1
|
James JG, McCall NM, Hsu AI, Oswell CS, Salimando GJ, Mahmood M, Wooldridge LM, Wachira M, Jo A, Sandoval Ortega RA, Wojick JA, Beattie K, Farinas SA, Chehimi SN, Rodrigues A, Ejoh LSL, Kimmey BA, Lo E, Azouz G, Vasquez JJ, Banghart MR, Creasy KT, Beier KT, Ramakrishnan C, Crist RC, Reiner BC, Deisseroth K, Yttri EA, Corder G. Mimicking opioid analgesia in cortical pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591113. [PMID: 38746090 PMCID: PMC11092437 DOI: 10.1101/2024.04.26.591113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.
Collapse
Affiliation(s)
- Justin G. James
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex I. Hsu
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Corinna S. Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory J. Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Wachira
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrienne Jo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Beattie
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia A. Farinas
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N. Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lind-say L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Lo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ghalia Azouz
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Jose J. Vasquez
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Matthew R. Banghart
- Dept. of Neurobiology, School of Biological Sciences, University of California San Diego, CA, USA
| | - Kate Townsend Creasy
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Beier
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | | | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Eric A. Yttri
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
3
|
Neumann N, Domin M, Schmidt CO, Lotze M. Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions. Eur J Pain 2023; 27:1239-1248. [PMID: 37366271 DOI: 10.1002/ejp.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Chronic pain of different aetiologies and localization has been associated with less grey matter volume (GMV) in several cortical and subcortical brain areas. Recent meta-analyses reported low reproducibility of GMV alterations between studies and pain syndromes. METHODS To investigate GMV in common chronic pain conditions defined by body location (chronic back pain, n = 174; migraine, n = 92; craniomandibular disorder, n = 39) compared to controls (n = 296), we conducted voxel-based morphometry and determined GMV from high-resolution cranial MRIs obtained in an epidemiologic survey. Mediation analyses were performed between the presence of chronic pain and GMV testing the mediators stress and mild depression. The predictability of chronic pain was investigated with binomial logistic regression. RESULTS Whole-brain analyses yielded reduced GMV within the left anterior insula and the anterior cingulate cortex, for a ROI approach additionally the left posterior insula and left hippocampus showing less GMV across all patients with chronic pain. The relationship of pain with GMV in the left hippocampus was mediated by self-reported stressors in the last 12 months. Binomial logistic regression revealed a predictive effect for GMV in the left hippocampus and left anterior insula/temporal pole for the presence of chronic pain. CONCLUSIONS Chronic pain across three different pain conditions was characterized by less GMV in brain regions consistently described for different chronic pain conditions before. Less GMV in the left hippocampus mediated by experienced stress during the last year might be related to altered pain learning mechanisms in chronic pain patients. SIGNIFICANCE Grey matter reorganization could serve as a diagnostic biomarker for chronic pain. In a large cohort, we here replicated findings of less grey matter volume across three pain conditions in the left anterior and posterior insula, anterior cingulate and left hippocampus. Less hippocampal grey matter was mediated by experienced stress.
Collapse
Affiliation(s)
- Nicola Neumann
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Carsten-Oliver Schmidt
- Institute for Community Medicine- Department SHIP/KEF, University Medicine Greifswald, Greifswald, Germany
| | - Martin Lotze
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Habig K, Krämer HH, Lautenschläger G, Walter B, Best C. Processing of sensory, painful and vestibular stimuli in the thalamus. Brain Struct Funct 2023; 228:433-447. [PMID: 36239796 PMCID: PMC9944400 DOI: 10.1007/s00429-022-02582-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The thalamus plays an important role in the mediation and integration of various stimuli (e.g., somatosensory, pain, and vestibular). Whether a stimulus-specific and topographic organization of the thalamic nuclei exists is still unknown. The aim of our study was to define a functional, in vivo map of multimodal sensory processing within the human thalamus. METHODS Twenty healthy individuals (10 women, 21-34 years old) participated. Defined sensory stimuli were applied to both hands (innocuous touch, mechanical pain, and heat pain) and the vestibular organ (galvanic stimulation) during 3 T functional MRI. RESULTS Bilateral thalamic activations could be detected for touch, mechanical pain, and vestibular stimulation within the left medio-dorsal and right anterior thalamus. Heat pain did not lead to thalamic activation at all. Stimuli applied to the left body side resulted in stronger activation patterns. Comparing an early with a late stimulation interval, the mentioned activation patterns were far more pronounced within the early stimulation interval. CONCLUSIONS The right anterior and ventral-anterior nucleus and the left medio-dorsal nucleus appear to be important for the processing of multimodal sensory information. In addition, galvanic stimulation is processed more laterally compared to mechanical pain. The observed changes in activity within the thalamic nuclei depending on the stimulation interval suggest that the stimuli are processed in a thalamic network rather than a distinct nucleus. In particular, the vestibular network within the thalamus recruits bilateral nuclei, rendering the thalamus an important integrative structure for vestibular function.
Collapse
Affiliation(s)
- Kathrin Habig
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany.
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany
| | - Gothje Lautenschläger
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany
| | - Bertram Walter
- Bender Institute of Neuroimaging, Justus-Liebig-University, 35394, Giessen, Germany
- Center for Mind, Brain and Behavior, Philipps University Marburg and Justus Liebig University, Giessen, Germany
| | - Christoph Best
- Department of Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| |
Collapse
|
5
|
Ma S, Huang H, Zhong Z, Zheng H, Li M, Yao L, Yu B, Wang H. Effect of acupuncture on brain regions modulation of mild cognitive impairment: A meta-analysis of functional magnetic resonance imaging studies. Front Aging Neurosci 2022; 14:914049. [PMID: 36212046 PMCID: PMC9540390 DOI: 10.3389/fnagi.2022.914049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background As a non-pharmacological therapy, acupuncture has significant efficacy in treating Mild Cognitive Impairment (MCI) compared to pharmacological therapies. In recent years, advances in neuroimaging techniques have provided new perspectives to elucidate the central mechanisms of acupuncture for MCI. Many acupuncture brain imaging studies have found significant improvements in brain function after acupuncture treatment of MCI, but the underlying mechanisms of brain regions modulation are unclear. Objective A meta-analysis of functional magnetic resonance imaging studies of MCI patients treated with acupuncture was conducted to summarize the effects of acupuncture on the modulation of MCI brain regions from a neuroimaging perspective. Methods Using acupuncture, neuroimaging, magnetic resonance, and Mild Cognitive Impairment as search terms, PubMed, EMBASE, Web of Science, Cochrane Library, Cochrane Database of Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effects (DARE), Google Scholar, China National Knowledge Infrastructure (CNKI), China Biology Medicine disk (CBM disk), Wanfang and Chinese Scientific Journal Database (VIP) for brain imaging studies on acupuncture on MCI published up to April 2022. Voxel-based neuroimaging meta-analysis of fMRI data was performed using voxel-based d Mapping with Permutation of Subject Images (SDM-PSI), allowing for Family-Wise Error Rate (FWER) correction correction for correction multiple comparisons of results. Subgroup analysis was used to compare the differences in brain regions between the acupuncture treatment group and other control groups. Meta-regression was used to explore demographic information and altered cognitive function effects on brain imaging outcomes. Linear models were drawn using MATLAB 2017a, and visual graphs for quality evaluation were produced using R software and RStudio software. Results A total of seven studies met the inclusion criteria, with 94 patients in the treatment group and 112 patients in the control group. All studies were analyzed using the regional homogeneity (ReHo) method. The experimental design of fMRI included six task state studies and one resting-state study. The meta-analysis showed that MCI patients had enhanced activity in the right insula, left anterior cingulate/paracingulate gyri, right thalamus, right middle frontal gyrus, right median cingulate/paracingulate gyri, and right middle temporal gyrus brain regions after acupuncture treatment. Further analysis of RCT and longitudinal studies showed that Reho values were significantly elevated in two brain regions, the left anterior cingulate/paracingulate gyrus and the right insula, after acupuncture. The MCI group showed stronger activity in the right supramarginal gyrus after acupuncture treatment compared to healthy controls. Meta-regression analysis showed that the right anterior thalamic projection ReHo index was significantly correlated with the MMSE score after acupuncture treatment in all MCI patients. Conclusions Acupuncture therapy has a modulating effect on the brain regions of MCI patients. However, due to the inadequate experimental design of neuroimaging studies, multi-center neuroimaging studies with large samples are needed better to understand the potential neuroimaging mechanisms of acupuncture for MCI. In addition, machine learning algorithm-based predictive models for evaluating the efficacy of acupuncture for MCI may become a focus of future research. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022287826, identifier: CRD 42022287826.
Collapse
Affiliation(s)
- Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haipeng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Yao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Koppel L, Novembre G, Kämpe R, Savallampi M, Morrison I. Prediction and action in cortical pain processing. Cereb Cortex 2022; 33:794-810. [PMID: 35289367 PMCID: PMC9890457 DOI: 10.1093/cercor/bhac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Predicting that a stimulus is painful facilitates action to avoid harm. But how distinct are the neural processes underlying the prediction of upcoming painful events vis-à-vis those taking action to avoid them? Here, we investigated brain activity as a function of current and predicted painful or nonpainful thermal stimulation, as well as the ability of voluntary action to affect the duration of upcoming stimulation. Participants performed a task which involved the administration of a painful or nonpainful stimulus (S1), which predicted an immediately subsequent very painful or nonpainful stimulus (S2). Pressing a response button within a specified time window during S1 either reduced or did not reduce the duration of the upcoming stimulation. Predicted pain increased activation in several regions, including anterior cingulate cortex (ACC), midcingulate cortex (MCC), and insula; however, activation in ACC and MCC depended on whether a meaningful action was performed, with MCC activation showing a direct relationship with motor output. Insula's responses for predicted pain were also modulated by potential action consequences, albeit without a direct relationship with motor output. These findings suggest that cortical pain processing is not specifically tied to the sensory stimulus, but instead, depends on the consequences of that stimulus for sensorimotor control of behavior.
Collapse
Affiliation(s)
- Lina Koppel
- Corresponding author: Department of Management and Engineering, Division of Economics, Linköping University, 581 83 Linköping, Sweden.
| | - Giovanni Novembre
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Mattias Savallampi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - India Morrison
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
7
|
Medeiros P, Medeiros AC, Coimbra JPC, de Paiva Teixeira LEP, Salgado-Rohner CJ, da Silva JA, Coimbra NC, de Freitas RL. Physical, Emotional, and Social Pain During COVID-19 Pandemic-Related Social Isolation. TRENDS IN PSYCHOLOGY 2022. [PMCID: PMC8886700 DOI: 10.1007/s43076-022-00149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The socio-emotional condition during the COVID-19 pandemic subsidises the (re)modulation of interactive neural circuits underlying risk assessment behaviour at the physical, emotional, and social levels. Experiences of social isolation, exclusion, or affective loss are generally considered some of the most “painful” things that people endure. The threats of social disconnection are processed by some of the same neural structures that process basic threats to survival. The lack of social connection can be “painful” due to an overlap in the neural circuitry responsible for both physical and emotional pain related to feelings of social rejection. Indeed, many of us go to great lengths to avoid situations that may engender these experiences. Accordingly, this work focuses on pandemic times; the somatisation mentioned above seeks the interconnection and/or interdependence between neural systems related to emotional and cognitive processes such that a person involved in an aversive social environment becomes aware of himself, others, and the threatening situation experienced and takes steps to avoid daily psychological and neuropsychiatric effects. Social distancing during isolation evokes the formation of social distress, increasing the intensity of learned fear that people acquire, consequently enhancing emotional and social pain.
Collapse
Affiliation(s)
- Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Jade Pisssamiglio Cysne Coimbra
- Pontificial Catholic University of Campinas (PUC-Campinas), Prof Dr Euryclides de Jesus Zerbini Str., 1516, Parque Rural Fazenda Santa Cândida, Campinas, São Paulo, 13087-571 Brazil
| | | | - Carlos José Salgado-Rohner
- NeuroSmart Lab, International School of Economics and Administrative Sciences, Universidad de La Sabana, Chia, Colombia
| | - José Aparecido da Silva
- Laboratory of Psychophysics, Perception, Psychometrics, and Pain, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), São Paulo, Ribeirão Preto 14049-901 Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
- Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva Str., 700, Alfenas, Minas Gerais 37130-000 Brazil
| |
Collapse
|
8
|
Cao ZM, Chen YC, Liu GY, Wang X, Shi AQ, Xu LF, Li ZJ, Huo JW, Zhang YN, Liu N, Yan CQ, Wang J. Abnormalities of Thalamic Functional Connectivity in Patients with Migraine: A Resting-State fMRI Study. Pain Ther 2022; 11:561-574. [PMID: 35220550 PMCID: PMC9098714 DOI: 10.1007/s40122-022-00365-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Migraine is a common headache disorder. Many studies have used magnetic resonance imaging (MRI) to explore the possible pathogenesis of migraine, but they have not reached consistent conclusions and lack rigorous multiple comparison correction. Thus, this study investigates the mechanisms of migraine development from the perspective of altered functional connectivity (FC) in brain regions by using data-driven and regions of interest (ROI)-based approaches. Methods Resting-state functional MRI data were collected from 30 patients with migraine and 40 healthy controls (HCs) matched for age, gender, and years of education. For the data-driven method, we used a voxel-mirrored homotopic connectivity (VMHC) approach to compare the FC between the patients and HCs. For the ROI-based method, significant differences in VMHC maps between the patients and HCs were defined as ROI. The seed-based approach further revealed significant differences in FC between the seeds and the other brain regions. Furthermore, the correlations between abnormal FC and clinical characteristics of patients were investigated. A rigorous multiple comparison correction was used with false discovery rate and permutation test (5000 times). Results In comparison with the controls group, patients showed enhanced VMHC in the bilateral thalamus. We also observed enhanced FC between the left thalamus and the left superior frontal gyrus, and increased FC between the right thalamus and the left middle frontal gyrus (Brodmann area 45 and Brodmann area 8) in patients. Further analysis showed that the FC values in the left superior frontal gyrus and left middle frontal gyrus were negatively corrected with visual analogue scale scores or attack times for headaches. Conclusions Patients with migraine showed altered VMHC in the bilateral thalamus, and abnormal FC of bilateral thalamus and other brain regions. The abnormalities in thalamic FC are a likely mechanism for the development of migraine. Trial Registration Chinese Clinical Trial Registry, ChiCTR2000033995. Registered on 20 June 2020.
Collapse
Affiliation(s)
- Zi-Min Cao
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Yi-Chao Chen
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Guo-Yun Liu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Xu Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - An-Qi Shi
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Lu-Fan Xu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Zhi-Jun Li
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China
| | - Jian-Wei Huo
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ya-Nan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Chao-Qun Yan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China.
| | - Jun Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
9
|
Maallo AMS, Moulton EA, Sieberg CB, Giddon DB, Borsook D, Holmes SA. A lateralized model of the pain-depression dyad. Neurosci Biobehav Rev 2021; 127:876-883. [PMID: 34090918 PMCID: PMC8289740 DOI: 10.1016/j.neubiorev.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Chronic pain and depression are two frequently co-occurring and debilitating conditions. Even though the former is treated as a physical affliction, and the latter as a mental illness, both disorders closely share neural substrates. Here, we review the association of pain with depression, especially when symptoms are lateralized on either side of the body. We also explore the overlapping regions in the forebrain implicated in these conditions. Finally, we synthesize these findings into a model, which addresses gaps in our understanding of comorbid pain and depression. Our lateralized pain-depression dyad model suggests that individuals diagnosed with depression should be closely monitored for pain symptoms in the left hemibody. Conversely, for patients in pain, with the exception of acute pain with a known source, referrals in today's pain centers for psychological evaluation should be part of standard practice, within the framework of an interdisciplinary approach to pain treatment.
Collapse
Affiliation(s)
- Anne Margarette S Maallo
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine B Sieberg
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Donald B Giddon
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA; Pain Management Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Borsook
- Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Holmes
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Kim D, Chae Y, Park HJ, Lee IS. Effects of Chronic Pain Treatment on Altered Functional and Metabolic Activities in the Brain: A Systematic Review and Meta-Analysis of Functional Neuroimaging Studies. Front Neurosci 2021; 15:684926. [PMID: 34290582 PMCID: PMC8287208 DOI: 10.3389/fnins.2021.684926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have identified altered brain changes in chronic pain patients, however, it remains unclear whether these changes are reversible. We summarized the neural and molecular changes in patients with chronic pain and employed a meta-analysis approach to quantify the changes. We included 75 studies and 11 of these 75 studies were included in the activation likelihood estimation (ALE) analysis. In the 62 functional magnetic resonance imaging (fMRI) studies, the primary somatosensory and motor cortex (SI and MI), thalamus, insula, and anterior cingulate cortex (ACC) showed significantly decreased activity after the treatments compared to baseline. In the 13 positron emission tomography (PET) studies, the SI, MI, thalamus, and insula showed significantly increased glucose uptake, blood flow, and opioid-receptor binding potentials after the treatments compared to baseline. A meta-analysis of fMRI studies in patients with chronic pain, during pain-related tasks, showed a significant deactivation likelihood cluster in the left medial posterior thalamus. Further studies are warranted to understand brain reorganization in patients with chronic pain compared to the normal state, in terms of its relationship with symptom reduction and baseline conditions.
Collapse
Affiliation(s)
- Dongwon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Interhemispheric co-alteration of brain homotopic regions. Brain Struct Funct 2021; 226:2181-2204. [PMID: 34170391 PMCID: PMC8354999 DOI: 10.1007/s00429-021-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer’s disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.
Collapse
|
12
|
Costa T, Manuello J, Ferraro M, Liloia D, Nani A, Fox PT, Lancaster J, Cauda F. BACON: A tool for reverse inference in brain activation and alteration. Hum Brain Mapp 2021; 42:3343-3351. [PMID: 33991154 PMCID: PMC8249901 DOI: 10.1002/hbm.25452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 04/10/2021] [Indexed: 01/17/2023] Open
Abstract
Over the past decades, powerful MRI‐based methods have been developed, which yield both voxel‐based maps of the brain activity and anatomical variation related to different conditions. With regard to functional or structural MRI data, forward inferences try to determine which areas are involved given a mental function or a brain disorder. A major drawback of forward inference is its lack of specificity, as it suggests the involvement of brain areas that are not specific for the process/condition under investigation. Therefore, a different approach is needed to determine to what extent a given pattern of cerebral activation or alteration is specifically associated with a mental function or brain pathology. In this study, we present a new tool called BACON (Bayes fACtor mOdeliNg) for performing reverse inference both with functional and structural neuroimaging data. BACON implements the Bayes' factor and uses the activation likelihood estimation derived‐maps to obtain posterior probability distributions on the evidence of specificity with regard to a particular mental function or brain pathology.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Mario Ferraro
- FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy.,Department of Physics, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Jack Lancaster
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Nani A, Manuello J, Mancuso L, Liloia D, Costa T, Vercelli A, Duca S, Cauda F. The pathoconnectivity network analysis of the insular cortex: A morphometric fingerprinting. Neuroimage 2021; 225:117481. [PMID: 33122115 DOI: 10.1016/j.neuroimage.2020.117481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.
Collapse
Affiliation(s)
- Andrea Nani
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Jordi Manuello
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Donato Liloia
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy.
| | - Alessandro Vercelli
- Neuroscience Institute of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy; Department of Neuroscience, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Franco Cauda
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
14
|
Lee J, Eun S, Kim J, Lee JH, Park K. Differential Influence of Acupuncture Somatosensory and Cognitive/Affective Components on Functional Brain Connectivity and Pain Reduction During Low Back Pain State. Front Neurosci 2019; 13:1062. [PMID: 31636536 PMCID: PMC6788296 DOI: 10.3389/fnins.2019.01062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
The underlying mechanism of pain reduction by acupuncture is still unclear, because acupuncture treatment involves multidimensional factors. In this study, we investigated the differential influence of acupuncture components on brain functional connectivity and on pain reduction. We used a specific form of sham acupuncture (phantom acupuncture; PHNT), which only has a needling-credibility (a belief that they were treated with real acupuncture needles), while real acupuncture (REAL) has a somatosensory needling stimulation, as well as a needling-credibility. Forty-three patients with low back pain were randomized into the REAL group (n = 25) and the PHNT group (n = 18). They underwent two pain steady-state fMRI runs implemented by a low back extension (LBE) pain model (lifting the low back using air-cuff inflation) before and after REAL or PHNT stimulation. Subjective pain ratings, perceived throughout the LBE runs due to the posture, were reported (LBEpain). The regions of interest (ROI) were (1) the main nodes of the default mode network (DMN) – the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), (2) the main nodes of the salience network (SN) – the anterior/posterior insular cortices (a/pINS), and (3) the low back-specific region of sensorimotor network (SMN), S1back. Significant reductions in LBEpain were observed in both groups (REAL = −1.02 ± 1.53, PHNT = −1.26 ± 2.20). In REAL group, decreased LBEpain was positively correlated with decreased functional connectivity between the mPFC and pINS (r = 0.58, P < 0.05). Reduced LBEpain in PHNT was negatively correlated with increased PCC–aINS connectivity (r = −0.48, P < 0.05) and tended toward positive correlation with decreased S1back–pINS connectivity (r = 0.44, P = 0.07). Our findings might suggest different brain mechanisms of observed pain reduction; REAL seems to involve detachment of the self from the sensory aspect of pain, while PHNT does to shift attention to self and disengages physical pain processing hubs. This exploratory study proposes a sham methodology to dissociate the influence of different acupuncture components in acupuncture research. Further studies need to be followed with more elaborated hypothesis, study design, and analysis considering various cognitive/affective factors for better understanding of brain mechanisms of pain reduction regarding the different acupuncture aspects.
Collapse
Affiliation(s)
- Jeungchan Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Seulgi Eun
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Jieun Kim
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jun-Hwan Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Kyungmo Park
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
15
|
Neuroimaging of Pain: Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation. Anesthesiology 2019; 128:1241-1254. [PMID: 29494401 DOI: 10.1097/aln.0000000000002137] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroimaging research has demonstrated definitive involvement of the central nervous system in the development, maintenance, and experience of chronic pain. Structural and functional neuroimaging has helped elucidate central nervous system contributors to chronic pain in humans. Neuroimaging of pain has provided a tool for increasing our understanding of how pharmacologic and psychologic therapies improve chronic pain. To date, findings from neuroimaging pain research have benefitted clinical practice by providing clinicians with an educational framework to discuss the biopsychosocial nature of pain with patients. Future advances in neuroimaging-based therapeutics (e.g., transcranial magnetic stimulation, real-time functional magnetic resonance imaging neurofeedback) may provide additional benefits for clinical practice. In the future, with standardization and validation, brain imaging could provide objective biomarkers of chronic pain, and guide treatment for personalized pain management. Similarly, brain-based biomarkers may provide an additional predictor of perioperative prognoses.
Collapse
|
16
|
Cauda F, Nani A, Manuello J, Premi E, Palermo S, Tatu K, Duca S, Fox PT, Costa T. Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain 2019; 141:3211-3232. [PMID: 30346490 DOI: 10.1093/brain/awy252] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
The pathological brain is characterized by distributed morphological or structural alterations in the grey matter, which tend to follow identifiable network-like patterns. We analysed the patterns formed by these alterations (increased and decreased grey matter values detected with the voxel-based morphometry technique) conducting an extensive transdiagnostic search of voxel-based morphometry studies in a large variety of brain disorders. We devised an innovative method to construct the networks formed by the structurally co-altered brain areas, which can be considered as pathological structural co-alteration patterns, and to compare these patterns with three associated types of connectivity profiles (functional, anatomical, and genetic). Our study provides transdiagnostical evidence that structural co-alterations are influenced by connectivity constraints rather than being randomly distributed. Analyses show that although all the three types of connectivity taken together can account for and predict with good statistical accuracy, the shape and temporal development of the co-alteration patterns, functional connectivity offers the better account of the structural co-alteration, followed by anatomic and genetic connectivity. These results shed new light on the possible mechanisms at the root of neuropathological processes and open exciting prospects in the quest for a better understanding of brain disorders.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy.,Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Palermo
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Szabó E, Galambos A, Kocsel N, Édes AE, Pap D, Zsombók T, Kozák LR, Bagdy G, Kökönyei G, Juhász G. Association between migraine frequency and neural response to emotional faces: An fMRI study. NEUROIMAGE-CLINICAL 2019; 22:101790. [PMID: 31146320 PMCID: PMC6462777 DOI: 10.1016/j.nicl.2019.101790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/12/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that migraine is associated with enhanced perception and altered cerebral processing of sensory stimuli. More recently, it has been suggested that this sensory hypersensitivity might reflect a more general enhanced response to aversive emotional stimuli. Using functional magnetic resonance imaging and emotional face stimuli (fearful, happy and sad faces), we compared whole-brain activation between 41 migraine patients without aura in interictal period and 49 healthy controls. Migraine patients showed increased neural activation to fearful faces compared to neutral faces in the right middle frontal gyrus and frontal pole relative to healthy controls. We also found that higher attack frequency in migraine patients was related to increased activation mainly in the right primary somatosensory cortex (corresponding to the face area) to fearful expressions and in the right dorsal striatal regions to happy faces. In both analyses, activation differences remained significant after controlling for anxiety and depressive symptoms. These findings indicate that enhanced response to emotional stimuli might explain the migraine trigger effect of psychosocial stressors that gradually leads to increased somatosensory response to emotional clues and thus contributes to the progression or chronification of migraine. First fMRI study to explore neural response to emotional faces in migraine patients Migraine patients showed increased activation to fear in the right frontal regions Migraine frequency was related to enhanced activation to fearful and happy faces Activation in the right S1 and dorsal striatum was linked to migraine frequency Sensitivity to emotional stimuli might have a role in triggering migraine
Collapse
Affiliation(s)
- Edina Szabó
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Attila Galambos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Natália Kocsel
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Andrea Edit Édes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Dorottya Pap
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Terézia Zsombók
- MR Research Center, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Lajos Rudolf Kozák
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| | - György Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gyöngyi Kökönyei
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gabriella Juhász
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary; Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
18
|
Shim M, Goodill S, Bradt J. Mechanisms of Dance/Movement Therapy for Building Resilience in People Experiencing Chronic Pain. AMERICAN JOURNAL OF DANCE THERAPY 2019. [DOI: 10.1007/s10465-019-09294-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Cauda F, Nani A, Manuello J, Liloia D, Tatu K, Vercelli U, Duca S, Fox PT, Costa T. The alteration landscape of the cerebral cortex. Neuroimage 2019; 184:359-371. [PMID: 30237032 PMCID: PMC7384593 DOI: 10.1016/j.neuroimage.2018.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
Growing evidence is challenging the assumption that brain disorders are diagnostically clear-cut categories. Transdiagnostic studies show that a set of cerebral areas is frequently altered in a variety of psychiatric as well as neurological syndromes. In order to provide a map of the altered areas in the pathological brain we devised a metric, called alteration entropy (A-entropy), capable of denoting the "structural alteration variety" of an altered region. Using the whole voxel-based morphometry database of BrainMap, we were able to differentiate the brain areas exhibiting a high degree of overlap between different neuropathologies (or high value of A-entropy) from those exhibiting a low degree of overlap (or low value of A-entropy). The former, which are parts of large-scale brain networks with attentional, emotional, salience, and premotor functions, are thought to be more vulnerable to a great range of brain diseases; while the latter, which include the sensorimotor, visual, inferior temporal, and supramarginal regions, are thought to be more informative about the specific impact of brain diseases. Since low A-entropy areas appear to be altered by a smaller number of brain disorders, they are more informative than the areas characterized by high values of A-entropy. It is also noteworthy that even the areas showing low values of A-entropy are substantially altered by a variety of brain disorders. In fact, no cerebral area appears to be only altered by a specific disorder. Our study shows that the overlap of areas with high A-entropy provides support for a transdiagnostic approach to brain disorders but, at the same time, suggests that fruitful differences can be traced among brain diseases, as some areas can exhibit an alteration profile more specific to certain disorders than to others.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Ugo Vercelli
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, USA; South Texas Veterans Health Care System, USA
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Cauda F, Nani A, Costa T, Palermo S, Tatu K, Manuello J, Duca S, Fox PT, Keller R. The morphometric co-atrophy networking of schizophrenia, autistic and obsessive spectrum disorders. Hum Brain Mapp 2018; 39:1898-1928. [PMID: 29349864 PMCID: PMC5895505 DOI: 10.1002/hbm.23952] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
By means of a novel methodology that can statistically derive patterns of co-alterations distribution from voxel-based morphological data, this study analyzes the patterns of brain alterations of three important psychiatric spectra-that is, schizophrenia spectrum disorder (SCZD), autistic spectrum disorder (ASD), and obsessive-compulsive spectrum disorder (OCSD). Our analysis provides five important results. First, in SCZD, ASD, and OCSD brain alterations do not distribute randomly but, rather, follow network-like patterns of co-alteration. Second, the clusters of co-altered areas form a net of alterations that can be defined as morphometric co-alteration network or co-atrophy network (in the case of gray matter decreases). Third, within this network certain cerebral areas can be identified as pathoconnectivity hubs, the alteration of which is supposed to enhance the development of neuronal abnormalities. Fourth, within the morphometric co-atrophy network of SCZD, ASD, and OCSD, a subnetwork composed of eleven highly connected nodes can be distinguished. This subnetwork encompasses the anterior insulae, inferior frontal areas, left superior temporal areas, left parahippocampal regions, left thalamus and right precentral gyri. Fifth, the co-altered areas also exhibit a normal structural covariance pattern which overlaps, for some of these areas (like the insulae), the co-alteration pattern. These findings reveal that, similarly to neurodegenerative diseases, psychiatric disorders are characterized by anatomical alterations that distribute according to connectivity constraints so as to form identifiable morphometric co-atrophy patterns.
Collapse
Affiliation(s)
- Franco Cauda
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Andrea Nani
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
- Michael Trimble Neuropsychiatry Research Group, University of Birmingham and BSMHFTBirminghamUK
| | - Tommaso Costa
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Sara Palermo
- Department of NeuroscienceUniversity of TurinTurinItaly
| | - Karina Tatu
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Jordi Manuello
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Sergio Duca
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center At San AntonioSan AntonioTexas
- South Texas Veterans Health Care SystemSan AntonioTexas
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit ASL Citta’ Di TorinoTurinItaly
| |
Collapse
|
21
|
Manuello J, Nani A, Premi E, Borroni B, Costa T, Tatu K, Liloia D, Duca S, Cauda F. The Pathoconnectivity Profile of Alzheimer's Disease: A Morphometric Coalteration Network Analysis. Front Neurol 2018; 8:739. [PMID: 29472885 PMCID: PMC5810291 DOI: 10.3389/fneur.2017.00739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
Gray matter alterations are typical features of brain disorders. However, they do not impact on the brain randomly. Indeed, it has been suggested that neuropathological processes can selectively affect certain assemblies of neurons, which typically are at the center of crucial functional networks. Because of their topological centrality, these areas form a core set that is more likely to be affected by neuropathological processes. In order to identify and study the pattern formed by brain alterations in patients’ with Alzheimer’s disease (AD), we devised an innovative meta-analytic method for analyzing voxel-based morphometry data. This methodology enabled us to discover that in AD gray matter alterations do not occur randomly across the brain but, on the contrary, follow identifiable patterns of distribution. This alteration pattern exhibits a network-like structure composed of coaltered areas that can be defined as coatrophy network. Within the coatrophy network of AD, we were able to further identify a core subnetwork of coaltered areas that includes the left hippocampus, left and right amygdalae, right parahippocampal gyrus, and right temporal inferior gyrus. In virtue of their network centrality, these brain areas can be thought of as pathoconnectivity hubs.
Collapse
Affiliation(s)
- Jordi Manuello
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy.,Michael Trimble Neuropsychiatry Research Group, Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| | - Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Tommaso Costa
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
22
|
|
23
|
Asano N, Maeshima S, Okamoto S, Okazaki H, Sonoda S. Thalamic Amnesia Accompanying Disruption of Pain Memory: A Case of Right Anterior Thalamic Infarction and a Subsequent Vertebral Compression Fracture. PAIN MEDICINE 2017; 18:997-1000. [PMID: 28339538 DOI: 10.1093/pm/pnw277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoki Asano
- Department of Rehabilitation, Nanakuri memorial hospital, Fujita Health University, Mie, Japan
| | - Shinichiro Maeshima
- Department of Rehabilitation, Nanakuri memorial hospital, Fujita Health University, Mie, Japan
| | - Sayaka Okamoto
- Department of Rehabilitation, Nanakuri memorial hospital, Fujita Health University, Mie, Japan
| | - Hideto Okazaki
- Department of Rehabilitation, Nanakuri memorial hospital, Fujita Health University, Mie, Japan
| | - Shigeru Sonoda
- Department of Rehabilitation, Nanakuri memorial hospital, Fujita Health University, Mie, Japan
| |
Collapse
|
24
|
Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89:120-134. [PMID: 28284849 PMCID: PMC7617013 DOI: 10.1016/j.cortex.2017.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/05/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022]
Abstract
Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities.
Collapse
Affiliation(s)
- D M Torta
- Institute of Neuroscience, Cognitive and System Neuroscience (COSY) Unit, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium.
| | - V Legrain
- Institute of Neuroscience, Cognitive and System Neuroscience (COSY) Unit, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - A Mouraux
- Institute of Neuroscience, Cognitive and System Neuroscience (COSY) Unit, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - E Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK
| |
Collapse
|
25
|
Cauda F, Costa T, Nani A, Fava L, Palermo S, Bianco F, Duca S, Tatu K, Keller R. Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?: A voxel-based meta-analysis. Autism Res 2017; 10:1079-1095. [PMID: 28339164 DOI: 10.1002/aur.1759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/30/2022]
Abstract
Schizophrenia spectrum disorder (SCZD), autism spectrum disorder (ASD), and obsessive-compulsive spectrum disorder (OCSD) are considered as three separate psychiatric conditions with, supposedly, different brain alterations patterns. From a neuroimaging perspective, this meta-analytic study aimed to address whether this nosographical differentiation is actually supported by different brain patterns of gray matter (GM) or white matter (WM) morphological alterations. We explored two possibilities: (a) to find out whether GM alterations are specific for SCZD, ASD, and OCSD; and (b) to associate the identified brain alteration patterns with cognitive dysfunctions by means of an analysis of lesion decoding. Our analysis reveals that these psychiatric spectra do not present clear distinctive patterns of alterations; rather, they all tend to be distributed in two alteration clusters. Cluster 1, which is more specific for SCZD, includes the anterior insular, anterior cingulate cortex, ventromedial prefrontal cortex, and frontopolar areas, which are parts of the cognitive control system. Cluster 2, which is more specific for OCSD, presents occipital, temporal, and parietal alteration patterns with the involvement of sensorimotor, premotor, visual, and lingual areas, thus forming a network that is more associated with the auditory-visual, auditory, premotor visual somatic functions. In turn, ASD appears to be uniformly distributed in the two clusters. The three spectra share a significant set of alterations. Our new approach promises to provide insight into the understanding of psychiatric conditions under the aspect of a common neurobiological substrate, possibly related to neuroinflammation during brain development. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1079-1095. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Focus Lab, Department of Psychology, University of Turin, Turin, Italy.,Department of Science, University of Eastern Piedmont, Italy.,Michael Trimble Psychiatric Research Group, University of Birmingham and BSMHFT, Birmingham, UK
| | - Luciano Fava
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Focus Lab, Department of Psychology, University of Turin, Turin, Italy.,Department of Science, University of Eastern Piedmont, Italy
| | - Sara Palermo
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Bianco
- Adult Autism Center, Local Health Unit DSM ASL TO2, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, Local Health Unit DSM ASL TO2, Turin, Italy
| |
Collapse
|
26
|
Gandhi W, Morrison I, Schweinhardt P. How Accurate Appraisal of Behavioral Costs and Benefits Guides Adaptive Pain Coping. Front Psychiatry 2017; 8:103. [PMID: 28659834 PMCID: PMC5467009 DOI: 10.3389/fpsyt.2017.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/26/2017] [Indexed: 01/07/2023] Open
Abstract
Coping with pain is a complex phenomenon encompassing a variety of behavioral responses and a large network of underlying neural circuits. Whether pain coping is adaptive or maladaptive depends on the type of pain (e.g., escapable or inescapable), personal factors (e.g., individual experiences with coping strategies in the past), and situational circumstances. Keeping these factors in mind, costs and benefits of different strategies have to be appraised and will guide behavioral decisions in the face of pain. In this review we present pain coping as an unconscious decision-making process during which accurately evaluated costs and benefits lead to adaptive pain coping behavior. We emphasize the importance of passive coping as an adaptive strategy when dealing with ongoing pain and thus go beyond the common view of passivity as a default state of helplessness. In combination with passive pain coping, we highlight the role of the reward system in reestablishing affective homeostasis and discuss existing evidence on a behavioral and neural level. We further present neural circuits involved in the decision-making process of pain coping when circumstances are ambiguous and, therefore, costs and benefits are difficult to anticipate. Finally, we address the wider implications of this topic by discussing its relevance for chronic pain patients.
Collapse
Affiliation(s)
- Wiebke Gandhi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,The Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada.,School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - India Morrison
- Center for Affective and Social Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Petra Schweinhardt
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,The Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Interdisciplinary Spinal Research Group, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
27
|
Lee J, Lin RL, Garcia RG, Kim J, Kim H, Loggia ML, Mawla I, Wasan AD, Edwards RR, Rosen BR, Hadjikhani N, Napadow V. Reduced insula habituation associated with amplification of trigeminal brainstem input in migraine. Cephalalgia 2016; 37:1026-1038. [PMID: 27521844 DOI: 10.1177/0333102416665223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Impaired sensory processing in migraine can reflect diminished habituation, increased activation, or even increased gain or amplification of activity from the primary synapse in the brainstem to higher cortical/subcortical brain regions. Methods We scanned 16 episodic migraine (interictal) and 16 healthy controls (cross-sectional study), and evaluated brain response to innocuous air-puff stimulation over the right forehead in the ophthalmic nerve (V1) trigeminal territory. We further evaluated habituation, and cortical/subcortical amplification relative to spinal trigeminal nucleus (Sp5) activation. Results Migraine subjects showed greater amplification from Sp5 to the posterior insula and hypothalamus. In addition, while controls showed habituation to repetitive sensory stimulation in all activated cortical regions (e.g. the bilateral posterior insula and secondary somatosensory cortices), for migraine subjects, habituation was not found in the posterior insula. Moreover, in migraine, the habituation slope was correlated with the amplification ratio in the posterior insula and secondary somatosensory cortex, i.e. greater amplification was associated with reduced habituation in these regions. Conclusions These findings suggest that in episodic migraine, amplified information processing from spinal trigeminal relay nuclei is linked to an impaired habituation response. This phenomenon was localized in the posterior insula, highlighting the important role of this structure in mechanisms supporting altered sensory processing in episodic migraine.
Collapse
Affiliation(s)
- Jeungchan Lee
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard L Lin
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,2 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Ronald G Garcia
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,3 Neurovascular Science Group, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia.,4 Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jieun Kim
- 5 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Hyungjun Kim
- 5 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Marco L Loggia
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ishtiaq Mawla
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ajay D Wasan
- 6 Department of Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert R Edwards
- 7 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nouchine Hadjikhani
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- 1 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,7 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Wilcox SL, Veggeberg R, Lemme J, Hodkinson DJ, Scrivani S, Burstein R, Becerra L, Borsook D. Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine. Front Hum Neurosci 2016; 10:366. [PMID: 27507939 PMCID: PMC4960233 DOI: 10.3389/fnhum.2016.00366] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification.
Collapse
Affiliation(s)
- Sophie L Wilcox
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA
| | - Rosanna Veggeberg
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| | - Jordan Lemme
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
| | - Duncan J Hodkinson
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA
| | - Steven Scrivani
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston MA, USA
| | - Rami Burstein
- Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA
| | - Lino Becerra
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| | - David Borsook
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| |
Collapse
|
29
|
Viewing the body modulates both pain sensations and pain responses. Exp Brain Res 2016; 234:1795-1805. [PMID: 26884131 PMCID: PMC4893070 DOI: 10.1007/s00221-016-4585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/30/2016] [Indexed: 01/23/2023]
Abstract
Viewing the body can influence pain perception, even when vision is non-informative about the noxious stimulus. Prior studies used either continuous pain rating scales or pain detection thresholds, which cannot distinguish whether viewing the body changes the discriminability of noxious heat intensities or merely shifts reported pain levels. In Experiment 1, participants discriminated two intensities of heat-pain stimulation. Noxious stimuli were delivered to the hand in darkness immediately after participants viewed either their own hand or a non-body object appearing in the same location. The visual condition varied randomly between trials. Discriminability of the noxious heat intensities (d′) was lower after viewing the hand than after viewing the object, indicating that viewing the hand reduced the information about stimulus intensity available within the nociceptive system. In Experiment 2, the hand and the object were presented in separate blocks of trials. Viewing the hand shifted perceived pain levels irrespective of actual stimulus intensity, biasing responses toward ‘high pain’ judgments. In Experiment 3, participants saw the noxious stimulus as it approached and touched their hand or the object. Seeing the pain-inducing event counteracted the reduction in discriminability found when viewing the hand alone. These findings show that viewing the body can affect both perceptual processing of pain and responses to pain, depending on the visual context. Many factors modulate pain; our study highlights the importance of distinguishing modulations of perceptual processing from modulations of response bias.
Collapse
|
30
|
Manuello J, Vercelli U, Nani A, Costa T, Cauda F. Mindfulness meditation and consciousness: An integrative neuroscientific perspective. Conscious Cogn 2016; 40:67-78. [DOI: 10.1016/j.concog.2015.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
|
31
|
Reches A, Nir RR, Shram M, Dickman D, Laufer I, Shani-Hershkovich R, Stern Y, Weiss M, Yarnitsky D, Geva A. A novel electroencephalography-based tool for objective assessment of network dynamics activated by nociceptive stimuli. Eur J Pain 2015; 20:250-62. [DOI: 10.1002/ejp.716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/05/2022]
Affiliation(s)
| | - R.-R. Nir
- Department of Neurology; Rambam Health Care Campus; Haifa Israel
- Clinical Neurophysiology Lab; Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| | - M.J. Shram
- Altreos Research Partners, Inc.; Toronto ON Canada
- Department of Pharmacology and Toxicology; University of Toronto; Toronto ON Canada
| | | | | | | | | | | | - D. Yarnitsky
- Department of Neurology; Rambam Health Care Campus; Haifa Israel
- Clinical Neurophysiology Lab; Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| | - A.B. Geva
- ElMindA Ltd.; Herzliya Israel
- Electrical and Computer Engineering; Ben Gurion University of the Negev; Beersheba Israel
| |
Collapse
|
32
|
Guan M, Ma L, Li L, Yan B, Zhao L, Tong L, Dou S, Xia L, Wang M, Shi D. Self-regulation of brain activity in patients with postherpetic neuralgia: a double-blind randomized study using real-time FMRI neurofeedback. PLoS One 2015; 10:e0123675. [PMID: 25848773 PMCID: PMC4388697 DOI: 10.1371/journal.pone.0123675] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Background A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients – patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception. Methods Sixteen patients (46–71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback. Results Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group’s and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal change and NRS change. Conclusion Patients with PHN could learn to voluntarily control over activation in rACC through rtfMRI neurofeedback and alter their pain perception level. The present study may provide new evidence that rtfMRI neurofeedback training may be a supplemental approach for chronic clinical pain management.
Collapse
Affiliation(s)
- Min Guan
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijia Ma
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Dermatology, Second People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Bin Yan
- China National Digital Switching System Engineering and Technological Research Center, Zhengzhou, Henan, China
| | - Lu Zhao
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Li Tong
- China National Digital Switching System Engineering and Technological Research Center, Zhengzhou, Henan, China
| | - Shewei Dou
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linjie Xia
- Department of Pain Management, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (MW); (DS)
| | - Dapeng Shi
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (MW); (DS)
| |
Collapse
|
33
|
Wilson-Mendenhall CD, Barrett LF, Barsalou LW. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks. Soc Cogn Affect Neurosci 2015; 10:62-71. [PMID: 24563528 PMCID: PMC4994840 DOI: 10.1093/scan/nsu037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/14/2022] Open
Abstract
The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of fear, sadness or happiness (scenario immersion), and then focused on and rated the pleasant or unpleasant feeling that emerged (valence focus) in most trials. As predicted, reliably greater activity in the 'default mode' network (including medial prefrontal cortex and posterior cingulate) was observed for atypical (vs typical) emotional experiences during scenario immersion, suggesting atypical instances require greater conceptual processing to situate the socio-emotional experience. During valence focus, reliably greater activity was observed for atypical (vs typical) emotional experiences in the 'salience' network (including anterior insula and anterior cingulate), suggesting atypical instances place greater demands on integrating shifting body signals with the sensory and social context. Consistent with emerging psychological construction approaches to emotion, these findings demonstrate that is it important to study the variability within common categories of emotional experience.
Collapse
Affiliation(s)
- Christine D Wilson-Mendenhall
- Department of Psychology, Northeastern University, 125 Nightingale Hall, Boston, MA 02115 and Department of Psychology, Emory University, 483 Psychology and Interdisciplinary Sciences Building, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, 125 Nightingale Hall, Boston, MA 02115 and Department of Psychology, Emory University, 483 Psychology and Interdisciplinary Sciences Building, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Lawrence W Barsalou
- Department of Psychology, Northeastern University, 125 Nightingale Hall, Boston, MA 02115 and Department of Psychology, Emory University, 483 Psychology and Interdisciplinary Sciences Building, 36 Eagle Row, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Effect of Chinese tuina massage therapy on resting state brain functional network of patients with chronic neck pain. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2015. [DOI: 10.1016/j.jtcms.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Rance M, Ruttorf M, Nees F, Schad LR, Flor H. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain. Front Behav Neurosci 2014; 8:357. [PMID: 25360092 PMCID: PMC4197653 DOI: 10.3389/fnbeh.2014.00357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/26/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC) and the left posterior insula (pInsL) on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1) or the pInsL (state 2) being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: [rACC-pInsL increase (state 1), rACC-pInsL decrease (state 2), pInsL-rACC increase (state 2), pInsL-rACC decrease (state 1)]. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e., learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of the the same state.
Collapse
Affiliation(s)
- Mariela Rance
- Department of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University Mannheim, Germany
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University Mannheim, Germany
| |
Collapse
|
36
|
Rance M, Ruttorf M, Nees F, Schad LR, Flor H. Real time fMRI feedback of the anterior cingulate and posterior insular cortex in the processing of pain. Hum Brain Mapp 2014; 35:5784-98. [PMID: 25045017 DOI: 10.1002/hbm.22585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/07/2014] [Indexed: 01/10/2023] Open
Abstract
Self-regulation of brain activation using real-time functional magnetic resonance imaging has been used to train subjects to modulate activation in various brain areas and has been associated with behavioral changes such as altered pain perception. The aim of this study was to assess the comparability of upregulation versus downregulation of activation in the rostral anterior cingulate cortex (rACC) and left posterior insula (pInsL) and its effect on pain intensity and unpleasantness. In a first study, we trained 10 healthy subjects to separately upregulate and downregulate the blood oxygenation level-dependent response in the rACC or pInsL (six trials on 4 days) in response to painful electrical stimulation. The participants learned to significantly downregulate activation in pInsL and rACC and upregulate pInsL but not rACC. Success in the modulation of one region and direction of the modulation was not significantly correlated with success in another condition, indicating that the ability to control pain-related brain activation is site-specific. Less covariation between the areas in response to the nociceptive stimulus was positively correlated with learning success. Upregulation or downregulation of either region was unrelated to pain intensity or unpleasantness; however, our subjects did not learn rACC upregulation, which might be important for pain control. A significant increase in pain unpleasantness was found during upregulation of pInsL when covariation with the rACC was low. These initial results suggest that the state of the network involved in the processing of pain needs to be considered in the modulation of pain-evoked activation and its behavioral effects.
Collapse
Affiliation(s)
- Mariela Rance
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
37
|
Atlas LY, Lindquist MA, Bolger N, Wager TD. Brain mediators of the effects of noxious heat on pain. Pain 2014; 155:1632-1648. [PMID: 24845572 DOI: 10.1016/j.pain.2014.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
Abstract
Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain.
Collapse
Affiliation(s)
- Lauren Y Atlas
- Section on Affective Neuroscience and Pain, National Center for Complementary and Alternative Medicine, US National Institutes of Health, Bethesda, MD, USA Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA Department of Psychology, Columbia University, New York, NY, USA Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO, USA
| | | | | | | |
Collapse
|
38
|
Cauda F, Costa T, Diano M, Duca S, Torta DME. Beyond the "Pain Matrix," inter-run synchronization during mechanical nociceptive stimulation. Front Hum Neurosci 2014; 8:265. [PMID: 24955085 PMCID: PMC4017139 DOI: 10.3389/fnhum.2014.00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/10/2014] [Indexed: 12/26/2022] Open
Abstract
Pain is a complex experience that is thought to emerge from the activity of multiple brain areas, some of which are inconsistently detected using traditional fMRI analysis. One hypothesis is that the traditional analysis of pain-related cerebral responses, by relying on the correlation of a predictor and the canonical hemodynamic response function (HRF)- the general linear model (GLM)- may under-detect the activity of those areas involved in stimulus processing that do not present a canonical HRF. In this study, we employed an innovative data-driven processing approach- an inter-run synchronization (IRS) analysis- that has the advantage of not establishing any pre-determined predictor definition. With this method we were able to evidence the involvement of several brain regions that are not usually found when using predictor-based analysis. These areas are synchronized during the administration of mechanical punctate stimuli and are characterized by a BOLD response different from the canonical HRF. This finding opens to new approaches in the study of pain imaging.
Collapse
Affiliation(s)
- Franco Cauda
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin Turin, Italy
| | - Matteo Diano
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy
| | - Diana M E Torta
- GCS fMRI, Koelliker Hospital and Department of Psychology, University of Turin Turin, Italy ; Department of Psychology, University of Turin Turin, Italy
| |
Collapse
|
39
|
Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NEUROIMAGE-CLINICAL 2014; 4:676-86. [PMID: 24936419 PMCID: PMC4053643 DOI: 10.1016/j.nicl.2014.04.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 01/18/2023]
Abstract
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. Chronic pain causes both core and pathology-specific. GM alterations in brain networks. Model-based clustering revealed that chronic pain selectively targets brain networks. Chronic pain can be better conceived and studied in a network perspective.
Collapse
Affiliation(s)
- Franco Cauda
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Sara Palermo
- Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Riccardo Torta
- Department of Neuroscience, AOU San Giovanni Battista, Turin, Italy ; Psycho-Oncology and Clinical Psychology Unit, University of Turin, Città della Salute e della Scienza, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy
| | - Ugo Vercelli
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy
| | - Giuliano Geminiani
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| | - Diana M E Torta
- GCS fMRI, Koelliker Hospital, Department of Psychology, University of Turin, Turin, Italy ; Functional Neuroimaging and Complex Systems Group, Department of Psychology, University of Turin, Turin, Italy ; Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Pujol J, Blanco-Hinojo L, Batalla A, López-Solà M, Harrison BJ, Soriano-Mas C, Crippa JA, Fagundo AB, Deus J, de la Torre R, Nogué S, Farré M, Torrens M, Martín-Santos R. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users. J Psychiatr Res 2014; 51:68-78. [PMID: 24411594 DOI: 10.1016/j.jpsychires.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recreational drugs are generally used to intentionally alter conscious experience. Long-lasting cannabis users frequently seek this effect as a means to relieve negative affect states. As with conventional anxiolytic drugs, however, changes in subjective feelings may be associated with memory impairment. We have tested whether the use of cannabis, as a psychoactive compound, is associated with alterations in spontaneous activity in brain networks relevant to self-awareness, and whether such potential changes are related to perceived anxiety and memory performance. METHODS Functional connectivity was assessed in the Default and Insula networks during resting state using fMRI in 28 heavy cannabis users and 29 control subjects. Imaging assessments were conducted during cannabis use in the unintoxicated state and repeated after one month of controlled abstinence. RESULTS Cannabis users showed increased functional connectivity in the core of the Default and Insula networks and selective enhancement of functional anticorrelation between both. Reduced functional connectivity was observed in areas overlapping with other brain networks. Observed alterations were associated with behavioral measurements in a direction suggesting anxiety score reduction and interference with memory performance. Alterations were also related to the amount of cannabis used and partially persisted after one month of abstinence. CONCLUSIONS Chronic cannabis use was associated with significant effects on the tuning and coupling of brain networks relevant to self-awareness, which in turn are integrated into brain systems supporting the storage of personal experience and motivated behavior. The results suggest potential mechanisms for recreational drugs to interfere with higher-order network interactions generating conscious experience.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain; Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain
| | - Albert Batalla
- Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM, University of Barcelona, Barcelona, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Marina López-Solà
- MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Carlos III Health Institute, Ministry of Science and Innovation, CIBERSAM, Spain
| | - Jose A Crippa
- Department of Neuroscience and Behavior, RibeirãoPreto Medical School, University of São Paulo, Brazil; INCT Translational Medicine (CNPq), Brazil
| | - Ana B Fagundo
- Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain; Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Santiago Nogué
- Section of Clinical Toxicology, Emergency Service, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain; School of Medicine, Autonomous University of Barcelona, Red de Trastornos Adictivos (RETIC), Barcelona, Spain
| | - Marta Torrens
- Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain; School of Medicine, Autonomous University of Barcelona, Red de Trastornos Adictivos (RETIC), Barcelona, Spain
| | - Rocío Martín-Santos
- Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM, University of Barcelona, Barcelona, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain; INCT Translational Medicine (CNPq), Brazil
| |
Collapse
|
41
|
Nekovarova T, Yamamotova A, Vales K, Stuchlik A, Fricova J, Rokyta R. Common mechanisms of pain and depression: are antidepressants also analgesics? Front Behav Neurosci 2014; 8:99. [PMID: 24723864 PMCID: PMC3971163 DOI: 10.3389/fnbeh.2014.00099] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/09/2014] [Indexed: 12/16/2022] Open
Abstract
Neither pain, nor depression exist as independent phenomena per se, they are highly subjective inner states, formed by our brain and built on the bases of our experiences, cognition and emotions. Chronic pain is associated with changes in brain physiology and anatomy. It has been suggested that the neuronal activity underlying subjective perception of chronic pain may be divergent from the activity associated with acute pain. We will discuss the possible common pathophysiological mechanism of chronic pain and depression with respect to the default mode network of the brain, neuroplasticity and the effect of antidepressants on these two pathological conditions. The default mode network of the brain has an important role in the representation of introspective mental activities and therefore can be considered as a nodal point, common for both chronic pain and depression. Neuroplasticity which involves molecular, cellular and synaptic processes modifying connectivity between neurons and neuronal circuits can also be affected by pathological states such as chronic pain or depression. We suppose that pathogenesis of depression and chronic pain shares common negative neuroplastic changes in the central nervous system (CNS). The positive impact of antidepressants would result in a reduction of these pathological cellular/molecular processes and in the amelioration of symptoms, but it may also increase survival times and quality of life of patients with chronic cancer pain.
Collapse
Affiliation(s)
- Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Zoology, Ecology and Ethology Research Group, Faculty of Natural Science, Charles University in PraguePrague, Czech Republic
| | - Anna Yamamotova
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in PraguePrague, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jitka Fricova
- Department of Anesthesiology and Intensive Care Medicine, Pain Management Center, First Faculty of Medicine and General University Hospital, Charles University in PraguePrague, Czech Republic
| | - Richard Rokyta
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
42
|
Krahé C, Springer A, Weinman JA, Fotopoulou A. The social modulation of pain: others as predictive signals of salience - a systematic review. Front Hum Neurosci 2013; 7:386. [PMID: 23888136 PMCID: PMC3719078 DOI: 10.3389/fnhum.2013.00386] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behavior, and spatial proximity of an observer, modulate pain. Based on a systematic literature search, we identified 26 studies on experimentally induced pain that manipulated different interpersonal variables and measured behavioral, physiological, and neural pain-related responses. We observed that the modulation of pain by interpersonal factors depended on (1) the degree to which the social partners were active or were perceived by the participants to possess possibility for action; (2) the degree to which participants could perceive the specific intentions of the social partners; (3) the type of pre-existing relationship between the social partner and the person in pain, and lastly, (4) individual differences in relating to others and coping styles. Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a) prior beliefs about interpersonal relating and (b) the certainty or precision by which an interpersonal interaction may predict environmental threat or safety.
Collapse
Affiliation(s)
- Charlotte Krahé
- Department of Psychology, Institute of Psychiatry, King’s College London, London, UK
| | - Anne Springer
- Department of Sport and Exercise Psychology, University of Potsdam, Potsdam, Germany
| | - John A. Weinman
- Department of Psychology, Institute of Psychiatry, King’s College London, London, UK
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
43
|
Kriegeskorte N, Kievit RA. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn Sci 2013; 17:401-12. [PMID: 23876494 PMCID: PMC3730178 DOI: 10.1016/j.tics.2013.06.007] [Citation(s) in RCA: 473] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023]
Abstract
Representational geometry is a framework that enables us to relate brain, computation, and cognition. Representations in brains and models can be characterized by representational distance matrices. Distance matrices can be readily compared to test computational models. We review recent insights into perception, cognition, memory, and action and discuss current challenges.
The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure.
Collapse
|
44
|
Cauda F, Costa T, Diano M, Sacco K, Duca S, Geminiani G, Torta DME. Massive modulation of brain areas after mechanical pain stimulation: a time-resolved FMRI study. ACTA ACUST UNITED AC 2013; 24:2991-3005. [PMID: 23796948 DOI: 10.1093/cercor/bht153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To date, relatively little is known about the spatiotemporal aspects of whole-brain blood oxygenation level-dependent (BOLD) responses to brief nociceptive stimuli. It is known that the majority of brain areas show a stimulus-locked response, whereas only some are characterized by a canonical hemodynamic response function. Here, we investigated the time course of brain activations in response to mechanical pain stimulation applied to participants' hands while they were undergoing functional magnetic resonance imaging (fMRI) scanning. To avoid any assumption about the shape of BOLD response, we used an unsupervised data-driven method to group voxels sharing a time course similar to the BOLD response to the stimulus and found that whole-brain BOLD responses to painful mechanical stimuli elicit massive activation of stimulus-locked brain areas. This pattern of activations can be segregated into 5 clusters, each with a typical temporal profile. In conclusion, we show that an extensive activity of multiple networks is engaged at different time latencies after presentation of a noxious stimulus. These findings aim to motivate research on a controversial topic, such as the temporal profile of BOLD responses, the variability of these response profiles, and the interaction between the stimulus-related BOLD response and ongoing fluctuations in large-scale brain networks.
Collapse
Affiliation(s)
- Franco Cauda
- CCS fMRI, Koelliker Hospital, Turin, Italy and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin, Turin, Italy
| | - Matteo Diano
- CCS fMRI, Koelliker Hospital, Turin, Italy and Department of Psychology, University of Turin, Turin, Italy
| | - Katiuscia Sacco
- CCS fMRI, Koelliker Hospital, Turin, Italy and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- CCS fMRI, Koelliker Hospital, Turin, Italy and
| | - Giuliano Geminiani
- CCS fMRI, Koelliker Hospital, Turin, Italy and Department of Psychology, University of Turin, Turin, Italy
| | - Diana M E Torta
- CCS fMRI, Koelliker Hospital, Turin, Italy and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
45
|
zu Eulenburg P, Baumgärtner U, Treede RD, Dieterich M. Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations. Neuroimage 2013; 83:75-86. [PMID: 23800791 DOI: 10.1016/j.neuroimage.2013.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 01/15/2023] Open
Abstract
The operculo-insular cortex has been termed the 'homeostatic control center' or 'general magnitude estimator' of the human mind. In this study, somatosensory, nociceptive and caloric vestibular stimuli were applied to reveal, whether there are mainly common, or possibly specific regions activated by one modality alone and whether lateralization effects, time pattern differences or influences of the aversive nature of the stimuli could be observed. Activation of the dorsal posterior insula was caused by all stimuli alike thus terming this area multimodal. Early phases of the noxious heat and caloric vestibular stimulation led to responses in the anterior insula. Using conjunction analyses we found that left- and right-sided tactile stimulation, but not nociceptive stimulation, caused a joint activation of the cytoarchitectonic area OP1 and nociceptive but not tactile stimulation of the anterior insula bilaterally. Tactile activation in the parietal operculum (SII, OP1) was distinct from nociceptive activation (OP3 and frontal operculum). The joint activation by all three stimuli located in the dorsal posterior insula argues for the presence of multisensory structures. The distinct activation of the anterior insula by aversive stimuli and the posterior insula by multisensory signals supports the concept of a partitioned insular cortex recently introduced based on connectivity studies and meta-analyses.
Collapse
Affiliation(s)
- P zu Eulenburg
- Department of Neurology, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | |
Collapse
|
46
|
Mehling WE, Daubenmier J, Price CJ, Acree M, Bartmess E, Stewart AL. Self-reported interoceptive awareness in primary care patients with past or current low back pain. J Pain Res 2013; 6:403-18. [PMID: 23766657 PMCID: PMC3677847 DOI: 10.2147/jpr.s42418] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Mind–body interactions play a major role in the prognosis of chronic pain, and mind–body therapies such as meditation, yoga, Tai Chi, and Feldenkrais presumably provide benefits for pain patients. The Multidimensional Assessment of Interoceptive Awareness (MAIA) scales, designed to measure key aspects of mind–body interaction, were developed and validated with individuals practicing mind–body therapies, but have never been used in pain patients. Methods We administered the MAIA to primary care patients with past or current low back pain and explored differences in the performance of the MAIA scales between this and the original validation sample. We compared scale means, exploratory item cluster and confirmatory factor analyses, scale–scale correlations, and internal-consistency reliability between the two samples and explored correlations with validity measures. Results Responses were analyzed from 435 patients, of whom 40% reported current pain. Cross-sectional comparison between the two groups showed marked differences in eight aspects of interoceptive awareness. Factor and cluster analyses generally confirmed the conceptual model with its eight dimensions in a pain population. Correlations with validity measures were in the expected direction. Internal-consistency reliability was good for six of eight MAIA scales. We provided specific suggestions for their further development. Conclusion Self-reported aspects of interoceptive awareness differ between primary care patients with past or current low back pain and mind–body trained individuals, suggesting further research is warranted on the question whether mind–body therapies can alter interoceptive attentional styles with pain. The MAIA may be useful in assessing changes in aspects of interoceptive awareness and in exploring the mechanism of action in trials of mind–body interventions in pain patients.
Collapse
Affiliation(s)
- Wolf E Mehling
- Osher Center for Integrative Medicine, Institute for Health and Aging, University of California, San Francisco, CA, USA ; Department of Family and Community Medicine, Institute for Health and Aging, University of California, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Xue T, Yuan K, Zhao L, Yu D, Zhao L, Dong T, Cheng P, von Deneen KM, Qin W, Tian J. Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One 2012; 7:e52927. [PMID: 23285228 PMCID: PMC3532057 DOI: 10.1371/journal.pone.0052927] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine. METHODS/PRINCIPAL FINDINGS Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA) and 23 age- and gender-matched healthy controls (HC) were analyzed using independent component analysis (ICA), in combination with a "dual-regression" technique to identify the group differences of three important pain-related networks [default mode network (DMN), bilateral central executive network (CEN), salience network (SN)] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN) and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine. CONCLUSIONS Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.
Collapse
Affiliation(s)
- Ting Xue
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Kai Yuan
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Ling Zhao
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dahua Yu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Limei Zhao
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Tao Dong
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Ping Cheng
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Karen M. von Deneen
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|