1
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Tholen J, Upmann M. Contribution of the main contaminating materials during pig slaughter to the microbial numbers on carcasses. Lett Appl Microbiol 2024; 77:ovae125. [PMID: 39657079 DOI: 10.1093/lambio/ovae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
During pig slaughter, contaminants such as intestinal and stomach contents, bile, tubular rail fat, and reddish foam from the respiratory tract frequently appear on carcasses, potentially compromising meat safety. This study examined the impact of these contaminants on the bacterial loads of pig carcasses, using total bacterial counts and Enterobacteriaceae counts as hygiene indicators. Examination of the substances as such showed that intestinal and stomach contents were particularly conspicuous to undermine the carcase hygiene due to total bacterial counts of ∼6.0 log10 CFU g-1 (intestinal content) and 5.5 log10 CFU g-1 (stomach content). Tubular rail fat showed varying contamination levels, from low (3.1 log10 CFU g-1) to high (6.4 log10 CFU g-1). The reddish foam had moderate contamination (4.3 log10 CFU g-1). Enterobacteriaceae levels mirrored these results at a lower level. Subsequently, a comparative study analysing bacterial levels in contaminated and in noncontaminated pork rind regions was performed. Even small amounts of intestinal and stomach contents led to significant increases in total bacterial counts of up to 3 log10 CFU cm-² and in Enterobacteriaceae counts (up to 5 log10 CFU cm-²). Other contaminants did not significantly raise bacterial levels: their total viable counts around 3.5 log10 CFU cm-² were similar to those of uncontaminated carcass areas. Nevertheless, they should be removed before further processing.
Collapse
Affiliation(s)
- Janna Tholen
- OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | - Matthias Upmann
- OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
3
|
Silva-Caso W, Carrillo-Ng H, Aguilar-Luis MA, Tarazona-Castro Y, Valle LJD, Tinco-Valdez C, Palomares-Reyes C, Urteaga N, Bazán-Mayra J, del Valle-Mendoza J. Parasitosis by Fasciola hepatica and Variations in Gut Microbiota in School-Aged Children from Peru. Microorganisms 2024; 12:371. [PMID: 38399775 PMCID: PMC10891680 DOI: 10.3390/microorganisms12020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Human fascioliasis is considered an endemic and hyper-endemic disease in the Peruvian Andean valleys. Our objective was to determine variations in the composition of the gut microbiota among children with Fasciola hepatica and children who do not have this parasitosis. (2) Method: A secondary analysis was performed using fecal samples stored in our biobank. The samples were collected as part of an epidemiological Fasciola hepatica cross-sectional study in children from 4 through 14 years old from a community in Cajamarca, Peru. (3) Results: In a comparison of the bacterial genera that make up the intestinal microbiota between the F. hepatica positive and negative groups, it was found that there are significant differences in the determination of Lactobacillus (p = 0.010, CI: 8.5-61.4), Bacteroides (p = 0.020, CI: 18.5-61.4), Clostridium (p < 0.001, CI: 3.5-36.0), and Bifidobacterium (p = 0.018, CI: 1.1-28.3), with each of these genera being less frequent in children parasitized with F. hepatica. (4) Conclusions: These results show that F. hepatica may be associated with direct or indirect changes in the bacterial population of the intestinal microbiota, particularly affecting three bacterial genera.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Hugo Carrillo-Ng
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Miguel Angel Aguilar-Luis
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Yordi Tarazona-Castro
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Luis J. Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain;
| | - Carmen Tinco-Valdez
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
| | - Carlos Palomares-Reyes
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Numan Urteaga
- Puesto de Salud Callancas, Dirección Regional de Salud Cajamarca (DIRESA), Cajamarca 60101, Peru;
| | - Jorge Bazán-Mayra
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca 60101, Peru;
| | - Juana del Valle-Mendoza
- Research and Innovation Centre, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (Y.T.-C.); (C.T.-V.); (C.P.-R.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| |
Collapse
|
4
|
Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Negl Trop Dis 2023; 17:e0011111. [PMID: 36780567 PMCID: PMC9956601 DOI: 10.1371/journal.pntd.0011111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are epidemiologically significant food-borne trematodes endemic to diverse climatic areas. O. viverrini and C. sinensis are both recognized to be 1A group of biological carcinogens to human, whereas O. felineus is not. The mechanisms of carcinogenesis by the liver flukes are studied fragmentarily, the role of host and parasite microbiome is an unexplored aspect. METHODOLOGY/PRINCIPAL FINDINGS Specific pathogen free Mesocricetus auratus hamsters were infected with C. sinensis, O. viverrini and O. felineus. The microbiota of the adult worms, colon feces and bile from the hamsters was investigated using Illumina-based sequencing targeting the prokaryotic 16S rRNA gene. The analysis of 43 libraries revealed 18,830,015 sequences, the bacterial super-kingdom, 16 different phyla, 39 classes, 63 orders, 107 families, 187 genera-level phylotypes. O. viverrini, a fluke with the most pronounced carcinogenic potential, has the strongest impact on the host bile microbiome, changing the abundance of 92 features, including Bifidobacteriaceae, Erysipelotrichaceae, [Paraprevotellaceae], Acetobacteraceae, Coriobacteraceae and Corynebacteriaceae bacterial species. All three infections significantly increased Enterobacteriaceae abundance in host bile, reduced the level of commensal bacteria in the gut microbiome (Parabacteroides, Roseburia, and AF12). CONCLUSIONS/SIGNIFICANCE O. felineus, O. viverrini, and C. sinensis infections cause both general and species-specific qualitative and quantitative changes in the composition of microbiota of bile and colon feces of experimental animals infected with these trematodes. The alterations primarily concern the abundance of individual features and the phylogenetic diversity of microbiomes of infected hamsters.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina V. Baginskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Viatcheslav A. Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Boisseau M, Dhorne-Pollet S, Bars-Cortina D, Courtot É, Serreau D, Annonay G, Lluch J, Gesbert A, Reigner F, Sallé G, Mach N. Species interactions, stability, and resilience of the gut microbiota - Helminth assemblage in horses. iScience 2023; 26:106044. [PMID: 36818309 PMCID: PMC9929684 DOI: 10.1016/j.isci.2023.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.
Collapse
Affiliation(s)
- Michel Boisseau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - David Bars-Cortina
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Élise Courtot
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Delphine Serreau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gwenolah Annonay
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Amandine Gesbert
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Guillaume Sallé
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,Corresponding author
| | - Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France,Corresponding author
| |
Collapse
|
6
|
Izvekova GI. Parasitic Infections and Intestinal Microbiota: A Review. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Clinical helminth infections alter host gut and saliva microbiota. PLoS Negl Trop Dis 2022; 16:e0010491. [PMID: 35675339 PMCID: PMC9212162 DOI: 10.1371/journal.pntd.0010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/21/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Previous reports show altered gut bacterial profiles are associated with helminth infected individuals. Our recently published molecular survey of clinical helminthiases in Thailand border regions demonstrated a more comprehensive picture of infection prevalence when Kato Katz microscopy and copro-qPCR diagnostics were combined. We revealed that Opisthorchis viverrini, hookworm, Ascaris lumbricoides and Trichuris trichiura were the most predominant helminth infections in these regions. In the current study, we have profiled the faecal and saliva microbiota of a subset of these helminth infected participants, in order to determine if microbial changes are associated with parasite infection.
Methods
A subset of 66 faecal samples from Adisakwattana et al., (2020) were characterised for bacterial diversity using 16S rRNA gene profiling. Of these samples a subset of 24 participant matched saliva samples were also profiled for microbiota diversity. Sequence data were compiled, OTUs assigned, and diversity and abundance analysed using the statistical software Calypso.
Results
The data reported here indicate that helminth infections impact on both the host gut and oral microbiota. The profiles of faecal and saliva samples, irrespective of the infection status, were considerably different from each other, with more alpha diversity associated with saliva (p-value≤ 0.0015). Helminth infection influenced the faecal microbiota with respect to specific taxa, but not overall microbial alpha diversity. Conversely, helminth infection was associated with increased saliva microbiota alpha diversity (Chao 1 diversity indices) at both the genus (p-value = 0.042) and phylum (p-value = 0.026) taxa levels, compared to uninfected individuals. Elevated individual taxa in infected individuals saliva were noted at the genus and family levels. Since Opisthorchis viverrini infections as a prominent health concern to Thailand, this pathogen was examined separately to other helminths infections present. Individuals with an O. viverrini mono-infection displayed both increases and decreases in genera present in their faecal microbiota, while increases in three families and one order were also observed in these samples.
Discussion
In this study, helminth infections appear to alter the abundance of specific faecal bacterial taxa, but do not impact on overall bacterial alpha or beta diversity. In addition, the faecal microbiota of O. viverrini only infected individuals differed from that of other helminth single and dual infections. Saliva microbiota analyses of individuals harbouring active helminth infections presented increased levels of both bacterial alpha diversity and abundance of individual taxa. Our data demonstrate that microbial change is associated with helminthiases in endemic regions of Thailand, and that this is reflected in both faecal and saliva microbiota. To our knowledge, this is the first report of an altered saliva microbiota in helminth infected individuals. This work may provide new avenues for improved diagnostics; and an enhanced understanding of both helminth infection pathology and the interplay between helminths, bacteria and their host.
Collapse
|
9
|
Shoji F, Yamashita T, Kinoshita F, Takamori S, Fujishita T, Toyozawa R, Ito K, Yamazaki K, Nakashima N, Okamoto T. Artificial intelligence-derived gut microbiome as a predictive biomarker for therapeutic response to immunotherapy in lung cancer: protocol for a multicentre, prospective, observational study. BMJ Open 2022; 12:e061674. [PMID: 35676015 PMCID: PMC9185567 DOI: 10.1136/bmjopen-2022-061674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Immunotherapy is the fourth leading therapy for lung cancer following surgery, chemotherapy and radiotherapy. Recently, several studies have reported about the potential association between the gut microbiome and therapeutic response to immunotherapy. Nevertheless, the specific composition of the gut microbiome or combination of gut microbes that truly predict the efficacy of immunotherapy is not definitive. METHODS AND ANALYSIS The present multicentre, prospective, observational study aims to discover the specific composition of the gut microbiome or combination of gut microbes predicting the therapeutic response to immunotherapy in lung cancer using artificial intelligence. The main inclusion criteria are as follows: (1) pathologically or cytologically confirmed metastatic or postoperative recurrent lung cancer including non-small cell lung cancer and small cell lung cancer; (2) age≥20 years at the time of informed consent; (3) planned treatment with immunotherapy including combination therapy and monotherapy, as the first-line immunotherapy; and (4) ability to provide faecal samples. In total, 400 patients will be enrolled prospectively. Enrolment will begin in 2021, and the final analyses will be completed by 2024. ETHICS AND DISSEMINATION The study protocol was approved by the institutional review board of each participating centre in 2021 (Kyushu Cancer Center, IRB approved No. 2021-13, 8 June 2021 and Kyushu Medical Center, IRB approved No. 21-076, 31 August 2021). Study results will be disseminated through peer-reviewed journals and national and international conferences. TRIAL REGISTRATION NUMBER UMIN000046428.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | | | - Fumihiko Kinoshita
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Takatoshi Fujishita
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kensaku Ito
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, National Hospital Organisation Kyushu Medical Center, Fukuoka, Japan
| | - Naoki Nakashima
- Medical Information Center, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
10
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
11
|
Fu PP, Xiong F, Wu SG, Zou H, Li M, Wang GT, Li WX. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266766. [PMID: 35413087 PMCID: PMC9004761 DOI: 10.1371/journal.pone.0266766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of interactions among intestinal helminths, gut microbiota and host is still in its infancy in fish. In this study, the effects of Schyzocotyle acheilognathi infection on the intestinal microbiota, growth and immune reactions of grass carp were explored under laboratory conditions. 16S rDNA amplification sequencing results showed that S. acheilognathi infection altered the composition of intestinal microbiota only at the genus level, with a significant increase in the relative abundance of Turicibacter and Ruminococcus (P < 0.05) and a significant decrease in the relative abundance of Gordonia, Mycobacterium and Pseudocanthomonas (P < 0.05). Schyzocotyle acheilognathi infection had no significant effect (P > 0.05) on the alpha diversity indices (including Chao1, ACE, Shannon, Simpson index) of intestinal microbiota in grass carp, but PERMANOVA analysis showed that microbial structure significantly (P < 0.01) differed between hindgut and foregut. PICRUST prediction showed that some metabolism-related pathways were significantly changed after S. acheilognathi infection. The relative abundance of Turicibacter was positively correlated with the fresh weight of tapeworm (foregut: r = 0.48, P = 0.044; hindgut: r = 0.63, P = 0.005). There was no significant difference in the body condition of grass carp between the S. acheilognathi infected group and the uninfected group (P > 0.05). Intestinal tissue section with HE staining showed that S. acheilognathi infection severely damaged the intestinal villi, causing serious degeneration, necrosis and shedding of intestinal epithelial cells. The real-time fluorescent quantitative PCR results showed that S. acheilognathi infection upregulated the mRNA expression of the immune-related genes: Gal1−L2, TGF−β1 and IgM.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, P. R. China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
12
|
Relevance of Helminth-Microbiota Interplay in the Host Immune Response. Cell Immunol 2022; 374:104499. [DOI: 10.1016/j.cellimm.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
|
13
|
García-Sánchez AM, Miller AZ, Caldeira AT, Cutillas C. Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Trop 2022; 226:106277. [PMID: 34919951 DOI: 10.1016/j.actatropica.2021.106277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
Microbiome taxa associated with parasitic nematodes is unknown. These invertebrate parasites could act not only as reservoirs and vectors for horizontally transferred virulence factors, but could also provide a potential pool of future emerging pathogens. Trichuris trichiura and Trichuris suis are geohelminths parasitizing the caecum of primates, including humans, and pigs, respectively. The present work is a preliminary study to evaluate the bacterial communities associated with T. trichiura and T. suis, using High Throughput Sequencing and checking the possible presence of pathogens in these nematodes, to determine whether parasitic helminths act as vectors for bacterial pathogens in human and animal hosts. Five T. trichiura adult specimens were obtained from the caecum of macaque (Macaca sylvanus) and two T. suis adults were collected from the caecum of swine (Sus scrofa domestica). The 16S rRNA gene HTS approach was employed to investigate the composition and diversity of bacterial communities in Trichuris spp., with special emphasis at its intestinal level. All samples showed a rich colonization by bacteria, included, preferently, in the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia. A total of 36 phyla and more than 200 families were identified in the samples. Potential pathogen bacteria were detected in these helminths related to the genera Bartonella, Mycobacterium, Rickettsia, Salmonella, Escherichia/Shigella, Aeromonas and Clostridium. The presence of pathogenic bacteria in Trichuris spp. would position these species as a new threat to humans since these nematodes could spread new diseases. This study will also contribute to the understanding of the host-microbiota relation.
Collapse
|
14
|
Integrative biology defines novel biomarkers of resistance to strongylid infection in horses. Sci Rep 2021; 11:14278. [PMID: 34253752 PMCID: PMC8275762 DOI: 10.1038/s41598-021-93468-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The widespread failure of anthelmintic drugs against nematodes of veterinary interest requires novel control strategies. Selective treatment of the most susceptible individuals could reduce drug selection pressure but requires appropriate biomarkers of the intrinsic susceptibility potential. To date, this has been missing in livestock species. Here, we selected Welsh ponies with divergent intrinsic susceptibility (measured by their egg excretion levels) to cyathostomin infection and found that their divergence was sustained across a 10-year time window. Using this unique set of individuals, we monitored variations in their blood cell populations, plasma metabolites and faecal microbiota over a grazing season to isolate core differences between their respective responses under worm-free or natural infection conditions. Our analyses identified the concomitant rise in plasma phenylalanine level and faecal Prevotella abundance and the reduction in circulating monocyte counts as biomarkers of the need for drug treatment (egg excretion above 200 eggs/g). This biological signal was replicated in other independent populations. We also unravelled an immunometabolic network encompassing plasma beta-hydroxybutyrate level, short-chain fatty acid producing bacteria and circulating neutrophils that forms the discriminant baseline between susceptible and resistant individuals. Altogether our observations open new perspectives on the susceptibility of equids to strongylid infection and leave scope for both new biomarkers of infection and nutritional intervention.
Collapse
|
15
|
Haque M, Koski KG, Scott ME. A gastrointestinal nematode in pregnant and lactating mice alters maternal and neonatal microbiomes. Int J Parasitol 2021; 51:945-957. [PMID: 34081970 DOI: 10.1016/j.ijpara.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
The maternal microbiome is understood to be the principal source of the neonatal microbiome but the consequences of intestinal nematodes on pregnant and lactating mothers and implications for the neonatal microbiome are unknown. Using pregnant CD1 mice infected with Heligmosomoides bakeri, we investigated the microbiomes in maternal tissues (intestine, vagina, and milk) and in the neonatal stomach using MiSeq sequencing of bacterial 16S rRNA genes. Our first hypothesis was that maternal nematode infection altered the maternal intestinal, vaginal, and milk microbiomes and associated metabolic pathways. Maternal nematode infection was associated with increased beta-diversity and abundance of fermenting bacteria as well as Lactobacillus in the maternal caecum 2 days after parturition, together with down-regulated carbohydrate, amino acid and vitamin biosynthesis pathways. Maternal nematode infection did not alter the vaginal or milk microbiomes. Our second hypothesis was that maternal infection would shape colonization of the neonatal microbiome. Although the pup stomach microbiome was similar to that of the maternal vaginal microbiome, pups of infected dams had higher beta-diversity at day 2, and a dramatic expansion in the abundance of Lactobacillus between days 2 and 7 compared with pups nursing uninfected dams. Our third hypothesis that maternal nematode infection altered the composition of neonatal microbiomes was confirmed as we observed up-regulation of several putatively beneficial microbial pathways associated with synthesis of essential and branched-chain amino acids, vitamins, and short-chain fatty acids. We believe this is the first study to show that a nematode living in the maternal intestine is associated with altered composition and function of the neonatal microbiome.
Collapse
Affiliation(s)
- Manjurul Haque
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
16
|
Kent ML, Wall ES, Sichel S, Watral V, Stagaman K, Sharpton TJ, Guillemin K. Pseudocapillaria tomentosa, Mycoplasma spp., and Intestinal Lesions in Experimentally Infected Zebrafish Danio rerio. Zebrafish 2021; 18:207-220. [PMID: 33999743 DOI: 10.1089/zeb.2020.1955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intestinal neoplasms and preneoplastic lesions are common in zebrafish research facilities. Previous studies have demonstrated that these neoplasms are caused by a transmissible agent, and two candidate agents have been implicated: a Mycoplasma sp. related to Mycoplasma penetrans and the intestinal parasitic nematode, Pseudocapillaria tomentosa, and both agents are common in zebrafish facilities. To elucidate the role of these two agents in the occurrence and severity of neoplasia and other intestinal lesions, we conducted two experimental inoculation studies. Exposed fish were examined at various time points over an 8-month period for intestinal histopathologic changes and the burden of Mycoplasma and nematodes. Fish exposed to Mycoplasma sp. isolated from zebrafish were associated with preneoplastic lesions. Fish exposed to the nematode alone or with the Mycoplasma isolate developed severe lesions and neoplasms. Both inflammation and neoplasm scores were associated with an increase in Mycoplasma burden. These results support the conclusions that P. tomentosa is a strong promoter of intestinal neoplasms in zebrafish and that Mycoplasma alone can also cause intestinal lesions and accelerate cancer development in the context of nematode infection.
Collapse
Affiliation(s)
- Michael L Kent
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elena S Wall
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA
| | - Sophie Sichel
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA
| | - Virginia Watral
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA
| | - Keaton Stagaman
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology and Oregon State University, Corvallis, Oregon, USA.,Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Karen Guillemin
- Department of Biology and Institute of Molecular Biology, Eugene, University of Oregon, Eugene, Oregon, USA.,Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Hu D, Chao Y, Zhang B, Wang C, Qi Y, Ente M, Zhang D, Li K, Mok KM. Effects of Gasterophilus pecorum infestation on the intestinal microbiota of the rewilded Przewalski's horses in China. PLoS One 2021; 16:e0251512. [PMID: 33974667 PMCID: PMC8112688 DOI: 10.1371/journal.pone.0251512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Horse botflies have been a threat to the Przewalski’s horses in the Kalamaili Nature Reserve in Xinjiang of China since their reintroduction to the original range. As larvae of these parasites could infest the intestine of a horse for months, they could interact with and alter the structure and composition of its intestinal microbiota, affecting adversely its health. Nonetheless, there are no such studies on the rewilded Przewalski’s horses yet. For the first time, this study characterizes the composition of the intestinal microbiota of 7 rewilded Przewalski’s horses infected severely by Gasterophilus pecorum following and prior to their anthelmintic treatment. Bioinformatics analyses of the sequence data obtained by amplicon high throughput sequencing of bacterial 16S rRNA genes showed that G. pecorum infestation significantly increased the richness of the intestinal microbial community but not its diversity. Firmicutes and Bacteroidetes were found the dominant phyla as in other animals, and the parasitic infestation decreased the F/B ratio largely by over 50%. Large reduction in relative abundances of the two genera Streptococcus and Lactobacillus observed with G. pecorum infestation suggested possible changes in colic and digestion related conditions of the infected horses. Variations on the relative abundance of the genus groups known to be pathogenic or symbiotic showed that adverse impact of the G. pecorum infestation could be associated with reduction of the symbiotic genera Lactobacillus and Bifidobacterium that are probiotics and able to promote immunity against parasitic infection.
Collapse
Affiliation(s)
- Dini Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuzhu Chao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Boru Zhang
- Qinhuangdao Forestry Bureau, Qinhuangdao, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski’s Horse, Urumqi, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- * E-mail: (KL); (KMM)
| | - Kai Meng Mok
- Department of Civil and Environmental Engineering, University of Macau, Macao, China
- * E-mail: (KL); (KMM)
| |
Collapse
|
18
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
19
|
Rosa BA, Snowden C, Martin J, Fischer K, Kupritz J, Beshah E, Supali T, Gankpala L, Fischer PU, Urban JF, Mitreva M. Whipworm-Associated Intestinal Microbiome Members Consistent Across Both Human and Mouse Hosts. Front Cell Infect Microbiol 2021; 11:637570. [PMID: 33777847 PMCID: PMC7991909 DOI: 10.3389/fcimb.2021.637570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human whipworm Trichuris trichiura infects 289 million people worldwide, resulting in substantial morbidity. Whipworm infections are difficult to treat due to low cure rates and high reinfection rates. Interactions between whipworm and its host's intestinal microbiome present a potential novel target for infection control or prevention but are very complicated and are identified using inconsistent methodology and sample types across the literature, limiting their potential usefulness. Here, we used a combined 16S rRNA gene OTU analysis approach (QIIME2) for samples from humans and mice infected with whipworm (T. trichiura and T. muris, respectively) to identify for the first time, bacterial taxa that were consistently associated with whipworm infection spanning host species and infection status using four independent comparisons (baseline infected vs uninfected and before vs after deworming for both humans and mice). Using these four comparisons, we identified significant positive associations for seven taxa including Escherichia, which has been identified to induce whipworm egg hatching, and Bacteroides, which has previously been identified as a major component of the whipworm internal microbiome. We additionally identified significant negative associations for five taxa including four members of the order Clostridiales, two from the family Lachnospiraceae, including Blautia which was previously identified as positively associated with whipworm in independent human and mouse studies. Using this approach, bacterial taxa of interest for future association and mechanistic studies were identified, and several were validated by RT-qPCR. We demonstrate the applicability of a mouse animal model for comparison to human whipworm infections with respect to whipworm-induced intestinal microbiome disruption and subsequent restoration following deworming. Overall, the novel cross-species analysis approach utilized here provides a valuable research tool for studies of the interaction between whipworm infection and the host intestinal microbiome.
Collapse
Affiliation(s)
- Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Caroline Snowden
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jonah Kupritz
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ethiopia Beshah
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lincoln Gankpala
- Public Health and Medical Research, National Public Health Institute of Liberia, Charlesville, Liberia
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph F. Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
20
|
Slater R, Frau A, Hodgkinson J, Archer D, Probert C. A Comparison of the Colonic Microbiome and Volatile Organic Compound Metabolome of Anoplocephala perfoliata Infected and Non-Infected Horses: A Pilot Study. Animals (Basel) 2021; 11:ani11030755. [PMID: 33803473 PMCID: PMC7999024 DOI: 10.3390/ani11030755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary In horses, tapeworm infection is associated with specific forms of colic (abdominal pain) that can be life-threatening without surgical treatment. There is growing evidence that intestinal parasites interact with the gut bacteria, and the consequences of these interactions may influence the ability of the host to resist infection and parasite-associated disease. We aimed to compare the intestinal bacteria and the gases produced by metabolic processes in the gut between horses that had varying levels of tapeworms and those with no tapeworm present. Overall, the diversity of gut bacteria was similar in horses with and without tapeworms. There were some decreases in beneficial bacteria in horses with tapeworms, indicating a possible negative consequence of infection. Intestinal gases correlated with some bacteria indicating their functionality and use as potential markers of active bacteria. Our study validates further research investigating tapeworm and gut bacteria interactions in the horse. Abstract Anoplocephala perfoliata is a common equine tapeworm associated with an increased risk of colic (abdominal pain) in horses. Identification of parasite and intestinal microbiota interactions have consequences for understanding the mechanisms behind parasite-associated colic and potential new methods for parasite control. A. perfoliata was diagnosed by counting of worms in the caecum post-mortem. Bacterial DNA was extracted from colonic contents and sequenced targeting of the 16S rRNA gene (V4 region). The volatile organic compound (VOC) metabolome of colonic contents was characterised using gas chromatography mass spectrometry. Bacterial diversity (alpha and beta) was similar between tapeworm infected and non-infected controls. Some compositional differences were apparent with down-regulation of operational taxonomic units (OTUs) belonging to the symbiotic families of Ruminococcaceae and Lachnospiraceae in the tapeworm-infected group. Overall tapeworm burden accounted for 7–8% of variation in the VOC profile (permutational multivariate analysis of variance). Integration of bacterial OTUs and VOCs demonstrated moderate to strong correlations indicating the potential of VOCs as markers for bacterial OTUs in equine colonic contents. This study has shown potential differences in the intestinal microbiome and metabolome of A. perfoliata infected and non-infected horses. This pilot study did not control for extrinsic factors including diet, disease history and stage of infection.
Collapse
Affiliation(s)
- Rachael Slater
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
- Correspondence:
| | - Alessandra Frau
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Debra Archer
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Chris Probert
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| |
Collapse
|
21
|
Williams AR, Myhill LJ, Stolzenbach S, Nejsum P, Mejer H, Nielsen DS, Thamsborg SM. Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Vet Res 2021; 17:62. [PMID: 33514383 PMCID: PMC7845040 DOI: 10.1186/s12917-021-02752-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that nutritional manipulation of the commensal gut microbiota (GM) may play a key role in maintaining animal health and production in an era of reduced antimicrobial usage. Gastrointestinal helminth infections impose a considerable burden on animal performance, and recent studies suggest that infection may substantially alter the composition and function of the GM. Here, we discuss the potential interactions between different bioactive dietary components (prebiotics, probiotics and phytonutrients) and helminth infection on the GM in livestock. A number of recent studies suggest that host diet can strongly influence the nature of the helminth-GM interaction. Nutritional manipulation of the GM may thus impact helminth infection, and conversely infection may also influence how the GM responds to dietary interventions. Moreover, a dynamic interaction exists between helminths, the GM, intestinal immune responses, and inflammation. Deciphering the mechanisms underlying the diet-GM-helminth axis will likely inform future helminth control strategies, as well as having implications for how health-promoting feed additives, such as probiotics, can play a role in sustainable animal production.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Prosberg MV, Kringel H, Kapel JS, Kapel BS, Fredensborg BL, Petersen AM, Hansen LH, Nielsen DS, Kapel HS, Jacobsen KR, Mikkelsen LF, Kapel CMO. Pre-clinical evaluation of the effect of co-medication with antibiotics and oral steroids in Göttingen Minipigs on the biological activity of the probiotic medicinal product TSO (Trichuris suis ova). Parasitol Res 2021; 120:743-746. [PMID: 33409625 DOI: 10.1007/s00436-020-07004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
The probiotic medicinal product TSO (Trichuris suis ova) is administered to patients with active ulcerative colitis in an ongoing clinical phase IIb trial where the typical co-medications are steroids (prednisolone or budesonide) and antibiotics (e.g., phenoxymethylpenicillin). The present pre-clinical study evaluates the effects of these co-medications on the biological activity of TSO in Göttingen Minipigs. This translationally relevant pre-clinical model allows administration of TSO with and without oral steroids or antibiotics in a manner similar to the administration to patients, followed by quantification of the biological activity of TSO. The biological activity of TSO was not affected by oral steroids but was reduced by oral antibiotics. Fecal calprotectin, the common marker of intestinal inflammation in patients with UC, did not differ between groups.
Collapse
Affiliation(s)
- M V Prosberg
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark
| | - H Kringel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark.
| | - J S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - B S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - B L Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Petersen
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark.,Department of Microbiology, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, 2650, Hvidovre, Denmark
| | - L H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - H S Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark
| | - K R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261, Dalmose, Denmark
| | - L F Mikkelsen
- Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261, Dalmose, Denmark
| | - C M O Kapel
- ParaTech A/S, Dr. Neergaards Vej 3, 2970, Hoersholm, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Eukaryotic and Prokaryotic Microbiota Interactions. Microorganisms 2020; 8:microorganisms8122018. [PMID: 33348551 PMCID: PMC7767281 DOI: 10.3390/microorganisms8122018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
The nature of the relationship between the communities of microorganisms making up the microbiota in and on a host body has been increasingly explored in recent years. Microorganisms, including bacteria, archaea, viruses, parasites and fungi, have often long co-evolved with their hosts. In human, the structure and diversity of microbiota vary according to the host’s immunity, diet, environment, age, physiological and metabolic status, medical practices (e.g., antibiotic treatment), climate, season and host genetics. The recent advent of next generation sequencing (NGS) technologies enhanced observational capacities and allowed for a better understanding of the relationship between distinct microorganisms within microbiota. The interaction between the host and their microbiota has become a field of research into microorganisms with therapeutic and preventive interest for public health applications. This review aims at assessing the current knowledge on interactions between prokaryotic and eukaryotic communities. After a brief description of the metagenomic methods used in the studies were analysed, we summarise the findings of available publications describing the interaction between the bacterial communities and protozoa, helminths and fungi, either in vitro, in experimental models, or in humans. Overall, we observed the existence of a beneficial effect in situations where some microorganisms can improve the health status of the host, while the presence of other microorganisms has been associated with pathologies, resulting in an adverse effect on human health.
Collapse
|
24
|
Schaaf RM, Sharpton TJ, Murray KN, Kent AD, Kent ML. Retrospective analysis of the Zebrafish International Resource Center diagnostic data links Pseudocapillaria tomentosa to intestinal neoplasms in zebrafish Danio rerio (Hamilton 1822). JOURNAL OF FISH DISEASES 2020; 43:1459-1462. [PMID: 32892418 PMCID: PMC7924165 DOI: 10.1111/jfd.13233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Affiliation(s)
- Russel M. Schaaf
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Statistics, Oregon State University, Corvallis, Oregon
| | - Katrina N. Murray
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | | | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
- Zebrafish International Resource Center, Eugene, Oregon
| |
Collapse
|
25
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
26
|
Dawson HD, Chen C, Li RW, Bell LN, Shea-Donohue T, Kringel H, Beshah E, Hill DE, Urban JF. Molecular and metabolomic changes in the proximal colon of pigs infected with Trichuris suis. Sci Rep 2020; 10:12853. [PMID: 32732949 PMCID: PMC7393168 DOI: 10.1038/s41598-020-69462-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The pig whipworm Trichuris suis is important in swine production because of its negative effects on pig performance and, notably, to some humans with inflammatory bowel disease as a therapeutic agent that modulates inflammation. The proximal colon of T. suis-infected pigs exhibited general inflammation around day 21 after inoculation with infective eggs that is transcriptionally characterized by markers of type-2 immune activation, inflammation, cellular infiltration, tissue repair enzymes, pathways of oxidative stress, and altered intestinal barrier function. Prominent gene pathways involved the Th2-response, de novo cholesterol synthesis, fructose and glucose metabolism, basic amino acid metabolism, and bile acid transport. Upstream regulatory factor analysis implicated the bile acid/farnesoid X receptor in some of these processes. Metabolic analysis indicated changes in fatty acids, antioxidant capacity, biochemicals related to methylation, protein glycosylation, extracellular matrix structure, sugars, Krebs cycle intermediates, microbe-derived metabolites and altered metabolite transport. Close to 1,200 differentially expressed genes were modulated in the proximal colon of pigs with a persistent adult worm infection that was nearly 90% lower in pigs that had expelled worms. The results support a model to test diets that favorably alter the microbiome and improve host intestinal health in both pigs and humans exposed to Trichuris.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Robert W Li
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | | | | | - Helene Kringel
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ethiopia Beshah
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Dolores E Hill
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA. .,Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
27
|
Else KJ, Keiser J, Holland CV, Grencis RK, Sattelle DB, Fujiwara RT, Bueno LL, Asaolu SO, Sowemimo OA, Cooper PJ. Whipworm and roundworm infections. Nat Rev Dis Primers 2020; 6:44. [PMID: 32467581 DOI: 10.1038/s41572-020-0171-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Trichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine. Thereafter, T. trichiura larvae moult within intestinal epithelial cells, with adult worms embedded in a partially intracellular niche in the large intestine, whereas A. lumbricoides larvae penetrate the gut mucosa and migrate through the liver and lungs before returning to the lumen of the small intestine, where adult worms dwell. Both species elicit type 2 anti-parasite immunity. Diagnosis is typically based on clinical presentation (gastrointestinal symptoms and inflammation) and the detection of eggs or parasite DNA in the faeces. Prevention and treatment strategies rely on periodic mass drug administration (generally with albendazole or mebendazole) to at-risk populations and improvements in water, sanitation and hygiene. The effectiveness of drug treatment is very high for A. lumbricoides infections, whereas cure rates for T. trichiura infections are low. Novel anthelminthic drugs are needed, together with vaccine development and tools for diagnosis and assessment of parasite control in the field.
Collapse
Affiliation(s)
- Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London, UK
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel O Asaolu
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluyomi A Sowemimo
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
28
|
Intestinal parasites in rural communities in Nan Province, Thailand: changes in bacterial gut microbiota associated with minute intestinal fluke infection. Parasitology 2020; 147:972-984. [PMID: 32364103 DOI: 10.1017/s0031182020000736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gastrointestinal helminth infection likely affects the gut microbiome, in turn affecting host health. To investigate the effect of intestinal parasite status on the gut microbiome, parasitic infection surveys were conducted in communities in Nan Province, Thailand. In total, 1047 participants submitted stool samples for intestinal parasite examination, and 391 parasite-positive cases were identified, equating to an infection prevalence of 37.3%. Intestinal protozoan species were less prevalent (4.6%) than helminth species. The most prevalent parasite was the minute intestinal fluke Haplorchis taichui (35.9%). Amplicon sequencing of 16S rRNA was conducted to investigate the gut microbiome profiles of H. taichui-infected participants compared with those of parasite-free participants. Prevotella copri was the dominant bacterial operational taxonomic unit (OTU) in the study population. The relative abundance of three bacterial taxa, Ruminococcus, Roseburia faecis and Veillonella parvula, was significantly increased in the H. taichui-infected group. Parasite-negative group had higher bacterial diversity (α diversity) than the H. taichui-positive group. In addition, a significant difference in bacterial community composition (β diversity) was found between the two groups. The results suggest that H. taichui infection impacts the gut microbiome profile by reducing bacterial diversity and altering bacterial community structure in the gastrointestinal tract.
Collapse
|
29
|
Shute A, Wang A, Jayme TS, Strous M, McCoy KD, Buret AG, McKay DM. Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. Gut Microbes 2020; 11:497-510. [PMID: 31928118 PMCID: PMC7524392 DOI: 10.1080/19490976.2019.1688065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tapeworm Hymenolepis diminuta fails to establish in mice. Given the potential for helminth-bacteria interaction in the gut and the influence that commensal bacteria exert on host immunity, we tested if worm expulsion was related to alterations in the gut microbiota. Specific pathogen-free (SPF) mice, treated with broad-spectrum antibiotics, or germ-free wild-type mice were infected with H. diminuta, gut bacterial composition assessed by 16S rRNA gene sequencing, and worm counts, blood eosinophilia, goblet cells, splenic IL-4, -5 and -10, and colonic cytokines/chemokines mRNA were assessed. Effects of a PBS-soluble extract of adult H. diminuta on bacterial growth in vitro was tested. H. diminuta-infected mice displayed increased α and β diversity in colonic mucosa-associated and fecal bacterial communities, characterized by increased Lachnospiraceae and clostridium cluster XIVa. In vitro analysis revealed that the worm extract promoted the growth of anaerobic bacteria on M2GSC agar. H. diminuta-infection was accompanied by increased Th2 immune responses, and colon from infected mice had increased levels of IL-10, IL-25, Muc2, trefoil factor 3, and β2-defensin mRNA. SPF-mice treated with antibiotics, or germ-free mice, expelled H. diminuta with kinetics similar to control SPF mice. In both settings, measurements of Th2-immune responses were not significantly different across the groups. Thus, while infection with H. diminuta results in subtle but distinct changes to the colonic microbiota, we have no evidence to support an essential role for gut bacteria in the expulsion of the worm from the mouse host.
Collapse
Affiliation(s)
- Adam Shute
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy S. Jayme
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Kathy D. McCoy
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,CONTACT Derek M. McKay Department of Physiology & Pharmacology, 1877 HSC, University of Calgary, 3330 Hospital Drive NW, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
30
|
Stolzenbach S, Myhill LJ, Andersen LO, Krych L, Mejer H, Williams AR, Nejsum P, Stensvold CR, Nielsen DS, Thamsborg SM. Dietary Inulin and Trichuris suis Infection Promote Beneficial Bacteria Throughout the Porcine Gut. Front Microbiol 2020; 11:312. [PMID: 32194529 PMCID: PMC7064446 DOI: 10.3389/fmicb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota (GM) displays a profound ability to adapt to extrinsic factors, such as gastrointestinal pathogens and/or dietary alterations. Parasitic worms (helminths) and host-associated GM share a long co-evolutionary relationship, exerting mutually modulatory effects which may impact the health of the host. Moreover, dietary components such as prebiotic fibers (e.g. inulin) are capable of modulating microbiota toward a composition often associated with a healthier gut function. The effect of helminth infection on the host microbiota is still equivocal, and it is also unclear how parasites and prebiotic dietary components interact to influence the microbiota and host health status. Some helminths, such as Trichuris suis (porcine whipworm), also exhibit strong immunomodulatory and anti-inflammatory effects. We therefore explored the effects of T. suis, alone and in interaction with inulin, both in fecal microbiota during the infection period and luminal microbiota across four intestinal segments at the end of a 4-week infection period. We observed that T. suis generally had minimal, but mainly positive, effects on the microbiota. T. suis increased the relative abundance of bacterial genera putatively associated with gut health such as Prevotella, and decreased bacteria such as Proteobacteria that have been associated with dysbiosis. Interestingly, dietary inulin interacted with T. suis to enhance these effects, thereby modulating the microbiota toward a composition associated with reduced inflammation. Our results show that administration of T. suis together with the consumption of prebiotic inulin may have the potential to positively affect gut health.
Collapse
Affiliation(s)
- Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Frederiksberg, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
31
|
Whipworm Infection Promotes Bacterial Invasion, Intestinal Microbiota Imbalance, and Cellular Immunomodulation. Infect Immun 2020; 88:IAI.00642-19. [PMID: 31843966 DOI: 10.1128/iai.00642-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 01/24/2023] Open
Abstract
Infections with Trichuris trichiura are among the most common causes of intestinal parasitism in children worldwide, and the diagnosis is based on microscopic egg identification in the chronic phase of the infection. During parasitism, the adult worm of the trichurid nematode maintains its anterior region inserted in the intestinal mucosa, which causes serious damage and which may open access for gut microorganisms through the intestinal tissue. The immune-regulatory processes taking place during the evolution of the chronic infection are still not completely understood. By use of the Swiss Webster outbred mouse model, mice were infected with 200 eggs, and tolerance to the establishment of a chronic Trichuris muris infection was induced by the administration of a short pulse of dexamethasone during nematode early larval development. The infected mice presented weight loss, anemia, an imbalance of the microbiota, and intense immunological cell infiltration in the large intestine. It was found that mice have a mixed Th1/Th2/Th17 response, with differences being found among the different anatomical locations. After 45 days of infection, the parasitism induced changes in the microbiota composition and bacterial invasion of the large intestine epithelium. In addition, we describe that the excretory-secretory products from the nematode have anti-inflammatory effects on mouse macrophages cultured in vitro, suggesting that T. muris may modulate the immune response at the site of insertion of the worm inside mouse tissue. The data presented in this study suggest that the host immune state at 45 days postinfection with T. muris during the chronic phase of infection is the result of factors derived from the worm as well as alterations to the microbiota and bacterial invasion. Taken together, these results provide new information about the parasite-host-microbiota relationship and open new treatment possibilities.
Collapse
|
32
|
Mamun MAA, Sandeman M, Rayment P, Brook-Carter P, Scholes E, Kasinadhuni N, Piedrafita D, Greenhill AR. Variation in gut bacterial composition is associated with Haemonchus contortus parasite infection of sheep. Anim Microbiome 2020; 2:3. [PMID: 33499986 PMCID: PMC7807447 DOI: 10.1186/s42523-020-0021-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background One of the greatest impediments to global small ruminant production is infection with the gastrointestinal parasite, Haemonchus contortus. In recent years there has been considerable interest in the gut microbiota and its impact on health. Relatively little is known about interactions between the gut microbiota and gastrointestinal tract pathogens in sheep. Thus, this study was undertaken to investigate the link between the faecal microbiota of sheep, as a sample representing the gastrointestinal microbiota, and infection with H. contortus. Results Sheep (n = 28) were experimentally inoculated with 14,000 H. contortus infective larvae. Faecal samples were collected 4 weeks prior to and 4 weeks after infection. Microbial analyses were conducted using automated ribosomal intergenic spacer analysis (ARISA) and 16S rRNA gene sequencing. A comparison of pre-infection microbiota to post-infection microbiota was conducted. A high parasite burden associated with a relatively large change in community composition, including significant (p ≤ 0.001) differences in the relative abundances of Firmicutes and Bacteroidetes following infection. In comparison, low parasite burden associated with a smaller change in community composition, with the relative abundances of the most abundant phyla remaining stable. Interestingly, differences were observed in pre-infection faecal microbiota in sheep that went on to develop a high burden of H. contortus infection (n = 5) to sheep that developed a low burden of infection (n = 5). Differences observed at the community level and also at the taxa level, where significant (p ≤ 0.001) in relative abundance of Bacteroidetes (higher in high parasite burden sheep) and Firmicutes (lower in high parasite burden sheep). Conclusions This study reveals associations between faecal microbiota and high or low H. contortus infection in sheep. Further investigation is warranted to investigate causality and the impact of microbiome manipulation.
Collapse
Affiliation(s)
- Md Abdullah Al Mamun
- Monash University, Faculty of Science, Melbourne, VIC, 3800, Australia.,Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia.,Dept of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mark Sandeman
- Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia
| | - Phil Rayment
- Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia
| | - Phillip Brook-Carter
- Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia
| | - Emily Scholes
- Monash University, Faculty of Science, Melbourne, VIC, 3800, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility, Melbourne, QLD, 4072, Australia
| | - David Piedrafita
- Monash University, Faculty of Science, Melbourne, VIC, 3800, Australia.,Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia
| | - Andrew R Greenhill
- Monash University, Faculty of Science, Melbourne, VIC, 3800, Australia. .,Animal Health, Ecology and Diagnostics Research Group, School of Health and Life Sciences, Federation University Australia, Gippsland Campus, Northways Rd, Churchill, 3842, Australia.
| |
Collapse
|
33
|
Lee SC, Tang MS, Easton AV, Devlin JC, Chua LL, Cho I, Moy FM, Khang TF, Lim YAL, Loke P. Linking the effects of helminth infection, diet and the gut microbiota with human whole-blood signatures. PLoS Pathog 2019; 15:e1008066. [PMID: 31841569 PMCID: PMC6913942 DOI: 10.1371/journal.ppat.1008066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Helminth infection and dietary intake can affect the intestinal microbiota, as well as the immune system. Here we analyzed the relationship between fecal microbiota and blood profiles of indigenous Malaysians, referred to locally as Orang Asli, in comparison to urban participants from the capital city of Malaysia, Kuala Lumpur. We found that helminth infections had a larger effect on gut microbial composition than did dietary intake or blood profiles. Trichuris trichiura infection intensity also had the strongest association with blood transcriptional profiles. By characterizing paired longitudinal samples collected before and after deworming treatment, we determined that changes in serum zinc and iron levels among the Orang Asli were driven by changes in helminth infection status, independent of dietary metal intake. Serum zinc and iron levels were associated with changes in the abundance of several microbial taxa. Hence, there is considerable interplay between helminths, micronutrients and the microbiota on the regulation of immune responses in humans.
Collapse
Affiliation(s)
- Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (SCL); (YALL); (PL)
| | - Mei San Tang
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alice V. Easton
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Joseph Cooper Devlin
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Ling Ling Chua
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
- Department of Paediatrics, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ilseung Cho
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, New York, United States of America
| | - Foong Ming Moy
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tsung Fei Khang
- University of Malaya Centre for Data Analytics, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (SCL); (YALL); (PL)
| | - P’ng Loke
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (SCL); (YALL); (PL)
| |
Collapse
|
34
|
Liu S, Pan J, Meng X, Zhu J, Zhou J, Zhu X. Trichinella spiralis infection decreases the diversity of the intestinal flora in the infected mouse. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:490-500. [PMID: 31708483 DOI: 10.1016/j.jmii.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trichinella spiralis is a kind of intestinal nematode that can strongly modulate the host immune system. However, the effects of T. spiralis infection on the intestinal flora are poorly understood. This study aimed to explore the effect of T. spiralis infection on the intestinal flora. METHODS The intestinal contents of T. spiralis infected mice were examined through high-throughput sequencing (Illumina) of the V3-V4 hypervariable region in bacterial 16S rRNA gene. The sequences were analyzed using the QIIME software package and other bioinformatics methods. RESULTS Altogether 2,899,062 sequences were generated from the samples collected from different intestinal regions at various infection time points; the 44,843 Operational Taxonomic Unit (OTUs) analysis showed that T. spiralis infection would decrease the diversity of intestinal flora in the infected mice relative to that in the uninfected ones, especially in the large intestine and feces. Further analysis indicated that, the genera Oscillospira from the phylum Firmicutes showed a higher abundance in the helminth-infected small and larger intestines; the genera Bacteroides from the phyla Bacteroides, the genera Lactobacillus from the phyla Firmicutes, the genera Escherichia from the phyla Proteobacteria, and the genera Akkermansia from the phyla Verrucomicrobia displayed increased abundances in the T. spiralis positive fecal samples compared with those in the negative samples. CONCLUSIONS T. spiralis infection decreases the diversity of the intestinal flora in the infected mouse. However, it remains unclear about the association between the changes in intestinal flora caused by T. spiralis infection and the parasite pathogenesis, which should be further examined.
Collapse
Affiliation(s)
- Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jin Pan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiangli Meng
- Ningbo International Travel Healthcare Center, Ningbo Customs District People's Republic of China, Ningbo 315012, PR China
| | - Junping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jie Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
35
|
Helminth-microbiota cross-talk - A journey through the vertebrate digestive system. Mol Biochem Parasitol 2019; 233:111222. [PMID: 31541662 DOI: 10.1016/j.molbiopara.2019.111222] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, i.e., the microbiota and macrobiota. The former is composed largely of commensal microorganisms, which play vital roles in host nutrition and maintenance of energy balance, in addition to supporting the development and function of the vertebrate immune system. By contrast, the macrobiota includes parasitic helminths, which are mostly considered detrimental to host health via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of infection, metabolic activity, and interactions with the host immune system. Sharing the same environment within the vertebrate host, the GI microbiota and parasitic helminths interact with each other, and the results of such interactions may impact, directly or indirectly, on host health and homeostasis. The complex relationships occurring between parasitic helminths and microbiota have long been neglected; however, recent studies point towards a role for these interactions in the overall pathophysiology of helminth disease, as well as in parasite-mediated suppression of inflammation. Whilst several discrepancies in qualitative and quantitative modifications in gut microbiota composition have been described based on host and helminth species under investigation, we argue that attention should be paid to the systems biology of the gut compartment under consideration, as variations in the abundances of the same population of bacteria inhabiting different niches of the GI tract may result in varying functional consequences for host physiology.
Collapse
|
36
|
Microbiota Composition and Functional Profiling Throughout the Gastrointestinal Tract of Commercial Weaning Piglets. Microorganisms 2019; 7:microorganisms7090343. [PMID: 31547478 PMCID: PMC6780805 DOI: 10.3390/microorganisms7090343] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Dietary, environmental, and social stresses induced by weaning transition in pig production are associated with alterations of gut microbiota, diarrhea, and enteric infections. With the boom of -omic technologies, numerous studies have investigated the dynamics of fecal bacterial communities of piglets throughout weaning but much less research has been focused on the composition and functional properties of microbial communities inhabiting other gastrointestinal segments. The objective of the present study was to bring additional information about the piglet bacterial and archaeal microbiota throughout the entire digestive tract, both at the structural level by using quantitative PCR and high-throughput sequencing, and on functionality by measurement of short-chain fatty acids and predictions using Tax4Fun tool. Our results highlighted strong structural and functional differences between microbial communities inhabiting the fore and the lower gut as well as a quantitatively important archaeal community in the hindgut. The presence of opportunistic pathogens was also noticed throughout the entire digestive tract and could trigger infection emergence. Understanding the role of the intestinal piglet microbiota at weaning could provide further information about the etiology of post-weaning infections and lead to the development of effective preventive solutions.
Collapse
|
37
|
Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9:11121. [PMID: 31366962 PMCID: PMC6668452 DOI: 10.1038/s41598-019-47204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with specific compositional alterations of the developing microbiome; in particular, the faecal microbiota of animals with heavy worm infection burdens was characterised by lower microbial richness, and alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino acids and glucose were increased in faecal samples from the same cohort, which indicated the likely occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections in young livestock are associated with significant alterations to the GI microbiota, which may impact on both metabolism and development of acquired immunity. This knowledge will direct future studies aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young livestock.
Collapse
|
38
|
Abstract
The multifaceted interactions occurring between gastrointestinal (GI) parasitic helminths and the host gut microbiota are emerging as a key area of study within the broader research domain of host-pathogen relationships. Over the past few years, a wealth of investigations has demonstrated that GI helminths interact with the host gut flora, and that such interactions result in modifications of the host immune and metabolic statuses. Nevertheless, whilst selected changes in gut microbial composition are consistently observed in response to GI helminth infections across several host-parasite systems, research in this area to date is largely characterised by inconsistent findings. These discrepancies are particularly evident when data from studies of GI helminth-microbiota interactions conducted in humans from parasite-endemic regions are compared. In this review, we provide an overview of the main sources of variance that affect investigations on helminth-gut microbiota interactions in humans, and propose a series of methodological approaches that, whilst accounting for the inevitable constraints of fieldwork, are aimed at minimising confounding factors and draw biologically meaningful interpretations from highly variable datasets.
Collapse
|
39
|
Abstract
Except for the important role coccidia have as predisposing factors of necrotic enteritis, the role parasites play in the dynamics of a healthy microbiota of chickens is not well explored. This review describes the interactions of relevant intestinal parasites of chickens with bacteria. Infection with Eimeria spp. favor the growth of Clostridium perfringens and suppress the growth of many other bacteria by increasing viscosity and passage time of the ingesta, and by causing lesions to the intestinal mucosa that improve the availability of nutrients for C. perfringens. Conversely, there are indications that bacteria influence the course of disease after infections with Eimeria spp. Not much is known about intestinal cryptosporidiosis in chickens, but results in mice show that the intestinal microbiota induces some resistance against infection with Cryptosporidium parvum and that the innate immune response triggered by infections with cryptosporidia might have an effect on other intestinal microbes. Histomonas meleagridis depend on bacteria in vitro, and in vivo it will cause lesions in chickens only in the presence of bacteria. Blastocystis spp. are very common in chickens, but there is no information about interactions with bacteria. In humans, there is evidence of the correlation of the detection of Blastocystis and changes in the intestinal microbiota. There are indications of interactions between Ascaridia galli and various bacteria in chickens and Ascaridia spp. of mammals are known to produce various types of antimicrobial molecules. However, often the underlying mechanisms of these interactions between parasites and bacteria remain unknown and only correlations but not causation can be established.
Collapse
Affiliation(s)
- Rüdiger Hauck
- A Department of Pathobiology and Department of Poultry Science, Auburn University, Auburn, AL 36849
| |
Collapse
|
40
|
Fu PP, Xiong F, Feng WW, Zou H, Wu SG, Li M, Wang GT, Li WX. Effect of intestinal tapeworms on the gut microbiota of the common carp, Cyprinus carpio. Parasit Vectors 2019; 12:252. [PMID: 31113452 PMCID: PMC6530175 DOI: 10.1186/s13071-019-3510-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parasitic protozoans, helminths, alter the gut microbiota in mammals, yet little is known about the influence of intestinal cestodes on gut microbiota in fish. In the present study, the composition and diversity of the hindgut microbiota were determined in the intestine of common carp (Cyprinus carpio) infected with two tapeworm species, Khawia japonensis and Atractolytocestus tenuicollis. RESULTS The intestine contained a core microbiota composed of Proteobacteria, Fusobacteria and Tenericutes. Infection with the two cestode species had no significant effect on the microbial diversity and richness, but it altered the microbial composition at the genus level. PCoA analysis indicated that microbial communities in the infected and uninfected common carp could not be distinguished from each other. However, a Mantel test indicated that the abundance of K. japonensis was significantly correlated with the microbial composition (P = 0.015), while the abundance of A. tenuicollis was not (P = 0.954). According to Pearson's correlation analysis, the abundance of K. japonensis exhibited an extremely significant (P < 0.001) positive correlation with the following gut microbiota taxa: Epulopiscium, U114, Bacteroides, Clostridium and Peptostreptococcaceae (0.8< r < 0.9); and a significant (P < 0.05) correlation with Enterobacteriaceae, Micrococcaceae, Rummeliibacillus, Lysinibacillus boronitolerans, Veillonellaceae, Oxalobacteraceae, Aeromonadaceae (negative), Marinibacillus and Chitinilyticum (0.4< r < 0.7). CONCLUSIONS These results suggest that the composition of gut microbiota was somewhat affected by the K. japonensis infection. Additionally, increased ratios of pathogenic bacteria (Lawsonia and Plesiomonas) were also associated with the K. japonensis infection, which may therefore increase the likelihood of disease.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Wen W. Feng
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
41
|
The Impact of Anthelmintic Treatment on Human Gut Microbiota Based on Cross-Sectional and Pre- and Postdeworming Comparisons in Western Kenya. mBio 2019; 10:mBio.00519-19. [PMID: 31015324 PMCID: PMC6479000 DOI: 10.1128/mbio.00519-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine studies suggest that the presence of some species of intestinal helminths is associated with changes in host microbiota composition and diversity. However, studies in humans have produced varied conclusions, and the impact appears to vary widely depending on the helminth species present. To demonstrate how molecular approaches to the human gut microbiome can provide insights into the complex interplay among disparate organisms, DNA was extracted from cryopreserved stools collected from residents of 5 rural Kenyan villages prior to and 3 weeks and 3 months following albendazole (ALB) therapy. Samples were analyzed by quantitative PCR (qPCR) for the presence of 8 species of intestinal parasites and by MiSeq 16S rRNA gene sequencing. Based on pretreatment results, the presence of neither Ascaris lumbricoides nor Necator americanus infection significantly altered the overall diversity of the microbiota in comparison with age-matched controls. Following ALB therapy and clearance of soil-transmitted helminths (STH), there were significant increases in the proportion of the microbiota made up by Clostridiales (P = 0.0002; average fold change, 0.57) and reductions in the proportion made up by Enterobacteriales (P = 0.0004; average fold change, -0.58). There was a significant posttreatment decrease in Chao1 richness, even among individuals who were uninfected pretreatment, suggesting that antimicrobial effects must be considered in any posttreatment setting. Nevertheless, the helminth-associated changes in Clostridiales and Enterobacteriales suggest that clearance of STH, and of N. americanus in particular, alters the gut microbiota.IMPORTANCE The gut microbiome is an important factor in human health. It is affected by what we eat, what medicines we take, and what infections we acquire. In turn, it affects the way we absorb nutrients and whether we have excessive intestinal inflammation. Intestinal worms may have an important impact on the composition of the gut microbiome. Without a complete understanding of the impact of mass deworming programs on the microbiome, it is impossible to accurately calculate the cost-effectiveness of such public health interventions and to guard against any possible deleterious side effects. Our research examines this question in a "real-world" setting, using a longitudinal cohort, in which individuals with and without worm infections are treated with deworming medication and followed up at both three weeks and three months posttreatment. We quantify the impact of roundworms and hookworms on gut microbial composition, suggesting that the impact is small, but that treatment of hookworm infection results in significant changes. This work points to the need for follow-up studies to further examine the impact of hookworm on the gut microbiota and determine the health consequences of the observed changes.
Collapse
|
42
|
Ali Mubaraki M, Ahmad M, Hafiz TA, Marie MA. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol Ecol 2019; 94:4966977. [PMID: 29796663 DOI: 10.1093/femsec/fiy065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The peaceful phenomenon of the co-evolution between the prokaryotes (microbiota) and the eukaryotes (parasites including protozoa and helminths) in the animal gut has drawn the researchers' attention. Importantly, exploring the potential of helminths for therapeutic uses was one of the reasons behind understanding the physiological and immunological crosstalk existing between them. Here we discuss the interactive immunological associations of helminths and microbial responses individually and in combination with their hosts. Considering that there is probably crosstalk between eukaryotic organisms like helminths and protozoa with their host's gut microbiota, in this review we searched the literature identifying the privileged and favourable relationship generated between them in the host. Understanding the possibilities of the role of helminths along with gut microbiota as a black box would certainly help decode the therapeutic intrusion with helminths in experimental clinical trials, and a successful trial could be used to consider possible future and safe treatments for various immune-inflammatory diseases in humans.
Collapse
Affiliation(s)
- Murad Ali Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammad Ahmad
- Medical Surgical Nursing Department, College of Nursing, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed A Marie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
43
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
44
|
Abstract
Since the renaissance of microbiome research in the past decade, much insight has accumulated in comprehending forces shaping the architecture and functionality of resident microorganisms in the human gut. Of the multiple host-endogenous and host-exogenous factors involved, diet emerges as a pivotal determinant of gut microbiota community structure and function. By introducing dietary signals into the nexus between the host and its microbiota, nutrition sustains homeostasis or contributes to disease susceptibility. Herein, we summarize major concepts related to the effect of dietary constituents on the gut microbiota, highlighting chief principles in the diet-microbiota crosstalk. We then discuss the health benefits and detrimental consequences that the interactions between dietary and microbial factors elicit in the host. Finally, we present the promises and challenges that arise when seeking to incorporate microbiome data in dietary planning and portray the anticipated revolution that the field of nutrition is facing upon adopting these novel concepts.
Collapse
Affiliation(s)
- Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Gastroenterology Unit, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
45
|
Synthetic gutomics: Deciphering the microbial code for futuristic diagnosis and personalized medicine. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Zhao T, Shen X, Dai C, Cui L. Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics. J Vet Sci 2018; 19:798-807. [PMID: 30304891 PMCID: PMC6265587 DOI: 10.4142/jvs.2018.19.6.798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/16/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojuan Shen
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Dai
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Cui
- Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Myhill LJ, Stolzenbach S, Hansen TVA, Skovgaard K, Stensvold CR, Andersen LO, Nejsum P, Mejer H, Thamsborg SM, Williams AR. Mucosal Barrier and Th2 Immune Responses Are Enhanced by Dietary Inulin in Pigs Infected With Trichuris suis. Front Immunol 2018; 9:2557. [PMID: 30473696 PMCID: PMC6237860 DOI: 10.3389/fimmu.2018.02557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Diet composition may play a crucial role in shaping host immune responses and commensal gut microbiota populations. Bioactive dietary components, such as inulin, have been extensively studied for their bioactive properties, particularly in modulating gut immune function and reducing inflammation. It has been shown that colonization with gastrointestinal parasitic worms (helminths) may alleviate chronic inflammation through promotion of T-helper cell type (Th) 2 and T-regulatory immune responses and alterations in the gut microbiome. In this study, we investigated if dietary inulin could modulate mucosal immune function in pigs during colonization with the porcine whipworm Trichuris suis. T. suis infection induced a typical Th2-biased immune response characterized by transcriptional changes in Th2- and barrier function-related genes, accompanied by intestinal remodeling through increased epithelial goblet and tuft cell proliferation. We observed that inulin also up-regulated Th2-related immune genes (IL13, IL5), and suppressed Th1-related pro-inflammatory genes (IFNG, IL1A, IL8) in the colon. Notably, inulin augmented the T. suis-induced responses with increased transcription of key Th2 and mucosal barrier genes (e.g., IL13, TFF3), and synergistically suppressed pro-inflammatory genes, such as IFNG and CXCL9. 16S rRNA sequencing of proximal colon digesta samples revealed that inulin supplementation reduced the abundance of bacterial phyla linked to inflammation, such as Proteobacteria and Firmicutes, and simultaneously increased Actinobacteria and Bacteroidetes. Interestingly, pigs treated with both inulin and T. suis displayed the highest Bacteroidetes: Firmicutes ratio and the lowest gut pH, suggesting an interaction of diet and helminth infection that stimulates the growth of beneficial bacterial species. Overall, our data demonstrate that T. suis infection and inulin co-operatively enhance anti-inflammatory immune responses, which is potentially mediated by changes in microbiota composition. Our results highlight the intricate interactions between diet, immune function and microbiota composition in a porcine helminth infection model. This porcine model should facilitate further investigations into the use of bioactive diets as immunomodulatory mediators against inflammatory conditions, and how diet and parasites may influence gut health.
Collapse
Affiliation(s)
- Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Martin I, Djuardi Y, Sartono E, Rosa BA, Supali T, Mitreva M, Houwing-Duistermaat JJ, Yazdanbakhsh M. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Negl Trop Dis 2018; 12:e0006620. [PMID: 30091979 PMCID: PMC6084808 DOI: 10.1371/journal.pntd.0006620] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Microbiome studies suggest the presence of an interaction between the human gut microbiome and soil-transmitted helminth. Upon deworming, a complex interaction between the anthelminthic drug, helminths and microbiome composition might occur. To dissect this, we analyse the changes that take place in the gut bacteria profiles in samples from a double blind placebo controlled trial conducted in an area endemic for soil transmitted helminths in Indonesia. METHODS Either placebo or albendazole were given every three months for a period of one and a half years. Helminth infection was assessed before and at 3 months after the last treatment round. In 150 subjects, the bacteria were profiled using the 454 pyrosequencing. Statistical analysis was performed cross-sectionally at pre-treatment to assess the effect of infection, and at post-treatment to determine the effect of infection and treatment on microbiome composition using the Dirichlet-multinomial regression model. RESULTS At a phylum level, at pre-treatment, no difference was seen in microbiome composition in terms of relative abundance between helminth-infected and uninfected subjects and at post-treatment, no differences were found in microbiome composition between albendazole and placebo group. However, in subjects who remained infected, there was a significant difference in the microbiome composition of those who had received albendazole and placebo. This difference was largely attributed to alteration of Bacteroidetes. Albendazole was more effective against Ascaris lumbricoides and hookworms but not against Trichuris trichiura, thus in those who remained infected after receiving albendazole, the helminth composition was dominated by T. trichiura. DISCUSSION We found that overall, albendazole does not affect the microbiome composition. However, there is an interaction between treatment and helminths as in subjects who received albendazole and remained infected there was a significant alteration in Bacteroidetes. This helminth-albendazole interaction needs to be studied further to fully grasp the complexity of the effect of deworming on the microbiome. TRIAL REGISTRATION ISRCTN Registy, ISRCTN83830814.
Collapse
Affiliation(s)
- Ivonne Martin
- Department of Mathematics, Faculty of Information Technology and Science, Parahyangan Catholic University, Bandung, Indonesia
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
49
|
Lo AC, Faye B, Gyan BA, Amoah LE. Plasmodium and intestinal parasite perturbations of the infected host's inflammatory responses: a systematic review. Parasit Vectors 2018; 11:387. [PMID: 29970128 PMCID: PMC6031113 DOI: 10.1186/s13071-018-2948-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Co-infection of malaria and intestinal parasites is widespread in sub-Saharan Africa and causes severe disease especially among the poorest populations. It has been shown that an intestinal parasite (helminth), mixed intestinal helminth or Plasmodium parasite infection in a human induces a wide range of cytokine responses, including anti-inflammatory, pro-inflammatory as well as regulatory cytokines. Although immunological interactions have been suggested to occur during a concurrent infection of helminths and Plasmodium parasites, different conclusions have been drawn on the influence this co-infection has on cytokine production. This review briefly discusses patterns of selected cytokine (IL-6, IL-8, IL-10, TNF-α and INF-γ) responses associated with infections caused by Plasmodium, intestinal parasites as well as a Plasmodium-helminth co-infection.
Collapse
Affiliation(s)
- Aminata Colle Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- University Cheikh Anta DIOP, Dakar, Senegal
| | | | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
50
|
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol 2018; 11:1039-1046. [PMID: 29453411 DOI: 10.1038/s41385-018-0008-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023]
Abstract
Intestinal helminths have well-characterized modulatory effects on mammalian immune pathways. Ongoing helminth infection has been associated with both the suppression of allergies and an altered susceptibility to microbial infections. Enteric helminths share a niche with the intestinal microbiota, and the presence of helminths alters the microbiota composition and the metabolic signature of the host. Recent studies have demonstrated that the helminth-modified intestinal microbiome has the capacity to modify host immune responses even in the absence of live helminth infection. This article discusses the mechanisms by which helminths modify the intestinal microbiome of mammals, and reviews the evidence for a helminth-modified microbiome directly influencing host immunity during infectious and inflammatory diseases. Understanding the multifaceted mechanisms that underpin helminth immunomodulation will pave the way for novel therapies to combat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|