multiple populations.
Collapse
Affiliation(s)
- Ayo Famooto
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
| | - Maryam Almujtaba
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
| | - Eileen Dareng
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
| | - Sally Akarolo-Anthony
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Celestine Ogbonna
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
| | - Richard Offiong
- University of Abuja Teaching Hospital, Gwagwalada, FCT, Nigeria
| | | | - Cosette M. Wheeler
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Clement A. Adebamowo
- Department of Research and Training, Institute of Human Virology, Abuja, FCT, Nigeria
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology and Public Health; Institute of Human Virology and Greenebaum Cancer Centre, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Copy number variation of the antimicrobial-gene, defensin beta 4, is associated with susceptibility to cervical cancer. J Hum Genet 2013; 58:250-3. [PMID: 23466823 DOI: 10.1038/jhg.2013.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate association between copy number variation of the defensin beta 4 gene (DEFB4) and susceptibility to cervical cancer in a population at high risk of persistent oncogenic human papillomavirus (HPV) infection. The study subjects comprised 204 women with cervical cancer, a population having a high risk of persistent oncogenic HPV infection (cervical cancer group), and 200 healthy women from the general population (control group). Copy number variation of DEFB4 in each test sample was determined by relative quantitation using the comparative CT ((ΔΔ)CT) method. Differences between the two groups were evaluated. The median DEFB4 copy number in the cervical cancer group was four and in the control group was five (P=2.77e-4, t-test). The odds ratio of cervical cancer in individuals with four DEFB4 copies or less was higher (odds ratio 2.02; 95% confidence interval odds ratio 1.36-3.02), compared with that in individuals with five or more copies (odds ratio 0.49; 95% confidence interval odds ratio 0.33-0.74). We found copy number variation of DEFB4 was a host genetic factor conferring susceptibility to cervical cancer. A lower DEFB4 copy number was associated with susceptibility to cervical cancer.
Collapse
|
31
|
Hussain SK, Madeleine MM, Johnson LG, Du Q, Galloway DA, Daling JR, Malkki M, Petersdorf EW, Schwartz SM. Nucleotide variation in IL-10 and IL-12 and their receptors and cervical and vulvar cancer risk: a hybrid case-parent triad and case-control study. Int J Cancer 2013; 133:201-13. [PMID: 23280621 DOI: 10.1002/ijc.28000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/08/2012] [Accepted: 12/03/2012] [Indexed: 11/11/2022]
Abstract
Given the important role of cell mediated immunity in viral clearance and control of premalignant lesions, we hypothesize that variation in the IL-12/IL-10 cytokine and cytokine receptor genes may influence cervical and vulvar cancer risk. We evaluated 76 tagSNPs from seven candidate genes (IL-10, IL-12A, IL-12B, IL-10RA, IL-10RB, IL-12RB1, and IL12RB2) in case-parent sets (n=43 cervical squamous cell carcinoma (SCC), n=96 cervical adenocarcinoma, n=53 vulvar SCC), additional cases (n=356 cervical SCC, n=406 cervical adenocarcinoma, and n=473 vulvar SCC) and population based controls (1,111). We calculated log-additive odds ratios (ORs) and 95% confidence intervals (CIs) for the association between tagSNP and cancer risk using a pseudo-likelihood based method which combined genotype information on cases, parents, and population controls. After correction for multiple comparisons, we identified several statistically significant SNP associations. Cervical SCC risk was associated with the minor alleles of the IL10RA rs9610 3' UTR SNP (OR=1.76, 95% CI=1.15-2.68) and two synonymous IL12RB2 SNPs (rs4297265, OR=0.46, 95% CI=0.26-0.82; rs2229546, OR=0.43, 95% CI=0.21-0.87). Cervical adenocarcinoma risk was associated with the minor alleles of the IL10RA rs4252314 intronic SNP (OR=2.23, 95% CI=1.26-3.96) and IL12RB1 rs11575934 non-synonymous SNP (OR=1.51, 95% CI=1.12-2.05). Finally, the minor allele of the IL12B rs3181224 3' UTR SNP was associated with a reduced risk of vulvar SCC (OR=0.30, 95% CI=0.12-0.74). These results raise the possibility that a shift in the balance of the immune response due to genetic variants in key cytokine genes could influence the development of cervical and vulvar cancer.
Collapse
Affiliation(s)
- Shehnaz K Hussain
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oxidative stress and HPV carcinogenesis. Viruses 2013; 5:708-31. [PMID: 23403708 PMCID: PMC3640522 DOI: 10.3390/v5020708] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023] Open
Abstract
Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be highlighted. The aim of this paper is to stimulate new areas of study and innovative approaches.
Collapse
|
33
|
Abstract
Viral diseases are leading cause of deaths worldwide as WHO report suggests that hepatitis A virus (HAV) infects more than 80 % of the population of many developing countries. Viral hepatitis B (HBV) affects an estimated 360 million people, whereas hepatitis C affects 123 million people worldwide, and last but not least, at current, India has an HIV/AIDS population of approximately 2.4 million people and more than 30 million in whole world and now it has become a reason for 1.8 million death globally; thus, millions of people still struggle for their lives. The progress in medical science has made it possible in overcoming the various fatal diseases such as small pox, chicken pox, dengue, etc., but human immunodeficiency viruses, influenza, and hepatitis virus have renewed challenge surprisingly. The obstacles and challenges in therapy include existence of antibiotic resistance strains of common organisms due to overuse of antibiotics, lack of vaccines, adverse drug reaction, and last but not least the susceptibility concerns. Emergence of pharmacogenomics and pharmacogenetics has shown some promises to take challenges. The discovery of human genome project has opened new vistas to understand the behaviors of genetic makeup in development and progression of diseases and treatment in various viral diseases. Current and previous decade have been engaged in making repositories of polymorphisms (SNPs) of various genes including drug-metabolizing enzymes, receptors, inflammatory cells related with immunity, and antigen-presenting cells, along with the prediction of risks. The genetic makeup alone is most likely an adequate way to handle the therapeutic decision-making process for previous regimen failure. With the introduction of new antiviral therapeutic agents, a significant improvement in progression and overall survival has been achieved, but these drugs have shown several adverse responses in some individuals, so the success is not up to the expectations. Research and acquisition of new knowledge of pharmacogenomics may help in overcoming the prevailing burden of viral diseases. So it will definitely help in selecting the most effective therapeutic agents, effective doses, and drug response for the individuals. Thus, it will be able to transform the laboratory research into the clinical bench side and will also help in understanding the pathogenesis of viral diseases with drug action, so the patients will be managed more properly and finally become able to fulfill the promise of the future.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics & Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, West Bengal India
| | - Dipali Dhawan
- Institute of Life Sciences, B.V. Patel Pharmaceutical Education and Research Development Centre, Ahmedabad University, Ahmedabad, Gujarat India
| | - Nirmal Kumar Ganguly
- Policy Centre for Biomedical Research, Translational Health Science and Technology Institute (Department of Biotechnology Institute, Government of India), Office @ National Institute of Immunology, New Delhi, India
| |
Collapse
|
34
|
Koshiol J, Lin SW. Can tissue-based immune markers be used for studying the natural history of cancer? Ann Epidemiol 2012; 22:520-30. [PMID: 22481034 PMCID: PMC3596808 DOI: 10.1016/j.annepidem.2012.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/24/2012] [Accepted: 03/01/2012] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that altered immunity and chronic inflammation play a key role in the etiology of many malignancies, but the underlying biological mechanisms involved remain unclear. Systemic markers of immunity may not represent the clinically relevant, site-specific immune response, whereas tissue-based markers may more accurately reflect the local immunologic mechanisms by which precursor lesions develop into cancer. Tissues are often only available in individuals with disease. Previous studies have measured tumor-infiltrating lymphocytes to predict prognosis and survival, but it can be challenging to use tissue-based markers to study the natural history of cancer due to limitations with regard to temporality, the availability of appropriate comparison groups, and other epidemiologic issues. In this commentary, we discuss several epidemiologic study design and study population considerations to address these issues, including the strengths and limitations of using tissue-based markers to study immune response and cancer development. We also discuss how the use of tissue-based immune markers fits into the greater context of molecular epidemiology, which encompasses multiple technologies and techniques, and how implementation of tissue-based immune markers will provide an increased understanding of site-specific biological mechanisms involved in carcinogenesis.
Collapse
Affiliation(s)
- Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | | |
Collapse
|