1
|
Maiocchi C, Milanesi M, Canessa N, Sozzi S, Mattavelli G, Nardone A, Gianelli C. Dual-task effects of walking-speed on inhibitory control and decision-making under risk. Sci Rep 2025; 15:13877. [PMID: 40263305 PMCID: PMC12015226 DOI: 10.1038/s41598-025-88497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/24/2025] [Indexed: 04/24/2025] Open
Abstract
The effect of simultaneously performing two tasks (dual-task effects, DTEs) has been extensively studied, mainly focusing on the combination of cognitive and motor tasks. Given their potentially detrimental impact on real-life activities, the impact of DTEs has been investigated in both healthy individuals and patients. In this Registered Report, we aimed to replicate previous DTEs when a task requiring executive-inhibitory skills is involved while also expanding the evidence on basic facets of decision-making. We recruited 50 healthy young participants who performed a stop-signal task and two gambling tasks (loss-aversion and risk-aversion) while sitting and while walking at three treadmill speeds (normal, slow and fast). We report a significant difference in performance during single-task and dual-task, although with high individual variability. The data show no effect of the walking speed on all the cognitive tasks. Analyses on postural alignments, assessed in the cadence, gait cycle length and stance phase, confirm previous results on cognitive prioritization strategies of healthy individuals. Based on our results, we highlight the need to further investigate prioritization strategies when tasks involving higher cognitive functions are performed along a motor task in healthy individuals and patients with the aim of offering targeted training and rehabilitation protocols. The stage 1 protocol for this Registered Report was accepted in principle on 28/06/22. The protocol, as accepted by the journal, can be found at: https://doi.org/10.17605/OSF.IO/5MWH7 .
Collapse
Affiliation(s)
- Carlotta Maiocchi
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Marta Milanesi
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy.
- Istituti Clinici Scientifici Maugeri IRCCS, CognitiveNeuroscienceLaboratoryofPaviaInstitute, Pavia, Italy.
| | - Stefania Sozzi
- Department of Computer, Electrical and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, CognitiveNeuroscienceLaboratoryofPaviaInstitute, Pavia, Italy
| | - Antonio Nardone
- Centro Studi Attività Motorie and Neurorehabilitation and Spinal Units of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Claudia Gianelli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Guo Y, Tu J, Wang M, Gan J, Li Y. The Effect of Impulsivity Traits on Commission Errors of Prospective Memory. INTERNATIONAL JOURNAL OF PSYCHOLOGY 2025; 60:e70013. [PMID: 39909485 DOI: 10.1002/ijop.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/09/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Repeated execution of a prospective memory (PM) task that has already been completed is known as a commission error of the PM. Due to defects in attentional impulsiveness and motor impulsiveness, impulsive individuals may differ from non-impulsive individuals when making PM commission errors. This study explored the effect of impulsivity traits on PM commission errors under different ongoing task difficulties (Experiment 1) and different response conveniences (Experiment 2). The results of Experiment 1 showed that the impulsive group had more PM commission errors than the non-impulsive group under both the low-difficulty condition and the high-difficulty condition, indicating that the effect of impulsivity traits on PM commission errors is not affected by the difficulty of ongoing tasks. However, the results of Experiment 2 showed that the impulsive group only had more PM commission errors than the non-impulsive group under the convenient response condition, indicating that the effect of impulsivity traits on PM commission errors is affected by the response convenience.
Collapse
Affiliation(s)
| | - Jiaru Tu
- Henan University, Kaifeng, China
| | | | | | - Yimin Li
- Henan University, Kaifeng, China
| |
Collapse
|
3
|
Wang R, Martin CD, Lei AL, Hausknecht KA, Richards JB, Haj-Dahmane S, Shen RY. Environmental enrichment reverses prenatal ethanol exposure-induced attention-deficits in rats. Front Psychiatry 2025; 16:1549318. [PMID: 40230820 PMCID: PMC11995159 DOI: 10.3389/fpsyt.2025.1549318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction There is a high prevalence of fetal alcohol spectrum disorders (FASD) in the US and the world, which is caused by prenatal ethanol exposure (PE). Most individuals with FASD show attention deficit hyperactivity disorder (ADHD) -like symptoms. Using a rat model of FASD, we have successfully demonstrated that moderate and heavy PE leads to persistent attention deficits, including augmented impulsivity and impaired sustained attention. Anxiety is another primary symptom of FASD. Anxiety and ADHD are closely associated in clinical studies. However, the causal relationship between anxiety and ADHD is not clear. In the present study, we used the strategy of environmental enrichment to reduce anxiety after PE in rats and investigated if attention deficits could be ameliorated. Methods A 2nd-trimester binge-drinking pattern of heavy PE was used. Environmental enrichment consisted of neonatal handling and postweaning complex housing. Action impulsivity and sustained attention were tested in adult males and females using the 2-choice reaction time task. Results The results show environmental enrichment effectively ameliorated action impulsivity and improved sustained attention in male and female PE rats. Action impulsivity was also improved in control rats with environmental enrichment. In addition, environmental enrichment improved the efficiency of obtaining rewards in male and female control but not PE rats. Environmental enrichment altered the pattern of reaction time components, favoring slower movement initiation but faster movement. Discussion These observations support that environmental enrichment could be an effective strategy in ameliorating ADHD-like symptoms in FASD. The reduced anxiety could contribute to such an effect.
Collapse
|
4
|
Carr MR, van Mourik Y, Gómez-Sotres P, Solinas M, de Vries TJ, Pattij T. Assessment of impulsivity using an automated, self-adjusting delay discounting procedure. Behav Brain Res 2025; 480:115405. [PMID: 39706531 DOI: 10.1016/j.bbr.2024.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Modelling delay discounting behavior in rodents is important for understanding the neurobiological mechanisms underlying cognitive control and associated impulsivity disorders. Conventional rodent delay discounting procedures require extensive training and frequent experimenter interaction, as rodents are tested in separate operant chambers away from their home cage. To address these limitations, we adapted and characterize here a self-adjusting delay discounting procedure to an automated CombiCage setup. Rodents were trained during the most active phase of the light-dark cycle, completing 120 trials daily. During each session, we measured large reward preference, mean adjusted delay, and trial participation across multiple delays. Results showed that rodents exhibited discounting behavior after two weeks, with performance stability increasing at 7 weeks training with delay. We also evaluated the influence of altering the consecutive choice criteria (ccc), number of trial choices for a delay step to adjust up or down. Lower ccc (3 vs 8) increased both the number of delay steps encountered per session and task participation. Additionally, we examined the effects of pharmacological interventions, including the psychostimulant amphetamine and the dopamine D1 receptor antagonist, SCH23390. A high dose amphetamine reduced preference for large immediate and short delayed rewards and decreased the mean adjusted delay in a non-dose dependent manner, while SCH23390 did not affect task performance. Together, this novel automated self-adjusting procedure enables high-throughput collection of delay discounting data, with potential applications for investigating impulsivity across the lifespan. However, the current extended session design may limit its suitability for pharmacological evaluations.
Collapse
Affiliation(s)
- Madison R Carr
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Paula Gómez-Sotres
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Marcello Solinas
- Laboratory of Experimental and Clinical Neurosciences, INSERM U1084, University of Poitiers, Poitiers, France
| | - Taco J de Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Sable HJK, Paige NB, Nalan PA, Pace RL, Hicks CB, Regan SL, Williams MT, Vorhees CV, Lester DB. Phasic dopamine release in two different rat models of attention-deficit/hyperactivity disorder: Spontaneously hypertensive rats (SHR) versus Lphn3 knockout rats. Neuroscience 2025; 567:150-162. [PMID: 39756609 PMCID: PMC11789927 DOI: 10.1016/j.neuroscience.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences. The SHRs displayed decreased DA release in the NAcc compared to their control strain (i.e., WKY rats), with no differences in the mPFC, leading a much lower NAcc-to-PFC DA release ratio in SHRs compared to controls suggesting an imbalance in DA transmission between these regions. The Lphn3 KO rats were considered hypodopaminergic based on the reduced summed DA release in the mPFC and NAcc compared to WT controls, although differences were not observed when examining each site independently. Lphn3 KOs displayed increased DA half-life in the mPFC compared with Lphn3 WT rats, an indication of decreased DAT reuptake, with no differences in the NAcc. DAT blockade by nomifensine had a similar effect on DA release in the NAcc of SHRs and WKYs, but increased DA release in the NAcc of Lphn3 KOs to a greater extent than in WTs. These results suggest that the efficacy of pharmacotherapies used to treat externalizing disorders such as ADHD and/or SUD, likely differ between SHRs and Lphn3 KO rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Samantha L Regan
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Michael T Williams
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Charles V Vorhees
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | | |
Collapse
|
6
|
Brudan OI, Eisenbarth H, Glautier S. An exploration of relationships between associative and non-associative measures of inhibition. Q J Exp Psychol (Hove) 2025:17470218241310859. [PMID: 39704276 DOI: 10.1177/17470218241310859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Conditioned inhibition and occasion setting are two examples of inhibitory associative phenomena that have traditionally been studied in isolation from non-associative inhibition. Non-associative inhibition has been assessed using a variety of measures (e.g., stop signal reaction time and impulsivity questionnaires) and weak non-associative inhibition has been linked to a variety of disorders including addiction. However, even though both associative and non-associative inhibition have a common core-both involve suppression of behaviour, there has been relatively little study of potential relationships between these different forms of inhibition. In the current investigation, we carried out exploratory analyses to look for possible links between associative inhibition and four non-associative measures of inhibition, namely, (1) stop signal reaction time, (2) delay discounting, and scores on (3) the Behaviour Inhibition System/Behaviour Activation System and (4) Barratt Impulsivity questionnaires. Despite the fact that we carefully selected data to minimise noise in the measurement of associative inhibition, we found no clear evidence of links between associative and non-associative inhibition. We therefore conclude that while there may be superficial similarities between these different forms of inhibition they are likely to have different substrates.
Collapse
|
7
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
8
|
Azocar VH, Petersson P, Fuentes R, Fuentealba JA. Differential phase-amplitude coupling in nucleus accumbens and orbitofrontal cortex reflects decision-making during a delay discounting task. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111064. [PMID: 38917880 DOI: 10.1016/j.pnpbp.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions. METHODS To study the functional connectivity both between and within NAc, OFC, and DLS during a delay discounting task, we concurrently recorded local field potential in NAc, OFC, and DLS in rats. We then quantified the degree of phase-amplitude coupling (PAC), coherence, and Granger Causality between oscillatory activities in animals exhibiting either a high (HI) or low (LI) tendency for impulsive choices. RESULTS Our results showed a differential pattern of PAC during decision-making in OFC and NAc, but not in DLS. While theta-gamma PAC in OFC was associated with self-control decisions, a higher delta-gamma PAC in both OFC and NAc biased decisions toward impulsive choices in both HI and LI groups. Furthermore, during the reward event, Granger Causality analysis indicated a stronger NAc➔OFC gamma contribution in the HI group, while the LI group showed a higher OFC➔NAc gamma contribution. CONCLUSIONS The overactivity in NAc during reward in the HI group suggests that exacerbated contribution of NAcCore can lead to an overvaluation of reward that biases the behavior toward the impulsive choice.
Collapse
Affiliation(s)
- V H Azocar
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Fuentes
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - J A Fuentealba
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
9
|
Kyriakidou M, Caballero-Puntiverio M, Andreasen JT, Thomsen M. Relationship between two forms of impulsivity in mice at baseline and under acute and sub-chronic atomoxetine treatment. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110841. [PMID: 37586638 PMCID: PMC11531202 DOI: 10.1016/j.pnpbp.2023.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
RATIONALE Impulsivity is a symptom of various mental disorders, including attention deficit hyperactivity disorder (ADHD), bipolar disorder, and addiction. Impulsivity is not a unitary construct, but is present in different forms, yet only a few rodent studies have explored the relationship between these forms within individual subjects. OBJECTIVES In this study, we compared behaviors representing two impulsivity forms, delay discounting (choice impulsivity) and premature responding (waiting impulsivity), within the same mice. METHODS C57BL/6J male mice were concurrently trained and tested in the delay discounting task and the rodent continuous performance test in a counterbalanced design. The effects of the ADHD medication atomoxetine were tested in both tasks, after both acute (0.3-5.0 mg/kg) and sub-chronic (0.3 mg/kg twice daily for seven days) administration. RESULTS There was no correlation between the two impulsivity forms at baseline. Acute atomoxetine treatment (1, 3, and 5 mg/kg) significantly reduced premature responding. Furthermore, sub-chronic treatment with 0.3 mg/kg of atomoxetine caused a stable decrease in premature responding. Atomoxetine had no significant effect on delay discounting after acute or sub-chronic administration, although the acute administration of 1 mg/kg showed a trend towards increasing delay discounting. CONCLUSIONS The present results support that delay discounting and premature responding represent two different forms of impulsivity that show dissimilar responses to atomoxetine treatment. The consistency with findings in humans lends support to the translatability of the results in mice.
Collapse
Affiliation(s)
- Maria Kyriakidou
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | | | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Pauli R, Brazil IA, Kohls G, Klein-Flügge MC, Rogers JC, Dikeos D, Dochnal R, Fairchild G, Fernández-Rivas A, Herpertz-Dahlmann B, Hervas A, Konrad K, Popma A, Stadler C, Freitag CM, De Brito SA, Lockwood PL. Action initiation and punishment learning differ from childhood to adolescence while reward learning remains stable. Nat Commun 2023; 14:5689. [PMID: 37709750 PMCID: PMC10502052 DOI: 10.1038/s41467-023-41124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Theoretical and empirical accounts suggest that adolescence is associated with heightened reward learning and impulsivity. Experimental tasks and computational models that can dissociate reward learning from the tendency to initiate actions impulsively (action initiation bias) are thus critical to characterise the mechanisms that drive developmental differences. However, existing work has rarely quantified both learning ability and action initiation, or it has relied on small samples. Here, using computational modelling of a learning task collected from a large sample (N = 742, 9-18 years, 11 countries), we test differences in reward and punishment learning and action initiation from childhood to adolescence. Computational modelling reveals that whilst punishment learning rates increase with age, reward learning remains stable. In parallel, action initiation biases decrease with age. Results are similar when considering pubertal stage instead of chronological age. We conclude that heightened reward responsivity in adolescence can reflect differences in action initiation rather than enhanced reward learning.
Collapse
Affiliation(s)
- Ruth Pauli
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Inti A Brazil
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gregor Kohls
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jack C Rogers
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Dimitris Dikeos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Dochnal
- Faculty of Medicine, Child and Adolescent Psychiatry, Department of the Child Health Center, Szeged University, Szeged, Hungary
| | | | | | - Beate Herpertz-Dahlmann
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Amaia Hervas
- University Hospital Mutua Terrassa, Barcelona, Spain
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Jülich, Jülich, Germany
| | - Arne Popma
- Department of Child and Adolescent Psychiatry, VU University Medical Center, Amsterdam, Netherlands
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephane A De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Yang TH, Liao RM, Su CI, Chien CY, Ng CT, Yen NS. Interval timing relative to response inhibition in the differential reinforcement of low-rate responding in normally developing young adults. Sci Rep 2023; 13:11977. [PMID: 37488262 PMCID: PMC10366166 DOI: 10.1038/s41598-023-39160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
With recent proposal suggesting the multifaceted nature of impulsivity, researchers have been intrigued by the question of whether the impulsive behaviour measured in the traditionally psychological paradigms is unitary. One such paradigm, the differential reinforcement of low-rate responding (DRL), has been used to assess response inhibition, but its underlying mechanism has still been debated. In present research, we examined and differentiated the effects of both response inhibition and interval timing on a multisession DRL-10 s (DRL-10 s) in a large sample of normally developing young adults, as well as with three other measures including the stop-signal reaction task (SSRT), time production task-10 s (TPT-10 s), and the Barrett impulsivity scale-11 (BIS-11). The results showed that behavioural changes existed in DRL. As the task sessions progressed, there was an increase in both reinforcement probability and peak time, but a decrease in burst responses. Most importantly, both principal component analysis and generalized multilevel modeling yielded consistent results that as the task progressed, there was an increasing involvement of the TPT in the late sessions of DRL. However, none of the effect of SSRT was found. In sum, the differential degrees of involvement of the timing process, relative to response inhibition, were observed in DRL.
Collapse
Grants
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Tsung-Han Yang
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Institute of Neuroscience, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Department of Psychology, Asia University, No. 500, Lioufeng Rd., Taichung, 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Xueshi Rd., Taichung, 404333, Taiwan
| | - Chung-I Su
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Chun-Yi Chien
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Nai-Shing Yen
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan.
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan.
| |
Collapse
|
12
|
Niddam DM, Wu SW, Lai KL, Yang YY, Wang YF, Wang SJ. An altered reward system characterizes chronic migraine with medication overuse headache. Cephalalgia 2023; 43:3331024231158088. [PMID: 36855934 DOI: 10.1177/03331024231158088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Medication overuse headache shares several characteristics with substance use disorders. However, key features of substance use disorders such as increased impulsivity and alterations in reward processing remain little explored in medication overuse headache. METHODS Temporal discounting and impulsive decision making behavior and the associated brain mechanisms were assessed in 26 chronic migraine patients with medication overuse headache and in 28 healthy controls. Regions-of-interest analyses were first performed for task-related regions, namely the ventral striatum and the ventromedial and dorsomedial prefrontal cortices. Resting-state functional connectivity between these regions were then explored. An additional 27 chronic migraine patients without medication overuse headache were included for comparison in the latter analysis. RESULTS Patients with medication overuse headache showed steeper temporal discounting behavior than healthy controls. They also showed weaker subjective value representations in the dorsomedial prefrontal cortex, when accepting larger delayed rewards, and in ventral striatum and ventromedial prefrontal cortex, when accepting the smaller immediate reward. Resting-state functional connectivity was reduced among the valuation regions when comparing patients with medication overuse headache to the other two control groups. CONCLUSIONS Patients with medication overuse headache were characterized by altered processing and dysconnectivity in the reward system during intertemporal choices and in the resting-state.
Collapse
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Wei Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Yen Yang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Fang Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Schuller J, Koch M. Blockade of the orexin 1-receptors and 'cocaine- and amphetamine-regulated transcript' in the nucleus accumbens shell alters impulse control in rats. Behav Brain Res 2023; 440:114268. [PMID: 36539163 DOI: 10.1016/j.bbr.2022.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Impulsivity is a multifaceted construct and alterations in impulsiveness are often associated with psychiatric diseases, including drug addiction and binge eating disorder. Impulse control involves several brain regions. The present study assessed the role of the orexigenic, appetite stimulating neuropeptide orexin (OX) and the anorexigenic, appetite reducing neuropeptide cocaine- and amphetamine-regulated transcript (CART) within the nucleus accumbens shell (NAcSh) in impulse control in rats. The animals were ranked for their trait impulsivity based on a screening in the 5-choice serial reaction time task (5-CSRTT). The rats' performances were analysed after bilateral infusions of the OX 1-receptor antagonist SB-334867 (SB) and CART-antibodies (CART-ABs) into the NAcSh. After SB infusions, there was no change in premature responses observed on average. Further analysis revealed a negative linear correlation between the effect of intra-NAcSh SB infusions on premature responses and trait impulsivity. The effect of SB ranged from an increase, no change to a decrease in premature responses in the individual animals with increasing trait impulsivity. Infusions of CART-ABs led to consistently enhanced impulse control with fewer irrelevant actions, independent of trait impulsivity. These data suggest that both OX, especially OX A, and CART in the NAcSh, can be considered endogenous regulators of impulsive action, dependent on underlying impulsivity in the case of OX and independent from trait impulsivity in the case of CART.
Collapse
Affiliation(s)
- Julia Schuller
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| |
Collapse
|
14
|
Graczyk MM, Sahakian BJ, Robbins TW, Ersche KD. Genotype-by-diagnosis interaction influences self-control in human cocaine addiction. Transl Psychiatry 2023; 13:51. [PMID: 36774338 PMCID: PMC9922269 DOI: 10.1038/s41398-023-02347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Not everyone who uses drugs loses control over their intake, which is a hallmark of addiction. Although familial risk studies suggest significant addiction heritability, the genetic basis of vulnerability to drug addiction remains largely unknown. In the present study, we investigate the relationship between self-control, cocaine use, and the rs36024 single nucleotide polymorphism of the noradrenaline transporter gene (SLC6A2). We hypothesize that C-allele-carrying adults show impaired self-control, as measured by the stop-signal task and demonstrated previously in adolescents, and further exacerbated by chronic cocaine use. Patients with cocaine use disorder (CUD, n = 79) and healthy unrelated participants with no history of drug abuse (n = 54) completed the stop-signal task. All participants were genotyped for rs36024 allelic variants (CC/TT homozygotes, CT heterozygotes). We measured mean stop-signal reaction time, reflecting the ability to inhibit ongoing motor responses, reaction times to go stimuli, and the proportion of successful stops. CUD patients showed prolonged stop-signal reaction time, however, there was no main effect of rs36024 genotype. Importantly, there was a significant genotype-by-diagnosis interaction such that CUD patients with CC genotype had longer stop-signal reaction time and fewer successful stops compared with CC healthy controls and TT CUD patients. CT CUD patients showed an intermediate performance. Self-control deficits were associated with cocaine use disorder diagnosis, which interacts with the noradrenaline transporter rs36024 polymorphism. Our findings suggest that rs36024 may represent a potential genetic vulnerability marker, which facilitates the transition from first cocaine use to addiction by weakening the inhibitory control over behavior.
Collapse
Affiliation(s)
- Michal M Graczyk
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
15
|
Carbajal MS, Bounmy AJC, Harrison OB, Nolen HG, Regan SL, Williams MT, Vorhees CV, Sable HJK. Impulsive choice in two different rat models of ADHD-Spontaneously hypertensive and Lphn3 knockout rats. Front Neurosci 2023; 17:1094218. [PMID: 36777639 PMCID: PMC9909198 DOI: 10.3389/fnins.2023.1094218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.
Collapse
Affiliation(s)
- Monica S. Carbajal
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Asiah J. C. Bounmy
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Olivia B. Harrison
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, TN, United States,*Correspondence: Helen J. K. Sable,
| |
Collapse
|
16
|
Babakr Z, Fatahi N. Risk-taking Behaviour: The Role of Dark Triad Traits, Impulsivity, Sensation Seeking and Adverse Childhood Experience. Acta Inform Med 2023; 31:292-299. [PMID: 38379693 PMCID: PMC10875951 DOI: 10.5455/aim.2023.31.292-299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 02/22/2024] Open
Abstract
Objective Dark Triad Traits, Adverse Childhood Experiences, impulsivity and sensation seeking significantly influence whether one engages in or avoids various risk behaviours and personality throughout life. Objective The present study aimed to investigate how Dark Triad Traits, Adverse Childhood Experience and impulsivity sensation influence risk taking behaviour personality throughout life. Methods The sample included 222 university students from four universities, 82 males (36.9%) and 140 females (63.1%), and aged between 18 and 51 years. Results The results showed that adverse childhood experiences, psychopathy, narcissism, impulsivity and sensation-seeking predicted risk taking. Machiavellianism, on the other hand, did not significantly predict risk taking. Based on results, adverse childhood experiences predicted risk-taking directly and indirectly through psychopathy, narcissism, impulsivity and sensation seeking. Conclusion The results indicate that early childhood experiences are a significant factor in personality traits and that positive early experiences could lead to minimising risk taking and reducing levels of impulsivity, sensation-seeking and dark triad traits.
Collapse
Affiliation(s)
- Zana Babakr
- Faculty of Arts, Psychology Department, Soran University, Iraq
| | - Nabi Fatahi
- Faculty of Arts, Psychology Department, Soran University, Iraq
- Institute of Health and Care Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
18
|
Prefrontal Cortical to Mediodorsal Thalamus Projection Neurons Regulate Posterror Adaptive Control of Behavior. eNeuro 2022; 9:ENEURO.0254-22.2022. [PMID: 36241421 PMCID: PMC9636992 DOI: 10.1523/eneuro.0254-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive control is the online adjustment of behavior to guide and optimize responses after errors or conflict. The neural circuits involved in monitoring and adapting behavioral performance following error are poorly understood. The prefrontal cortex (PFC) plays a critical role in this form of control. However, these brain areas are densely connected with many other regions, and it is unknown which projections are critical for adaptive behavior. Here, we tested the involvement of four distinct dorsal and ventral prefrontal cortical projections to striatal and thalamic target areas in adaptive control. We re-analyzed data from published experiments, using trial-by-trial analyses of behavior in an operant task for attention and impulsivity. We find that male rats slow their responses and perform worse following errors. Moreover, by combining retrograde labeling and chemogenetic silencing, we find that dorsomedial prefrontal pyramidal neurons that project to the lateral nucleus of the mediodorsal thalamus (MDL) are involved in posterror performance and timing of responses, specifically with unpredictable delays until stimulus presentation. Together, these data show that dorsal medial PFC (mPFC) projection neurons targeting the lateral MDT regulate adaptive control to flexibly optimize behavioral responses in goal-directed behavior.
Collapse
|
19
|
Thome J, Pinger M, Halli P, Durstewitz D, Sommer WH, Kirsch P, Koppe G. A Model Guided Approach to Evoke Homogeneous Behavior During Temporal Reward and Loss Discounting. Front Psychiatry 2022; 13:846119. [PMID: 35800024 PMCID: PMC9253427 DOI: 10.3389/fpsyt.2022.846119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background The tendency to devaluate future options as a function of time, known as delay discounting, is associated with various factors such as psychiatric illness and personality. Under identical experimental conditions, individuals may therefore strongly differ in the degree to which they discount future options. In delay discounting tasks, this inter-individual variability inevitably results in an unequal number of discounted trials per subject, generating difficulties in linking delay discounting to psychophysiological and neural correlates. Many studies have therefore focused on assessing delay discounting adaptively. Here, we extend these approaches by developing an adaptive paradigm which aims at inducing more comparable and homogeneous discounting frequencies across participants on a dimensional scale. Method The proposed approach probabilistically links a (common) discounting function to behavior to obtain a probabilistic model, and then exploits the model to obtain a formal condition which defines how to construe experimental trials so as to induce any desired discounting probability. We first infer subject-level models on behavior on a non-adaptive delay discounting task and then use these models to generate adaptive trials designed to evoke graded relative discounting frequencies of 0.3, 0.5, and 0.7 in each participant. We further compare and evaluate common models in the field through out-of-sample prediction error estimates, to iteratively improve the trial-generating model and paradigm. Results The developed paradigm successfully increases discounting behavior during both reward and loss discounting. Moreover, it evokes graded relative choice frequencies in line with model-based expectations (i.e., 0.3, 0.5, and 0.7) suggesting that we can successfully homogenize behavior. Our model comparison analyses indicate that hyperboloid models are superior in predicting unseen discounting behavior to more conventional hyperbolic and exponential models. We report out-of-sample error estimates as well as commonalities and differences between reward and loss discounting, demonstrating for instance lower discounting rates, as well as differences in delay perception in loss discounting. Conclusion The present work proposes a model-based framework to evoke graded responses linked to cognitive function at a single subject level. Such a framework may be used in the future to measure cognitive functions on a dimensional rather than dichotomous scale.
Collapse
Affiliation(s)
- Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mathieu Pinger
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Halli
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang H. Sommer
- Institute for Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
21
|
Haynes JM, Odum AL. Testing delay of gratification in rats using a within-session increasing-delay task. J Exp Anal Behav 2022; 118:3-23. [PMID: 35485644 DOI: 10.1002/jeab.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
In delay discounting, preference reversals refer to shifts in preference from a larger-later reward to a smaller-sooner reward. Steep hyperbolic discounting predicts a preference reversal when a smaller-sooner and larger-later reward both become temporally proximal; prior research is consistent with this prediction. Hyperbolic discounting does not predict a preference reversal, however, after an individual chooses a larger-later reward over a smaller-immediate reward; prior research is inconsistent with this prediction. We sought to replicate and extend these findings using a delay of gratification task in rats. The task included a defection response which allowed rats to reverse their preference after choosing a larger-later sucrose reinforcer to instead obtain a smaller-immediate sucrose reinforcer. In Experiment 1, we found that rats would defect on their choice of the larger-later reinforcer, systematically replicating prior research. We also found that experience on the delay of gratification task led to decreases in defection responses. In Experiment 2, we found that prior experience on an intertemporal choice task, with no opportunity to defect, also led to few defection responses on the delay of gratification task. We discuss our findings in the context of whether inhibitory control or temporal learning could be involved in delay of gratification.
Collapse
|
22
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
23
|
González-Barriga F, Orduña V. Spontaneously hypertensive rats show higher impulsive action, but equal impulsive choice with both positive and aversive consequences. Behav Brain Res 2022; 427:113858. [PMID: 35339564 DOI: 10.1016/j.bbr.2022.113858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Both positive and aversive delayed consequences play an important role in decision making. However, most of research has studied the temporal discounting of the positive consequences, while the study of the aversives is scarce in general and null in some areas. This is the case of research on impulsivity in spontaneously hypertensive rats (SHR), an animal model of ADHD. To evaluate SHRs' sensitivity to aversive delayed consequences, we employed a choice procedure in which subjects chose between a smaller-amount alternative and a larger-amount alternative plus a shock; when preference for the smaller-amount alternative stabilized, five different delays to the shock were presented with the objective of analyzing the recovery of preference for the larger-amount alternative, which is related to the sensitivity to the delayed aversive consequence. To analyze the sensitivity to delayed positive consequences we employed a procedure that evaluated the preference between a smaller-amount alternative and a larger-amount alternative as a function of the delay to the later. Finally, to evaluate impulsive action we employed a DRL 10s schedule. In all tasks, Wistar rats were evaluated as control strain. The results indicated that choice impulsivity was equivalent between strains, both for positive and for aversive consequences. In contrast, we found a higher level of impulsive action in SHR.
Collapse
Affiliation(s)
| | - Vladimir Orduña
- Facultad de Psicología, Universidad Nacional Autónoma de México, México D.F. 04510, México.
| |
Collapse
|
24
|
Self-Injury in Adolescence Is Associated with Greater Behavioral Risk Avoidance, Not Risk-Taking. J Clin Med 2022; 11:jcm11051288. [PMID: 35268378 PMCID: PMC8911447 DOI: 10.3390/jcm11051288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Strategies to link impulsivity and self-injurious behaviors (SIBs) show highly variable results, and may differ depending on the impulsivity measure used. To better understand this lack of consistency, we investigated correlations between self-report and behavioral impulsivity, inhibitory control, SIBs, and rumination. We included participants aged 13-17 years with either current or remitted psychopathology who have (n = 31) and who do not have (n = 14) a history of SIBs. Participants completed self-report measures of impulsivity, the Rumination Responsiveness Scale (RRS), and two behavioral measures of impulsivity: the Balloon Analogue Risk Task (BART) and Parametric Go/No-Go (PGNG). Lifetime SIBs were positively associated with self-reported impulsivity, specifically positive and negative urgency. However, individuals with greater lifetime SIBs demonstrated greater risk aversion (lower impulsivity) as measured by the BART, whereas there was no relation between lifetime SIBs and PGNG performance. There was no relation between rumination and behavioral impulsivity, although greater rumination was associated with higher negative urgency. Future research examining the role of SIBs in the context of active versus remitted psychopathology is warranted. Because most adolescents were remitted from major depressive disorder at the time of study, follow-up studies can determine if lower risk-taking may aid individuals with more prior SIBs to achieve and maintain a remitted state.
Collapse
|
25
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
26
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Morin A, Poitras M, Plamondon H. Global Cerebral Ischemia in Male Long Evans Rats Impairs Dopaminergic/ΔFosB Signalling in the Mesocorticolimbic Pathway Without Altering Delay Discounting Rates. Front Behav Neurosci 2022; 15:770374. [PMID: 35058756 PMCID: PMC8763703 DOI: 10.3389/fnbeh.2021.770374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Global cerebral ischemia (GCI) in rats has been shown to promote exploration of anxiogenic zones of the Elevated-Plus Maze (EPM) and Open Field Test (OFT). This study investigated changes in impulsive choice and/or defensive responses as possible contributors of heightened anxiogenic exploration observed after ischemia. Impulsivity was assessed using delay discounting (DD) paradigms, while the Predator Odour Test (PO) served to assess changes in defensive responses towards a naturally aversive stimulus. Male Long Evans rats underwent 9 days of autoshaping training and 24 days of DD training prior to GCI or sham surgery (n = 9/group). Post-surgery, rats completed the OFT, EPM, and PO, followed by 6 days of DD sessions. Blood droplets served to evaluate corticosterone secretion associated with PO exposure. With impulsivity being regulated through mesocorticolimbic monoaminergic pathways, we also characterised post-ischemic changes in the expression of dopamine D2 receptors (DRD2), dopamine transporters (DAT), and 1FosB in the basolateral amygdala (BLA), nucleus accumbens core (NAcC) and shell (NAcS), and ventromedial prefrontal cortex (vmPFC) using immunohistofluorescence. Our findings revealed no impact of GCI on delay discounting rates, while PO approach behaviours were minimally affected. Nonetheless, GCI significantly reduced DRD2 and ΔFosB-ir in the NAcS and NAcC, respectively, while DAT-ir was diminished in both NAc subregions. Collectively, our findings refine the understanding of cognitive-behavioural and biochemical responses following stroke or cardiac arrest. They support significant alterations to the dopaminergic mesocorticolimbic pathway after ischemia, which are not associated with altered impulsive choice in a DD task but may influence locomotor exploration of the OFT and EPM.
Collapse
|
28
|
The Role of Dopamine D3 Receptors in Tobacco Use Disorder: A Synthesis of the Preclinical and Clinical Literature. Curr Top Behav Neurosci 2022; 60:203-228. [PMID: 36173599 DOI: 10.1007/7854_2022_392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tobacco smoking is a significant cause of preventable morbidity and mortality globally. Current pharmacological approaches to treat tobacco use disorder (TUD) are only partly effective and novel approaches are needed. Dopamine has a well-established role in substance use disorders, including TUD, and there has been a long-standing interest in developing agents that target the dopaminergic system to treat substance use disorders. Dopamine has 5 receptor subtypes (DRD1 to DRD5). Given the localization and safety profile of the dopamine receptor D3 (DRD3), it is of therapeutic potential for TUD. In this chapter, the preclinical and clinical literature investigating the role of DRD3 in processes relevant to TUD will be reviewed, including in nicotine reinforcement, drug reinstatement, conditioned stimuli and cue-reactivity, executive function, and withdrawal. Similarities and differences in findings from the animal and human work will be synthesized and findings will be discussed in relation to the therapeutic potential of targeting DRD3 in TUD.
Collapse
|
29
|
Higgins GA, Silenieks LB. The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. Curr Top Behav Neurosci 2022; 57:321-362. [PMID: 35606638 DOI: 10.1007/7854_2022_341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on core symptoms of inattention and deficient impulse control, and the identification of effective pharmacotherapies such as amphetamine (AMP; Adderall®), methylphenidate (MPH; Ritalin®), and atomoxetine (ATX; Strattera®), ADHD is a clinical condition which provides opportunity for translational research. Neuropsychological tests such as the 5-Choice and Continuous Performance Tasks, which measure aspects of attention and impulse control in animals and humans, provide scope for both forward (animal to human) and reverse (human to animal) translation. Rodent studies support pro-attentive effects of AMP and MPH and effectiveness in controlling some forms of impulsive behavior. In contrast, any pro-attentive effects of ATX appear to be less consistent, the most reliable effects of ATX are recorded in tests of impulsivity. These differences may account for AMP and MPH being recognized as first-line treatments for ADHD with a higher efficacy relative to ATX. DSM-5 classifies three "presentations" of ADHD: predominantly inattentive type (ADHD-I), predominantly hyperactive/impulsive type (ADHD-HI), or combined (ADHD-C). Presently, it is unclear whether AMP, MPH, or ATX has differential levels of efficacy across these presentation types. Nonetheless, these studies encourage confidence for the forward translation of NCEs in efforts to identify newer pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
30
|
Tjernström N, Roman E. Individual strategies in the rat gambling task are related to voluntary alcohol intake, but not sexual behavior, and can be modulated by naltrexone. Front Psychiatry 2022; 13:931241. [PMID: 36569617 PMCID: PMC9772284 DOI: 10.3389/fpsyt.2022.931241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Gambling disorder (GD) is the first non-substance or behavioral addiction to be included in substance-related and addictive disorders in DSM-5. Since GD is a younger phenomenon relative to alcohol and substance use disorders, little is known about potential unique features in GD and to what extent characteristics are shared with alcohol and substance use disorders. The rat gambling task (rGT) is used to study decision-making in rats. This study aimed to identify individual differences in rGT strategies and explore the stability of these strategies over time. Moreover, motor impulsivity, sexual behavior, and voluntary alcohol intake were examined in rats with different rGT strategies. Finally, the response to naltrexone on performance in rats with different rGT strategies was investigated. METHODS Male Lister hooded rats (n = 40) underwent repeated testing in the rGT, repeated copulatory behavioral tests, and 7 weeks of voluntary alcohol intake through a modified intermittent two-bottle free-choice paradigm. Finally, rats were treated with naltrexone prior to testing in the rGT. RESULTS The results revealed individual choice strategies in the rGT that were stable over time, even after multiple interruptions and other behavioral testing. The rats with a risky choice strategy displayed higher motor impulsivity and voluntary alcohol intake than the other groups. No difference in sexual behavior was found between the different rGT groups. Finally, in all rats irrespectively of rGT strategy, treatment with naltrexone decreased the number of completed trials and premature responses, and increased omissions, which indicates an overall lowered motivation. DISCUSSION In conclusion, rats with risky rGT strategies had higher voluntary alcohol intake but not elevated sexual behavior, indicating shared underlying mechanisms between rGT strategies and alcohol intake but not natural rewards in terms of sexual behavior. Finally, naltrexone treatment resulted in an overall lowered motivation in the rGT.
Collapse
Affiliation(s)
- Nikita Tjernström
- Neuropharmacology and Addiction, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Neuropharmacology and Addiction, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
31
|
Bailey LS, Bagley JR, Dodd R, Olson A, Bolduc M, Philip VM, Reinholdt LG, Sukoff Rizzo SJ, Tarantino L, Gagnon L, Chesler EJ, Jentsch JD. Heritable variation in locomotion, reward sensitivity and impulsive behaviors in a genetically diverse inbred mouse panel. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12773. [PMID: 34672075 PMCID: PMC9044817 DOI: 10.1111/gbb.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
Drugs of abuse, including alcohol and stimulants like cocaine, produce effects that are subject to individual variability, and genetic variation accounts for at least a portion of those differences. Notably, research in both animal models and human subjects point toward reward sensitivity and impulsivity as being trait characteristics that predict relatively greater positive subjective responses to stimulant drugs. Here we describe use of the eight collaborative cross (CC) founder strains and 38 (reversal learning) or 10 (all other tests) CC strains to examine the heritability of reward sensitivity and impulsivity traits, as well as genetic correlations between these measures and existing addiction-related phenotypes. Strains were all tested for activity in an open field and reward sensitivity (intake of chocolate BOOST®). Mice were then divided into two counterbalanced groups and underwent reversal learning (impulsive action and waiting impulsivity) or delay discounting (impulsive choice). CC and founder mice show significant heritability for impulsive action, impulsive choice, waiting impulsivity, locomotor activity, and reward sensitivity, with each impulsive phenotype determined to be non-correlating, independent traits. This research was conducted within the broader, inter-laboratory effort of the Center for Systems Neurogenetics of Addiction (CSNA) to characterize CC and DO mice for multiple, cocaine abuse related traits. These data will facilitate the discovery of genetic correlations between predictive traits, which will then guide discovery of genes and genetic variants that contribute to addictive behaviors.
Collapse
Affiliation(s)
- Lauren S Bailey
- State University of New York - Binghamton University, Binghamton, New York, USA
| | - Jared R Bagley
- State University of New York - Binghamton University, Binghamton, New York, USA
| | - Rainy Dodd
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | - Stacey J Sukoff Rizzo
- The Jackson Laboratory, Bar Harbor, Maine, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lisa Tarantino
- The Jackson Laboratory, Bar Harbor, Maine, USA
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - James David Jentsch
- State University of New York - Binghamton University, Binghamton, New York, USA
- The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
32
|
Sliedrecht W, Roozen HG, Witkiewitz K, de Waart R, Dom G. The Association Between Impulsivity and Relapse in Patients With Alcohol Use Disorder: A Literature Review. Alcohol Alcohol 2021; 56:637-650. [PMID: 33382416 DOI: 10.1093/alcalc/agaa132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 01/14/2023] Open
Abstract
AIM Impulsivity has been identified as a key relapse risk factor in patients with alcohol use disorder (AUD); however, the inherent characteristics of this relationship have been largely understudied. The heterogeneity of AUD and variation in impulsivity constructs require careful consideration to inform future work examining the relationship. This study sought to review empirical findings examining facets of impulsivity and AUD relapse. METHODS A systematic search strategy was employed to capture studies on impulsivity measures related to AUD relapse. Impulsivity measures were qualitatively organized in terms of 'trait impulsivity'-typically measured by self-report questionnaires-and 'behavioural impulsivity', i.e. 'motor impulsivity', 'impulsive choice' and 'reflection impulsivity, assessed with cognitive-behavioural tasks. RESULTS Seventeen peer-reviewed papers were identified. Relapse outcomes varied substantially in relation to impulsivity measures. Twelve papers included aspects of 'trait impulsivity', and nine studies included 'behavioural impulsivity' measures, from which five studies dealt with the 'impulsive choice' subcategory. The Barratt Impulsivity Scale was the self-report questionnaire that was most frequently used. CONCLUSIONS All three included facets of impulsivity ('trait-, motor- and impulsive choice impulsivity') were associated with AUD relapse, but none seemed to be superior to another. This study confirmed that research on the relation between impulsivity and AUD relapse is relatively scarce. Future research and treatment options are proposed.
Collapse
Affiliation(s)
- Wilco Sliedrecht
- De Hoop GGZ, Provincialeweg 70, 3329 KP Dordrecht, The Netherlands
| | - Hendrik G Roozen
- Center on Alcoholism, Substance Abuse, and Addictions (CASAA), The University of New Mexico (UNM), MSC 11 6280, Albuquerque, NM 87106, USA
| | - Katie Witkiewitz
- The University of New Mexico, MSC 03-2220, Albuquerque, NM 87131, USA
| | - Ranne de Waart
- Mentrum/Arkin, Domselaerstraat 126, 1093 MB Amsterdam, The Netherlands
| | - Geert Dom
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Antwerp University, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
33
|
Carr MM, Wiedemann AA, Macdonald-Gagnon G, Potenza MN. Impulsivity and compulsivity in binge eating disorder: A systematic review of behavioral studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110318. [PMID: 33794320 PMCID: PMC8222068 DOI: 10.1016/j.pnpbp.2021.110318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/15/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Binge eating disorder (BED) often includes impulsive and compulsive behaviors related to eating behavior and food. Impulsivity and compulsivity generally may contribute to the etiology and maintenance of multiple psychiatric disorders including BED. This review aimed to identify and synthesize available behavioral studies of impulsivity and compulsivity among individuals with BED. METHOD A systematic search was performed focusing on BED and specific facets of impulsivity (rapid response and choice) and compulsivity (set-shifting, cognitive flexibility, and/or habit learning). All case-control studies comparing adults with either full-threshold or subthreshold BED to individuals with normal weight, overweight/obesity, or other eating disorders (e.g., bulimia nervosa) were included. RESULTS Thirty-two studies representing 29 unique samples met inclusion criteria. Increased choice impulsivity was observed among individuals with BED relative to individuals with normal weight. There were mixed findings and/or a lack of available evidence regarding rapid response impulsivity and compulsivity. The presence of between-group differences was not dependent on sample characteristics (e.g., full or sub threshold BED diagnosis, or treatment-seeking status). Heterogeneity relating to covariates, task methodologies, and power limited conclusions. CONCLUSIONS Literature supports a postive association between choice impulsivity and BED. More research is needed to determine if individuals with BED demonstrate elevated levels of either rapid response impulsivity or types of compulsivity. Careful selection of covariates and consideration of task methodologies and power would aid future research.
Collapse
Affiliation(s)
- Meagan M Carr
- Department of Psychiatry, Yale School of Medicine, 300 George St., New Haven, CT 06511, United States of America
| | - Ashley A Wiedemann
- Department of Psychiatry, Yale School of Medicine, 300 George St., New Haven, CT 06511, United States of America
| | - Grace Macdonald-Gagnon
- Department of Psychiatry, Yale School of Medicine, 300 George St., New Haven, CT 06511, United States of America
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, 300 George St., New Haven, CT 06511, United States of America; Connecticut Mental Health Center, 34 Park St., New Haven, CT 06511, United States of America; Connecticut Council on Problem Gambling, 100 Great Meadow Rd, Wethersfield, CT 06109, United States of America; Child Study Center, Yale School of Medicine, 230 S Frontage Rd., New Haven, CT 06519, United States of America; Department of Neuroscience, Yale University, One Church Street, New Haven, CT 06510, United States of America.
| |
Collapse
|
34
|
Ryding S, Garnham LC, Abbey-Lee RN, Petkova I, Kreshchenko A, Løvlie H. Impulsivity is affected by cognitive enrichment and links to brain gene expression in red junglefowl chicks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Schulte MHJ, Goudriaan AE, Boendermaker WJ, van den Brink W, Wiers RW. The effect of N-acetylcysteine and working memory training on glutamate concentrations in the dACC and rACC in regular cocaine users - A randomized proof of concept study. Neurosci Lett 2021; 762:136146. [PMID: 34332028 DOI: 10.1016/j.neulet.2021.136146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Current treatments for cocaine use disorder (CUD) are not very effective and better treatments are needed. This study investigates the effectiveness of a combined intervention that targets the assumed underlying glutamate pathology in cocaine users. To this end, the combined effects of N-acetylcysteine (NAC) and working memory (WM) training on glutamate concentrations in the dorsal and rostral ACC were investigated in a randomized, double-blind placebo-controlled design. METHODS In this study, 38 regular cocaine-using men were randomized to either 25-days with 2400 mg/day NAC and WM-training or 25 days with placebo with WM-training. Cocaine use, impulsivity, and glutamate concentrations in the dACC and rACC using proton Magnetic Resonance Spectroscopy were assessed at baseline and after treatment. RESULTS Twenty-four participants completed the study, of which 9 received NAC and 15 received placebo. There were no baseline correlations of glutamate concentrations in the dACC or rACC with cocaine use measures or impulsivity. Additionally, there were no effects of NAC, WM-training, or the combination thereof on (changes in) glutamate concentrations in the dACC or rACC. DISCUSSION This randomized proof of concept study could not confirm our hypotheses. Possible explanations are insufficient power and the possible absence of deviant baseline glutamate concentrations in the included participants. Future studies should consider larger samples and a non-using control group to confirm baseline deviations in glutamate in cocaine users.
Collapse
Affiliation(s)
- Mieke H J Schulte
- Addiction, Development, and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, Amsterdam, Netherlands; Faculty of Movement and Behavioral Science, Department of Clinical, Neuro- and Developmental Psychology, Section of Clinical Psychology, VU University, Amsterdam, the Netherlands.
| | - Anna E Goudriaan
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, Amsterdam, Netherlands; Arkin, Department of Research and Quality of Care, Amsterdam, the Netherlands
| | - Wouter J Boendermaker
- Addiction, Development, and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Psychology, Utrecht University, the Netherlands
| | - Wim van den Brink
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, Amsterdam, Netherlands
| | - Reinout W Wiers
- Addiction, Development, and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Higher Trait Levels of Guilt may Protect Against Gambling, Whereas Higher State Levels Lead to Riskier Behaviour. J Gambl Stud 2021; 38:635-652. [PMID: 34085134 DOI: 10.1007/s10899-021-10041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Research on the role of affect in problem gambling remains scarce to date, although it has been proposed that trait-levels of negative self-conscious emotions (SCEs) could be potential risk factors. We report two studies investigating the relationship between negative SCEs, gambling, and risky behavior. In the first study, we investigated shame, guilt and self-disgust in a group of problem-gamblers and control non-gamblers. In the second study, we investigated if experimentally manipulating state levels of guilt, using a narration-induction paradigm, in students with different levels of gambling behavior, would influence their behavior in the Balloon Analog Risk Task. We found that problem gamblers had significantly lower trait-levels of guilt when we adjusted for the influence of depression and anxiety symptoms (p = .008). Problem gamblers also exhibited lower levels of shame, but this difference seemed to be driven by guilt. Lower levels of guilt were significantly associated with higher levels of trait impulsivity (p = .004). In the second study, gamblers had higher state levels of guilt than non-gamblers at the outset, and the narration paradigm successfully induced guilt (p = .001). After the guilt induction, the group of gamblers had significantly less risky behaviour (lower number of pumps) than the group of non-gamblers (p = .021). However, this was primarily driven by an increase in risky behaviour in the non-gamblers (p = .006). Thus, overall our findings suggest that higher trait levels of guilt may act as a protective factor for gambling, whereas high state levels of guilt lead to riskier behaviour but only in people who are not gamblers.
Collapse
|
37
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|
38
|
Strickland JC, Johnson MW. Rejecting impulsivity as a psychological construct: A theoretical, empirical, and sociocultural argument. Psychol Rev 2021; 128:336-361. [PMID: 32969672 PMCID: PMC8610097 DOI: 10.1037/rev0000263] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate through theoretical, empirical, and sociocultural evidence that the concept of impulsivity fails the basic requirements of a psychological construct and should be rejected as such. Impulsivity (or impulsiveness) currently holds a central place in psychological theory, research, and clinical practice and is considered a multifaceted concept. However, impulsivity falls short of the theoretical specifications for hypothetical constructs by having meaning that is not compatible with psychometric, neuroscience, and clinical data. Psychometric findings indicate that impulsive traits and behaviors (e.g., response inhibition, delay discounting) are largely uncorrelated and fail to load onto a single, superordinate latent variable. Modern neuroscience has also failed to identify a specific and central neurobehavioral mechanism underlying impulsive behaviors and instead has found separate neurochemical systems and loci that contribute to a variety of impulsivity types. Clinically, these different impulsivity types show diverging and distinct pathways and processes relating to behavioral and psychosocial health. The predictive validity and sensitivity of impulsivity measures to pharmacological, behavioral, and cognitive interventions also vary based on the impulsivity type evaluated and clinical condition examined. Conflation of distinct personality and behavioral mechanisms under a single umbrella of impulsivity ultimately increases the likelihood of misunderstanding at a sociocultural level and facilitates misled hypothesizing and artificial inconsistencies for clinical translation. We strongly recommend that, based on this comprehensive evidence, psychological scientists and neuroscientists reject the language of impulsivity in favor of a specific focus on the several well-defined and empirically supported factors that impulsivity is purported to cover. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| |
Collapse
|
39
|
Garman TS, Setlow B, Orsini CA. Effects of a high-fat diet on impulsive choice in rats. Physiol Behav 2021; 229:113260. [PMID: 33227243 DOI: 10.1016/j.physbeh.2020.113260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Obesity and binge eating disorder are associated with high levels of impulsivity, but the causal role of eating and palatable food in these associations is unclear. Studies in rodents show that a high-fat diet can increase one aspect of impulsivity (impulsive action); it is less clear, however, whether a dissociable aspect of impulsivity (impulsive choice) is similarly affected. Hence, the aim of this study was to ascertain whether chronic exposure to a high-fat diet would alter impulsive choice. METHODS Male rats were maintained on either a high-fat or control chow diet for two weeks ad libitum. They then underwent equi-caloric food restriction for the duration of the experiment, with each group maintained on their respective diet. To measure impulsive choice, rats were trained on a delay discounting task (DDT) in which they made discrete choices between a lever that delivered a small food reward immediately and a lever that delivered a large food reward accompanied by systematically increasing delays. Upon reaching stable performance on the DDT, rats were given acute systemic injections of amphetamine prior to testing in the DDT to determine whether increased monoamine transmission affected impulsive choice differently in the two diet groups. Lastly, subjects were tested on a progressive ratio schedule of reinforcement to assess motivation for a sucrose reward. RESULTS There was no significant effect of the high-fat diet on impulsive choice. Further, amphetamine decreased choice of the large, delayed reward (increased impulsive choice) to the same extent in both groups. Exposure to the high-fat diet did, however, increase motivation to obtain a sucrose reward. CONCLUSIONS These experiments reveal that, under conditions that do not promote weight gain, a chronic high-fat diet does not affect impulsive choice in a delay discounting task. The data are surprising in light of findings showing that this same diet alters impulsive action, and highlight the necessity of further research to elucidate relationships between palatable food consumption and impulsivity.
Collapse
Affiliation(s)
| | - Barry Setlow
- Department of Neuroscience; Department of Psychiatry; McKnight Brain Institute; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Caitlin A Orsini
- Department of Psychiatry; McKnight Brain Institute; Department of Psychology, Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
40
|
Veldhoven DTV, Roozen H, Vingerhoets A. The Association between Reward Sensitivity and Activity Engagement: the Influence of Delay Discounting and Anhedonia. Alcohol Alcohol 2020; 55:215-224. [PMID: 31998950 PMCID: PMC7082492 DOI: 10.1093/alcalc/agz105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
Aim Reward sensitivity affects individuals’ motivation to engage in goal-directed behavior. Other concepts, critical for reward appraisal, that potentially influence activity participation encompass delay discounting and anhedonia. The aim of this study was to test the hypothesis that anhedonia and delay discounting influence the relationship between reward sensitivity and activity engagement. Methods In total, 37 inpatient patients with an alcohol use disorder (AUD) and 37 matched healthy controls completed the behavioral activation system scale (BAS scale), the Pleasant Activities List (PAL), the Snaith–Hamilton Pleasure Scale (SHAPS) and the Delay Discounting Task (DDT). Results Patients differed from controls on SHAPS, DDT-k, PAL substance-related activities (SRA), but not BAS and PAL non-substance-related activities (non-SRA). Correlational analyses revealed a strong correlation between BAS and PAL non-SRA in both patients (r = 0.53) and controls (r = 0.47), but also with PAL-SRA in patients (r = 0.40), although not controls (r = 0.09). BAS was negatively correlated with SHAPS in both groups and with DDT in controls. SHAPS was negatively linked to PAL non-SRA in both groups. The BAS-PAL non-SRA relationship was influenced by discount rates in controls. Conclusion A strong link exists between reward sensitivity and engagement in non-SRA in both groups. Delay discounting affects the reward sensitivity and non-SRA association in healthy controls, while anhedonia did not impact the association between reward sensitivity and engagement in (non-)SRA in both conditions.
Collapse
Affiliation(s)
| | | | - Ad Vingerhoets
- Tilburg University, Department of Developmental Psychology, Warandelaan 2, 5000 LE Tilburg, The Netherlands
| |
Collapse
|
41
|
Injury during adolescence leads to sex-specific executive function deficits in adulthood in a pre-clinical model of mild traumatic brain injury. Behav Brain Res 2020; 402:113067. [PMID: 33333110 DOI: 10.1016/j.bbr.2020.113067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Adolescents are more likely than adults to develop chronic symptoms, such as impulsivity and difficulty concentrating, following a mild traumatic brain injury (mTBI) which may relate to disruption of pre-frontal cortex (PFC development). During adolescence the PFC is undergoing extensive remodelling, driving maturation of executive functions incorporating attention, motivation and impulse control. In part maturation of the PFC is driven by outgrowth of dopaminergic neurons to the PFC under the guidance of specific axonal targeting cues, including netrin-1. How a mTBI in adolescence may alter the expression of these axonal targeting cues, and the influence on PFC development is not yet known. As such the effects of mTBI in mid-adolescence on executive functioning in adulthood (12 weeks) were examined via the 5-choice serial reaction task in both male and female Sprague Dawley rats. Animals at p35 (n = 12-16 per group) were injured via weight drop (100 g from 0.75 m) and injury confirmed by a significant increase in righting reflex. Interestingly, while a mid-adolescence mTBI in females led to significantly higher omissions and decreased accuracy when task difficulty was high (stimulus duration 1 s), males had significantly increased premature response rate when the intertrial interval was varied. Examination of levels of TH, as a reflection of dopaminergic innervation, found no difference in either gender post-TBI in the PFC, but a significant increase in the limbic system (nucleus accumbens) in males, but not females, chronically post-TBI, suggesting an imbalance between the regions. The increase in TH was accompanied by a chronic reduction in netrin-1 within the nucleus accumbens in males only. Taken together, these results indicate that mTBI in adolescence leads to sex specific effects in different domains of PFC function in adulthood, which may relate to subtle alterations in the developmental trajectory of the mesocortical limbic pathway in males only.
Collapse
|
42
|
Shakeshaft A, Panjwani N, McDowall R, Crudgington H, Peña Ceballos J, Andrade DM, Beier CP, Fong CY, Gesche J, Greenberg DA, Hamandi K, Koht J, Lim KS, Orsini A, Rees MI, Rubboli G, Selmer KK, Smith AB, Striano P, Syvertsen M, Talvik I, Thomas RH, Zarubova J, Richardson MP, Strug LJ, Pal DK. Trait impulsivity in Juvenile Myoclonic Epilepsy. Ann Clin Transl Neurol 2020; 8:138-152. [PMID: 33264519 PMCID: PMC7818143 DOI: 10.1002/acn3.51255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/22/2023] Open
Abstract
Objective Impulsivity is a multidimensional construct that can predispose to psychopathology. Meta‐analysis demonstrates an association between response impulsivity and Juvenile Myoclonic Epilepsy (JME), a common genetic generalized epilepsy. Here, we test the hypotheses that trait impulsivity is (i) elevated in JME compared to controls; (ii) moderated by specific seizure characteristics; and (iii) associated with psychiatric adverse effects of antiepileptic drugs (AEDs). Methods 322 participants with JME and 126 age and gender‐matched controls completed the Barratt’s Impulsiveness Scale (BIS‐brief) alongside information on seizure history and AED use. We compared group BIS‐brief scores and assessed associations of JME BIS‐brief scores with seizure characteristics and AED adverse effects. Results The mean BIS‐brief score in JME was 18.1 ± 4.4 compared with 16.2 ± 4.1 in controls (P = 0.0007). Elevated impulsivity was associated with male gender (P = 0.027), frequent absence seizures (P = 0.0004) and lack of morning predominance of myoclonus (P = 0.008). High impulsivity significantly increased the odds of a psychiatric adverse event on levetiracetam (P = 0.036), but not any other psychiatric or somatic adverse effects. Interpretation Trait impulsivity is elevated in JME and comparable to scores in personality and neurotic disorders. Increased seizure frequency and absence of circadian seizure pattern moderate BIS score, suggesting disruption of both cortico‐striatal and thalamocortical networks as a shared mechanism between seizures and impulsivity in JME. These findings warrant consideration of impulsivity as a distinct target of intervention, and as a stratifying factor for AED treatment in JME, and perhaps other types of epilepsy. The role of impulsivity in treatment adherence and psychosocial outcome requires further investigation.
Collapse
Affiliation(s)
- Amy Shakeshaft
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, UK
| | | | - Robert McDowall
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Holly Crudgington
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Javier Peña Ceballos
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | | | - Choong Yi Fong
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Jeanette Koht
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Kheng Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alessandro Orsini
- Department of Clinical & Experimental Medicine, Pisa University Hospital, Italy
| | - Mark I Rees
- Neurology Research Group, Swansea University Medical School, UK
| | - Guido Rubboli
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Copenhagen, Denmark
| | - Kaja K Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Norway.,National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Anna B Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genova, Italy.,University of Genova, Genova, Italy
| | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Oslo, Norway
| | | | - Rhys H Thomas
- Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
| | - Jana Zarubova
- Department of Neurology, Motol University Hospital, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mark P Richardson
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, UK.,King's College Hospital, London, UK
| | | | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, UK.,King's College Hospital, London, UK.,Evelina London Children's Hospital, London, UK
| | | |
Collapse
|
43
|
Coetzee C, Truter I, Meyer A. Prevalence and characteristics of South African treatment-seeking patients with substance use disorder and co-occurring attention-deficit/hyperactivity disorder. Expert Rev Clin Pharmacol 2020; 13:1271-1280. [PMID: 33040639 DOI: 10.1080/17512433.2020.1835467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Attention-Deficit/Hyperactivity Disorder (ADHD) constitutes a significant risk factor for the development of Substance Use Disorders (SUDs). Individuals with both conditions use more substances, and the pattern of substance use seems to differ between individuals with and without ADHD. RESEARCH AIM AND OBJECTIVES To establish the prevalence of ADHD symptoms in adult South African treatment-seeking patients with SUD, and the pattern of substance use and presence of previous ADHD diagnoses and pharmacotherapy. METHODS Adult patients (N = 360) were recruited from rehabilitation facilities and screened using the ADHD Self-Report Scale Symptom Checklist (ASRS-v1.1). Questions included demographics, substance consumption and current/historical use of ADHD-indicated medication. RESULTS A third (36.0%) of patients with SUD screened positive for ADHD - 14.6% had been diagnosed with ADHD prior to admission, and indicated pharmacotherapy, while 68.5% of those screened positive were not hitherto diagnosed with ADHD (p < 0.001). A statistical difference was found for polysubstance use with the ADHD group significantly being treated more frequently for use of more than one substance (p = 0.04). CONCLUSIONS AND IMPLICATIONS High rates of untreated and unrecognized ADHD were found among treatment-seeking SUD patients. Preventative strategies are crucial to reduce substance use and the development of SUD in individuals affected by ADHD.
Collapse
Affiliation(s)
- Corné Coetzee
- Drug Utilization Research Unit (DURU), Department of Pharmacy, Nelson Mandela University , Port Elizabeth, South Africa.,University of Limpopo , Sovenga, South Africa
| | - Ilse Truter
- Drug Utilization Research Unit (DURU), Department of Pharmacy, Nelson Mandela University , Port Elizabeth, South Africa
| | - Anneke Meyer
- Drug Utilization Research Unit (DURU), Department of Pharmacy, Nelson Mandela University , Port Elizabeth, South Africa
| |
Collapse
|
44
|
Round JT, Fozard TE, Harrison AA, Kolokotroni KZ. Disentangling the effects of cannabis and cigarette smoking on impulsivity. J Psychopharmacol 2020; 34:955-968. [PMID: 32519578 PMCID: PMC7436435 DOI: 10.1177/0269881120926674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cannabis smoking and cigarette smoking often co-occur, yet limited research has investigated the potentially different role impulsivity may play when these behaviours occur in isolation, compared with in combination. AIMS This study examined trait and behavioural impulsivity as a function of both cigarette and cannabis smoking. METHODS Trait impulsivity (BIS-11) was compared between 44 non-smokers, 76 cigarette only, 47 cannabis only and 58 cannabis plus cigarette smokers. The effects of cigarette and cannabis smoking on behavioural impulsivity (stop-signal and information sampling tasks) were then assessed in 87 of these participants during a laboratory session. RESULTS Trait impulsivity was significantly higher in cigarette smokers than non-smokers, irrespective of cannabis use, except for motor impulsivity, where cigarette smoking was only associated with elevated trait impulsivity in non-smokers of cannabis. Dimensions of trait impulsivity were significantly positively related to cigarette smoking frequency and nicotine dependence, but not to cannabis smoking frequency or dependence. Smoking cigarettes or cannabis was associated with significantly impaired reflection impulsivity relative to not smoking either substance. However, no additional increases in reflection impulsivity were observed in those who smoked both cigarettes and cannabis. No group differences in response inhibition were detected. CONCLUSIONS Heightened trait impulsivity appears to be uniquely related to cigarette smoking, whilst the smoking of cigarettes or cannabis is associated with impairments in reflection impulsivity. Improved outcomes for treating cannabis dependence may result from encouraging concomitant cigarette smokers to cease using both drugs simultaneously in order to reduce heightened impulsivity and risk of relapse.
Collapse
Affiliation(s)
- Jason T Round
- Leeds School of Social Sciences, Leeds Beckett University, Leeds, UK,Jason T Round, Leeds School of Social Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK.
| | - Therese E Fozard
- Leeds School of Social Sciences, Leeds Beckett University, Leeds, UK
| | | | | |
Collapse
|
45
|
Are suicide attempters more impulsive than suicide ideators? Gen Hosp Psychiatry 2020; 63:103-110. [PMID: 30097321 DOI: 10.1016/j.genhosppsych.2018.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE For over 100 years impulsiveness has been cited as a key factor in why some people that think about killing themselves go on to attempt suicide. Yet prior studies are limited by not using experimental groups that can test this hypothesis and by treating impulsiveness as a unidimensional construct. To overcome these limitations, we compared suicide ideators and suicide attempters on several dimensions of impulsiveness. METHOD In Study 1 we compared inpatient suicide attempters who made an attempt within the prior two weeks (n = 30), current inpatient suicide ideators (n = 31), and community controls (n = 34) on several dimensions of impulsiveness using self-report and behavioral measures. In Study 2 (n = 346), we compared three similar groups based on lifetime and past year suicidal behaviors on several of the measures in Study 1. RESULTS In Study 1, we found only that negative urgency was clearly elevated among attempters compared with ideators. In Study 2, there were no significant differences on any impulsiveness constructs, including negative urgency. CONCLUSIONS Results from the two studies suggest that attempters may not have significantly elevated trait impulsiveness, compared to ideators; however, attempters may have higher impulsiveness when in a negative state.
Collapse
|
46
|
Xing W, Lü W, Wang Z. Trait impulsiveness and response inhibition in young adults: Moderating role of resting respiratory sinus arrhythmia. Int J Psychophysiol 2020; 149:1-7. [PMID: 31926906 DOI: 10.1016/j.ijpsycho.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/28/2022]
Abstract
Trait impulsiveness is a multifaceted construct that includes motor-, attention/cognitive- and non-planning facets, but how specific impulsiveness facets are associated with the deficit of response inhibition is not well understood. Resting respiratory sinus arrhythmia (RSA), which is considered as an index of cardiac vagal tone has been demonstrated to play a moderating role in the associations between many individual's variables. Whether resting RSA moderates the relationships between the facets of trait impulsiveness and response inhibition remains unknown. To examine these issues, data of self-reported trait impulsiveness, as assessed using the Barratt Impulsiveness Scale (BIS-II), 5-min resting RSA, and response accuracy (ACC) on a modified Go/NoGo task were collected from 132 college students. Results indicated that ACC of NoGo condition on the Go/NoGo task was negatively correlated with BIS motor and BIS total. Trait motor impulsiveness negatively predicted ACC of NoGo condition on the Go/NoGo task in the low resting RSA group but not in the high resting RSA group. This finding suggests that cardiac vagal tone could moderate the association between trait impulsiveness, especially motor impulsiveness, and deficits of response inhibition.
Collapse
Affiliation(s)
- Wanying Xing
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, Shaanxi Key Research Center for Children Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, China
| | - Wei Lü
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, Shaanxi Key Research Center for Children Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, China.
| | - Zhenhong Wang
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, Shaanxi Key Research Center for Children Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, China.
| |
Collapse
|
47
|
Abstract
Neuropharmacological interventions in preclinical translational models of impulsivity have tremendously contributed to a better understanding of the neurochemistry and neural basis of impulsive behaviour. In this regard, much progress has been made over the last years, also due to the introduction of novel techniques in behavioural neuroscience such as optogenetics and chemogenetics. In this chapter, we will provide an update of how the behavioural pharmacology field has progressed and built upon existing data since an earlier review we wrote in 2008. To this aim, we will first give a brief background on preclinical translational models of impulsivity. Next, recent interesting evidence of monoaminergic modulation of impulsivity will be highlighted with a focus on the neurotransmitters dopamine and noradrenaline. Finally, we will close the chapter by discussing some novel directions and drug leads in the neuropharmacological modulation of impulsivity.
Collapse
Affiliation(s)
- Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands.
| | - Louk J M J Vanderschuren
- Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Herman AM, Duka T. The Role of Impulsivity Facets on the Incidence and Development of Alcohol Use Disorders. Curr Top Behav Neurosci 2020; 47:197-221. [PMID: 32474898 DOI: 10.1007/7854_2020_137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic relapsing disorder defined according to the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5; American Psychiatric Association 2013), "by a cluster of behavioural and physical symptoms, which can include, withdrawal, tolerance and craving". Social, emotional, behavioural and cognitive factors are important contributors to AUD. Impulsivity, a multifaceted behavioural concept, defined as a predisposition for rapid and unplanned actions, without considering potential negative consequences of these actions, represents an important such factor. In this chapter, research on the role of distinct impulsivity dimensions in different severity stages of alcohol use is presented.Increased self-reported (trait) impulsivity and an inability to wait, as well as difficulty to adjust behaviour appropriately following a failure to withhold a response are observed across the spectrum of alcohol-use severities. Research on temporal impulsivity (inability to delay gratification) consistently shows deficits in more severe alcohol users. Data on temporal impulsivity in early stages of alcohol use are less consistent, with some studies showing no differences between high and moderate drinkers, while others indicating increased impulsivity in high alcohol users. Data on reflexion impulsivity are currently limited to draw conclusions. Recent research is also presented suggesting the importance of perception and interpretation of physiological and emotional signals on alcohol use behaviour highlighting the necessity of comprehensive integration of the field of the study of emotion and interoception with impulsivity research.
Collapse
Affiliation(s)
- Aleksandra M Herman
- Department of Psychology, Royal Holloway, University of London, Egham, UK.,School of Psychology, University of Sussex, Falmer, UK.,Sussex Addiction Research and Intervention Centre, University of Sussex, Falmer, UK
| | - Theodora Duka
- School of Psychology, University of Sussex, Falmer, UK. .,Sussex Addiction Research and Intervention Centre, University of Sussex, Falmer, UK.
| |
Collapse
|
49
|
Noble EE, Wang Z, Liu CM, Davis EA, Suarez AN, Stein LM, Tsan L, Terrill SJ, Hsu TM, Jung AH, Raycraft LM, Hahn JD, Darvas M, Cortella AM, Schier LA, Johnson AW, Hayes MR, Holschneider DP, Kanoski SE. Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat Commun 2019; 10:4923. [PMID: 31664021 PMCID: PMC6820566 DOI: 10.1038/s41467-019-12895-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023] Open
Abstract
Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity. Furthermore, these effects are not secondary to either impaired timing accuracy, altered activity, or increased food motivation, consistent with a specific role for vHP MCH signaling in the regulation of impulse control. Results from additional functional connectivity and neural pathway tracing analyses implicate the nucleus accumbens as a putative downstream target of vHP MCH1 receptor-expressing neurons. Collectively, these data reveal a specific neural circuit that regulates impulsivity and provide evidence of a novel function for MCH on behavior.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30606, USA
| | - Zhuo Wang
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Clarissa M Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Terrill
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - A-Hyun Jung
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Raycraft
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lindsey A Schier
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel P Holschneider
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
50
|
Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry 2019; 9:255. [PMID: 31594920 PMCID: PMC6783461 DOI: 10.1038/s41398-019-0591-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive alcohol use is the cause of an ongoing public health crisis, and accounts for ~5% of global disease burden. A minority of people with recreational alcohol use develop alcohol addiction (hereafter equated with "alcohol dependence" or simply "alcoholism"), a condition characterized by a systematically biased choice preference for alcohol at the expense of healthy rewards, and continued use despite adverse consequences ("compulsivity"). Alcoholism is arguably the most pressing area of unmet medical needs in psychiatry, with only a small fraction of patients receiving effective, evidence-based treatments. Medications currently approved for the treatment of alcoholism have small effect sizes, and their clinical uptake is negligible. No mechanistically new medications have been approved since 2004, and promising preclinical results have failed to translate into novel treatments. This has contributed to a reemerging debate whether and to what extent alcohol addiction represents a medical condition, or reflects maladaptive choices without an underlying brain pathology. Here, we review this landscape, and discuss the challenges, lessons learned, and opportunities to retool drug development in this important therapeutic area.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83, Linköping, Sweden.
| | - Eric Augier
- 0000 0001 2162 9922grid.5640.7Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden
| | - Simone Pfarr
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| | - Wolfgang H. Sommer
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany ,0000 0004 0477 2235grid.413757.3Department of Addiction Medicine, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| |
Collapse
|