1
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Computational Modeling of Macrophage Iron Sequestration during Host Defense against Aspergillus. mSphere 2022; 7:e0007422. [PMID: 35862797 PMCID: PMC9429928 DOI: 10.1128/msphere.00074-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
3
|
Patel D, Challagundla N, Mandaliya D, Yadav S, Naik O, Dalai P, Shah D, Vora H, Agrawal-Rajput R. Caspase-1 inhibition by YVAD generates tregs pivoting IL-17 to IL-22 response in β-glucan induced airway inflammation. Immunopharmacol Immunotoxicol 2022; 44:316-325. [PMID: 35225131 DOI: 10.1080/08923973.2022.2043899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND During Aspergillus fumigatus mediated lung inflammation, NLRP3 inflammasome is rapidly activated that aggravates IL-1β production contributing to lung inflammation. Previously, we have shown the protective role of SYK-1 inhibition in inhibiting inflammasome activation during lung inflammation. In the current manuscript, we explored the protective role of direct caspase-1 inhibition during β-glucan-induced lung inflammation. METHODS We have mimicked the lung inflammation by administering intranasal β-glucan in mice model. YVAD was used for caspase-1 inhibition. RESULTS We have shown that caspase-1 inhibition by YVAD did not alter inflammasome independent inflammatory cytokines, while it significantly reduced inflammasome activation and IL-1β secretion. Caspase-1 inhibited bone marrow derived dendritic cells (BMDCs), co-cultured with T cells showed decreased T-cell proliferation and direct them to secrete high TGF-β and IL-10 compared to the T cells co-cultured with β-glucan primed dendritic cells. Caspase-1 inhibition in BMDCs also induced IL-22 secretion from CD4+T cells. Caspase-1 inhibition in intranasal β-glucan administered mice showed decreased tissue damage, immune cell infiltration and IgA secretion compared to control mice. Further, splenocytes challenged with β-glucan show high IL-10 secretion and increased FOXp3 and Ahr indicating an increase in regulatory T cells on caspase-1 inhibition. CONCLUSION Caspase-1 inhibition can thus be an attractive target to prevent inflammation mediated tissue damage during Aspergillus fumigatus mouse model and can be explored as an attractive therapeutic strategy.HIGHLIGHTSCaspase-1 inhibition protects lung damage from inflammation during β-glucan exposureCaspase-1 inhibition in dendritic cells decreases IL-1β production resulting in decreased pathogenic Th17Caspase-1 inhibition promotes regulatory T cells thereby inhibiting lung inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Dipeeka Mandaliya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Omkar Naik
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Hima Vora
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Lim JY, Kim YJ, Woo SA, Jeong JW, Lee YR, Kim CH, Park HM. The LAMMER Kinase, LkhA, Affects Aspergillus fumigatus Pathogenicity by Modulating Reproduction and Biosynthesis of Cell Wall PAMPs. Front Cell Infect Microbiol 2021; 11:756206. [PMID: 34722342 PMCID: PMC8548842 DOI: 10.3389/fcimb.2021.756206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
The LAMMER kinase in eukaryotes is a well-conserved dual-specificity kinase. Aspergillus species cause a wide spectrum of diseases called aspergillosis in humans, depending on the underlying immune status of the host, such as allergy, aspergilloma, and invasive aspergillosis. Aspergillus fumigatus is the most common opportunistic fungal pathogen that causes invasive aspergillosis. Although LAMMER kinase has various functions in morphology, development, and cell cycle regulation in yeast and filamentous fungi, its function in A. fumigatus is not known. We performed molecular studies on the function of the A. fumigatus LAMMER kinase, AfLkhA, and reported its involvement in multiple cellular processes, including development and virulence. Deletion of AflkhA resulted in defects in colonial growth, production of conidia, and sexual development. Transcription and genetic analyses indicated that AfLkhA modulates the expression of key developmental regulatory genes. The AflkhA-deletion strain showed increased production of gliotoxins and protease activity. When conidia were challenged with alveolar macrophages, enodocytosis of conidia by macrophages was increased in the AflkhA-deletion strain, resulting from changes in expression of the cell wall genes and thus content of cell wall pathogen-associated molecular patterns, including β-1,3-glucan and GM. While T cell-deficient zebrafish larvae were significantly susceptible to wild-type A. fumigatus infection, AflkhA-deletion conidia infection reduced host mortality. A. fumigatus AfLkhA is required for the establishment of virulence factors, including conidial production, mycotoxin synthesis, protease activity, and interaction with macrophages, which ultimately affect pathogenicity at the organismal level.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea.,Institute of Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yeon Ju Kim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Seul Ah Woo
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jae Wan Jeong
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yu-Ri Lee
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Cheol-Hee Kim
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hee-Moon Park
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K, Pradhan A, Lewis LE, Louw J, Avelar GM, Larcombe DE, Netea MG, Gow NAR, Brown GD, Erwig LP, Brown AJP. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A 2021; 118:e2020484118. [PMID: 33876755 PMCID: PMC8053999 DOI: 10.1073/pnas.2020484118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, β2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Collapse
Affiliation(s)
- Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - M Fernanda Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Catriona A Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Kevin Mackenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Leanne E Lewis
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Johanna Louw
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lars P Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Johnson-Johnson Innovation, Europe, Middle East and Africa Innovation Centre, London W1G 0BG, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom;
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
7
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
8
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
9
|
Solano C, Vázquez L. [Invasive aspergillosis in the patient with oncohematologic disease]. Rev Iberoam Micol 2019; 35:198-205. [PMID: 30554673 DOI: 10.1016/j.riam.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/08/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Invasive aspergillosis is the most common invasive fungal infection in patients with acute hematological malignancies or treated with hematopoietic stem cell transplantation due to the marked alteration of the physiological mechanisms of antifungal immunity that takes place in these situations. For this reason, antifungal prophylaxis has a relevant role in these patients. The introduction of new antifungal agents has motivated the updating of recommendations for prophylaxis and treatment in different guidelines. The objectives of this chapter are a brief review of the mechanisms of immunity against fungi, the definition of risk for developing an invasive fungal infection and an update of the prophylaxis recommendations and treatment of invasive aspergillosis in the group of patients with hematological diseases.
Collapse
Affiliation(s)
- Carlos Solano
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario, Universidad de Valencia, Valencia, España.
| | - Lourdes Vázquez
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario, Universidad de Salamanca, Salamanca, España
| |
Collapse
|
10
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
11
|
Brunel SF, Willment JA, Brown GD, Devereux G, Warris A. Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity. ERJ Open Res 2018; 4:00068-2017. [PMID: 29651422 PMCID: PMC5890024 DOI: 10.1183/23120541.00068-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/26/2018] [Indexed: 11/22/2022] Open
Abstract
Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro. Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity. Excessive superoxide production by CF phagocytes against A. fumigatus is associated with clinical disease severityhttp://ow.ly/Elwy30i8mLe
Collapse
Affiliation(s)
- Shan F Brunel
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Janet A Willment
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Graham Devereux
- Cystic Fibrosis Clinic, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Adilia Warris
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
12
|
Hünniger K, Kurzai O. Phagocytes as central players in the defence against invasive fungal infection. Semin Cell Dev Biol 2018; 89:3-15. [PMID: 29601862 DOI: 10.1016/j.semcdb.2018.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Fungal pathogens cause severe and life-threatening infections worldwide. The majority of invasive infections occurs in immunocompromised patients and is based on acquired as well as congenital defects of innate and adaptive immune responses. In many cases, these defects affect phagocyte functions. Consequently, professional phagocytes - mainly monocytes, macrophages, dendritic cells and polymorphonuclear neutrophilic granulocytes - have been shown to act as central players in initiating and modulating antifungal immune responses as well as elimination of fungal pathogens. In this review we will summarize our current understanding on the role of these professional phagocytes in invasive fungal infection to emphasize two important aspects. (i) Analyses on the interaction between fungi and phagocytes have contributed to significant new insights into phagocyte biology. Important examples for this include the identification of pattern recognition receptors for β-glucan, a major cell wall component of many fungal pathogens, as well as the identification of genetic polymorphisms that determine individual host responses towards invading fungi. (ii) At the same time it was shown that fungal pathogens have evolved sophisticated mechanisms to counteract the attack of professional phagocytes. These mechanisms range from complete mechanical destruction of phagocytes to exquisite adaptation of some fungi to the hostile intracellular environment, enabling them to grow and replicate inside professional phagocytes.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany.
| |
Collapse
|
13
|
Desoubeaux G, Cray C. Animal Models of Aspergillosis. Comp Med 2018; 68:109-123. [PMID: 29663936 PMCID: PMC5897967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/29/2017] [Accepted: 07/09/2017] [Indexed: 06/08/2023]
Abstract
Aspergillosis is an airborne fungal disease caused by Aspergillus spp., a group of ubiquitous molds. This disease causes high morbidity and mortality in both humans and animals. The growing importance of this infection over recent decades has created a need for practical and reproducible models of aspergillosis. The use of laboratory animals provides a platform to understand fungal virulence and pathophysiology, assess diagnostic tools, and evaluate new antifungal drugs. In this review, we describe the fungus, various Aspergillus-related diseases in humans and animals and various experimental animal models. Overall, we highlight the advantages and limitations of the animal models, the experimental variables that can affect the course of the disease and the reproducibility of infection, and the critical need for standardization of the species, immunosuppressive drugs, route of infection, and diagnostic criteria to use.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Department of Pathology and Laboratory Medicine, Division of Comparative Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Parasitology-Mycology Service, Tropical Medicine Program, University Hospital of Tours, CEPR - Inserm U1100, Medical Faculty, François Rabelais University, Tours, France
| | - Carolyn Cray
- Department of Pathology and Laboratory Medicine, Division of Comparative Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA.,
| |
Collapse
|
14
|
Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, Hardison SE, Dambuza IM, Valsecchi I, Kerscher B, Plato A, Wallace CA, Yuecel R, Hebecker B, da Glória Teixeira Sousa M, Cunha C, Liu Y, Feizi T, Brakhage AA, Kwon-Chung KJ, Gow NAR, Zanda M, Piras M, Zanato C, Jaeger M, Netea MG, van de Veerdonk FL, Lacerda JF, Campos A, Carvalho A, Willment JA, Latgé JP, Brown GD. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 2018; 555:382-386. [PMID: 29489751 PMCID: PMC5857201 DOI: 10.1038/nature25974] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/06/2018] [Indexed: 01/04/2023]
Abstract
Our resistance to infection is critically dependent upon the ability of pattern recognition receptors to recognise microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which play central roles in antifungal immunity1. These receptors activate key effector mechanisms upon recognition of conserved fungal cell wall carbohydrates. However, several other immunologically active fungal ligands have been described, including melanin2,3, whose mechanisms of recognition remain largely undefined. Here we identify a C-type lectin receptor, Melanin sensing C-type Lectin receptor (MelLec), that plays an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognises melanin in conidial spores of Aspergillus fumigatus, as well as other DHN-melanised fungi and is ubiquitously expressed by CD31+ endothelial cells in mice. MelLec is also expressed by a sub-population of these cells in mice that co-express EpCAM and which were detected only in the lung and liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. Thus MelLec is a receptor recognising an immunologically active component commonly found on fungi and plays an essential role in protective antifungal immunity in both mice and humans.
Collapse
Affiliation(s)
- Mark H T Stappers
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alexandra E Clark
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | - Stefan Bidula
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delyth M Reid
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Patawee Asamaphan
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sarah E Hardison
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivy M Dambuza
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | - Bernhard Kerscher
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anthony Plato
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol A Wallace
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Betty Hebecker
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria da Glória Teixeira Sousa
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Axel A Brakhage
- Department of Microbiology and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, D-07745 Jena, Germany
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Matteo Zanda
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Monica Piras
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Chiara Zanato
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisboa, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Janet A Willment
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
15
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
16
|
Garth JM, Steele C. Innate Lung Defense during Invasive Aspergillosis: New Mechanisms. J Innate Immun 2017; 9:271-280. [PMID: 28231567 DOI: 10.1159/000455125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Invasive aspergillosis (IA) is one of the most difficult to treat and, consequently, one of the most lethal fungal infections known to man. Continued use of immunosuppressive agents during chemotherapy and organ transplantation often leads to the development of neutropenia, the primary risk factor for IA. However, IA is also becoming more appreciated in chronic diseases associated with corticosteroid therapy. The innate immune response to Aspergillus fumigatus, the primary agent in IA, plays a pivotal role in the recognition and elimination of organisms from the pulmonary system. This review highlights recent findings about innate host defense mechanisms, including novel aspects of innate cellular immunity and pathogen recognition, and the inflammatory mediators that control infection with A. fumigatus.
Collapse
Affiliation(s)
- Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
17
|
Ackerman AL, Underhill DM. The mycobiome of the human urinary tract: potential roles for fungi in urology. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:31. [PMID: 28217696 DOI: 10.21037/atm.2016.12.69] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mycobiome, defined as the fungal microbiota within a host environment, is an important but understudied component of the human microbial ecosystem. New culture-independent approaches to determine microbial diversity, such as next-generation sequencing methods, have discovered specific, characteristic, commensal fungal populations present in different body sites. These studies have also identified diverse patterns in fungal communities associated with various diseases. While alterations in urinary bacterial communities have been noted in disease states, a comprehensive description of the urinary mycobiome has been lacking. Early evidence suggests the urinary mycobiome is a diverse community with high intraindividual variability. In other disease systems, the mycobiome is thought to interact with other biomes and the host to play a role in organ homeostasis and pathology; further study will be needed to elucidate the role fungi play in bladder health and disease.
Collapse
Affiliation(s)
- A Lenore Ackerman
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
18
|
Bercusson A, de Boer L, Armstrong-James D. Endosomal sensing of fungi: current understanding and emerging concepts. Med Mycol 2017; 55:10-15. [PMID: 27596144 DOI: 10.1093/mmy/myw072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 05/01/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Endosomal sensing represents a key strategy by which mammalian cells detect parasitization by invading pathogens. This is critical for the control of fungal pathogens, which are for the most part phagocytosed by effector cells of the innate immune system. Despite rapid overall progress in our understanding of endosomal responses in recent times, relatively little is known about how the endosomal sensing system detects fungi and the ensuing immunological consequences. Considering that many fungal pathogens must overcome and evade endosomal killing in order to survive in the host, understanding this key area of the early innate response is crucial for our understanding of fungal infection. In this review we present a summary of our current knowledge of endosomal sensing within the context of fungal pathogens, with a focus on the myeloid compartment.
Collapse
Affiliation(s)
- Amelia Bercusson
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Leon de Boer
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| |
Collapse
|
19
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
20
|
Bruder Nascimento ACMDO, Dos Reis TF, de Castro PA, Hori JI, Bom VLP, de Assis LJ, Ramalho LNZ, Rocha MC, Malavazi I, Brown NA, Valiante V, Brakhage AA, Hagiwara D, Goldman GH. Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence. Mol Microbiol 2016; 100:841-59. [PMID: 26878695 DOI: 10.1111/mmi.13354] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/24/2023]
Abstract
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen-activated protein kinases of the high-osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild-type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.
Collapse
Affiliation(s)
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana I Hori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Neil Andrew Brown
- Plant Science and Crop Biology, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Vito Valiante
- Leibniz Junior Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany; Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Espinosa V, Rivera A. First Line of Defense: Innate Cell-Mediated Control of Pulmonary Aspergillosis. Front Microbiol 2016; 7:272. [PMID: 26973640 PMCID: PMC4776213 DOI: 10.3389/fmicb.2016.00272] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/19/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotic infections and their effect on the human condition have been widely overlooked and poorly surveilled by many health organizations even though mortality rates have increased in recent years. The increased usage of immunosuppressive and myeloablative therapies for the treatment of malignant as well as non-malignant diseases has contributed significantly to the increased incidence of fungal infections. Invasive fungal infections have been found to be responsible for at least 1.5 million deaths worldwide. About 90% of these deaths can be attributed to Cryptococcus, Candida, Aspergillus, and Pneumocystis. A better understanding of how the host immune system contains fungal infection is likely to facilitate the development of much needed novel antifungal therapies. Innate cells are responsible for the rapid recognition and containment of fungal infections and have been found to play essential roles in defense against multiple fungal pathogens. In this review we summarize our current understanding of host-fungi interactions with a focus on mechanisms of innate cell-mediated recognition and control of pulmonary aspergillosis.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New JerseyNewark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers-The State University of New JerseyNewark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New JerseyNewark, NJ, USA; Department of Pediatrics, New Jersey Medical School, Rutgers-The State University of New JerseyNewark, NJ, USA
| |
Collapse
|
22
|
Zhao GQ, Qiu XY, Lin J, Li Q, Hu LT, Wang Q, Li H. Co-regulation of Dectin-1 and TLR2 in inflammatory response of human corneal epithelial cells induced by Aspergillus fumigates. Int J Ophthalmol 2016; 9:185-90. [PMID: 26949633 DOI: 10.18240/ijo.2016.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/06/2015] [Indexed: 01/30/2023] Open
Abstract
AIM To investigate the co-regulation of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 2 (TLR2), and relative chemotactic factors in the Telomease-immortalized human corneal epithelial (THCE) cells after exposure to Aspergillus fumigatus (Af) hyphae. METHODS The normal THCE cells were investigated as control. After cultured in vitro with Af hyphae, with or without laminarin and anti-TLR2 antibody for 4, 8, 16 and 24h, THCE cells were harvested. The expression of Dectin-1, TLR2, CXCL1 and CXCL8 mRNA were measured by real-time quantitative polymerase chain reaction at the stimulation of 4, 8 and 16h separately. The protein expression of Dectin-1 and TLR2 were analyzed at 8, 16, and 24h by Western blot. RESULTS The mRNA expression of CXCL1 and CXCL8 increased in THCE cells after stimulated by Af hyphae. The stimulatory effects on these inflammatory chemokines were shown in a dose-dependent manner and reached the peak at 8h. Af hyphae significantly stimulated the production of Dectin-1 and TLR2 in THCE cells at both mRNA and protein levels. The protein of Dectin-1 and TLR2 gradually increased till 16h. While pretreated with laminarin (a Dectin-1 inhibitor), the expression of TLR2, CXCL1 and CXCL8 all decreased dramatically at the peak point. Interestingly, when pretreated with TLR2 neutralizing antibody, the expression of Dectin-1, CXCL1 and CXCL8 also decreased dramatically at the peak point. CONCLUSION These findings suggest that Dectin-1 and TLR2 co-regulated with each other after treated with inactive Af hyphae in the THCE cells, and they contribute together to the inflammatory responses by induction of chemokines CXCL1 and CXCL8.
Collapse
Affiliation(s)
- Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xue-Yan Qiu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qing Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
23
|
The in vitro fungicidal activity of human macrophages against Penicillium marneffei is suppressed by dexamethasone. Microb Pathog 2015; 86:26-31. [PMID: 26145314 DOI: 10.1016/j.micpath.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/03/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022]
Abstract
Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts.
Collapse
|
24
|
Margalit A, Kavanagh K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev 2015; 39:670-87. [PMID: 25934117 DOI: 10.1093/femsre/fuv018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/22/2023] Open
Abstract
Aspergillus fumigatus is an ubiquitous, saprophytic mould that forms and releases airborne conidia which are inhaled by humans on a daily basis. When the immune system is compromised (e.g. immunosuppressive therapy prior to organ transplantation) or there is pre-existing pulmonary malfunction (e.g. asthma, cystic fibrosis, TB lesions), A. fumigatus exploits weaknesses in the host defenses which can result in the development of saphrophytic, allergic or invasive aspergillosis. If not effectively eliminated by the innate immune response, conidia germinate and form invasive hyphae which can penetrate pulmonary tissues. The innate immune response to A. fumigatus is stage-specific and various components of the host's defenses are recruited to challenge the different cellular forms of the pathogen. In immunocompetent hosts, anatomical barriers (e.g. the mucociliary elevator) and professional phagocytes such as alveolar macrophages (AM) and neutrophils prevent the development of aspergillosis by inhibiting the growth of conidia and hyphae. The recognition of inhaled conidia by AM leads to the intracellular degradation of the spores and the secretion of proinflammatory mediators which recruit neutrophils to assist in fungal clearance. During the later stages of infection, dendritic cells activate a protective A. fumigatus-specific adaptive immune response which is driven by Th1 CD4(+) T cells.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
25
|
The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. EUKARYOTIC CELL 2015; 14:728-44. [PMID: 25911225 DOI: 10.1128/ec.00008-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.
Collapse
|
26
|
García-Vidal C, Salavert Lletí M. [Immunopathogenesis of invasive mould infections]. Rev Iberoam Micol 2014; 31:219-28. [PMID: 25442381 DOI: 10.1016/j.riam.2014.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022] Open
Abstract
Invasive fungal infections caused by filamentous fungi are devastating diseases that occur in patients with a variety of immunosuppressive conditions. This review focuses on the pathogenesis of the most important invasive mycosis in the human being caused by the filamentous fungi Aspergillus, Fusarium, Scedosporium and mucorales. The first contact between the mould and the patient, the host defense to different fungi, including the role of mucosa in the innate immune system, the whole innate immune recognition receptors, and the pathways connecting innate and adaptive immunity, as well as the virulence factors of fungi, are discussed in this paper.
Collapse
Affiliation(s)
- Carolina García-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España.
| | | |
Collapse
|
27
|
Gratacap RL, Bergeron AC, Wheeler RT. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. J Vis Exp 2014:e52182. [PMID: 25490695 DOI: 10.3791/52182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular and Biomedical Sciences, University of Maine
| | - Audrey C Bergeron
- Department of Molecular and Biomedical Sciences, University of Maine
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine; Graduate School of Biomedical Sciences and Engineering, University of Maine;
| |
Collapse
|
28
|
Santiago K, Bomfim GF, Criado PR, Almeida SR. Monocyte-derived dendritic cells from patients with dermatophytosis restrict the growth of Trichophyton rubrum and induce CD4-T cell activation. PLoS One 2014; 9:e110879. [PMID: 25372145 PMCID: PMC4220947 DOI: 10.1371/journal.pone.0110879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 12/21/2022] Open
Abstract
Dermatophytes are the most common agents of superficial mycoses that are caused by mold fungi. Trichophyton rubrum is the most common pathogen causing dermatophytosis. The immunology of dermatophytosis is currently poorly understood. Recently, our group investigated the interaction of T. rubrum conidia with peritoneal mouse macrophages. We found that macrophages phagocytose T. rubrum conidia resulted in a down-modulation of class II major histocompatibility complex (MHC) antigens and in the expression of co-stimulatory molecules. Furthermore, it induced the production of IL-10, and T. rubrum conidia differentiated into hyphae that grew and killed the macrophages after 8 hrs of culture. This work demonstrated that dendritic cells (DCs) and macrophages, from patients or normal individuals, avidly interact with pathogenic fungus T. rubrum. The dermatophyte has two major receptors on human monocyte-derived DC: DC-SIGN and mannose receptor. In contrast macrophage has only mannose receptor that participates in the phagocytosis or bound process. Another striking aspect of this study is that unlike macrophages that permit rapid growth of T. rubrum, human DC inhibited the growth and induces Th activation. The ability of DC from patients to interact and kill T. rubrum and to present Ags to T cells suggests that DC may play an important role in the host response to T. rubrum infection by coordinating the development of cellular immune response.
Collapse
Affiliation(s)
- Karla Santiago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Facholi Bomfim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Ricardo Criado
- Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogerio Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
29
|
Pollmächer J, Figge MT. Agent-based model of human alveoli predicts chemotactic signaling by epithelial cells during early Aspergillus fumigatus infection. PLoS One 2014; 9:e111630. [PMID: 25360787 PMCID: PMC4216106 DOI: 10.1371/journal.pone.0111630] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is one of the most important human fungal pathogens, causing life-threatening diseases. Since humans inhale hundreds to thousands of fungal conidia every day, the lower respiratory tract is the primary site of infection. Current interaction networks of the innate immune response attribute fungal recognition and detection to alveolar macrophages, which are thought to be the first cells to get in contact with the fungus. At present, these networks are derived from in vitro or in situ assays, as the peculiar physiology of the human lung makes in vivo experiments, including imaging on the cell-level, hard to realize. We implemented a spatio-temporal agent-based model of a human alveolus in order to perform in silico experiments of a virtual infection scenario, for an alveolus infected with A. fumigatus under physiological conditions. The virtual analog captures the three-dimensional alveolar morphology consisting of the two major alveolar epithelial cell types and the pores of Kohn as well as the dynamic process of respiration. To the best of our knowledge this is the first agent-based model of a dynamic human alveolus in the presence of respiration. A key readout of our simulations is the first-passage-time of alveolar macrophages, which is the period of time that elapses until the first physical macrophage-conidium contact is established. We tested for random and chemotactic migration modes of alveolar macrophages and varied their corresponding parameter sets. The resulting first-passage-time distributions imply that randomly migrating macrophages fail to find the conidium before the start of germination, whereas guidance by chemotactic signals derived from the alveolar epithelial cell associated with the fungus enables a secure and successful discovery of the pathogen in time.
Collapse
Affiliation(s)
- Johannes Pollmächer
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
30
|
The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 2014; 14:405-16. [PMID: 24854590 DOI: 10.1038/nri3684] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The body is host to a wide variety of microbial communities from which the immune system protects us and that are important for the normal development of the immune system and for the maintenance of healthy tissues and physiological processes. Investigators have mostly focused on the bacterial members of these communities, but fungi are increasingly being recognized to have a role in defining these communities and to interact with immune cells. In this Review, we discuss what is currently known about the makeup of fungal communities in the body and the features of the immune system that are particularly important for interacting with fungi at these sites.
Collapse
|
31
|
Amarsaikhan N, O’Dea EM, Tsoggerel A, Owegi H, Gillenwater J, Templeton SP. Isolate-dependent growth, virulence, and cell wall composition in the human pathogen Aspergillus fumigatus. PLoS One 2014; 9:e100430. [PMID: 24945802 PMCID: PMC4063936 DOI: 10.1371/journal.pone.0100430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/27/2014] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous fungal pathogen Aspergillus fumigatus is a mediator of allergic sensitization and invasive disease in susceptible individuals. The significant genetic and phenotypic variability between and among clinical and environmental isolates are important considerations in host-pathogen studies of A. fumigatus-mediated disease. We observed decreased radial growth, rate of germination, and ability to establish colony growth in a single environmental isolate of A. fumigatus, Af5517, when compared to other clinical and environmental isolates. Af5517 also exhibited increased hyphal diameter and cell wall β-glucan and chitin content, with chitin most significantly increased. Morbidity, mortality, lung fungal burden, and tissue pathology were decreased in neutropenic Af5517-infected mice when compared to the clinical isolate Af293. Our results support previous findings that suggest a correlation between in vitro growth rates and in vivo virulence, and we propose that changes in cell wall composition may contribute to this phenotype.
Collapse
Affiliation(s)
- Nansalmaa Amarsaikhan
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
| | - Evan M. O’Dea
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
| | - Angar Tsoggerel
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
| | - Henry Owegi
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
| | - Jordan Gillenwater
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine – Terre Haute, Terre Haute, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chung D, Thammahong A, Shepardson KM, Blosser SJ, Cramer RA. Endoplasmic reticulum localized PerA is required for cell wall integrity, azole drug resistance, and virulence in Aspergillus fumigatus. Mol Microbiol 2014; 92:1279-98. [PMID: 24779420 DOI: 10.1111/mmi.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 11/29/2022]
Abstract
GPI-anchoring is a universal and critical post-translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI-anchored, and disruption of GPI-anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI-anchored protein functions, our current knowledge of GPI lipid remodelling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodelling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β-glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow-derived macrophages relative to wild type. Given the structural specificity of fungal GPI-anchors, which is different from humans, understanding GPI lipid remodelling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.
Collapse
Affiliation(s)
- Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | | |
Collapse
|
33
|
Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, Delhaes L, Sergejeva S. Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy 2014; 4:14. [PMID: 24735832 PMCID: PMC4005466 DOI: 10.1186/2045-7022-4-14] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/19/2014] [Indexed: 01/31/2023] Open
Abstract
Sensitization to fungi and long term or uncontrolled fungal infection are associated with poor control of asthma, the likelihood of more severe disease and complications such as bronchiectasis and chronic pulmonary aspergillosis. Modelling suggests that >6.5 million people have severe asthma with fungal sensitizations (SAFS), up to 50% of adult asthmatics attending secondary care have fungal sensitization, and an estimated 4.8 million adults have allergic bronchopulmonary aspergillosis (ABPA). There is much uncertainty about which fungi and fungal allergens are relevant to asthma, the natural history of sensitisation to fungi, if there is an exposure response relationship for fungal allergy, and the pathogenesis and frequency of exacerbations and complications. Genetic associations have been described but only weakly linked to phenotypes. The evidence base for most management strategies in ABPA, SAFS and related conditions is weak. Yet straightforward clinical practice guidelines for management are required. The role of environmental monitoring and optimal means of controlling disease to prevent disability and complications are not yet clear. In this paper we set out the key evidence supporting the role of fungal exposure, sensitisation and infection in asthmatics, what is understood about pathogenesis and natural history and identify the numerous areas for research studies.
Collapse
Affiliation(s)
- David W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK ; Education and Research Centre, UHSM, Southmoor Road, Manchester M23 9LT, UK
| | - Catherine Pashley
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Domink Hartl
- Department of Pediatrics, Infectious Diseases & Immunology, University of Tübingen, Tübingen, Germany
| | - Andrew Wardlaw
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Cendrine Godet
- Department of Infectious Diseases, CHU la Milétrie, Poitiers, France
| | - Stefano Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Laurence Delhaes
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France ; Department of Parasitology-Mycology, Regional Hospital Center, Faculty of Medicine, Lille, France
| | - Svetlana Sergejeva
- Translational Immunology Group, Institute of Technology, Tartu University, Tartu, Estonia ; North Estonia Medical Centre, Tallinn, Estonia
| |
Collapse
|
34
|
Rivera-Mariani FE, Vysyaraju K, Negherbon J, Levetin E, Horner WE, Hartung T, Breysse PN. Comparison of the interleukin-1β-inducing potency of allergenic spores from higher fungi (basidiomycetes) in a cryopreserved human whole blood system. Int Arch Allergy Immunol 2013; 163:154-62. [PMID: 24356469 PMCID: PMC3931459 DOI: 10.1159/000357036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/04/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Spores from basidiomycete fungi (basidiospores) are highly prevalent in the atmosphere of urban and rural settings. Studies have confirmed their potential to affect human health as allergens. Less is known about their potential to serve as stimuli of the innate immune system and induce proinflammatory reactions. METHODS In this study, we evaluated the proinflammatory potential of spores from 11 allergenic basidiomycete species (gilled: Pleurotus ostreatus,Oudemansiella radicata,Armillaria tabescens,Coprinus micaceus,Pluteus cervinus, and Chlorophyllum molybdites, and nongilled: Pisolithus arhizus,Merulius tremellosus,Calvatia cyathiformis,Lycoperdon pyriforme, andBoletus bicolor) based on their potency to induce the release of the proinflammatory cytokine interleukin (IL)-1β in a cryopreserved human whole blood system. In addition, the roles of morphological features of the spores (surface area, shape, and pigmentation) were examined for their role in the IL-1β-including potency of spores. Peripheral blood from healthy volunteers was collected, pooled, and cryopreserved. After stimulating the cryopreserved pooled blood with 10(6) to 10(3) basidiospores/ml, the concentration of IL-1β in culture supernatants was determined with ELISA. RESULTS Basidiospores manifested concentration-dependent IL-1β-inducing potency, which was more marked among basidiospores from gilled basidiomycetes. At higher concentrations of basidiospores, the IL-1β-inducing potency could be differentiated in the cryopreserved human whole blood system. Morphological features did not correlate with the IL-1β-inducing potency of the basidiospores, suggesting that nonmorphological properties modulate the IL-1β-inducing potency. CONCLUSION Our data provide evidence of the proinflammatory potential of basidiospores, and the utility of cryopreserved human whole blood as a human-based in vitro system to study the immune reactivity of allergenic basidiospores.
Collapse
Affiliation(s)
- Félix E. Rivera-Mariani
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Center for Alternative To Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
| | - Kranthi Vysyaraju
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
| | - Jesse Negherbon
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
| | - Estelle Levetin
- Department of Biological Sciences, University of Tulsa, Tulsa, OK
| | | | - Thomas Hartung
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Center for Alternative To Alternatives to Animal Testing, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
| | - Patrick N. Breysse
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
35
|
Dubey LK, Moeller JB, Schlosser A, Sorensen GL, Holmskov U. Induction of innate immunity by Aspergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan. Immunobiology 2013; 219:179-88. [PMID: 24286790 DOI: 10.1016/j.imbio.2013.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Chitin and β-glucan are conserved throughout evolution in the fungal cell wall and are the most common polysaccharides in fungal species. Together, these two polysaccharides form a structural scaffold that is essential for the survival of the fungus. In the present study, we demonstrated that Aspergillus fumigatus alkali-insoluble cell wall fragments (AIF), composed of chitin linked covalently to β-glucan, induced enhanced immune responses when compared with individual cell wall polysaccharides. Intranasal administration of AIF induced eosinophil and neutrophil recruitment, chitinase activity, TNF-α and TSLP production in mice lungs. Selective destruction of chitin or β-glucan from AIF significantly reduced eosinophil and neutrophil recruitment as well as chitinase activity and cytokine expression by macrophages, indicating the synergistic effect of the cell wall polysaccharides when presented together as a composite PAMP. We also showed that these cell wall polysaccharides induced chitin-specific IgM in mouse serum. Our in vivo and in vitro data indicate that chitin and β-glucan play important roles in activating innate immunity when presented as composite cell wall PAMPs.
Collapse
Affiliation(s)
- Lalit Kumar Dubey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jesper Bonnet Moeller
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
36
|
Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:219-38. [PMID: 24050625 DOI: 10.1146/annurev-pathol-012513-104653] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461;
| | | | | |
Collapse
|
37
|
Shevchenko MA, Bolkhovitina EL, Servuli EA, Sapozhnikov AM. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation. Respir Res 2013; 14:78. [PMID: 23890251 PMCID: PMC3735401 DOI: 10.1186/1465-9921-14-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Background Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. Methods Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. Results Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application. Conclusions Aspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation.
Collapse
Affiliation(s)
- Marina A Shevchenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia.
| | | | | | | |
Collapse
|
38
|
Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol 2013; 16:366-73. [PMID: 23756050 DOI: 10.1016/j.mib.2013.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 02/06/2023]
Abstract
The environment is suffused with nearly countless types of fungi, and our immune systems must be tuned to cope with constant exposure to them. In addition, it is becoming increasingly clear that many surfaces of our bodies are colonized with complex populations of fungi (the mycobiome) in the same way that they are colonized with complex populations of bacteria. The immune system must tolerate colonization with commensal fungi but defend against fungal invasion. Truly life-threatening fungal infections are common only when this balance is disrupted through, for example, profound immunosuppression or genetic mutation. Recent studies have begun to shed light on how this balance is established and maintained, and suggest future studies on the role of fungi in homeostatic conditions.
Collapse
Affiliation(s)
- Iliyan D Iliev
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
39
|
Municio C, Alvarez Y, Montero O, Hugo E, Rodríguez M, Domingo E, Alonso S, Fernández N, Crespo MS. The response of human macrophages to β-glucans depends on the inflammatory milieu. PLoS One 2013; 8:e62016. [PMID: 23637950 PMCID: PMC3634770 DOI: 10.1371/journal.pone.0062016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/17/2013] [Indexed: 01/31/2023] Open
Abstract
Background β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. Principal Findings Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. Conclusions These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent on M-CSF and dectin-1 B isoform expression that mainly signals through the dectin-1 B/spleen tyrosine kinase/cytosolic phospholipase A2 route.
Collapse
Affiliation(s)
- Cristina Municio
- Instituto de Biología y Genética Molecular, CSIC, Valladolid, Spain
| | - Yolanda Alvarez
- Instituto de Biología y Genética Molecular, CSIC, Valladolid, Spain
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Etzel Hugo
- Instituto de Biología y Genética Molecular, CSIC, Valladolid, Spain
| | - Mario Rodríguez
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - Esther Domingo
- Instituto de Biología y Genética Molecular, CSIC, Valladolid, Spain
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, CSIC, Valladolid, Spain
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | | |
Collapse
|
40
|
Rand TG, Robbins C, Rajaraman D, Sun M, Miller JD. Induction of Dectin-1 and asthma-associated signal transduction pathways in RAW 264.7 cells by a triple-helical (1, 3)-β-D glucan, curdlan. Arch Toxicol 2013; 87:1841-50. [PMID: 23543010 DOI: 10.1007/s00204-013-1042-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/08/2013] [Indexed: 11/25/2022]
Abstract
People living in damp buildings are typically exposed to spore and mycelial fragments of the fungi that grow on damp building materials. There is experimental evidence that this exposure to triple-helical (1, 3)-β-D glucan and low molecular weight toxins may be associated with non-atopic asthma observed in damp and moldy buildings. However, the mechanisms underlying this response are only partially resolved. Using the pure (1, 3)-β-D glucan, curdlan, and the murine macrophage cell line, RAW 264.7, there were two objectives of this study. The first was to determine whether signal transduction pathways activating asthma-associated cell signaling pathways were stimulated using mouse transduction Pathway Finder(®) arrays and quantitative real-time (QRT) PCR. The second objective was to evaluate the dose and temporal responses associated with transcriptional changes in asthma-associated cytokines, the signal transduction receptor gene Dectin-1, and various transcription factor genes related to the induction of asthma using customized RT-PCR-based arrays. Compared to controls, the 10(-7) M curdlan treatment induced significant changes in gene transcription predominately in the NFkB, TGF-β, p53, JAK/STAT, P13/AKT, phospholipase C, and stress signaling pathways. The 10(-8) M curdlan treatment mainly induced NFkB and TGF-β pathways. Compared to controls, curdlan exposures also induced significant dose- and time-dependent changes in the gene translations. We found that that curdlan as a non-allergenic potentiator modulates a network of transduction signaling pathways not only associated with TH-1, TH-2, and TH-3 cell responses including asthma potentiation, but a variety of other cell responses in RAW 264.7 cells. These results help provide mechanistic basis for some of the phenotypic changes associated with asthma that have been observed in in vitro, in vivo, and human studies and open up a hypothesis-building process that could explain the rise of non-atopic asthma associated with fungi.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, 923 Robie St, Halifax, NS, B3H 3C3, Canada,
| | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Aspergillus fumigatus is frequently isolated from cystic fibrosis (CF) patients and is notorious for its role in the debilitating condition of allergic bronchopulmonary aspergillosis (ABPA). Although CF patients suffer from perpetual microorganism-related lung disease, it is unclear whether A. fumigatus colonization has a role in causing accelerated lung function decline and whether intervention is necessary. RECENT FINDINGS A. fumigatus morbidity appears to be related to cystic fibrosis transmembrane conductance regulator-dependant function of the innate immune system. A. fumigatus-colonized patients have a lower lung capacity, more frequent hospitalizations and more prominent radiological abnormalities than noncolonized patients. Treatment with antifungal agents can be of value but has several drawbacks and a direct effect on lung function is yet to be shown. SUMMARY A. fumigatus appears to have an important role in CF lung disease, not exclusive to the context of ABPA. However, a causal relationship still needs to be confirmed. Study observations and trends indicate a need to further elucidate the mechanisms of A. fumigatus interactions with the host innate immune system and its role in CF lung morbidity.
Collapse
|
42
|
Mansour MK, Tam JM, Vyas JM. The cell biology of the innate immune response to Aspergillus fumigatus. Ann N Y Acad Sci 2013; 1273:78-84. [PMID: 23230841 DOI: 10.1111/j.1749-6632.2012.06837.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of invasive aspergillosis is a feared complication for immunocompromised patients. Despite the use of antifungal agents with excellent bioactivity, the morbidity and mortality rates for invasive aspergillosis remain unacceptably high. Defects within the innate immune response portend the highest risk for patients, but detailed knowledge of molecular pathways in neutrophils and macrophages in response to this fungal pathogen is lacking. Phagocytosis of fungal spores is a key step that places the pathogen into a phagosome, a membrane-delimited compartment that undergoes maturation and ultimately delivers antigenic material to the class II MHC pathway. We review the role of Toll-like receptor 9 (TLR9) in phagosome maturation of Aspergillus fumigates-containing phagosomes. Advanced imaging modalities and the development of fungal-like particles are promising tools that will aid in the dissection of the molecular mechanism to fungal immunity.
Collapse
Affiliation(s)
- Michael K Mansour
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|