1
|
Hanada K, Saito Y, Takagi T, Go M, Nakano Y, Inagawa T, Hirai H, Fruttiger M, Itoh S, Itoh F. Reduced lung metastasis in endothelial cell-specific transforming growth factor β type II receptor-deficient mice with decreased CD44 expression. iScience 2024; 27:111502. [PMID: 39758992 PMCID: PMC11699617 DOI: 10.1016/j.isci.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Transforming growth factor β (TGF-β) is abundantly present in the tumor microenvironment, contributing to cancer progression. However, the regulatory mechanism by which TGF-β affects vascular endothelial cells (ECs) in the tumor microenvironment is not well understood. Herein, we generated tamoxifen-inducible TGF-β type II receptor (TβRII) knockout mice, specifically targeting ECs (TβRIIiΔEC), by crossbreeding TβRII-floxed mice with Pdgfb-icreER mice. We established tumor-bearing mice by transplanting Lewis lung carcinoma (LLC) cells. TβRIIiΔEC mice exhibited increased tumor angiogenesis with fragile new blood vessels, increased bleeding, and hypoxia compared to control mice. Consequently, the compromised tumor microenvironment precipitated a notable surge in circulating tumor cells. Paradoxically, lung metastasis showed a significant decline. This intriguing discrepancy was explained by a reduction in the engraftment between cancer cells and ECs. Disruption of TGF-β signaling downregulated CD44 on ECs, hindering cancer cell adhesion. These findings highlight TGF-β's role in promoting metastasis by modulating EC function.
Collapse
Affiliation(s)
- Kako Hanada
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Saito
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Takagi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Go
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yota Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshihiko Inagawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Fumiko Itoh
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
2
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
4
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
5
|
Michki NS, Singer BD, Perez JV, Thomas AJ, Natale V, Helmin KA, Wright J, Cheng L, Young LR, Lederman HM, McGrath-Morrow SA. Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet J Rare Dis 2024; 19:67. [PMID: 38360726 PMCID: PMC10870445 DOI: 10.1186/s13023-024-03073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.
Collapse
Affiliation(s)
- Nigel S Michki
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier V Perez
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron J Thomas
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Natale
- Forgotten Diseases Research Foundation, Santa Clara, CA, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer Wright
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leon Cheng
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard M Lederman
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
7
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Rattner A, Wang Y, Nathans J. Signaling Pathways in Neurovascular Development. Annu Rev Neurosci 2022; 45:87-108. [PMID: 35803586 DOI: 10.1146/annurev-neuro-111020-102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States;
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
9
|
De A, Morales JE, Chen Z, Sebastian S, McCarty JH. The β8 integrin cytoplasmic domain activates extracellular matrix adhesion to promote brain neurovascular development. Development 2022; 149:274538. [PMID: 35217866 PMCID: PMC8977100 DOI: 10.1242/dev.200472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin β8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the β8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the β8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFβs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFβ-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/β-catenin signaling. These results reveal that the β8 integrin cytoplasmic domain is essential for the regulation of TGFβ-dependent gene expression in endothelial cells and suggest that cross-talk between TGFβs and Wnt pathways is crucial for neurovascular development.
Collapse
Affiliation(s)
- Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - John E Morales
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Zhihua Chen
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Sumod Sebastian
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Joseph H McCarty
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Sultan S, Ahmed F, Bajouh O, Schulten HJ, Bagatian N, Al-Dayini R, Subhi O, Karim S, Almalki S. Alterations of transcriptome expression, cell cycle, and mitochondrial superoxide reveal foetal endothelial dysfunction in Saudi women with gestational diabetes mellitus. Endocr J 2021; 68:1067-1079. [PMID: 33867398 DOI: 10.1507/endocrj.ej21-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) affects one in four Saudi women and is associated with high risks of cardiovascular diseases in both the mother and foetus. It is believed that endothelial cells (ECs) dysfunction initiates these diabetic complications. In this study, differences in the transcriptome profiles, cell cycle distribution, and mitochondrial superoxide (MTS) between human umbilical vein endothelial cells (HUVECs) from GDM patients and those from healthy (control) subjects were analysed. Transcriptome profiles were generated using high-density expression microarray. The selected four altered genes were validated using qRT-PCR. MTS and cell cycle were analysed by flow cytometry. A total of 84 altered genes were identified, comprising 52 upregulated and 32 downregulated genes in GDM.HUVECs. Our selection of the four interested altered genes (TGFB2, KITLG, NEK7, and IGFBP5) was based on the functional network analysis, which revealed that these altered genes are belonging to the highest enrichment score associated with cellular function and proliferation; all of which may contribute to ECs dysfunction. The cell cycle revealed an increased percentage of cells in the G2/M phase in GDM.HUVECs, indicating cell cycle arrest. In addition, we found that GDM.HUVECs had increased MTS generation. In conclusion, GDM induces persistent impairment of the biological functions of foetal ECs, as evidenced by analyses of transcriptome profiles, cell cycle, and MTS even after ECs culture in vitro for several passages under normal glucose conditions.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Bajouh
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia Bagatian
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roaa Al-Dayini
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ohoud Subhi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanah Almalki
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
12
|
Zarkada G, Howard JP, Xiao X, Park H, Bizou M, Leclerc S, Künzel SE, Boisseau B, Li J, Cagnone G, Joyal JS, Andelfinger G, Eichmann A, Dubrac A. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 2021; 56:2237-2251.e6. [PMID: 34273276 PMCID: PMC9951594 DOI: 10.1016/j.devcel.2021.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-β signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-β receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-β signaling could improve retinal revascularization and neural function in ischemic retinopathy.
Collapse
Affiliation(s)
- Georgia Zarkada
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel P. Howard
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,These authors contributed equally
| | - Xue Xiao
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada,These authors contributed equally
| | - Hyojin Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mathilde Bizou
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Severine Leclerc
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Steffen E. Künzel
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Blanche Boisseau
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Jinyu Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Gael Cagnone
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | | | | | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
13
|
Bennett HC, Kim Y. Pericytes Across the Lifetime in the Central Nervous System. Front Cell Neurosci 2021; 15:627291. [PMID: 33776651 PMCID: PMC7994897 DOI: 10.3389/fncel.2021.627291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| |
Collapse
|
14
|
Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW. Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J Neurosci Res 2020; 98:2390-2405. [PMID: 32815569 DOI: 10.1002/jnr.24715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Pericytes are contractile cells that extend along the vasculature to mediate key homeostatic functions of endothelial barriers within the body. In the central nervous system (CNS), pericytes are important contributors to the structure and function of the neurovascular unit, which includes endothelial cells, astrocytes and neurons. The understanding of pericytes has been marred by an inability to accurately distinguish pericytes from other stromal cells with similar expression of identifying markers. Evidence is now growing in favor of pericytes being actively involved in both CNS homeostasis and pathology of neurological diseases, including multiple sclerosis, spinal cord injury, and Alzheimer's disease among others. In this review, we discuss the current understanding on the characterization of pericytes, their roles in maintaining the integrity of the blood-brain barrier, and their contributions to neuroinflammation and neurorepair. Owing to its plethora of surface receptors, pericytes respond to inflammatory mediators such as CCL2 (monocyte chemoattractant protein-1) and tumor necrosis factor-α, in turn secreting CCL2, nitric oxide, and several cytokines. Pericytes can therefore act as promoters of both the innate and adaptive arms of the immune system. Much like professional phagocytes, pericytes also have the ability to clear up cellular debris and macromolecular plaques. Moreover, pericytes promote the activities of CNS glia, including in maturation of oligodendrocyte lineage cells for myelination. Conversely, pericytes can impair regenerative processes by contributing to scar formation. A better characterization of CNS pericytes and their functions would bode well for therapeutics aimed at alleviating their undesirable properties and enhancing their benefits.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - Deepak Kumar Kaushik
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - Brian Mark Lozinski
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
16
|
Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, Jacobsen ID, Kniemeyer O, Jungnickel B, Zipfel PF, Skerka C. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun 2020; 11:2331. [PMID: 32393780 PMCID: PMC7214408 DOI: 10.1038/s41467-020-16241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-β1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-β1 to the TGF-β receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-β1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-β1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.
Collapse
Affiliation(s)
- Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Emeraldo A H Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Mohammad Z Hasan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Marta Ferreira-Gomes
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, University Hospital Jena, 07743, Jena, Germany
| | - Diana I Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97070, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.
| |
Collapse
|
17
|
Andrejecsk JW, Hosman AE, Botella LM, Shovlin CL, Arthur HM, Dupuis-Girod S, Buscarini E, Hughes CCW, Lebrin F, Mummery CL, Post MC, Mager JJ. Executive summary of the 12th HHT international scientific conference. Angiogenesis 2019; 21:169-181. [PMID: 29147802 DOI: 10.1007/s10456-017-9585-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hereditary hemorrhagic telangiectasia is an autosomal dominant trait affecting approximately 1 in 5000 people. A pathogenic DNA sequence variant in the ENG, ACVRL1 or SMAD4 genes, can be found in the majority of patients. The 12th International Scientific HHT Conference was held on June 8-11, 2017 in Dubrovnik, Croatia to present and discuss the latest scientific achievements, and was attended by over 200 scientific and clinical researchers. In total 174 abstracts were accepted of which 58 were selected for oral presentations. This article covers the basic science and clinical talks, and discussions from three theme-based workshops. We focus on significant emergent themes and unanswered questions. Understanding these topics and answering these questions will help to define the future of HHT research and therapeutics, and ultimately bring us closer to a cure.
Collapse
Affiliation(s)
- Jillian W Andrejecsk
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Anna E Hosman
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Claire L Shovlin
- Vascular Science, National Heart and Lung Institute, Imperial College London, London, UK
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Sophie Dupuis-Girod
- Hospices Civils de Lyon, Genetic Unit and HHT Reference Center, Bron, School of Medical and University Lyon 1, Lyon, France
| | - Elisabetta Buscarini
- Gastroenterology and Endoscopy Department, Reference Center for Hereditary Hemorrhagic Telangiectasia, Maggiore Hospital, ASST Crema, Crema, Italy
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands. .,CNRS UMR 7587, INSERM U979, Institut Langevin, ESPCI, Paris, France.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C Post
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Johannes J Mager
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| |
Collapse
|
18
|
Ola R, Künzel SH, Zhang F, Genet G, Chakraborty R, Pibouin-Fragner L, Martin K, Sessa W, Dubrac A, Eichmann A. SMAD4 Prevents Flow Induced Arteriovenous Malformations by Inhibiting Casein Kinase 2. Circulation 2019; 138:2379-2394. [PMID: 29976569 DOI: 10.1161/circulationaha.118.033842] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder that causes arteriovenous malformations (AVMs). Mutations in the genes encoding Endoglin ( ENG) and activin-receptor-like kinase 1 ( AVCRL1 encoding ALK1) cause HHT type 1 and 2, respectively. Mutations in the SMAD4 gene are present in families with juvenile polyposis-HHT syndrome that involves AVMs. SMAD4 is a downstream effector of transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) family ligands that signal via activin-like kinase receptors (ALKs). Ligand-neutralizing antibodies or inducible, endothelial-specific Alk1 deletion induce AVMs in mouse models as a result of increased PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) signaling. Here we addressed if SMAD4 was required for BMP9-ALK1 effects on PI3K/AKT pathway activation. METHODS The authors generated tamoxifen-inducible, postnatal, endothelial-specific Smad4 mutant mice ( Smad4iΔEC). RESULTS We found that loss of endothelial Smad4 resulted in AVM formation and lethality. AVMs formed in regions with high blood flow in developing retinas and other tissues. Mechanistically, BMP9 signaling antagonized flow-induced AKT activation in an ALK1- and SMAD4-dependent manner. Smad4iΔEC endothelial cells in AVMs displayed increased PI3K/AKT signaling, and pharmacological PI3K inhibitors or endothelial Akt1 deletion both rescued AVM formation in Smad4iΔEC mice. BMP9-induced SMAD4 inhibited casein kinase 2 ( CK2) transcription, in turn limiting PTEN phosphorylation and AKT activation. Consequently, CK2 inhibition prevented AVM formation in Smad4iΔEC mice. CONCLUSIONS Our study reveals SMAD4 as an essential effector of BMP9-10/ALK1 signaling that affects AVM pathogenesis via regulation of CK2 expression and PI3K/AKT1 activation.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut.,Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania (R.O.).,Research Center for Functional Genomics, Biomedicine and Translational Medicine, I. Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania (R.O.).,Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania (R.O.)
| | - Sandrine H Künzel
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Raja Chakraborty
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | | | - Kathleen Martin
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - William Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology (W.S.), Yale University School of Medicine, New Haven, Connecticut
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine (R.O., S.H.K., F.Z., G.G., R.C., K.M., A.D., A.E.), Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, Connecticut.,Inserm U970, Paris Cardiovascular Research Center, Paris, France (L.P-F., A.E.)
| |
Collapse
|
19
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
20
|
Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J, Wong WT. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. eLife 2019; 8:42049. [PMID: 30666961 PMCID: PMC6342522 DOI: 10.7554/elife.42049] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Constitutive TGFβ signaling is important in maintaining retinal neurons and blood vessels and is a factor contributing to the risk for age-related macular degeneration (AMD), a retinal disease involving neurodegeneration and microglial activation. How TGFβ signaling to microglia influences pathological retinal neuroinflammation is unclear. We discovered that ablation of the TGFβ receptor, TGFBR2, in retinal microglia of adult mice induced abnormal microglial numbers, distribution, morphology, and activation status, and promoted a pathological microglial gene expression profile. TGFBR2-deficient retinal microglia induced secondary gliotic changes in Müller cells, neuronal apoptosis, and decreased light-evoked retinal function reflecting abnormal synaptic transmission. While retinal vasculature was unaffected, TGFBR2-deficient microglia demonstrated exaggerated responses to laser-induced injury that was associated with increased choroidal neovascularization, a hallmark of advanced exudative AMD. These findings demonstrate that deficiencies in TGFβ-mediated microglial regulation can drive neuroinflammatory contributions to AMD-related neurodegeneration and neovascularization, highlighting TGFβ signaling as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sean M Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Maria M Campos
- Section on Histopathology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Juan Amaral
- Unit on Ocular Stem Cell and Translational Research, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
21
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
22
|
Chen PY, Simons M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr Opin Lipidol 2018; 29:397-403. [PMID: 30080704 PMCID: PMC6290915 DOI: 10.1097/mol.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite much effort, atherosclerosis remains an important public health problem, leading to substantial morbidity and mortality worldwide. The purpose of this review is to provide an understanding of the role of endothelial cell fate change in atherosclerosis process. RECENT FINDINGS Recent studies indicate that a process known as endothelial-to-mesenchymal transition (EndMT) may play an important role in atherosclerosis development. Transforming growth factor beta (TGFβ) has been shown to be an important driver of the endothelial cell phenotype transition. SUMMARY The current review deals with the current state of knowledge regarding EndMT's role in atherosclerosis and its regulation by fibroblast growth factor (FGF)-TGFβ cross-talk. A better understanding of FGF-TGFβ signaling in the regulation of endothelial cell phenotypes is key to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
van de Pol V, Kurakula K, DeRuiter MC, Goumans MJ. Thoracic Aortic Aneurysm Development in Patients with Bicuspid Aortic Valve: What Is the Role of Endothelial Cells? Front Physiol 2017; 8:938. [PMID: 29249976 PMCID: PMC5714935 DOI: 10.3389/fphys.2017.00938] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common type of congenital cardiac malformation. Patients with a BAV have a predisposition for the development of thoracic aortic aneurysm (TAA). This pathological aortic dilation may result in aortic rupture, which is fatal in most cases. The abnormal aortic morphology of TAAs results from a complex series of events that alter the cellular structure and extracellular matrix (ECM) composition of the aortic wall. Because the major degeneration is located in the media of the aorta, most studies aim to unravel impaired smooth muscle cell (SMC) function in BAV TAA. However, recent studies suggest that endothelial cells play a key role in both the initiation and progression of TAAs by influencing the medial layer. Aortic endothelial cells are activated in BAV mediated TAAs and have a substantial influence on ECM composition and SMC phenotype, by secreting several key growth factors and matrix modulating enzymes. In recent years there have been significant advances in the genetic and molecular understanding of endothelial cells in BAV associated TAAs. In this review, the involvement of the endothelial cells in BAV TAA pathogenesis is discussed. Endothelial cell functioning in vessel homeostasis, flow response and signaling will be highlighted to give an overview of the importance and the under investigated potential of endothelial cells in BAV-associated TAA.
Collapse
Affiliation(s)
- Vera van de Pol
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Kondababu Kurakula
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Abstract
During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paola A Guerrero
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph H McCarty
- University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
26
|
Guerrero PA, Tchaicha JH, Chen Z, Morales JE, McCarty N, Wang Q, Sulman EP, Fuller G, Lang FF, Rao G, McCarty JH. Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1 signaling axis to drive tumor initiation and progression. Oncogene 2017; 36:6568-6580. [PMID: 28783169 DOI: 10.1038/onc.2017.248] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin αvβ8 and its latent transforming growth factor β1 (TGFβ1) protein ligand have central roles in promoting niche co-option and GBM initiation. αvβ8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of β8high cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that αvβ8 integrin regulates tumor development, in part, by driving TGFβ1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the αvβ8 integrin-TGFβ1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM.
Collapse
Affiliation(s)
- P A Guerrero
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H Tchaicha
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Z Chen
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J E Morales
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - N McCarty
- The Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Q Wang
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA
| | - E P Sulman
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Fuller
- Departments of Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - F F Lang
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Rao
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H McCarty
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Pickup MW, Owens P, Moses HL. TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022285. [PMID: 28062564 DOI: 10.1101/cshperspect.a022285] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cellular and noncellular components surrounding the tumor cells influence many aspects of tumor progression. Transforming growth factor β (TGF-β), bone morphogenetic proteins (BMPs), and activins have been shown to regulate the phenotype and functions of the microenvironment and are attractive targets to attenuate protumorigenic microenvironmental changes. Given the pleiotropic nature of the cytokines involved, a full understanding of their effects on numerous cell types in many contexts is necessary for proper clinical intervention. In this review, we will explore the various effects of TGF-β, BMP, and activin signaling on stromal phenotypes known to associate with cancer progression. We will summarize these findings in the context of their tumor suppressive or promoting effects, as well as the molecular changes that these cytokines induce to influence stromal phenotypes.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| | - Philip Owens
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| | - Harold L Moses
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| |
Collapse
|
28
|
The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol 2016; 23:260-7. [PMID: 26849476 DOI: 10.1097/moh.0000000000000233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Long recognized for its role in regulation of vascular endothelial growth factor signaling, neuropilin (Nrp)1 has emerged as a modulator of additional signaling pathways critical for vascular development and function. Here we review two novel functions of Nrp1 in blood vessels: regulation of transforming growth factor-β (TGFβ) signaling in endothelial cells and regulation of platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells. RECENT FINDINGS Novel mouse models demonstrate that Nrp1 fulfills vascular functions independent of vascular endothelial growth factor signaling. These include modulation of TGFβ-dependent inhibition of endothelial sprouting during developmental angiogenesis and PDGF signaling in vascular smooth muscle cells during development and disease. SUMMARY Broadening our understanding of how and where Nrp1 functions in the vasculature is critical for the development of targeted therapeutics for cancer and vascular diseases such as atherosclerosis and retinopathies.
Collapse
|
29
|
Cheerathodi M, Avci NG, Guerrero PA, Tang LK, Popp J, Morales JE, Chen Z, Carnero A, Lang FF, Ballif BA, Rivera GM, McCarty JH. The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma. Mol Cancer Res 2016; 14:1277-1287. [PMID: 27655131 DOI: 10.1158/1541-7786.mcr-16-0251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/15/2023]
Abstract
Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment. IMPLICATIONS Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277-87. ©2016 AACR.
Collapse
Affiliation(s)
| | - Naze G Avci
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Julia Popp
- Texas A&M University, College Station, Texas
| | - John E Morales
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhihua Chen
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
30
|
Hirota S, Clements TP, Tang LK, Morales JE, Lee HS, Oh SP, Rivera GM, Wagner DS, McCarty JH. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 2015; 142:4363-73. [PMID: 26586223 PMCID: PMC4689212 DOI: 10.1242/dev.113746] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that β8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. β8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor β (TGFβ) ligands and stimulates TGFβ receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFβ activation and signaling by forming intercellular protein complexes with β8 integrin. Cell type-specific ablation of β8 integrin, Nrp1, or canonical TGFβ receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFβ signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFβ signaling during cerebral angiogenesis. Summary: Neuropilin 1 and β8 integrin cooperatively promote cerebral angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells in the mouse brain.
Collapse
Affiliation(s)
- Shinya Hirota
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Leung K Tang
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - John E Morales
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hye Shin Lee
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainseville, FL 32610, USA
| | - Gonzalo M Rivera
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Daniel S Wagner
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Joseph H McCarty
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Abstract
The developing central nervous system (CNS) is vascularised through the angiogenic invasion of blood vessels from a perineural vascular plexus, followed by continued sprouting and remodelling until a hierarchical vascular network is formed. Remarkably, vascularisation occurs without perturbing the intricate architecture of the neurogenic niches or the emerging neural networks. We discuss the mouse hindbrain, forebrain and retina as widely used models to study developmental angiogenesis in the mammalian CNS and provide an overview of key cellular and molecular mechanisms regulating the vascularisation of these organs. CNS vascularisation is initiated during embryonic development. CNS vascularisation is studied in the mouse forebrain, hindbrain and retina models. Neuroglial cells interact with endothelial cells to promote angiogenesis. Neuroglial cells produce growth factors and matrix cues to pattern vessels.
Collapse
|
32
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
33
|
VEGF, Notch and TGFβ/BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem Soc Trans 2015; 42:1576-83. [PMID: 25399573 DOI: 10.1042/bst20140231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The blood vasculature is constantly adapting to meet the demand from tissue. In so doing, branches may form, reorganize or regress. These complex processes employ integration of multiple signalling cascades, some of them being restricted to endothelial and mural cells and, hence, suitable for targeting of the vasculature. Both genetic and drug targeting experiments have demonstrated the requirement for the vascular endothelial growth factor (VEGF) system, the Delta-like-Notch system and the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) cascades in vascular development. Although several of these signalling cascades in part converge into common downstream components, they differ in temporal and spatial regulation and expression. For example, the pro-angiogenic VEGFA is secreted by cells in need of oxygen, presented to the basal side of the endothelium, whereas BMP9 and BMP10 are supplied via the bloodstream in constant interaction with the apical side to suppress angiogenesis. Delta-like 4 (DLL4), on the other hand, is provided as an endothelial membrane bound ligand. In the present article, we discuss recent data on the integration of these pathways in the process of sprouting angiogenesis and vascular patterning and malformation.
Collapse
|
34
|
Wiley MM, Muthukumar V, Griffin TM, Griffin CT. SWI/SNF chromatin-remodeling enzymes Brahma-related gene 1 (BRG1) and Brahma (BRM) are dispensable in multiple models of postnatal angiogenesis but are required for vascular integrity in infant mice. J Am Heart Assoc 2015; 4:jah3948. [PMID: 25904594 PMCID: PMC4579958 DOI: 10.1161/jaha.115.001972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Mammalian SWItch/Sucrose NonFermentable (SWI/SNF) adenosine triphosphate (ATP)‐dependent chromatin‐remodeling complexes play important roles in embryonic vascular development by modulating transcription of specific target genes. We sought to determine whether SWI/SNF complexes likewise impact postnatal physiological and pathological angiogenesis. Methods and Results Brahma‐related gene 1 (BRG1) and Brahma gene (BRM) are ATPases within mammalian SWI/SNF complexes and are essential for the complexes to function. Using mice with vascular‐specific mutations in Brg1 or with a global mutation in Brm, we employed 3 models to test the role of these ATPases in postnatal angiogenesis. We analyzed neonatal retinal angiogenesis, exercise‐induced angiogenesis in adult quadriceps muscles, and tumor angiogenesis in control and mutant animals. We found no evidence of defective angiogenesis in Brg1 or Brm mutants using these 3 models. Brg1/Brm double mutants likewise show no evidence of vascular defects in the neonatal retina or tumor angiogenesis models. However, 100% of Brg1/Brm‐double mutants in which Brg1 deletion is induced at postnatal day 3 (P3) die by P19 with hemorrhaging in the small intestine and heart. Conclusions Despite their important roles in embryonic vascular development, SWI/SNF chromatin‐remodeling complexes display a surprising lack of participation in the 3 models of postnatal angiogenesis we analyzed. However, these complexes are essential for maintaining vascular integrity in specific tissue beds before weaning. These findings highlight the temporal and spatial specificity of SWI/SNF activities in the vasculature and may indicate that other chromatin‐remodeling complexes play redundant or more essential roles during physiological and pathological postnatal vascular development.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Timothy M. Griffin
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (T.M.G.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (T.M.G.)
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (C.T.G.)
| |
Collapse
|
35
|
Lilly B. We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 2015; 29:234-41. [PMID: 24985327 DOI: 10.1152/physiol.00047.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are composed of two primary cell types, endothelial cells and smooth muscle cells, each providing a unique contribution to vessel function. Signaling between these two cell types is essential for maintaining tone in mature vessels, and their communication is critical during development, and for repair and remodeling associated with blood vessel growth. This review will highlight the pathways that endothelial cells and smooth muscle cells utilize to communicate during vessel formation and discuss how disruptions in these pathways contribute to disease.
Collapse
Affiliation(s)
- Brenda Lilly
- Department of Pediatrics, Nationwide Children's Hospital, The Heart Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Braunger BM, Leimbeck SV, Schlecht A, Volz C, Jägle H, Tamm ER. Deletion of ocular transforming growth factor β signaling mimics essential characteristics of diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1749-68. [PMID: 25857227 DOI: 10.1016/j.ajpath.2015.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023]
Abstract
Diabetic retinopathy, a major cause of blindness, is characterized by a distinct phenotype. The molecular causes of the phenotype are not sufficiently clear. Here, we report that deletion of transforming growth factor β signaling in the retinal microenvironment of newborn mice induces changes that largely mimic the phenotype of nonproliferative and proliferative diabetic retinopathy in humans. Lack of transforming growth factor β signaling leads to the formation of abundant microaneurysms, leaky capillaries, and retinal hemorrhages. Retinal capillaries are not covered by differentiated pericytes, but by a coat of vascular smooth muscle-like cells and a thickened basal lamina. Reactive microglia is found in close association with retinal capillaries. In older animals, loss of endothelial cells and the formation of ghost vessels are observed, findings that correlate with the induction of angiogenic molecules and the accumulation of retinal hypoxia-inducible factor 1α, indicating hypoxia. Consequently, retinal and vitreal neovascularization occurs, a scenario that leads to retinal detachment, vitreal hemorrhages, neuronal apoptosis, and impairment of sensory function. We conclude that transforming growth factor β signaling is required for the differentiation of retinal pericytes during vascular development of the retina. Lack of differentiated pericytes initiates a scenario of structural and functional changes in the retina that mimics those of diabetic retinopathy strongly indicating a common mechanism.
Collapse
Affiliation(s)
- Barbara M Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Sarah V Leimbeck
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Anja Schlecht
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Cornelia Volz
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
37
|
Protein tyrosine phosphatase-PEST and β8 integrin regulate spatiotemporal patterns of RhoGDI1 activation in migrating cells. Mol Cell Biol 2015; 35:1401-13. [PMID: 25666508 DOI: 10.1128/mcb.00112-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.
Collapse
|
38
|
p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ 2015; 22:1287-99. [PMID: 25571973 DOI: 10.1038/cdd.2014.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.
Collapse
|
39
|
Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS, Fuxe J, Akhurst R, Betsholtz C, Sheppard D, Reichardt LF. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 2014; 141:4489-99. [PMID: 25406396 DOI: 10.1242/dev.107193] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVβ8 activates angiosuppressive TGFβ gradients in the brain, which inhibit endothelial cell sprouting. Loss of αVβ8 in the brain or downstream TGFβ1-TGFBR2-ALK5-Smad3 signaling in endothelial cells increases vascular sprouting, branching and proliferation, leading to vascular dysplasia and hemorrhage. Importantly, BBB function in Itgb8 mutants is intact during early stages of vascular dysgenesis before hemorrhage. By contrast, Pdgfb(ret/ret) mice, which exhibit severe BBB disruption and vascular leak due to pericyte deficiency, have comparatively normal vascular morphogenesis and do not exhibit brain hemorrhage. Our data therefore suggest that abnormal vascular sprouting and patterning, not BBB dysfunction, underlie developmental cerebral hemorrhage.
Collapse
Affiliation(s)
- Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Colin Niaudet
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Mei-Fong Pang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Julie Siegenthaler
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Konstantin Gaengel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Bongnam Jung
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Gina M Ferrero
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Rosemary Akhurst
- Helen Diller Cancer Center and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Louis F Reichardt
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
Hellbach N, Weise SC, Vezzali R, Wahane SD, Heidrich S, Roidl D, Pruszak J, Esser JS, Vogel T. Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum Mol Genet 2014; 23:6177-90. [PMID: 24990151 PMCID: PMC4222361 DOI: 10.1093/hmg/ddu338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simultaneous generation of neural cells and that of the nutrient-supplying vasculature during brain development is called neurovascular coupling. We report on a transgenic mouse with impaired transforming growth factor β (TGFβ)-signalling in forebrain-derived neural cells using a Foxg1-cre knock-in to drive the conditional knock-out of the Tgfbr2. Although the expression of FOXG1 is assigned to neural progenitors and neurons of the telencephalon, Foxg1cre/+;Tgfbr2flox/flox (Tgfbr2-cKO) mutants displayed intracerebral haemorrhage. Blood vessels exhibited an atypical, clustered appearance were less in number and displayed reduced branching. Vascular endothelial growth factor (VEGF) A, insulin-like growth factor (IGF) 1, IGF2, TGFβ, inhibitor of DNA binding (ID) 1, thrombospondin (THBS) 2, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1 were altered in either expression levels or tissue distribution. Accordingly, human umbilical vein endothelial cells (HUVEC) displayed branching defects after stimulation with conditioned medium (CM) that was derived from primary neural cultures of the ventral and dorsal telencephalon of Tgfbr2-cKO. Supplementing CM of Tgfbr2-cKO with VEGFA rescued these defects, but application of TGFβ aggravated them. HUVEC showed reduced migration towards CM of mutants compared with controls. Supplementing the CM with growth factors VEGFA, fibroblast growth factor (FGF) 2 and IGF1 partially restored HUVEC migration. In contrast, TGFβ supplementation further impaired migration of HUVEC. We observed differences along the dorso-ventral axis of the telencephalon with regard to the impact of these factors on the phenotype. Together these data establish a TGFBR2-dependent molecular crosstalk between neural and endothelial cells during brain vessel development. These findings will be useful to further elucidate neurovascular interaction in general and to understand pathologies of the blood vessel system such as intracerebral haemorrhages, hereditary haemorrhagic telangiectasia, Alzheimeŕs disease, cerebral amyloid angiopathy or tumour biology.
Collapse
Affiliation(s)
- Nicole Hellbach
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan C Weise
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Vezzali
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Shalaka D Wahane
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Deborah Roidl
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany, Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany and
| | - Jennifer S Esser
- Department of Cardiology and Angiology I, University Heart Center Freiburg, 79106 Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany,
| |
Collapse
|
41
|
Tual-Chalot S, Mahmoud M, Allinson KR, Redgrave RE, Zhai Z, Oh SP, Fruttiger M, Arthur HM. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS One 2014; 9:e98646. [PMID: 24896812 PMCID: PMC4045906 DOI: 10.1371/journal.pone.0098646] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/06/2014] [Indexed: 01/28/2023] Open
Abstract
Rare inherited cardiovascular diseases are frequently caused by mutations in genes that are essential for the formation and/or function of the cardiovasculature. Hereditary Haemorrhagic Telangiectasia is a familial disease of this type. The majority of patients carry mutations in either Endoglin (ENG) or ACVRL1 (also known as ALK1) genes, and the disease is characterized by arteriovenous malformations and persistent haemorrhage. ENG and ACVRL1 encode receptors for the TGFβ superfamily of ligands, that are essential for angiogenesis in early development but their roles are not fully understood. Our goal was to examine the role of Acvrl1 in vascular endothelial cells during vascular development and to determine whether loss of endothelial Acvrl1 leads to arteriovenous malformations. Acvrl1 was depleted in endothelial cells either in early postnatal life or in adult mice. Using the neonatal retinal plexus to examine angiogenesis, we observed that loss of endothelial Acvrl1 led to venous enlargement, vascular hyperbranching and arteriovenous malformations. These phenotypes were associated with loss of arterial Jag1 expression, decreased pSmad1/5/8 activity and increased endothelial cell proliferation. We found that Endoglin was markedly down-regulated in Acvrl1-depleted ECs showing endoglin expression to be downstream of Acvrl1 signalling in vivo. Endothelial-specific depletion of Acvrl1 in pups also led to pulmonary haemorrhage, but in adult mice resulted in caecal haemorrhage and fatal anaemia. We conclude that during development, endothelial Acvrl1 plays an essential role to regulate endothelial cell proliferation and arterial identity during angiogenesis, whilst in adult life endothelial Acvrl1 is required to maintain vascular integrity.
Collapse
Affiliation(s)
- Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Marwa Mahmoud
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | | | - Rachael E. Redgrave
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Zhenhua Zhai
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - S. Paul Oh
- Department of Physiology, University of Florida, Gainesville, Florida, United States of America
| | | | - Helen M. Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Lee HS, McCarty JH. Inducible gene deletion in glial cells to study angiogenesis in the central nervous system. Methods Mol Biol 2014; 1135:261-74. [PMID: 24510871 DOI: 10.1007/978-1-4939-0320-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most organs and tissues of the vertebrate body harbor elaborate network of blood vessels with diverse functions that are determined, in part, by cues within the local environment (Warren and Iruela-Arispe, Curr Opin Hematol 17:213-218, 2010). How vascular endothelial cells decipher these cues to promote normal blood vessel development and physiology remains largely uncharacterized. In this review, we will focus on genetic strategies to analyze glial regulation of blood vessel growth and sprouting within the microenvironment of the retina, a component of the central nervous system (CNS) that contains a complex web of blood vessels with many unique features, including a blood-retinal barrier (Abbott et al., Nat Rev Neurosci 7:41-53, 2006). Blood vessels promote retinal development and homeostasis and alterations in vascular functions can lead to various developmental and adult-onset retinal pathologies (Fruttiger, Angiogenesis 10:77-88, 2007). How glial cells control retinal endothelial cell growth and sprouting remains largely uncharacterized. We will detail methodologies involving inducible Cre-lox technologies to acutely ablate genes of interest in CNS glial cells. These methods allow for precise spatial and temporal regulation of gene expression to study how glial cells in the retinal microenvironment control angiogenesis and blood-retinal barrier development.
Collapse
Affiliation(s)
- Hye Shin Lee
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
43
|
Tual-Chalot S, Allinson KR, Fruttiger M, Arthur HM. Whole mount immunofluorescent staining of the neonatal mouse retina to investigate angiogenesis in vivo. J Vis Exp 2013:e50546. [PMID: 23892721 DOI: 10.3791/50546] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Angiogenesis is the complex process of new blood vessel formation defined by the sprouting of new blood vessels from a pre-existing vessel network. Angiogenesis plays a key role not only in normal development of organs and tissues, but also in many diseases in which blood vessel formation is dysregulated, such as cancer, blindness and ischemic diseases. In adult life, blood vessels are generally quiescent so angiogenesis is an important target for novel drug development to try and regulate new vessel formation specifically in disease. In order to better understand angiogenesis and to develop appropriate strategies to regulate it, models are required that accurately reflect the different biological steps that are involved. The mouse neonatal retina provides an excellent model of angiogenesis because arteries, veins and capillaries develop to form a vascular plexus during the first week after birth. This model also has the advantage of having a two-dimensional (2D) structure making analysis straightforward compared with the complex 3D anatomy of other vascular networks. By analyzing the retinal vascular plexus at different times after birth, it is possible to observe the various stages of angiogenesis under the microscope. This article demonstrates a straightforward procedure for analyzing the vasculature of a mouse retina using fluorescent staining with isolectin and vascular specific antibodies.
Collapse
|
44
|
Ruhrberg C, Bautch VL. Neurovascular development and links to disease. Cell Mol Life Sci 2013; 70:1675-84. [PMID: 23475065 PMCID: PMC3632722 DOI: 10.1007/s00018-013-1277-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
The developing central nervous system (CNS) is vascularized via ingression of blood vessels from the outside as the neural tissue expands. This angiogenic process occurs without perturbing CNS architecture due to exquisite cross-talk between the neural compartment and invading blood vessels. Subsequently, this intimate relationship also promotes the formation of the neurovascular unit that underlies the blood-brain barrier and regulates blood flow to match brain activity. This review provides a historical perspective on research into CNS blood vessel growth and patterning, discusses current models used to study CNS angiogenesis, and provides an overview of the cellular and molecular mechanisms that promote blood vessel growth and maturation. Finally, we highlight the significance of these mechanisms for two different types of neurovascular CNS disease.
Collapse
Affiliation(s)
- Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
45
|
Jakobsson L, van Meeteren LA. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts. Exp Cell Res 2013; 319:1264-70. [PMID: 23454603 DOI: 10.1016/j.yexcr.2013.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse.
Collapse
Affiliation(s)
- Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|