1
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
3
|
Tan X, Wang J, Liu X, Xie G, Ouyang F. M2 macrophage-derived paracrine factor TNFSF13 affects the fibrogenic alterations in endothelial cells and cardiac fibroblasts by mediating the NF-κB and Akt pathway. J Biochem Mol Toxicol 2024; 38:e23707. [PMID: 38622979 DOI: 10.1002/jbt.23707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Jintang Wang
- People's Hospital of Wangcheng District Changsha, Changsha, Hunan, China
| | - Xiangyang Liu
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Genyuan Xie
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Menesello V, Gennarelli M, Baune BT, Minelli A. DNA methylation changes in association with trauma-focused psychotherapy efficacy in treatment-resistant depression patients: a prospective longitudinal study. Eur J Psychotraumatol 2024; 15:2314913. [PMID: 38362742 PMCID: PMC10878335 DOI: 10.1080/20008066.2024.2314913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Stressful events increase the risk for treatment-resistant depression (TRD), and trauma-focused psychotherapy can be useful for TRD patients exposed to early life stress (ELS). Epigenetic processes are known to be related to depression and ELS, but there is no evidence of the effects of trauma-focused psychotherapy on methylation alterations.Objective: We performed the first epigenome-wide association study to investigate methylation changes related to trauma-focused psychotherapies effects in TRD patients.Method: Thirty TRD patients assessed for ELS underwent trauma-focused psychotherapy, of those, 12 received trauma-focused cognitive behavioural therapy, and 18 Eye Movement Desensitization and Reprocessing (EMDR). DNA methylation was profiled with Illumina Infinium EPIC array at T0 (baseline), after 8 weeks (T8, end of psychotherapy) and after 12 weeks (T12 - follow-up). We examined differentially methylated CpG sites and regions, as well as pathways analysis in association with the treatment.Results: Main results obtained have shown 110 differentially methylated regions (DMRs) with a significant adjusted p-value area associated with the effects of trauma-focused psychotherapies in the entire cohort. Several annotated genes are related to inflammatory processes and psychiatric disorders, such as LTA, GFI1, ARID5B, TNFSF13, and LST1. Gene enrichment analyses revealed statistically significant processes related to tumour necrosis factor (TNF) receptor and TNF signalling pathway. Stratified analyses by type of trauma-focused psychotherapy showed statistically significant adjusted p-value area in 141 DMRs only for the group of patients receiving EMDR, with annotated genes related to inflammation and psychiatric disorders, including LTA, GFI1, and S100A8. Gene set enrichment analyses in the EMDR group indicated biological processes related to inflammatory response, particularly the TNF signalling pathway.Conclusion: We provide preliminary valuable insights into global DNA methylation changes associated with trauma-focused psychotherapies effects, in particular with EMDR treatment.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
5
|
Lotan A, Luza S, Opazo CM, Ayton S, Lane DJR, Mancuso S, Pereira A, Sundram S, Weickert CS, Bousman C, Pantelis C, Everall IP, Bush AI. Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol Psychiatry 2023; 28:2058-2070. [PMID: 36750734 PMCID: PMC10575779 DOI: 10.1038/s41380-023-01979-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.
Collapse
Affiliation(s)
- Amit Lotan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Serafino Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Avril Pereira
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Mental Health Program, Monash Health, Melbourne, VIC, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Ai YW, Du Y, Chen L, Liu SH, Liu QS, Cheng Y. Brain Inflammatory Marker Abnormalities in Major Psychiatric Diseases: a Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2023; 60:2116-2134. [PMID: 36600081 DOI: 10.1007/s12035-022-03199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are common neuropsychiatric disorders that lead to neuroinflammation in the pathogenesis. It is possible to further explore the connection between inflammation in the brain and SCZ, BD, and MDD. Therefore, we systematically reviewed PubMed and Web of Science on brain inflammatory markers measured in SCZ, BD, and MDD postmortem brains. Out of 2166 studies yielded by the search, 46 studies met the inclusion criteria in SCZ, BD, and MDD postmortem brains. The results were variable across inflammatory markers. For example, 26 studies were included to measure the differential expression between SCZ and control subjects. Similarly, seven of the included studies measured the differential expression of inflammatory markers in patients with BD. The heterogeneity from the included studies is not clear at present, which may be caused by several factors, including the measured brain region, disease stage, brain source, medication, and other factors.
Collapse
Affiliation(s)
- Yang-Wen Ai
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Yang Du
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Lei Chen
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Shu-Han Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Qing-Shan Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| | - Yong Cheng
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China. .,Institute of National Security, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| |
Collapse
|
7
|
Itai T, Jia P, Dai Y, Chen J, Chen X, Zhao Z. De novo mutations disturb early brain development more frequently than common variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2023; 192:62-70. [PMID: 36863698 PMCID: PMC11270591 DOI: 10.1002/ajmg.b.32932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 01/29/2023] [Indexed: 03/04/2023]
Abstract
Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Xiangning Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
9
|
Ji E, Boerrigter D, Cai HQ, Lloyd D, Bruggemann J, O'Donnell M, Galletly C, Lloyd A, Liu D, Lenroot R, Weickert TW, Shannon Weickert C. Peripheral complement is increased in schizophrenia and inversely related to cortical thickness. Brain Behav Immun 2022; 101:423-434. [PMID: 34808287 DOI: 10.1016/j.bbi.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is growing evidence for complement system involvement in the pathophysiology of schizophrenia, although the extent and magnitude of complement factor disturbances has not been fully reported. It also remains unclear whether complement abnormalities are characteristic of all patients with schizophrenia or whether they are representative of a subgroup of patients who show signs of heightened inflammation. The aim of the present study was to quantify and compare the levels of a range of complement factors, receptors and regulators in healthy controls and people with schizophrenia and to determine the extent to which the levels of these peripheral molecules relate to measures of brain structure, particularly cortical thickness. METHOD Seventy-five healthy controls and 90 patients with schizophrenia or schizoaffective disorder were included in the study. Peripheral blood samples were collected from all participants and mRNA expression was quantified in 20 complement related genes, four complement proteins, as well as for four cytokines. T1-weighted structural MRI scans were acquired and analysed to determine cortical thickness measures. RESULTS There were significant increases in peripheral mRNA encoding receptors (C5ar1, CR1, CR3a), regulators (CD55, C59) and protein concentrations (C3, C3b, C4) in people with schizophrenia relative to healthy controls. C4a expression was significantly increased in a subgroup of patients displaying elevated peripheral cytokine levels. A higher inflammation index score derived from mRNA expression patterns predicted reductions in cortical thickness in the temporal lobe (superior temporal gyrus, transverse temporal gyrus, fusiform gyrus, insula) in patients with schizophrenia and healthy controls. CONCLUSIONS Analysis of all three major complement pathways supports increased complement activity in schizophrenia and also shows that peripheral C4a up-regulation is related to increased peripheral pro-inflammatory cytokines in healthy controls. Our region-specific, neuroimaging findings linked to an increased peripheral complement mRNA expression pattern suggests a role for complement in cortical thinning. Further studies are required to further clarify clinical and neurobiological consequences of aberrant complement levels in schizophrenia and related psychoses.
Collapse
Affiliation(s)
- Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland; Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Helen Q Cai
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Lloyd
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jason Bruggemann
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Edith Collins Centre (Translational Research in Alcohol Drugs & Toxicology), Sydney Local Health District, Australia; Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Maryanne O'Donnell
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia; Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Andrew Lloyd
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
10
|
Rahman T, Purves-Tyson T, Geddes AE, Huang XF, Newell KA, Weickert CS. N-Methyl-d-Aspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2022; 240:61-70. [PMID: 34952289 DOI: 10.1016/j.schres.2021.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Lower N-methyl-d-aspartate receptor (NMDAR) GluN1 subunit levels and heightened neuroinflammation are found in the cortex in schizophrenia. Since neuroinflammation can lead to changes in NMDAR function, it is possible that these observations are linked in schizophrenia. We aimed to extend our previous studies by measuring molecular indices of NMDARs that define key functional properties of this receptor - particularly the ratio of GluN2A and GluN2B subunits - in dorsolateral prefrontal cortex (DLPFC) from schizophrenia and control cases (37/37). We sought to test whether changes in these measures are specific to the subset of schizophrenia cases with high levels of inflammation-related mRNAs, defined as a high inflammatory subgroup. Quantitative autoradiography was used to detect 'functional' NMDARs ([3H]MK-801), GluN1-coupled-GluN2A subunits ([3H]CGP-39653), and GluN1-coupled-GluN2B subunits ([3H]Ifenprodil). Quantitative RT-PCR was used to measure NMDAR subunit transcripts (GRIN1, GRIN2A and GRIN2B). The ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were calculated as an index of putative NMDAR composition. We found: 1) GluN2A binding, and 2) the ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were lower in schizophrenia cases versus controls (p < 0.05), and 3) lower GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNA ratios were exaggerated in the high inflammation/schizophrenia subgroup compared to the low inflammation/control subgroup (p < 0.05). No other NMDAR-related indices were significantly changed in the high inflammation/schizophrenia subgroup. This suggests that neuroinflammation may alter NMDAR stoichiometry rather than targeting total NMDAR levels overall, and future studies could aim to determine if anti-inflammatory treatment can alleviate this aspect of NMDAR-related pathology.
Collapse
Affiliation(s)
- Tasnim Rahman
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tertia Purves-Tyson
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Amy E Geddes
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia.
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 2021; 26:849-863. [PMID: 31168068 PMCID: PMC7910216 DOI: 10.1038/s41380-019-0434-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022]
Abstract
The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1β, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1β mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, NYC, 10032, NY, USA
| | | | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Brocos-Mosquera I, Gabilondo AM, Meana JJ, Callado LF, Erdozain AM. Spinophilin expression in postmortem prefrontal cortex of schizophrenic subjects: Effects of antipsychotic treatment. Eur Neuropsychopharmacol 2021; 42:12-21. [PMID: 33257116 DOI: 10.1016/j.euroneuro.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Schizophrenia has been associated with alterations in neurotransmission and synaptic dysfunction. Spinophilin is a multifunctional scaffold protein that modulates excitatory synaptic transmission and dendritic spine morphology. Spinophilin can also directly interact with and regulate several receptors for neurotransmitters, such as dopamine D2 receptors, which play a role in the pathophysiology of schizophrenia and are targets of antipsychotics. Several studies have thus suggested an implication of spinophilin in schizophrenia. In the present study spinophilin protein expression was determined by western blot in the postmortem dorsolateral prefrontal cortex of 24 subjects with schizophrenia (12 antipsychotic-free and 12 antipsychotic-treated subjects) and 24 matched controls. Experiments were performed in synaptosomal membranes (SPM) and in postsynaptic density fractions (PSD). As previously reported, two specific bands for this protein were observed: an upper 120-130 kDa band and a lower 80-95 kDa band. The spinophilin lower band showed a significant decrease in schizophrenia subjects compared to matched controls, both in SPM and PSD fractions (-15%, p = 0.007 and -15%, p = 0.039, respectively). When schizophrenia subjects were divided by the presence or absence of antipsychotics in blood at death, the lower band showed a significant decrease in antipsychotic-treated schizophrenia subjects (-24%, p = 0.003 for SPM and -26%, p = 0.014 for PSD), but not in antipsychotic-free subjects, compared to their matched controls. These results suggest that antipsychotics could produce alterations in spinophilin expression that do not seem to be related to schizophrenia per se. These changes may underlie some of the side effects of antipsychotics.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
13
|
Stamatovich SN, Lopez-Gamundi P, Suchting R, Colpo GD, Walss-Bass C, Lane SD, Schmitz JM, Wardle MC. Plasma pro- and anti-inflammatory cytokines may relate to cocaine use, cognitive functioning, and depressive symptoms in cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 47:52-64. [DOI: 10.1080/00952990.2020.1828439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Huang G, Osorio D, Guan J, Ji G, Cai JJ. Overdispersed gene expression in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:9. [PMID: 32245959 PMCID: PMC7125213 DOI: 10.1038/s41537-020-0097-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia (SCZ) is a severe, highly heterogeneous psychiatric disorder with varied clinical presentations. The polygenic genetic architecture of SCZ makes identification of causal variants a daunting task. Gene expression analyses hold the promise of revealing connections between dysregulated transcription and underlying variants in SCZ. However, the most commonly used differential expression analysis often assumes grouped samples are from homogeneous populations and thus cannot be used to detect expression variance differences between samples. Here, we applied the test for equality of variances to normalized expression data, generated by the CommonMind Consortium (CMC), from brains of 212 SCZ and 214 unaffected control (CTL) samples. We identified 87 genes, including VEGFA (vascular endothelial growth factor) and BDNF (brain-derived neurotrophic factor), that showed a significantly higher expression variance among SCZ samples than CTL samples. In contrast, only one gene showed the opposite pattern. To extend our analysis to gene sets, we proposed a Mahalanobis distance-based test for multivariate homogeneity of group dispersions, with which we identified 110 gene sets with a significantly higher expression variability in SCZ, including sets of genes encoding phosphatidylinositol 3-kinase (PI3K) complex and several others involved in cerebellar cortex morphogenesis, neuromuscular junction development, and cerebellar Purkinje cell layer development. Taken together, our results suggest that SCZ brains are characterized by overdispersed gene expression-overall gene expression variability among SCZ samples is significantly higher than that among CTL samples. Our study showcases the application of variability-centric analyses in SCZ research.
Collapse
Affiliation(s)
- Guangzao Huang
- Department of Automation, Xiamen University, Xiamen, 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, China.,College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jinting Guan
- Department of Automation, Xiamen University, Xiamen, 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, 361005, China. .,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, China. .,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China.
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA. .,Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, Tooney P, Schall U, Gardiner E, Beveridge NJ, Scott RJ, Yasawardene S, Perera A, Mendis J, Carr V, Kelly B, Cairns M, Tsuang MT, Glatt SJ. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res 2020; 217:124-135. [PMID: 31391148 PMCID: PMC6997041 DOI: 10.1016/j.schres.2019.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
We performed a transcriptome-wide meta-analysis and gene co-expression network analysis to identify genes and gene networks dysregulated in the peripheral blood of bipolar disorder (BD) cases relative to unaffected comparison subjects, and determined the specificity of the transcriptomic signatures of BD and schizophrenia (SZ). Nineteen genes and 4 gene modules were significantly differentially expressed in BD cases. Thirteen gene modules were shown to be differentially expressed in a combined case-group of BD and SZ subjects called "major psychosis", including genes biologically linked to apoptosis, reactive oxygen, chromatin remodeling, and immune signaling. No modules were differentially expressed between BD and SZ cases. Machine-learning classifiers trained to separate diagnostic classes based solely on gene expression profiles could distinguish BD cases from unaffected comparison subjects with an area under the curve (AUC) of 0.724, as well as BD cases from SZ cases with AUC = 0.677 in withheld test samples. We introduced a novel and straightforward method called "polytranscript risk scoring" that could distinguish BD cases from unaffected subjects (AUC = 0.672) and SZ cases (AUC = 0.607) significantly better than expected by chance. Taken together, our results highlighted gene expression alterations common to BD and SZ that involve biological processes of inflammation, oxidative stress, apoptosis, and chromatin regulation, and highlight disorder-specific changes in gene expression that discriminate the major psychoses.
Collapse
Affiliation(s)
- Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel S Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nishantha Kumarasinghe
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka; Faculty of Medicine, Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Paul Tooney
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Ulrich Schall
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Erin Gardiner
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Natalie Jane Beveridge
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Antionette Perera
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Jayan Mendis
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Vaughan Carr
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Murray Cairns
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
16
|
Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm (Vienna) 2019; 126:1637-1651. [PMID: 31529297 PMCID: PMC6856257 DOI: 10.1007/s00702-019-02080-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
Parvalbumin interneurons are fast-spiking GABAergic neurons that provide inhibitory control of cortical and subcortical circuits and are thought to be a key locus of the pathophysiology underlying schizophrenia. In view of the contradictory results regarding the nature of parvalbumin post-mortem findings in schizophrenia, we conducted a quantitative meta-analysis of the data on parvalbumin cell density and parvalbumin mRNA levels in pre-frontal regions in the brains of patients with schizophrenia (n = 274) compared with healthy controls (n = 275). The results suggest that parvalbumin interneurons are reduced in density in the frontal cortex of patients with schizophrenia (Hedges’ g = − 0.27; p = 0.03) and there is a non-significant reduction in parvalbumin mRNA levels (g = − 0.44; p = 0.12). However, certain methodological issues need to be considered in interpreting such results and are discussed in more detail. A meta-regression was conducted for post-mortem interval and year of publication as covariates which were both non-significant, except in the mRNA meta-analysis where post-mortem interval was found to be significant. Overall our findings provide tentative support for the hypothesis that the GABAergic system is deficient in schizophrenia and that parvalbumin-containing interneurons offer a potential target for treatment. However, further well-controlled studies that examine multiple regions and layers are warranted to determine whether parvalbumin alterations are region or layer specific and to test the robustness of the findings further.
Collapse
|
17
|
Weickert CS, Rothmond DA, Purves-Tyson TD. Considerations for optimal use of postmortem human brains for molecular psychiatry: lessons from schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:221-235. [PMID: 29496143 DOI: 10.1016/b978-0-444-63639-3.00016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a disabling disease impacting millions of people around the world, for which there is no known cure. Current antipsychotic treatments for schizophrenia mainly target psychotic symptoms, do little to ameliorate social or cognitive deficits, have side-effects that cause weight gain, and diabetes and 30% of people do not respond. Thus, better therapeutics for schizophrenia aimed at the route biologic changes are needed and discovering the underlying neurobiology is key to this quest. Postmortem brain studies provide the most direct and detailed way to determine the pathophysiology of schizophrenia. This chapter outlines steps that can be taken to ensure the best-quality molecular data from postmortem brain tissue are obtained. In this chapter, we also discuss targeted and high-throughput methods for examining gene and protein expression and some of the strengths and limitations of each method. We briefly consider why gene and protein expression changes may not always concur within brain tissue. We conclude that postmortem brain research that investigates gene and protein expression in well-characterized and matched brain cohorts provides an important foundation to be considered when interpreting data obtained from studies of living schizophrenia patients.
Collapse
Affiliation(s)
- Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia.
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Tertia D Purves-Tyson
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
18
|
Andrews JL, Goodfellow FJ, Matosin N, Snelling MK, Newell KA, Huang XF, Fernandez-Enright F. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies. J Psychiatr Res 2017; 90:31-39. [PMID: 28226265 DOI: 10.1016/j.jpsychires.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Frederic J Goodfellow
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Natalie Matosin
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Mollie K Snelling
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Kelly A Newell
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Xu-Feng Huang
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
19
|
Abstract
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mitotic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
20
|
Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 2016; 21:1009-26. [PMID: 27271499 PMCID: PMC4960446 DOI: 10.1038/mp.2016.90] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a psychiatric disorder which has a lifetime prevalence of ~1%. Multiple candidate mechanisms have been proposed in the pathogenesis of schizophrenia. One such mechanism is the involvement of neuroinflammation. Clinical studies, including neuroimaging, peripheral biomarkers and randomized control trials, have suggested the presence of neuroinflammation in schizophrenia. Many studies have also measured markers of neuroinflammation in postmortem brain samples from schizophrenia patients. The objective of this study was to conduct a systematic search of the literature on neuroinflammation in postmortem brains of schizophrenia patients indexed in MEDLINE, Embase and PsycINFO. Databases were searched up until 20th March 2016 for articles published on postmortem brains in schizophrenia evaluating microglia, astrocytes, glia, cytokines, the arachidonic cascade, substance P and other markers of neuroinflammation. Two independent reviewers extracted the data. Out of 5385 articles yielded by the search, 119 articles were identified that measured neuroinflammatory markers in schizophrenic postmortem brains. Glial fibrillary acidic protein expression was elevated, lower or unchanged in 6, 6 and 21 studies, respectively, and similar results were obtained for glial cell densities. On the other hand, microglial markers were increased, lower or unchanged in schizophrenia in 11, 3 and 8 studies, respectively. Results were variable across all other markers, but SERPINA3 and IFITM were consistently increased in 4 and 5 studies, respectively. Despite the variability, some studies evaluating neuroinflammation in postmortem brains in schizophrenia suggest an increase in microglial activity and other markers such as SERPINA3 and IFITM. Variability across studies is partially explained by multiple factors including brain region evaluated, source of the brain, diagnosis, age at time of death, age of onset and the presence of suicide victims in the cohort.
Collapse
Affiliation(s)
- M O Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - R Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume. Mol Psychiatry 2016; 21:1090-8. [PMID: 26194183 PMCID: PMC4960447 DOI: 10.1038/mp.2015.90] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/11/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Previous studies on schizophrenia have detected elevated cytokines in both brain and blood, suggesting neuroinflammation may contribute to the pathophysiology in some cases. We aimed to determine the extent to which elevated peripheral cytokine messenger RNA (mRNA) expression: (1) characterizes a subgroup of people with schizophrenia and (2) shows a relationship to cognition, brain volume and/or symptoms. Forty-three outpatients with schizophrenia or schizoaffective disorder and matched healthy controls were assessed for peripheral cytokine mRNAs (interleukin (IL)-1β, IL-2, IL-6, IL-8 and IL-18), intelligence quotient, memory and verbal fluency, symptom severity and cortical brain volumes integral to language (that is, Broca's and Wernicke's areas). IL-1β mRNA levels were 28% increased in schizophrenia compared with controls (t(82)=2.64, P<0.01). Using a two-step clustering procedure, we identified a subgroup of people displaying relatively elevated cytokine mRNA levels (17/43 people with schizophrenia and 9/42 controls). Individuals with schizophrenia in the elevated cytokine subgroup performed significantly worse than the low-cytokine subgroup on verbal fluency (F(1,40)=15.7, P<0.001). There was a 17% volume reduction of the left pars opercularis (POp) (Broca's area) in patients with elevated cytokines compared with patients with lower cytokines (F(1,29)=9.41, P=0.005). Negative linear relationships between IL-1β mRNA levels and both verbal fluency and left POp volume were found in schizophrenia. This study is among the first to link blood biomarkers of inflammation with both cognitive deficits and brain volume reductions in people with schizophrenia, supporting that those with elevated cytokines represent a neurobiologically meaningful subgroup. These findings raise the possibility that targeted anti-inflammatory treatments may ameliorate cognitive and brain morphological abnormalities in some people with schizophrenia.
Collapse
|
22
|
Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation 2016; 13:87. [PMID: 27098833 PMCID: PMC4839088 DOI: 10.1186/s12974-016-0552-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Fibrotic scar formation contributes to the axon growth-inhibitory environment that forms following spinal cord injury (SCI). We recently demonstrated that depletion of hematogenous macrophages led to a reduction in fibrotic scar formation and increased axon growth after SCI. These changes were associated with decreased TNFSF13 (a proliferation inducing ligand (APRIL)) expression, but the role of APRIL in fibrotic scar formation after SCI has not been directly investigated. Thus, the goal of this study was to determine the role of APRIL in fibrotic scar formation after SCI. Methods APRIL knockout and wild-type mice received contusive SCI and were assessed for inflammatory cytokine/chemokine expression, leukocyte infiltration, fibrotic scar formation, axon growth, and cell proliferation. Results Expression of APRIL and its receptor BCMA is increased following SCI, and genetic deletion of APRIL led to reduced fibrotic scar formation and increased axon growth. However, the fibrotic scar reduction in APRIL KO mice was not a result of changes in fibroblast or astrocyte proliferation. Rather, APRIL knockout mice displayed reduced TNFα and CCL2 expression and less macrophage and B cell infiltration at the injury site. Conclusions Our data indicate that APRIL contributes to fibrotic scar formation after SCI by mediating the inflammatory response.
Collapse
|
23
|
Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia. NPJ SCHIZOPHRENIA 2015; 1:15037. [PMID: 27336043 PMCID: PMC4849460 DOI: 10.1038/npjschz.2015.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.
Collapse
|
24
|
Takahashi S, Suzuki T, Nakamura-Tomizuka S, Osaki K, Sotome Y, Sagawa T, Uchiyama M. Case history and genome-wide scans for copy number variants in a family with patient having 15q11.1-q11.2 duplication and 22q11.2 deletion, and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:229-35. [PMID: 25776014 DOI: 10.1002/ajmg.b.32307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/24/2015] [Indexed: 11/07/2022]
Abstract
Many studies have indicated that chromosomes 15q11 and 22q11 may be associated with the genetic etiologies of schizophrenia. We have followed an adult schizophrenia case with 15q11.1-q11.2 duplication and 22q11.2 deletion. Here we report his clinical history, and copy number variants (CNVs) identified by microarray and real-time PCR in the patient and his parents. This is the first report describing a detailed phenotype of an adult schizophrenic case with both 15q11 and 22q11 CNVs as revealed by novel and trustworthy technologies. Subjects were a 33-year-old male patient with 15q11 and 22q11 CNVs, and his normal parents. He fulfilled the DSM-IV criteria for schizophrenia at age 18 years. He was also diagnosed with 22q11.2 deletion syndrome by fluorescence in situ hybridization (FISH) at age 18 years. To search for CNVs in more detail, whole-genome array-CGH analyses including ∼ 420,000 probes were carried out in the patient and his parents. For validations of the CNVs detected by array-CGH, real-time PCR analyses of these CNVs were performed. The patient had two disease-specific CNVs, 15q11.1-q11.2 duplication (∼ 2.7 Mb) and 22q11.21 deletion (∼ 2.9 Mb). These two regions are important for the development of schizophrenia, and this patient had shown symptoms of schizophrenia. Thus, the two areas may contain causal genes for schizophrenia.
Collapse
Affiliation(s)
- Sakae Takahashi
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Sakura Nakamura-Tomizuka
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Koichi Osaki
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Yuta Sotome
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Tomoaki Sagawa
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| | - Makoto Uchiyama
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study. NPJ SCHIZOPHRENIA 2015; 1:14004. [PMID: 27336026 PMCID: PMC4849439 DOI: 10.1038/npjschz.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Abstract
Background: Recently, we provided evidence showing reductions in GAD67 and Dlx mRNAs in the orbital frontal cortex (OFC) in schizophrenia. It is unknown whether these reductions relate mainly to somatostatin (SST) or parvalbumin (PV) mRNA expression changes, and/or whether these reductions are related to decreased SST mRNA+ interneuron density. Aims: To determine whether inhibitory interneuron deficits in the OFC from people with schizophrenia are greatest for SST or PV mRNAs, and whether any such deficits relate to mRNAs encoding cell death signalling molecules. Methods: Inhibitory interneuron mRNAs (SST; PV: in situ hybridization, quantitative PCR (qPCR)) and death signaling mRNAs [FAS receptor (FASR); TNFSF13: qPCR] were measured in control and schizophrenia subjects (38/38). SST mRNA+ interneuron-like cells were quantified in layer II in the gyrus rectus. Gray matter SST and PV mRNAs were correlated with interstitial white matter neuron (IWMN) density (GAD65/67; NeuN) and death signaling mRNAs. Results: SST mRNA was reduced in OFC layers I–VI in schizophrenia (both in situ and qPCR), with greatest deficit in layer II (67%). Layer II SST mRNA+ neuron density was reduced in schizophrenia (~29%). PV mRNA was reduced in layers III (18%) and IV (31%) with no significant diagnostic difference in PV mRNA measured by qPCR. FASR mRNA was increased in schizophrenia (34%). SST, but not PV, expression correlated negatively with FASR and TNFSF13 expressions and with IWMN density. Conclusions: Our study demonstrates that SST interneurons are predominantly linked to the inhibitory interneuron pathology in the OFC in schizophrenia and that increased death receptor signaling mRNAs relate to prominent laminar deficits in SST mRNA in the OFC in schizophrenia. We suggest that SST interneurons may be more vulnerable to increased death receptor signaling than PV interneurons.
Collapse
|
26
|
FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. Neuroscience 2014; 277:541-51. [PMID: 25075716 DOI: 10.1016/j.neuroscience.2014.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023]
Abstract
Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.
Collapse
|
27
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
28
|
Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry 2014; 4:e365. [PMID: 24569695 PMCID: PMC3944638 DOI: 10.1038/tp.2014.8] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/15/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia and bipolar disorder share a number of common features, both symptomatically and biologically. Abnormalities in the neuroimmune and the stress-signaling pathways have been previously identified in brains of individuals with both diseases. However, the possible relationship between abnormalities in stress and neuroimmune signaling within the cortex of people with psychotic illness has not been defined. To test the hypothesis that combined alterations in brain stress responsiveness and neuroimmune/inflammatory status are characteristic of some individuals suffering from major mental illness, we examined gene expression in the Stanley Array Cohort of 35 controls, 35 individuals with schizophrenia and 34 individuals with bipolar disorder. We used levels of 8 inflammatory-related transcripts, of which SERPINA3 was significantly elevated in individuals with schizophrenia (F(2,88)=4.137, P<0.05), and 12 glucocorticoid receptor signaling (stress) pathway transcripts previously examined, to identify two clusters of individuals: a high inflammation/stress group (n=32) and a low (n=68) inflammation/stress group. The high inflammation/stress group has a significantly greater number of individuals with schizophrenia (n=15), and a trend toward having more bipolar disorder individuals (n=11), when compared with controls (n=6). Using these subgroups, we tested which microarray-assessed transcriptional changes may be associated with high inflammatory/stress groups using ingenuity analysis and found that an extended network of gene expression changes involving immune, growth factors, inhibitory signaling and cell death factors also distinguished these groups. Our work demonstrates that some of the heterogeneity in schizophrenia and bipolar disorder may be partially explained by inflammation/stress interactions, and that this biological subtype cuts across Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined categories.
Collapse
Affiliation(s)
- S G Fillman
- Schizophrenia Research Institute, Sydney, NSW, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - D Sinclair
- Schizophrenia Research Institute, Sydney, NSW, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Department of Psychiatry, Neuropsychiatric Signaling Program, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA, USA
| | - S J Fung
- Schizophrenia Research Institute, Sydney, NSW, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - M J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - C Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Population-specific haplotype association of the postsynaptic density gene DLG4 with schizophrenia, in family-based association studies. PLoS One 2013; 8:e70302. [PMID: 23936182 PMCID: PMC3723755 DOI: 10.1371/journal.pone.0070302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/16/2013] [Indexed: 12/04/2022] Open
Abstract
The post-synaptic density (PSD) of glutamatergic synapses harbors a multitude of proteins critical for maintaining synaptic dynamics. Alteration of protein expression levels in this matrix is a marked phenomenon of neuropsychiatric disorders including schizophrenia, where cognitive functions are impaired. To investigate the genetic relationship of genes expressed in the PSD with schizophrenia, a family-based association analysis of genetic variants in PSD genes such as DLG4, DLG1, PICK1 and MDM2, was performed, using Japanese samples (124 pedigrees, n = 376 subjects). Results showed a significant association of the rs17203281 variant from the DLG4 gene, with preferential transmission of the C allele (p = 0.02), although significance disappeared after correction for multiple testing. Replication analysis of this variant, found no association in a Chinese schizophrenia cohort (293 pedigrees, n = 1163 subjects) or in a Japanese case-control sample (n = 4182 subjects). The DLG4 expression levels between postmortem brain samples from schizophrenia patients showed no significant changes from controls. Interestingly, a five marker haplotype in DLG4, involving rs2242449, rs17203281, rs390200, rs222853 and rs222837, was enriched in a population specific manner, where the sequences A-C-C-C-A and G-C-C-C-A accumulated in Japanese (p = 0.0009) and Chinese (p = 0.0007) schizophrenia pedigree samples, respectively. However, this could not be replicated in case-control samples. None of the variants in other examined candidate genes showed any significant association in these samples. The current study highlights a putative role for DLG4 in schizophrenia pathogenesis, evidenced by haplotype association, and warrants further dense screening for variants within these haplotypes.
Collapse
|
30
|
Biomarkers in schizophrenia: a brief conceptual consideration. DISEASE MARKERS 2013; 35:3-9. [PMID: 24167344 PMCID: PMC3774970 DOI: 10.1155/2013/510402] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Biomarkers have been sought after in the field of schizophrenia research for decades. In this paper, we discuss some of the concepts around developing biomarkers in an effort to understand why the use of biomarkers for schizophrenia has not been realized. In particular, we address the following 4 questions. Why would we need a diagnostic biomarker for schizophrenia? How is a biomarker typically defined and how does that influence the discovery of biomarkers in schizophrenia? What is the best use of biomarkers in schizophrenia? Do any biomarkers for schizophrenia currently exist? Thus, while we suggest that no biomarker currently exists for schizophrenia, the heterogeneity associated with schizophrenia will most likely need to be taken into account which will result in multiple biomarkers that identify the multiple underlying pathophysiological processes involved in schizophrenia. Therefore, much additional work will be required prior to obtaining any well-established biomarkers for schizophrenia.
Collapse
|
31
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
32
|
Kavanagh T, Mills JD, Kim WS, Halliday GM, Janitz M. Pathway analysis of the human brain transcriptome in disease. J Mol Neurosci 2012; 51:28-36. [PMID: 23263795 DOI: 10.1007/s12031-012-9940-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Abstract
Pathway analysis is a powerful method for discerning differentially regulated genes and elucidating their biological importance. It allows for the identification of perturbed or aberrantly expressed genes within a biological context from extensive data sets and offers a simplistic approach for interrogating such data sets. With the growing use of microarrays and RNA-Seq, data for genome-wide studies are growing at an alarming rate, and the use of deep sequencing is revealing elements of the genome previously uncharacterised. Through the employment of pathway analysis, mechanisms in complex diseases may be explored and novel causatives found primarily through differentially regulated genes. Further, with the implementation of next generation sequencing, a deeper resolution may be attained, particularly in identification of isoform diversity and SNPs. Here, we look at a broad overview of pathway analysis in the human brain transcriptome and its relevance in teasing out underlying causes of complex diseases. We will outline processes in data gathering and analysis of particular diseases in which these approaches have been successful.
Collapse
Affiliation(s)
- Tomas Kavanagh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|