1
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Fu Y, Fan B, Li X, Bao H, Zhu C, Chen Z. Autophagy and multivesicular body pathways cooperate to protect sulfur assimilation and chloroplast functions. PLANT PHYSIOLOGY 2023; 192:886-909. [PMID: 36852939 PMCID: PMC10231471 DOI: 10.1093/plphys/kiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5'-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.
Collapse
Affiliation(s)
- Yunting Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
3
|
Koprivova A, Elkatmis B, Gerlich SC, Trick M, Harper AL, Bancroft I, Kopriva S. Natural Variation in OASC Gene for Mitochondrial O-Acetylserine Thiollyase Affects Sulfate Levels in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 12:35. [PMID: 36616163 PMCID: PMC9824738 DOI: 10.3390/plants12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfur plays a vital role in the primary and secondary metabolism of plants, and carries an important function in a large number of different compounds. Despite this importance, compared to other mineral nutrients, relatively little is known about sulfur sensing and signalling, as well as about the mechanisms controlling sulfur metabolism and homeostasis. Sulfur contents in plants vary largely not only among different species, but also among accessions of the same species. We previously used associative transcriptomics to identify several genes potentially controlling variation in sulfate content in the leaves of Brassica napus, including an OASC gene for mitochondrial O-acetylserine thiollyase (OAS-TL), an enzyme involved in cysteine synthesis. Here, we show that loss of OASC in Arabidopsis thaliana lowers not only sulfate, but also glutathione levels in the leaves. The reduced accumulation is caused by lower sulfate uptake and translocation to the shoots; however, the flux through the pathway is not affected. In addition, we identified a single nucleotide polymorphism in the OASC gene among A. thaliana accessions that is linked to variation in sulfate content. Both genetic and transgenic complementation confirmed that the exchange of arginine at position 81 for lysine in numerous accessions resulted in a less active OASC and a lower sulfate content in the leaves. The mitochondrial isoform of OAS-TL is, thus, after the ATPS1 isoform of sulfurylase and the APR2 form of APS reductase 2, the next metabolic enzyme with a role in regulation of sulfate content in Arabidopsis.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Büsra Elkatmis
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Silke C. Gerlich
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Andrea L. Harper
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
4
|
Abstract
As sessile organisms, plants have developed sophisticated mechanism to sense and utilize nutrients from the environment, and modulate their growth and development according to the nutrient availability. Research in the past two decades revealed that nutrient assimilation is not occurring spontaneously, but nutrient signaling networks are complexly regulated and integrate sensing and signaling, gene expression, and metabolism to ensure homeostasis and coordination with plant energy conversion and other processes. Here, we review the importance of the macronutrient sulfur (S) and compare the knowledge of S signaling with other important macronutrients, such as nitrogen (N) and phosphorus (P). We focus on key advances in understanding sulfur sensing and signaling, uptake and assimilation, and we provide new analysis of published literature, to identify core genes regulated by the key transcriptional factor in S starvation response, SLIM1/EIL3, and compare the impact on other nutrient deficiency and stresses on S-related genes.
Collapse
Affiliation(s)
- Daniela Ristova
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Stanislav Kopriva
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
5
|
Shirzadian-Khorramabad R, Moazzenzadeh T, Sajedi RH, Jing HC, Hille J, Dijkwel PP. A mutation in Arabidopsis SAL1 alters its in vitro activity against IP 3 and delays developmental leaf senescence in association with lower ROS levels. PLANT MOLECULAR BIOLOGY 2022; 108:549-563. [PMID: 35122174 DOI: 10.1007/s11103-022-01245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Our manuscript is the first to find a link between activity of SAL1/OLD101 against IP3 and plant leaf senescence regulation and ROS levels assigning a potential biological role for IP3. Leaf senescence is a genetically programmed process that limits the longevity of a leaf. We identified and analyzed the recessive Arabidopsis stay-green mutation onset of leaf death 101 (old101). Developmental leaf longevity is extended in old101 plants, which coincided with higher peroxidase activity and decreased H2O2 levels in young 10-day-old, but not 25-day-old plants. The old101 phenotype is caused by a point mutation in SAL1, which encodes a bifunctional enzyme with inositol polyphosphate-1-phosphatase and 3' (2'), 5'-bisphosphate nucleotidase activity. SAL1 activity is highly specific for its substrates 3-polyadenosine 5-phosphate (PAP) and inositol 1, 4, 5-trisphosphate (IP3), where it removes the 1-phosphate group from the IP3 second messenger. The in vitro activity of recombinant old101 protein against its substrate IP3 was 2.5-fold lower than that of wild type SAL1 protein. However, the in vitro activity of recombinant old101 mutant protein against PAP remained the same as that of the wild type SAL1 protein. The results open the possibility that the activity of SAL1 against IP3 may affect the redox balance of young seedlings and that this delays the onset of leaf senescence.
Collapse
Affiliation(s)
- Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Taghi Moazzenzadeh
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jacques Hille
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | - Paul P Dijkwel
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
6
|
Ashykhmina N, Chan KX, Frerigmann H, Van Breusegem F, Kopriva S, Flügge UI, Gigolashvili T. Dissecting the Role of SAL1 in Metabolizing the Stress Signaling Molecule 3′-Phosphoadenosine 5′-Phosphate in Different Cell Compartments. Front Mol Biosci 2022; 8:763795. [PMID: 35127814 PMCID: PMC8815814 DOI: 10.3389/fmolb.2021.763795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Plants possess the most highly compartmentalized eukaryotic cells. To coordinate their intracellular functions, plastids and the mitochondria are dependent on the flow of information to and from the nuclei, known as retrograde and anterograde signals. One mobile retrograde signaling molecule is the monophosphate 3′-phosphoadenosine 5′-phosphate (PAP), which is mainly produced from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the cytosol and regulates the expression of a set of nuclear genes that modulate plant growth in response to biotic and abiotic stresses. The adenosine bisphosphate phosphatase enzyme SAL1 dephosphorylates PAP to AMP in plastids and the mitochondria, but can also rescue sal1 Arabidopsis phenotypes (PAP accumulation, leaf morphology, growth, etc.) when expressed in the cytosol and the nucleus. To understand better the roles of the SAL1 protein in chloroplasts, the mitochondria, nuclei, and the cytosol, we have attempted to complement the sal1 mutant by specifically cargoing the transgenic SAL1 protein to these four cell compartments. Overexpression of SAL1 protein targeted to the nucleus or the mitochondria alone, or co-targeted to chloroplasts and the mitochondria, complemented most aspects of the sal1 phenotypes. Notably, targeting SAL1 to chloroplasts or the cytosol did not effectively rescue the sal1 phenotypes as these transgenic lines accumulated very low levels of SAL1 protein despite overexpressing SAL1 mRNA, suggesting a possibly lower stability of the SAL1 protein in these compartments. The diverse transgenic SAL1 lines exhibited a range of PAP levels. The latter needs to reach certain thresholds in the cell for its impacts on different processes such as leaf growth, regulation of rosette morphology, sulfate homeostasis, and glucosinolate biosynthesis. Collectively, these findings provide an initial platform for further dissection of the role of the SAL1–PAP pathway in different cellular processes under stress conditions.
Collapse
Affiliation(s)
- Natallia Ashykhmina
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Ulf-Ingo Flügge
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
- *Correspondence: Tamara Gigolashvili,
| |
Collapse
|
7
|
García MJ, Lucena C, Romera FJ. Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants. Int J Mol Sci 2021; 22:4904. [PMID: 34063156 PMCID: PMC8125717 DOI: 10.3390/ijms22094904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.
Collapse
Affiliation(s)
- María José García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Carlos Lucena
- Department of Biochemistry and Molecular Biology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Department of Agronomy, (DAUCO-María de Maeztu Unit of Excellence) Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
8
|
Chan KX, Phua SY, Van Breusegem F. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4237-4250. [PMID: 30868163 DOI: 10.1093/jxb/erz119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
The sulfur metabolism pathway in plants produces a variety of compounds that are central to the acclimation response to oxidative stresses such as drought and high light. Primary sulfur assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as a corresponding by-product 3'-phosphoadenosine 5'-phosphate (PAP). Emerging evidence over the past decade has shown that secondary sulfur metabolism also has a crucial engagement during oxidative stress. This occurs across various cellular, tissue, and organismal levels including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of hormonal signalling by sulfated compounds and PAP, control of physiological responses such as stomatal closure, and potential regulation of plant growth. In this review, we examine the contribution of the different components of plant secondary metabolism to oxidative stress homeostasis, and how this pathway is metabolically regulated. We further outline the key outstanding questions in the field that are necessary to understand how and why this 'specialized' metabolic pathway plays significant roles in plant oxidative stress tolerance.
Collapse
Affiliation(s)
- Kai Xun Chan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Su Yin Phua
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| |
Collapse
|
9
|
Jobe TO, Zenzen I, Rahimzadeh Karvansara P, Kopriva S. Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4211-4221. [PMID: 31124557 PMCID: PMC6698703 DOI: 10.1093/jxb/erz250] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood. This is even more apparent in C4 plants, where coordination of these pathways for cysteine synthesis includes the additional challenge of differential spatial localization. Here we review the coordination of sulfate, nitrate, and carbon assimilation, and show how they are altered in C4 plants. We then summarize current knowledge of the mechanisms of coordination of these pathways. Finally, we identify urgent questions to be addressed in order to understand the integration of sulfate assimilation with carbon and nitrogen metabolism particularly in C4 plants. We consider answering these questions to be a prerequisite for successful engineering of C4 photosynthesis into C3 crops to increase their efficiency.
Collapse
Affiliation(s)
- Timothy O Jobe
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ivan Zenzen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Correspondence:
| |
Collapse
|
10
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
11
|
Ashykhmina N, Lorenz M, Frerigmann H, Koprivova A, Hofsetz E, Stührwohldt N, Flügge UI, Haferkamp I, Kopriva S, Gigolashvili T. PAPST2 Plays Critical Roles in Removing the Stress Signaling Molecule 3'-Phosphoadenosine 5'-Phosphate from the Cytosol and Its Subsequent Degradation in Plastids and Mitochondria. THE PLANT CELL 2019; 31:231-249. [PMID: 30464037 PMCID: PMC6391701 DOI: 10.1105/tpc.18.00512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 05/04/2023]
Abstract
The compartmentalization of PAPS (the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate) synthesis (mainly in plastids), PAPS consumption (in the cytosol), and PAP (the stress signaling molecule 3'-phosphoadenosine 5'-phosphate) degradation (in plastids and mitochondria) requires organellar transport systems for both PAPS and PAP. The plastidial transporter PAPST1 (PAPS TRANSPORTER1) delivers newly synthesized PAPS from the stroma to the cytosol. We investigated the activity of PAPST2, the closest homolog of PAPST1, which unlike PAPST1 is targeted to both the plastids and mitochondria. Biochemical characterization in Arabidopsis thaliana revealed that PAPST2 mediates the antiport of PAP, PAPS, ATP, and ADP. Strongly increased cellular PAP levels negatively affect plant growth, as observed in the fry1 papst2 mutant, which lacks the PAP-catabolizing enzyme SALT TOLERANCE 1 and PAPST2. PAP levels were specifically elevated in the cytosol of papst2 and fiery1 papst2, but not in papst1 or fry1 papst1 PAPST1 failed to complement the papst2 mutant phenotype in mitochondria, because it likely removes PAPS from the cell, as demonstrated by the increased expression of phytosulfokine genes. Overexpression of SAL1 in mitochondria rescued the phenotype of fry1 but not fry1 papst2 Therefore, PAPST2 represents an important organellar importer of PAP, providing a piece of the puzzle in our understanding of the organelle-to-nucleus PAP retrograde signaling pathway.
Collapse
Affiliation(s)
- Natallia Ashykhmina
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Melanie Lorenz
- Plant Physiology, Technical University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Henning Frerigmann
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Anna Koprivova
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Eduard Hofsetz
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Nils Stührwohldt
- Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Ulf-Ingo Flügge
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Ilka Haferkamp
- Plant Physiology, Technical University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
12
|
Phua SY, Yan D, Chan KX, Estavillo GM, Nambara E, Pogson BJ. The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development? FRONTIERS IN PLANT SCIENCE 2018; 9:1171. [PMID: 30135700 PMCID: PMC6092573 DOI: 10.3389/fpls.2018.01171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 05/20/2023]
Abstract
Plant growth and development are dependent on chloroplast development and function. Constitutive high level accumulation of a chloroplast stress signal, 3'-phosphoadenosine-5'-phosphate (PAP), confers drought tolerance to plants, but slow downs and alters plant growth and development. PAP, a by-product of sulfur metabolism, is maintained at very low levels by the SAL1 phosphatase during vegetative growth of Arabidopsis and accumulates in rosettes during drought and excess light. Eight independent forward genetic screens in Arabidopsis identified SAL1 as the regulator of multiple phenotypes related to stress responses, hormonal signaling and/or perception. In this perspective article, we collate all the sal1 phenotypes published in the past two decades, and distill the different pathways affected. Our meta-analysis of publicly available sal1 microarray data coupled to preliminary hormonal treatment and profiling results on sal1 indicate that homeostasis and responses to multiple hormones in sal1 are altered during rosette growth, suggesting a potential connection between SAL1-PAP stress retrograde pathway and hormonal signaling. We propose the SAL1-PAP pathway as a case study for integrating chloroplast retrograde signaling, light signaling and hormonal signaling in plant growth and morphogenesis.
Collapse
Affiliation(s)
- Su Y. Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dawei Yan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kai X. Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Gonzalo M. Estavillo
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, Australia
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Litthauer S, Jones MA. SAL1-PAP retrograde signalling extends circadian period by reproducing the loss of exoribonuclease (XRN) activity. PLANT SIGNALING & BEHAVIOR 2018; 13:e1500066. [PMID: 30081763 PMCID: PMC6149516 DOI: 10.1080/15592324.2018.1500066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 05/31/2023]
Abstract
Plants have developed an internal timing mechanism, the circadian system, that serves to synchronise physiological and metabolic functions with daily cues such as dawn and dusk, and provides plants with an advantage in adapting to changing and challenging conditions. We have recently shown that the SAL1-PAP-XRN retrograde signalling pathway, which is proposed to regulate plant responses under stress conditions, also acts within the circadian system. Here we provide further evidence of circadian regulation by SAL1-PAP-XRN signalling, thereby affirming a link between molecular timekeeping and abiotic stress response mechanisms.
Collapse
|
14
|
Litthauer S, Chan KX, Jones MA. 3'-Phosphoadenosine 5'-Phosphate Accumulation Delays the Circadian System. PLANT PHYSIOLOGY 2018; 176:3120-3135. [PMID: 29487119 PMCID: PMC5884616 DOI: 10.1104/pp.17.01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 05/07/2023]
Abstract
The circadian system optimizes cellular responses to stress, but the signaling pathways that convey the metabolic consequences of stress into this molecular timekeeping mechanism remain unclear. Redox regulation of the SAL1 phosphatase during abiotic stress initiates a signaling pathway from chloroplast to nucleus by regulating the accumulation of a metabolite, 3'-phosphoadenosine 5'-phosphate (PAP). Consequently, PAP accumulates in response to redox stress and inhibits the activity of exoribonucleases (XRNs) in the nucleus and cytosol. We demonstrated that osmotic stress induces a lengthening of circadian period and that genetically inducing the SAL1-PAP-XRN pathway in plants lacking either SAL1 or XRNs similarly delays the circadian system. Exogenous application of PAP was also sufficient to extend circadian period. Thus, SAL1-PAP-XRN signaling likely regulates circadian rhythms in response to redox stress. Our findings exemplify how two central processes in plants, molecular timekeeping and responses to abiotic stress, can be interlinked to regulate gene expression.
Collapse
Affiliation(s)
- Suzanne Litthauer
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| | - Kai Xun Chan
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Matthew Alan Jones
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| |
Collapse
|
15
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
16
|
Kurmanbayeva A, Bekturova A, Srivastava S, Soltabayeva A, Asatryan A, Ventura Y, Khan MS, Salazar O, Fedoroff N, Sagi M. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia. PLANT PHYSIOLOGY 2017; 175:272-289. [PMID: 28743765 PMCID: PMC5580768 DOI: 10.1104/pp.17.00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/22/2017] [Indexed: 05/08/2023]
Abstract
Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Aizat Bekturova
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Sudhakar Srivastava
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Aigerim Soltabayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Armine Asatryan
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Yvonne Ventura
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Mohammad Suhail Khan
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Octavio Salazar
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Nina Fedoroff
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
- Evan Pugh Professor Emerita, Penn State University, State College, Pennsylvania
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| |
Collapse
|
17
|
Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism. Sci Rep 2017. [PMID: 28646214 PMCID: PMC5482895 DOI: 10.1038/s41598-017-04539-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sulphotransferases are a diverse group of enzymes catalysing the transfer of a sulfuryl group from 3'-phosphoadenosine 5'-phosphosulphate (PAPS) to a broad range of secondary metabolites. They exist in all kingdoms of life. In Arabidopsis thaliana (L.) Heynh. twenty-two sulphotransferase (SOT) isoforms were identified. Three of those are involved in glucosinolate (Gl) biosynthesis, glycosylated sulphur-containing aldoximes containing chemically different side chains, whose break-down products are involved in stress response against herbivores, pathogens, and abiotic stress. To explain the differences in substrate specificity of desulpho (ds)-Gl SOTs and to understand the reaction mechanism of plant SOTs, we determined the first high-resolution crystal structure of the plant ds-Gl SOT AtSOT18 in complex with 3'-phosphoadenosine 5'-phosphate (PAP) alone and together with the Gl sinigrin. These new structural insights into the determination of substrate specificity were complemented by mutagenesis studies. The structure of AtSOT18 invigorates the similarity between plant and mammalian sulphotransferases, which illustrates the evolutionary conservation of this multifunctional enzyme family. We identified the essential residues for substrate binding and catalysis and demonstrated that the catalytic mechanism is conserved between human and plant enzymes. Our study indicates that the loop-gating mechanism is likely to be a source of the substrate specificity in plants.
Collapse
|
18
|
Jez JM, Ravilious GE, Herrmann J. Structural biology and regulation of the plant sulfation pathway. Chem Biol Interact 2016; 259:31-38. [DOI: 10.1016/j.cbi.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
|
19
|
Koprivova A, Kopriva S. Hormonal control of sulfate uptake and assimilation. PLANT MOLECULAR BIOLOGY 2016; 91:617-27. [PMID: 26810064 DOI: 10.1007/s11103-016-0438-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/11/2016] [Indexed: 05/23/2023]
Abstract
Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
20
|
Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc Natl Acad Sci U S A 2016; 113:E4567-76. [PMID: 27432987 PMCID: PMC4978270 DOI: 10.1073/pnas.1604936113] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.
Collapse
|
21
|
Koprivova A, Kopriva S. Sulfation pathways in plants. Chem Biol Interact 2016; 259:23-30. [PMID: 27206694 DOI: 10.1016/j.cbi.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 11/27/2022]
Abstract
Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
22
|
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:25-53. [PMID: 26735063 DOI: 10.1146/annurev-arplant-043015-111854] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Su Yin Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Peter Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Ryan McQuinn
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| |
Collapse
|
23
|
Bohrer AS, Takahashi H. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:1-31. [PMID: 27572125 DOI: 10.1016/bs.ircmb.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants utilize sulfate to synthesize primary and secondary sulfur-containing metabolites required for growth and survival in the environment. Sulfate is taken up into roots from the soil and distributed to various organs through the functions of membrane-bound sulfate transporters, while it is utilized as the primary substrate for synthesizing sulfur-containing metabolites in the sulfate assimilation pathways. Transporters and enzymes for the assimilative conversion of sulfate are regulated in highly organized manners depending on changes in sulfate supply from the environment and demand for biosynthesis of reduced sulfur compounds in the plant systems. Over the past few decades, the effect of sulfur nutrition on gene expression of sulfate transporters and assimilatory enzymes has been extensively studied with the aim of understanding the full landscape of regulatory networks.
Collapse
Affiliation(s)
- A-S Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - H Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
24
|
Bruggeman Q, Mazubert C, Prunier F, Lugan R, Chan KX, Phua SY, Pogson BJ, Krieger-Liszkay A, Delarue M, Benhamed M, Bergounioux C, Raynaud C. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1745-56. [PMID: 26747283 PMCID: PMC4775142 DOI: 10.1104/pp.15.01872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Florence Prunier
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Raphaël Lugan
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Kai Xun Chan
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Su Yin Phua
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Barry James Pogson
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Anja Krieger-Liszkay
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marianne Delarue
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| |
Collapse
|
25
|
González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A, García-López C, Sánchez-Sevilla JF, Luque F, Trelles O, Bejarano ER, De La Rosa R, Valpuesta V, Beuzón CR. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. FRONTIERS IN PLANT SCIENCE 2016; 7:240. [PMID: 26973682 PMCID: PMC4773642 DOI: 10.3389/fpls.2016.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 05/20/2023]
Abstract
Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.
Collapse
Affiliation(s)
- Juan J. González-Plaza
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Inmaculada Ortiz-Martín
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Antonio Muñoz-Mérida
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Carmen García-López
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | - Oswaldo Trelles
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Eduardo R. Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | | | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Carmen R. Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
- *Correspondence: Carmen R. Beuzón
| |
Collapse
|
26
|
Seneff S, Swanson N, Li C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.61005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Calderwood A, Morris RJ, Kopriva S. Predictive sulfur metabolism - a field in flux. FRONTIERS IN PLANT SCIENCE 2014; 5:646. [PMID: 25477892 PMCID: PMC4235266 DOI: 10.3389/fpls.2014.00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/02/2014] [Indexed: 05/08/2023]
Abstract
The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired metabolite. Such approaches have proven their value in bacterial systems, however, the paucity of success stories to date in plants, suggests that challenges remain. Here, we review the most commonly used methods for understanding metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues with both experimental and theoretical approaches, as well as presenting recent methods for integrating different modeling strategies, and progress toward an understanding of flux at the whole plant level.
Collapse
Affiliation(s)
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes CentreNorwich, UK
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne BiocenterCologne, Germany
| |
Collapse
|
28
|
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:556. [PMID: 25360143 PMCID: PMC4199319 DOI: 10.3389/fpls.2014.00556] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 05/20/2023]
Abstract
All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.
Collapse
Affiliation(s)
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
29
|
Aksoy M, Pootakham W, Grossman AR. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. THE PLANT CELL 2014; 26:4214-29. [PMID: 25281687 PMCID: PMC4247568 DOI: 10.1105/tpc.114.129270] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
Forward genetics was used to isolate Chlamydomonas reinhardtii mutants with altered abilities to acclimate to sulfur (S) deficiency. The ars76 mutant has a deletion that eliminates several genes, including VACUOLAR TRANSPORTER CHAPERONE1 (VTC1), which encodes a component of a polyphosphate polymerase complex. The ars76 mutant cannot accumulate arylsulfatase protein or mRNA and shows marked alterations in levels of many transcripts encoded by genes induced during S deprivation. The mutant also shows little acidocalcisome formation compared with wild-type, S-deprived cells and dies more rapidly than wild-type cells following exposure to S-, phosphorus-, or nitrogen (N)-deficient conditions. Furthermore, the mutant does not accumulate periplasmic L-amino acid oxidase during N deprivation. Introduction of the VTC1 gene specifically complements the ars76 phenotypes, suggesting that normal acidocalcisome formation in cells deprived of S requires VTC1. Our data also indicate that a deficiency in acidocalcisome function impacts trafficking of periplasmic proteins, which can then feed back on the transcription of the genes encoding these proteins. These results and the reported function of vacuoles in degradation processes suggest a major role of the acidocalcisome in reshaping the cell during acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Munevver Aksoy
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Wirulda Pootakham
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| |
Collapse
|
30
|
Koprivova A, Harper AL, Trick M, Bancroft I, Kopriva S. Dissection of the control of anion homeostasis by associative transcriptomics in Brassica napus. PLANT PHYSIOLOGY 2014; 166:442-50. [PMID: 25049360 PMCID: PMC4149728 DOI: 10.1104/pp.114.239947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To assess the variation in nutrient homeostasis in oilseed rape and to identify the genes responsible for this variation, we determined foliar anion levels in a diversity panel of Brassica napus accessions, 84 of which had been genotyped previously using messenger RNA sequencing. We applied associative transcriptomics to identify sequence polymorphisms linked to variation in nitrate, phosphate, or sulfate in these accessions. The analysis identified several hundred significant associations for each anion. Using functional annotation of Arabidopsis (Arabidopsis thaliana) homologs and available microarray data, we identified 60 candidate genes for controlling variation in the anion contents. To verify that these genes function in the control of nutrient homeostasis, we obtained Arabidopsis transfer DNA insertion lines for these candidates and tested them for the accumulation of nitrate, phosphate, and sulfate. Fourteen lines differed significantly in levels of the corresponding anions. Several of these genes have been shown previously to affect the accumulation of the corresponding anions in Arabidopsis mutants. These results thus confirm the power of associative transcriptomics in dissection of the genetic control of complex traits and present a set of candidate genes for use in the improvement of efficiency of B. napus mineral nutrition.
Collapse
Affiliation(s)
- Anna Koprivova
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrea L Harper
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
31
|
Trotta A, Rahikainen M, Konert G, Finazzi G, Kangasjärvi S. Signalling crosstalk in light stress and immune reactions in plants. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130235. [PMID: 24591720 DOI: 10.1098/rstb.2013.0235] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The evolutionary history of plants is tightly connected with the evolution of microbial pathogens and herbivores, which use photosynthetic end products as a source of life. In these interactions, plants, as the stationary party, have evolved sophisticated mechanisms to sense, signal and respond to the presence of external stress agents. Chloroplasts are metabolically versatile organelles that carry out fundamental functions in determining appropriate immune reactions in plants. Besides photosynthesis, chloroplasts host key steps in the biosynthesis of amino acids, stress hormones and secondary metabolites, which have a great impact on resistance against pathogens and insect herbivores. Changes in chloroplast redox signalling pathways and reactive oxygen species metabolism also mediate local and systemic signals, which modulate plant resistance to light stress and disease. Moreover, interplay among chloroplastic signalling networks and plasma membrane receptor kinases is emerging as a key mechanism that modulates stress responses in plants. This review highlights the central role of chloroplasts in the signalling crosstalk that essentially determines the outcome of plant-pathogen interactions in plants.
Collapse
Affiliation(s)
- Andrea Trotta
- Molecular Plant Biology, University of Turku, , Turku 20014, Finland
| | | | | | | | | |
Collapse
|
32
|
Koprivova A, Calderwood A, Lee BR, Kopriva S. Do PFT1 and HY5 interact in regulation of sulfate assimilation by light in Arabidopsis? FEBS Lett 2014; 588:1116-21. [DOI: 10.1016/j.febslet.2014.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/10/2023]
|
33
|
Bohrer AS, Kopriva S, Takahashi H. Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:751. [PMID: 25657651 PMCID: PMC4302788 DOI: 10.3389/fpls.2014.00751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 05/03/2023]
Abstract
Plants assimilate sulfate from the environment to synthesize biologically active sulfur-containing compounds required for growth and cellular development. The primary steps of sulfur metabolism involve sequential enzymatic reactions synthesizing adenosine 5'-phosphosulfate (APS) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Recent finding suggests that an adenosine nucleotide transport system facilitating the exchange of PAPS and 3'-phosphoadenosine 5'-phosphate across the plastid envelope is essential for establishing an intimate connection between the plastidic and cytosolic sulfate assimilation pathways in plants. Subcellular partitioning and integration of metabolic pathways provide focal points for investigating metabolic flux regulations. This perspective article presents an integrative view of sulfur metabolic flux control mechanisms with an emphasis on subcellular partitioning of APS/PAPS biosynthetic pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Anne-Sophie Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, CologneGermany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Hideki Takahashi, Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, 209 Biochemistry Building, East Lansing, MI 48824, USA e-mail:
| |
Collapse
|
34
|
Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E. Exploring the Arabidopsis sulfur metabolome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:31-45. [PMID: 24147819 DOI: 10.1111/tpj.12359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 05/18/2023]
Abstract
Sulfur plays a crucial role in protein structure and function, redox status and plant biotic stress responses. However, our understanding of sulfur metabolism is limited to identified pathways. In this study, we used a high-resolution Fourier transform mass spectrometric approach in combination with stable isotope labeling to describe the sulfur metabolome of Arabidopsis thaliana. Databases contain roughly 300 sulfur compounds assigned to Arabidopsis. In comparative analyses, we showed that the overlap of the expected sulfur metabolome and the mass spectrometric data was surprisingly low, and we were able to assign only 37 of the 300 predicted compounds. By contrast, we identified approximately 140 sulfur metabolites that have not been assigned to the databases to date. We used our method to characterize the γ-glutamyl transferase mutant ggt4-1, which is involved in the vacuolar breakdown of glutathione conjugates in detoxification reactions. Although xenobiotic substrates are well known, only a few endogenous substrates have been described. Among the specifically altered sulfur-containing masses in the ggt4-1 mutant, we characterized one endogenous glutathione conjugate and a number of further candidates for endogenous substrates. The small percentage of predicted compounds and the high proportion of unassigned sulfur compounds identified in this study emphasize the need to re-evaluate our understanding of the sulfur metabolome.
Collapse
Affiliation(s)
- Katharina Gläser
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | | | | | | | | |
Collapse
|
35
|
Zhang B, Pasini R, Dan H, Joshi N, Zhao Y, Leustek T, Zheng ZL. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:185-97. [PMID: 24308460 DOI: 10.1111/tpj.12376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 05/18/2023]
Abstract
Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1-15 and sel1-16, which show increased expression of a sulfur deficiency-activated gene β-glucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high-affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1-15 and sel1-16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild-type, but showed higher expression of BGLU28 and other sulfur deficiency-activated genes than wild-type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1-15 and sel1-16. Taken together, the genetic evidence suggests that, in addition to its known function as a high-affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Koprivova A, Giovannetti M, Baraniecka P, Lee BR, Grondin C, Loudet O, Kopriva S. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1133-41. [PMID: 24027241 PMCID: PMC3813639 DOI: 10.1104/pp.113.225748] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/10/2013] [Indexed: 05/18/2023]
Abstract
Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels.
Collapse
|
37
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-1058. [PMID: 23558912 DOI: 10.1093/aob/mct06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
38
|
12-Oxo-phytodienoic acid interaction with cyclophilin CYP20-3 is a benchmark for understanding retrograde signaling in plants. Proc Natl Acad Sci U S A 2013; 110:9197-8. [PMID: 23716693 DOI: 10.1073/pnas.1307482110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Huseby S, Koprivova A, Lee BR, Saha S, Mithen R, Wold AB, Bengtsson GB, Kopriva S. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1039-48. [PMID: 23314821 PMCID: PMC3580815 DOI: 10.1093/jxb/ers378] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glucosinolates are a major class of sulphur-containing secondary metabolites involved in plant defence against pathogens. Recently many regulatory links between glucosinolate biosynthesis and sulphate assimilation were established. Since sulphate assimilation undergoes diurnal rhythm and is light regulated, this study analysed whether the same is true for glucosinolate biosynthesis. The levels of glucosinolates and glutathione were found to be higher during the day than during the night. This agreed with variation in sulphate uptake as well as activity of the key enzyme of the sulphate assimilation pathway, adenosine 5'-phosphosulphate reductase. Correspondingly, the flux through sulphate assimilation was higher during the day than during the night, with the maximum flux through primary assimilation preceding maximal incorporation into glucosinolates. Prolonged darkness resulted in a strong reduction in glucosinolate content. Re-illumination of such dark-adapted plants induced accumulation of mRNA for many genes of glucosinolate biosynthesis, leading to increased glucosinolate biosynthesis. The light regulation of the glucosinolate synthesis genes as well as many genes of primary sulphate assimilation was controlled at least partly by the LONG HYPOCOTYL5 (HY5) transcription regulator. Thus, glucosinolate biosynthesis is highly co-regulated with sulphate assimilation.
Collapse
Affiliation(s)
- Stine Huseby
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ. Balancing metabolites in drought: the sulfur assimilation conundrum. TRENDS IN PLANT SCIENCE 2013; 18:18-29. [PMID: 23040678 DOI: 10.1016/j.tplants.2012.07.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
A key plant response to drought is the accumulation of specific sets of metabolites that act as osmoprotectants, osmolytes, antioxidants, and/or stress signals. An emerging question is: how do plants regulate metabolism to balance the 'competing interests' between metabolites during stress? Recent research connects primary sulfur metabolism (e.g., sulfate transport in the vasculature, its assimilation in leaves, and the recycling of sulfur-containing compounds) with the drought stress response. In this review, we highlight key steps in sulfur metabolism that play significant roles in drought stress signaling and responses. We propose that a complex balancing act is required to coordinate primary and secondary sulfur metabolism during the drought stress response in plants.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
41
|
Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flügge UI. The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol. THE PLANT CELL 2012; 24:4187-204. [PMID: 23085732 PMCID: PMC3517245 DOI: 10.1105/tpc.112.101964] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/03/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Melanie Geier
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Natallia Ashykhmina
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Wulfert
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Krueger
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sarah G. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ulf-Ingo Flügge
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
42
|
Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett 2012; 586:3242-8. [PMID: 22771787 DOI: 10.1016/j.febslet.2012.06.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022]
Abstract
In plants, microRNAs play an important role in many regulatory circuits, including responses to environmental cues such as nutrient limitations. One such microRNA is miR395, which is strongly up-regulated by sulfate deficiency and targets two components of the sulfate uptake and assimilation pathway. Here we show that miR395 levels are affected by treatments with metabolites regulating sulfate assimilation. The precursor of cysteine, O-acetylserine, which accumulates during sulfate deficiency, causes increase in miR395 accumulation. Feeding plants with cysteine, which inhibits sulfate uptake and assimilation, induces miR395 levels while buthionine sulfoximine, an inhibitor of glutathione synthesis, lowers miR395 expression. Thus, miR395 is an integral part of the regulatory network of sulfate assimilation.
Collapse
|
43
|
Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A. Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:163. [PMID: 22833750 PMCID: PMC3400089 DOI: 10.3389/fpls.2012.00163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
Sulfur is an essential nutrient for all organisms. Plants are able to take up inorganic sulfate and assimilate it into a range of bio-organic molecules either after reduction to sulfide or activation to 3'-phosphoadenosine 5'-phosphosulfate. While the regulation of the reductive part of sulfate assimilation and the synthesis of cysteine has been studied extensively in the past three decades, much less attention has been paid to the control of synthesis of sulfated compounds. Only recently the genes and enzymes activating sulfate and transferring it onto suitable acceptors have been investigated in detail with emphasis on understanding the diversity of the sulfotransferase gene family and the control of partitioning of sulfur between the two branches of sulfate assimilation. Here, the recent progress in our understanding of these processes will be summarized.
Collapse
Affiliation(s)
- Stanislav Kopriva
- *Correspondence: Stanislav Kopriva, Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. e-mail:
| | | | | | - Bok-Rye Lee
- †Present address: Bok-Rye Lee, Department of Biochemistry and Molecular Biology, Michigan State University, 209 Biochemistry Building, East Lansing, MI 48824-1319, USA
| | - Colette A. Matthewman
- †Present address: Bok-Rye Lee, Department of Biochemistry and Molecular Biology, Michigan State University, 209 Biochemistry Building, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|