1
|
Fruhauf S, Pühringer D, Thamhesl M, Fajtl P, Kunz-Vekiru E, Höbartner-Gussl A, Schatzmayr G, Adam G, Damborsky J, Djinovic-Carugo K, Prokop Z, Moll WD. Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone. ACS Catal 2024; 14:3392-3410. [PMID: 38449531 PMCID: PMC10913051 DOI: 10.1021/acscatal.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.
Collapse
Affiliation(s)
- Sebastian Fruhauf
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
| | - Michaela Thamhesl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Patricia Fajtl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Elisavet Kunz-Vekiru
- Institute
of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology
IFA-Tulln, University of Natural Resources
and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, Tulln 3430, Austria
| | - Andreas Höbartner-Gussl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerd Schatzmayr
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerhard Adam
- Institute
of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Straße
24, Tulln 3430, Austria
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Kristina Djinovic-Carugo
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- European
Molecular Biology Laboratory (EMBL) Grenoble, Grenoble 38000, France
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Wulf-Dieter Moll
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| |
Collapse
|
2
|
Dai C, Hou M, Yang X, Wang Z, Sun C, Wu X, Wang S. Increased NAD + levels protect female mouse reproductive system against zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reprod Toxicol 2024; 124:108530. [PMID: 38159578 DOI: 10.1016/j.reprotox.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Xudong Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhefeng Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China.
| |
Collapse
|
3
|
Hu J, Du S, Qiu H, Wu Y, Hong Q, Wang G, Mohamed SR, Lee YW, Xu J. A Hydrolase Produced by Rhodococcus erythropolis HQ Is Responsible for the Detoxification of Zearalenone. Toxins (Basel) 2023; 15:688. [PMID: 38133192 PMCID: PMC10747462 DOI: 10.3390/toxins15120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the prevalent contaminants found in food and feed, posing risks to human and animal health. In this study, we isolated a ZEN-degrading strain from soil and identified it as Rhodococcus erythropolis HQ. Analysis of degradation products clarified the mechanism by which R. erythropolis HQ degrades ZEN. The gene zenR responsible for degrading ZEN was identified from strain HQ, in which zenR is the key gene for R. erythropolis HQ to degrade ZEN, and its expression product is a hydrolase named ZenR. ZenR shared 58% sequence identity with the hydrolase ZenH from Aeromicrobium sp. HA, but their enzymatic properties were significantly different. ZenR exhibited maximal enzymatic activity at pH 8.0-9.0 and 55 °C, with a Michaelis constant of 21.14 μM, and its enzymatic activity is 2.8 times that of ZenH. The catalytic triad was identified as S132-D157-H307 via molecular docking and site-directed mutagenesis. Furthermore, the fermentation broth of recombinant Bacillus containing ZenR can be effectively applied to liquefied corn samples, with the residual amount of ZEN decreased to 0.21 μg/g, resulting in a remarkable ZEN removal rate of 93%. Thus, ZenR may serve as a new template for the modification of ZEN hydrolases and a new resource for the industrial application of biological detoxification. Consequently, ZenR could potentially be regarded as a novel blueprint for modifying ZEN hydrolases and as a fresh resource for the industrial implementation of biological detoxification.
Collapse
Affiliation(s)
- Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
| | - Shilong Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Han Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Yuzhuo Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza 12411, Egypt;
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
4
|
Deng T, Chen Y, Zhang J, Gao Y, Yang C, Jiang W, Ou X, Wang Y, Guo L, Zhou T, Yuan QS. A Probiotic Bacillus amyloliquefaciens D-1 Strain Is Responsible for Zearalenone Detoxifying in Coix Semen. Toxins (Basel) 2023; 15:674. [PMID: 38133178 PMCID: PMC10747864 DOI: 10.3390/toxins15120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium spp., which commonly and severely contaminate food/feed. ZEN severely affects food/feed safety and reduces economic losses owing to its carcinogenicity, genotoxicity, reproductive toxicity, endocrine effects, and immunotoxicity. To explore efficient methods to detoxify ZEN, we identified and characterized an efficient ZEN-detoxifying microbiota from the culturable microbiome of Pseudostellaria heterophylla rhizosphere soil, designated Bacillus amyloliquefaciens D-1. Its highest ZEN degradation rate reached 96.13% under the optimal condition. And, D-1 can almost completely remove ZEN (90 μg·g-1) from coix semen in 24 h. Then, the D-1 strain can detoxify ZEN to ZEM, which is a new structural metabolite, through hydrolyzation and decarboxylation at the ester group in the lactone ring and amino acid esterification at C2 and C4 hydroxy. Notably, ZEM has reduced the impact on viability, and the damage of cell membrane and nucleus DNA and can significantly decrease the cell apoptosis in the HepG2 cell and TM4 cell. In addition, it was found that the D-1 strain has no adverse effect on the HepG2 and TM4 cells. Our findings can provide an efficient microbial resource and a reliable reference strategy for the biological detoxification of ZEN.
Collapse
Affiliation(s)
- Tao Deng
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yefei Chen
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yanping Gao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Xiaohong Ou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yanhong Wang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China;
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Qing-Song Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China;
| |
Collapse
|
5
|
Qiu Y, Xu H, Ji Q, Xu R, Zhu M, Dang Y, Shi X, Zhang L, Xia Y. Mutation, food-grade expression, and characterization of a lactonase for zearalenone degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12638-6. [PMID: 37401996 DOI: 10.1007/s00253-023-12638-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.
Collapse
Affiliation(s)
- Yangyu Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huidong Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qinyi Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rongrong Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Shandong Freda Bioeng Co., Ltd., Jinan, 250101, China
| | - Mulan Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Xizhi Shi
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lili Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
7
|
Li K, Jia J, Xu Q, Wu N. Whole-genome sequencing and phylogenomic analyses of a novel zearalenone-degrading Bacillus subtilis B72. 3 Biotech 2023; 13:103. [PMID: 36866327 PMCID: PMC9971418 DOI: 10.1007/s13205-023-03517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus strain B72 was previously isolated as a novel zearalenone (ZEN) degradation strain from the oil field soil in Xinjiang, China. The genome of B72 was sequenced with a 400 bp paired-end using the Illumina HiSeq X Ten platform. De novo genome assembly was performed using SOAPdenovo2 assemblers. Phylogenetic analysis using 16S rRNA gene sequencing demonstrated that B72 is closely related to the novel Bacillus subtilis (B. subtilis) strain DSM 10. A phylogenetic tree based on 31 housekeeping genes, constructed with 19 strains closest at the species level, showed that B72 was closely related to B. subtilis 168, B. licheniformis PT-9, and B. tequilensis KCTC 13622. Detailed phylogenomic analysis using average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) demonstrated that B72 might be classified as a novel B. subtilis strain. Our study demonstrated that B72 could degrade 100% of ZEN in minimal medium after 8 h of incubation, which makes it the fastest degrading strain to date. Moreover, we confirmed that ZEN degradation by B72 might involve degrading enzymes produced during the initial period of bacterial growth. Subsequently, functional genome annotation revealed that the laccase-encoding genes yfiH (gene 1743) and cotA (gene 2671) might be related to ZEN degradation in B72. The genome sequence of B. subtilis B72 reported here will provide a reference for genomic research on ZEN degradation in the field of food and feed. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03517-y.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Jianyao Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| |
Collapse
|
8
|
Wang S, Fu W, Zhao X, Chang X, Liu H, Zhou L, Li J, Cheng R, Wu X, Li X, Sun C. Zearalenone disturbs the reproductive-immune axis in pigs: the role of gut microbial metabolites. MICROBIOME 2022; 10:234. [PMID: 36536466 PMCID: PMC9762105 DOI: 10.1186/s40168-022-01397-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to zearalenone (ZEN, a widespread Fusarium mycotoxin) causes reproductive toxicity and immunotoxicity in farm animals, and it then poses potential threats to human health through the food chain. A systematic understanding of underlying mechanisms on mycotoxin-induced toxicity is necessary for overcoming potential threats to farm animals and humans. The gastrointestinal tract is a first-line defense against harmful mycotoxins; however, it remains unknown whether mycotoxin (e.g., ZEN)-induced toxicity on the reproductive-immune axis is linked to altered gut microbial metabolites. In this study, using pigs (during the three phases) as an important large animal model, we investigated whether ZEN-induced toxicity on immune defense in the reproductive-immune axis was involved in altered gut microbial-derived metabolites. Moreover, we observed whether the regulation of gut microbial-derived metabolites through engineering ZEN-degrading enzymes counteracted ZEN-induced toxicity on the gut-reproductive-immune axis. RESULTS Here, we showed ZEN exposure impaired immune defense in the reproductive-immune axis of pigs during phase 1/2. This impairment was accompanied by altered gut microbial-derived metabolites [e.g., decreased butyrate production, and increased lipopolysaccharides (LPS) production]. Reduction of butyrate production impaired the intestinal barrier via a GPR109A-dependent manner, and together with increased LPS in plasma then aggravated the systemic inflammation, thus directly and/or indirectly disturbing immune defense in the reproductive-immune axis. To validate these findings, we further generated recombinant Bacillus subtilis 168-expressing ZEN-degrading enzyme ZLHY-6 (the Bs-Z6 strain) as a tool to test the feasibility of enzymatic removal of ZEN from mycotoxin-contaminated food. Notably, modified gut microbial metabolites (e.g., butyrate, LPS) through the recombinant Bs-Z6 strain counteracted ZEN-induced toxicity on the intestinal barrier, thus enhancing immune defense in the reproductive-immune axis of pigs during phase-3. Also, butyrate supplementation restored ZEN-induced abnormalities in the porcine small intestinal epithelial cell. CONCLUSIONS Altogether, these results highlight the role of gut microbial-derived metabolites in ZEN-induced toxicity on the gut-reproductive-immune axis. Importantly, targeting these gut microbial-derived metabolites opens a new window for novel preventative strategies or therapeutic interventions for mycotoxicosis associated to ZEN.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Xueya Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xiaojiao Chang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Lin Zhou
- Shenzhen Premix INVE Nutrition, Co., LTD., Shenzhen, 518100, The People's Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Rui Cheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, The People's Republic of China.
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
| |
Collapse
|
9
|
Guo Y, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Combined in silico investigation and in vitro characterization of the zearalenone detoxification potential of dye-decolorizing peroxidase from Bacillus subtilis 168. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
12
|
Murtaza B, Li X, Dong L, Javed MT, Xu L, Saleemi MK, Li G, Jin B, Cui H, Ali A, Wang L, Xu Y. Microbial and enzymatic battle with food contaminant zearalenone (ZEN). Appl Microbiol Biotechnol 2022; 106:4353-4365. [PMID: 35705747 DOI: 10.1007/s00253-022-12009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | | | - Le Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China. .,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
13
|
Yang X, Li F, Ning H, Zhang W, Niu D, Shi Z, Chai S, Shan A. Screening of Pig-Derived Zearalenone-Degrading Bacteria through the Zearalenone Challenge Model, and Their Degradation Characteristics. Toxins (Basel) 2022; 14:toxins14030224. [PMID: 35324721 PMCID: PMC8952410 DOI: 10.3390/toxins14030224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Zearalenone (ZEN) is widely found in food and feed. Its cytotoxicity, reproductive toxicity, genetic toxicity, immunotoxicity and hepatorenal toxicity have serious impacts on human and animal health. In order to help animals avoid ZEN poisoning in feed, ZEN-degrading bacterial strains were screened from fecal samples through a zearalenone challenge pig model, and their degradation characteristics were researched. Through the optimization of parameters such as the culture time, pH value, temperature, and strain concentration, the optimal conditions for the ZEN-degrading ability of these strains were preliminarily determined, and the active site of the ZEN degradation was explored. In this study, three strains (SY-3, SY-14, SY-20) with high ZEN degradation capacities were obtained. SY-3 was identified as Proteus mirabilis, and its main degrading component was the supernatant. SY-14 and SY-20 were identified as Bacillus subtilis. Their main degrading components were the intracellular fluid of SY-14, and the intracellular fluid and cell wall of SY-20. The above results showed that the ZEN challenge model was an effective way to screen ZEN-degrading bacteria.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Feng Li
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Correspondence:
| | - Hangyi Ning
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Wei Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyan Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Zhuo Shi
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Sa Chai
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Anshan Shan
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| |
Collapse
|
14
|
Cloning and Characterization of Three Novel Enzymes Responsible for the Detoxification of Zearalenone. Toxins (Basel) 2022; 14:toxins14020082. [PMID: 35202110 PMCID: PMC8879097 DOI: 10.3390/toxins14020082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Zearalenone is a common mycotoxin contaminant in cereals that causes severe economic losses and serious risks to health of human and animals. Many strategies have been devised to degrade ZEN and keep food safe. The hydrolase ZHD101 from Clonostachys rosea, which catalyzes the hydrolytic degradation of ZEN, has been studied widely. In the current research, three new enzymes that have the capacity to detoxify ZEN were identified, namely CLA, EXO, and TRI, showing 61%, 63%, and 97% amino acids identities with ZHD101, respectively. Three coding genes was expressed as heterologous in Escherichia coli BL21. Through biochemical analysis, the purified recombinant CLA, EXO, TRI, and ZHD101 exhibited high activities of degrading ZEN with the specific activity of 114.8 U/mg, 459.0 U/mg, 239.8 U/mg, and 242.8 U/mg. The optimal temperatures of CLA, EXO, TRI, and ZHD101 were 40 °C, 40 °C, 40 °C, and 45 °C, and their optimum pH were 7.0, 9.0, 9.5, and 9.0, respectively. Our study demonstrated that the novel enzymes CLA, EXO, and TRI possessed high ability to degrade ZEN from the model solutions and could be the promising candidates for ZEN detoxification in practical application.
Collapse
|
15
|
Zhang P, Jing C, Liang M, Jiang S, Huang L, Jiao N, Li Y, Yang W. Zearalenone Exposure Triggered Cecal Physical Barrier Injury through the TGF-β1/Smads Signaling Pathway in Weaned Piglets. Toxins (Basel) 2021; 13:toxins13120902. [PMID: 34941739 PMCID: PMC8708673 DOI: 10.3390/toxins13120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to investigate the effects of exposure to different dosages of zearalenone (ZEA) on cecal physical barrier functions and its mechanisms based on the TGF-β1/Smads signaling pathway in weaned piglets. Thirty-two weaned piglets were allotted to four groups and fed a basal diet supplemented with ZEA at 0, 0.15, 1.5, and 3.0 mg/kg, respectively. The results showed that 1.5 and 3.0 mg/kg ZEA damaged cecum morphology and microvilli, and changed distribution and shape of M cells. Moreover, 1.5 and 3.0 mg/kg ZEA decreased numbers of goblet cells, the expressions of TFF3 and tight junction proteins, and inhibited the TGF-β1/Smads signaling pathway. Interestingly, the 0.15 mg/kg ZEA had no significant effect on cecal physical barrier functions but decreased the expressions of Smad3, p-Smad3 and Smad7. Our study suggests that high-dose ZEA exposure impairs cecal physical barrier functions through inhibiting the TGF-β1/Smads signaling pathway, but low-dose ZEA had no significant effect on cecum morphology and integrity through inhibiting the expression of smad7. These findings provide a scientific basis for helping people explore how to reduce the toxicity of ZEA in feeds.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Changwei Jing
- Technical Department, Shandong Chinwhiz Co., Ltd., Weifang 262400, China;
| | - Ming Liang
- Department of Feeding Microecology, Shandong Baolaililai Bioengineering Co., Ltd., Tai’an 271001, China;
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Ning Jiao
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Yang Li
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| |
Collapse
|
16
|
Kępińska-Pacelik J, Biel W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins (Basel) 2021; 13:822. [PMID: 34822606 PMCID: PMC8622594 DOI: 10.3390/toxins13110822] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Mycotoxins can be found in many foods consumed by humans and animals. These substances are secondary metabolites of some fungi species and are resistant to technological processes (cooking, frying, baking, distillation, fermentation). They most often contaminate products of animal (beef, pork, poultry, lamb, fish, game meat, milk) and plant origin (cereals, processed cereals, vegetables, nuts). It is estimated that about 25% of the world's harvest may be contaminated with mycotoxins. These substances damage crops and may cause mycotoxicosis. Many mycotoxins can be present in food, together with mold fungi, increasing the exposure of humans and animals to them. In this review we characterized the health risks caused by mycotoxins found in food, pet food and feed. The most important groups of mycotoxins are presented in terms of their toxicity and occurrence.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
17
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
18
|
Zhu Y, Drouin P, Lepp D, Li XZ, Zhu H, Castex M, Zhou T. A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins (Basel) 2021; 13:294. [PMID: 33919181 PMCID: PMC8143168 DOI: 10.3390/toxins13050294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22-42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Pascal Drouin
- Lallemand Inc., Montréal, QC H1W 2N8, Canada; (P.D.); (M.C.)
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Mathieu Castex
- Lallemand Inc., Montréal, QC H1W 2N8, Canada; (P.D.); (M.C.)
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| |
Collapse
|
19
|
Wu K, Ren C, Gong Y, Gao X, Rajput SA, Qi D, Wang S. The insensitive mechanism of poultry to zearalenone: A review. ACTA ACUST UNITED AC 2021; 7:587-594. [PMID: 34377845 PMCID: PMC8327487 DOI: 10.1016/j.aninu.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is one of the most common contaminating mycotoxins and is mainly produced by Fusarium graminearum. ZEN and its metabolites can interfere with estrogen function and affect animals' reproductive ability. Pigs are most susceptible to ZEN, and ZEN is less harmful to poultry than to pigs. The exact mechanism for the difference in susceptibility remains unclear. In this review, we summarized some possible reasons for the relative insensitivity of poultry to ZEN, such as the lower total amount of α-zearalenol (α-ZOL) and the α-ZOL-to-β-ZOL ratio which reduce the toxicity of ZEN to poultry. The faster hepatic and enteric circulation, and excretion capacity in poultry can excrete more ZEN and its metabolites. There are other possible factors such as the transformation of intestinal microorganisms, differences in hydroxysteroid dehydrogenases' activity, high estrogen levels, and low estrogen receptors affinity which can also cause poultry to be relatively insensitive to ZEN. In this review, we summarized the hazards, pollution status, metabolic pathways, and some measures to mitigate ZEN's harmfulness. Specifically, we discussed the possible mechanisms of low reproductive toxicity by ZEN in poultry.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxi Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangfan Gong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Gao
- Cargill Animal Nutrition Technology Application Center, Bazhou, 065000, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
22
|
Effect of Gamma-Radiation on Zearalenone-Degradation, Cytotoxicity and Estrogenicity. Foods 2020; 9:foods9111687. [PMID: 33218048 PMCID: PMC7698921 DOI: 10.3390/foods9111687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is produced in cereals by different species of Fusarium, being a non-steroidal estrogenic mycotoxin. Despite having a low acute toxicity, ZEA strongly interferes with estrogen receptors. Gamma-radiation has been investigated to eliminate mycotoxins from food and feed, showing promising results. The present study aims to investigate the gamma-radiation effect on ZEA at different moisture conditions and to evaluate the cytotoxicity and estrogenicity of the irradiated ZEA. Different concentrations of dehydrated ZEA and aqueous solutions of ZEA were exposed to gamma-radiation doses ranging from 0.4 to 8.6 kGy and the mycotoxin concentration determined after exposure by high performance liquid chromatography (HPLC) with fluorescence detection. Following this, the cytotoxicity of irradiated samples was assessed in HepG2 cells, by measuring alterations of metabolic activity, plasma membrane integrity and lysosomal function, and their estrogenicity by measuring luciferase activity in HeLa 9903 cells. Gamma-radiation was found to be effective in reducing ZEA, with significant increases in degradation with increased moisture content. Furthermore, a reduction of cytotoxicity with irradiation was observed. ZEA estrogenicity was also increasingly reduced with increasing radiation doses, but mainly in aqueous solutions. These results suggest reduction of ZEA levels and of its toxicity in food and feed commodities may be achieved by irradiation.
Collapse
|
23
|
Wojcieszyńska D, Marchlewicz A, Guzik U. Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds. Molecules 2020; 25:molecules25194473. [PMID: 33003396 PMCID: PMC7583021 DOI: 10.3390/molecules25194473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation.
Collapse
|
24
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
25
|
Shcherbakova L, Rozhkova A, Osipov D, Zorov I, Mikityuk O, Statsyuk N, Sinitsyna O, Dzhavakhiya V, Sinitsyn A. Effective Zearalenone Degradation in Model Solutions and Infected Wheat Grain Using a Novel Heterologous Lactonohydrolase Secreted by Recombinant Penicillium canescens. Toxins (Basel) 2020; 12:E475. [PMID: 32722498 PMCID: PMC7472149 DOI: 10.3390/toxins12080475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
This paper reports the first results on obtaining an enzyme preparation that might be promising for the simultaneous decontamination of plant feeds contaminated with a polyketide fusariotoxin, zearalenone (ZEN), and enhancing the availability of their nutritional components. A novel ZEN-specific lactonohydrolase (ZHD) was expressed in a Penicillium canescens strain PCA-10 that was developed previously as a producer of different hydrolytic enzymes for feed biorefinery. The recombinant ZHD secreted by transformed fungal clones into culture liquid was shown to remove the toxin from model solutions, and was able to decontaminate wheat grain artificially infected with a zearalenone-producing Fusarium culmorum. The dynamics of ZEN degradation depending on the temperature and pH of the incubation media was investigated, and the optimal values of these parameters (pH 8.5, 30 °C) for the ZHD-containing enzyme preparation (PR-ZHD) were determined. Under these conditions, the 3 h co-incubation of ZEN and PR-ZHD resulted in a complete removal of the toxin from the model solutions, while the PR-ZHD addition (8 mg/g of dried grain) to flour samples prepared from the infected ZEN-polluted grain (about 16 µg/g) completely decontaminated the samples after an overnight exposure.
Collapse
Affiliation(s)
- Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (V.D.)
| | - Alexandra Rozhkova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.R.); (D.O.); (I.Z.); (A.S.)
| | - Dmitrii Osipov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.R.); (D.O.); (I.Z.); (A.S.)
| | - Ivan Zorov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.R.); (D.O.); (I.Z.); (A.S.)
| | - Oleg Mikityuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (V.D.)
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (V.D.)
| | - Olga Sinitsyna
- Chemistry Department, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (V.D.)
| | - Arkady Sinitsyn
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.R.); (D.O.); (I.Z.); (A.S.)
- Chemistry Department, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
26
|
Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. ACTA ACUST UNITED AC 2020; 6:372-378. [PMID: 33005771 PMCID: PMC7503068 DOI: 10.1016/j.aninu.2020.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022]
Abstract
This study was conducted to evaluate the alleviation of Bacillus subtilis ANSB01G culture as zearalenone (ZEA) biodegradation agent on oxidative stress, cell apoptosis and fecal ZEA residue in the first parity gestation sows during the gestation. A total of 80 first-parity gilts (Yorkshire × Landrace) were randomly allocated to 4 dietary treatments with 20 replications per treatment and one gilt per replicate. The dietary treatments were as follows: CO (positive control); MO (negative control, ZEA level at 246 μg/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + ZEA level at 260 μg/kg diet + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). The experiment lasted for the whole gestation period of sows. Results showed that feeding the diet naturally contaminated with low-dose ZEA caused an increase of cell apoptosis in organ and the residual ZEA in feces as well as a decrease of antioxidant function in serum. The addition of B. subtilis ANSB01G culture in the diets can effectively alleviate the status of oxidative stress and cell apoptosis induced by ZEA in diets of gestation sows, as well as decrease the content of residual ZEA in feces.
Collapse
|
27
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
Zhou J, Zhu L, Chen J, Wang W, Zhang R, Li Y, Zhang Q, Wang W. Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135897. [PMID: 31887512 DOI: 10.1016/j.scitotenv.2019.135897] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
The danger of zearalenone (ZEN) as an endocrine disruptor to humans and the environment has aroused increasing attention. In this study, we implemented the quantum mechanics/molecular mechanics (QM/MM) method to investigate the degradation mechanism of ZEN hydrolase (RmZHD) toward ZEN at the atomic level. The degradation process involves two concerted reaction pathways, where the active site contains a Ser-His-Glu triplet as a proton donor. With the Boltzmann-weighted average potential barriers of 18.1 and 21.5 kcal/mol, the process undergoes proton transfer and nucleophilic-substituted ring opening to form a hydroxyl product. Non-covalent interaction analyses elucidated hydrogen bonding between key amino acids with ZEN. The electrostatic influence analysis of 16 amino acids proposes residues Asp34 and His128 as the possible mutation target for future mutation design of enzyme RmZHD. An in-depth investigation of the protein environment of RmZHD can improve the bioremediation efficiency of endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Jie Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jinfeng Chen
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
29
|
Zearalenone Biodegradation by the Combination of Probiotics with Cell-Free Extracts of Aspergillus oryzae and its Mycotoxin-Alleviating Effect on Pig Production Performance. Toxins (Basel) 2019; 11:toxins11100552. [PMID: 31547122 PMCID: PMC6832534 DOI: 10.3390/toxins11100552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022] Open
Abstract
In order to remove zearalenone (ZEA) detriment—Bacillus subtilis, Candida utilis, and cell-free extracts from Aspergillus oryzae were used to degrade ZEA in this study. The orthogonal experiment in vitro showed that the ZEA degradation rate was 92.27% (p < 0.05) under the conditions that Candida utilis, Bacillus subtilis SP1, and Bacillus subtilis SP2 were mixed together at 0.5%, 1.0%, and 1.0%. When cell-free extracts from Aspergillus oryzae were combined with the above probiotics at a ratio of 2:1 to make mycotoxin-biodegradation preparation (MBP), the ZEA degradation rate reached 95.15% (p < 0.05). In order to further investigate the MBP effect on relieving the negative impact of ZEA for pig production performance, 120 young pigs were randomly divided into 5 groups, with 3 replicates in each group and 8 pigs for each replicate. Group A was given the basal diet with 86.19 μg/kg ZEA; group B contained 300 μg/kg ZEA without MBP addition; and groups C, D, and E contained 300 μg/kg ZEA added with 0.05%, 0.10%, and 0.15% MBP, respectively. The results showed that MBP addition was able to keep gut microbiota stable. ZEA concentrations in jejunal contents in groups A and D were 89.47% and 80.07% lower than that in group B (p < 0.05), indicating that MBP was effective in ZEA biodegradation. In addition, MBP had no significant effect on pig growth, nutrient digestibility, and the relative mRNA abundance of estrogen receptor alpha (ERα) genes in ovaries and the uterus (p > 0.05).
Collapse
|
30
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
31
|
Wang N, Wu W, Pan J, Long M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms 2019; 7:microorganisms7070208. [PMID: 31330922 PMCID: PMC6680894 DOI: 10.3390/microorganisms7070208] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
32
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
33
|
Huang W, Chang J, Wang P, Liu C, Yin Q, Song A, Gao T, Dang X, Lu F. Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B₁ and Zearalenone. Toxins (Basel) 2019; 11:toxins11010012. [PMID: 30609651 PMCID: PMC6356961 DOI: 10.3390/toxins11010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Andong Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou 450001, China.
| | - Xiaowei Dang
- Henan Delin Biological Product Co. Ltd., Xinxiang 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co. Ltd., Zhoukou 466000, China.
| |
Collapse
|
34
|
Wang N, Li P, Wang M, Chen S, Huang S, Long M, Yang S, He J. The Protective Role of Bacillus velezensis A2 on the Biochemical and Hepatic Toxicity of Zearalenone in Mice. Toxins (Basel) 2018; 10:toxins10110449. [PMID: 30384460 PMCID: PMC6267044 DOI: 10.3390/toxins10110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin produced by Fusarium that seriously compromises the safety of animal and human health. In this study, our aim was to evaluate the protective effect of Bacillus velezensis A2 against biochemical and pathological changes induced by zearalenone in mice. Kunming mice (n = 40; 25 ± 2 g) were allotted to four treatment groups: a control group (basic feed); a ZEN group (basic feed with a ZEN dose of 60 mg/kg); an A2 strain fermented feed group (150 g of feed mixed with 150 mL of sterile distilled water and inoculated with 5 mL of phosphate buffer salt (PBS) resuspended A2 strain); and an A2 strain fermented ZEN-contaminated feed group. (A2 strain group 150 mL pure bacterial distilled water system mixed with 150 g ZEN-contaminated feed.) Our results showed that the Bacillus velezensis A2 strain can completely degrade the ZEN-contaminated feed within 5 days. (The concentration of ZEN in fermentation was 60 μg/mL.) After the mice fed for 28 days, compared with the control group, the activities of AST and ALT were increased, the activities of glutathione peroxidase (GSH-PX) and total superoxide dismutase (T-SOD) were decreased, and the amount of creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and malondialdehyde (MDA) in the ZEN group were increased in the mice serum (p < 0.05; p < 0.01). However, compared with the ZEN group, these biochemical levels were reversed in the A2 strain fermented feed group and in the A2 strain fermented ZEN-contaminated feed group (p < 0.05; p < 0.01). Furthermore, histopathological analysis only showed pathological changes of the mice liver in the ZEN group. The results showed that Bacillus velezensis A2 as additive could effectively remove ZEN contamination in the feed and protect the mice against the toxic damage of ZEN. In conclusion, Bacillus velezensis A2 has great potential use as a microbial feed additive to detoxify the toxicity of zearalenone in production practice.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Si Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Sheng Huang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
35
|
Wang N, Li P, Pan J, Wang M, Long M, Zang J, Yang S. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Sci Rep 2018; 8:13646. [PMID: 30206282 PMCID: PMC6133983 DOI: 10.1038/s41598-018-32006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin occurring in food and feeds, and it can cause oxidative damage and apoptosis in the testis, liver, and kidney. A current concern for researchers is how to reduce the harm it causes to humans and animals. In this study, our aim was to isolate and identify a novel and efficient ZEN-detoxifying strain of bacteria, and we aimed to assess the protective effect of the isolated strain on kidney damage caused by ZEN in mice. Our results indicated that a strain of Bacillus velezensis (B. velezensis), named A2, could completely degrade ZEN (7.45 μg/mL) after three days of incubation at 37 °C in the Luria-Bertani (LB) medium. This fermentation broth of the B. velezensis A2 strain was given to mice. The histopathological analysis indicated that the fermentation broth from the B. velezensis A2 strain reduced the degree of renal injury that is induced by ZEN. Furthermore, it greatly reduced the increase in serum levels of creatinine (CRE), uric acid (UA), and urea nitrogen (BUN) caused by ZEN. In addition, B. velezensis A2 strain also significantly inhibited the increase of malonaldehyde (MDA) content, and reversed the decreases of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities caused by ZEN. Studies have shown that ZEN is involved in the regulation of mRNA and protein levels of genes involved in the ER stress-induced apoptotic pathway, such as heavy chain binding protein (BIP), C-/-EBP homologous protein (CHOP), cysteine Aspartate-specific protease-12 (Caspase-12), c-Jun N-terminal kinase (JNK), and BCL2-related X protein (Bcl-2 and Bax). However, when mice were administered the fermentation broth of the B. velezensis A2 strain, it significantly reversed the expressions of these genes in their kidney tissue. In conclusion, our results indicate that the newly identified strain of B. velezensis A2, has a protective effect from renal injury induced by ZEN in mice. This strain has a potential application in the detoxification of ZEN in feed and protects animals from ZEN poisoning.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jian Zang
- Testing& Analysis Center, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
36
|
Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:546-559. [PMID: 29329096 DOI: 10.1016/j.envpol.2017.12.098] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 05/12/2023]
Abstract
Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; IMAM-AquaRio - Rio de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Domińska K, Piastowska-Ciesielska AW. Estrogen Receptor α Is Crucial in Zearalenone-Induced Invasion and Migration of Prostate Cancer Cells. Toxins (Basel) 2018; 10:toxins10030098. [PMID: 29495557 PMCID: PMC5869386 DOI: 10.3390/toxins10030098] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Zearalenone (ZEA), a mycotoxin produced in the genus Fusarium, binds to estrogen receptors (ER) and is therefore regarded as an endocrine disruptor. ZEA has also been found to modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner. This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM) on the invasion and migration of prostate cancer cell line PC3 is associated with ERs expression. The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay, gelatin zymography, Real Time qPCR (RTqPCR) and Western blot. The involvement of ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα) antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP) and estrogen receptor β (ERβ) antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl) pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP). ZEA was found to modulate cell motility dependent on estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes vimentin (VIM), zinc finger E-box-binding homeobox 1/2 (ZEB1/2) and transforming growth factor β 1 (TGFβ1). In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently on ERα expression.
Collapse
Affiliation(s)
- Karolina Kowalska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Dominika Ewa Habrowska-Górczyńska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Kinga Anna Urbanek
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Kamila Domińska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Agnieszka Wanda Piastowska-Ciesielska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| |
Collapse
|
38
|
Lee A, Cheng KC, Liu JR. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One 2017; 12:e0182220. [PMID: 28763483 PMCID: PMC5538671 DOI: 10.1371/journal.pone.0182220] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/16/2017] [Indexed: 12/02/2022] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium species, which has been shown to be associated with reproductive disorders in livestock, and to a lesser extent with hyperoestrogenic syndromes in humans. The aim of this study was to characterize a Bacillus amyloliquefaciens strain with ZEN removal ability. A pure culture of a strain designated LN isolated from moldy corn samples showed a high ZEN removal capability. Based on microscopic observations, biochemical characteristics, and phylogenetic analysis of the 16S rRNA gene sequence, LN was identified as B. amyloliquefaciens. After incubation of B. amyloliquefaciens LN in Luria-Bertani (LB) medium containing 3.5 ppm of ZEN, the ZEN concentration fell below the detection limit within 24 h. In ZEN-contaminated corn meal medium, B. amyloliquefaciens LN decreased ZEN concentration by 92% after 36 h of incubation. In phosphate-buffered saline (PBS) containing 5 ppm of ZEN, B. amyloliquefaciens LN reduced the ZEN concentration from 5 ppm to 3.28 ppm immediately after coming into contact with ZEN, and further reduced the ZEN concentration to 0.36 ppm after 4 h of incubation. The amounts of ZEN adsorbed by the cells of B. amyloliquefaciens LN did not increase with the extension of incubation time, indicating that B. amyloliquefaciens LN not only possessed ZEN adsorption ability, but also exhibited the ability to degrade ZEN. In addition, B. amyloliquefaciens LN was non-hemolytic, non-enterotoxin producing, and displayed probiotic characteristics including acidic tolerance, bile salt tolerance, and anti-pathogenic activities. These findings suggest that B. amyloliquefaciens LN has a potential to be used as a feed additive to reduce the concentrations of ZEN in feedstuffs.
Collapse
Affiliation(s)
- An Lee
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- * E-mail: (JRL); (KCC)
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (JRL); (KCC)
| |
Collapse
|
39
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|
40
|
Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. Zearalenone as an endocrine disruptor in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:141-149. [PMID: 27771507 DOI: 10.1016/j.etap.2016.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEA), a fungal mycotoxin, is present in a wide range of human foods. Many animal studies have found ZEA to possess a disruptive effect on the hormonal balance, mainly due to its similarity to naturally-occurring estrogens. With increasing consciousness of the adverse effects of endocrine disruptors on human health, it is becoming more important to monitor ZEA concentrations in food and identify its potential effects on human health. Based on a review of recent studies on animal models and molecular pathways in which ZEA is reported to have an influence on humans, we postulate that ZEA might act as an endocrine disruptor in humans in a similar way to animals. Moreover, its endocrine-disrupting effect might be also a causative factor in carcinogenesis. This review article summarizes the latest knowledge about the influence of ZEA on the human hormonal balance.
Collapse
Affiliation(s)
- Karolina Kowalska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Dominika Ewa Habrowska-Górczyńska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland.
| |
Collapse
|
41
|
Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets. Toxins (Basel) 2016; 8:toxins8100300. [PMID: 27763510 PMCID: PMC5086660 DOI: 10.3390/toxins8100300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is mainly produced by Fusarium fungi. In this study, Bacillus licheniformis CK1 isolated from soil with the capability of degrading ZEA was evaluated for its efficacy in reducing the adverse effects of ZEA in piglets. The gilts were fed one of the following three diets for 14 days: a basic diet for the control group; the basic diet supplemented with ZEA-contaminated basic diet for the treatment 1 (T1) group; and the basic diet supplemented with fermented ZEA-contaminated basic diet by CK1 for the treatment 2 (T2) group. The actual ZEA contents (analyzed) were 0, 1.20 ± 0.11, 0.47 ± 0.22 mg/kg for the control, T1, and T2 diets, respectively. The results showed that the T1 group had significantly increased the size of vulva and the relative weight of reproductive organs compared to the control group at the end of the trial. The T1 group significantly decreased the concentration of the luteinizing hormone (LH) compared with the control and T2 groups. Expression of ERβ was significantly up-regulated in the T2 group compared with the control. In addition, expression of ERβ was not different between the control and the T1 group. In summary, our results suggest that Bacillus licheniformis CK1 could detoxify ZEA in feed and reduce the adverse effects of ZEA in the gilts.
Collapse
|
42
|
Vanhoutte I, Audenaert K, De Gelder L. Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds. Front Microbiol 2016; 7:561. [PMID: 27199907 PMCID: PMC4843849 DOI: 10.3389/fmicb.2016.00561] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented.
Collapse
Affiliation(s)
| | | | - Leen De Gelder
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
43
|
Evaluation of reduced toxicity of zearalenone as measured by the Hep G2 cell assay on degradation enzymes. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Kriszt R, Winkler Z, Polyák Á, Kuti D, Molnár C, Hrabovszky E, Kalló I, Szőke Z, Ferenczi S, Kovács KJ. Xenoestrogens Ethinyl Estradiol and Zearalenone Cause Precocious Puberty in Female Rats via Central Kisspeptin Signaling. Endocrinology 2015; 156:3996-4007. [PMID: 26248220 DOI: 10.1210/en.2015-1330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xenoestrogens from synthetic or natural origin represent an increasing risk of disrupted endocrine functions including the physiological activity of the hypothalamo-pituitary-gonad axis. Ethinyl estradiol (EE2) is a synthetic estrogen used in contraceptive pills, whereas zearalenone (ZEA) is a natural mycoestrogen found with increasing prevalence in various cereal crops. Both EE2 and ZEA are agonists of estrogen receptor-α and accelerate puberty. However, the neuroendocrine mechanisms that are responsible for this effect remain unknown. Immature female Wistar rats were treated with EE2 (10 μg/kg), ZEA (10 mg/kg), or vehicle for 10 days starting from postnatal day 18. As a marker of puberty, the vaginal opening was recorded and neuropeptide and related transcription factor mRNA levels were measured by quantitative real time PCR and in situ hybridization histochemistry. Both ZEA and EE2 accelerated the vaginal opening, increased the uterine weight and the number of antral follicles in the ovary, and resulted in the increased central expression of gnrh. These changes occurred in parallel with an earlier increase of kiss1 mRNA in the anteroventral and rostral periventricular hypothalamus and an increased kisspeptin (KP) fiber density and KP-GnRH appositions in the preoptic area. These changes are compatible with a mechanism in which xenoestrogens overstimulate the developmentally unprepared reproductive system, which results in an advanced vaginal opening and an enlargement of the uterus at the periphery. Within the hypothalamus, ZEA and EE2 directly activate anteroventral and periventricular KP neurons to stimulate GnRH mRNA. However, GnRH and gonadotropin release and ovulation are disrupted due to xenoestrogen-mediated inhibitory KP signaling in the arcuate nucleus.
Collapse
Affiliation(s)
- Rókus Kriszt
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Ágnes Polyák
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Csilla Molnár
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Imre Kalló
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Zsuzsanna Szőke
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology (R.K., Z.W., A.P., D.K., S.F., K.J.K.) and Department of Endocrine Neurobiology (C.M., E.H., I.K.), Institute of Experimental Medicine, and Faculty of Information Technology and Bionics (A.P.), Tamás Roska Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Soft Flow Hungary Research and Development Ltd (Z.S.), Pécs H-7628, Hungary; János Szentágothai Doctoral School of Neurosciences (R.K., Z.W., D.K.), Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
45
|
Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 2015; 99:9745-59. [DOI: 10.1007/s00253-015-6936-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
|
46
|
Thamhesl M, Apfelthaler E, Schwartz-Zimmermann HE, Kunz-Vekiru E, Krska R, Kneifel W, Schatzmayr G, Moll WD. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol 2015; 15:73. [PMID: 25887091 PMCID: PMC4411749 DOI: 10.1186/s12866-015-0407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Conclusions Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Collapse
Affiliation(s)
| | - Elisabeth Apfelthaler
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Heidi Elisabeth Schwartz-Zimmermann
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Elisavet Kunz-Vekiru
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Wolfgang Kneifel
- Christian Doppler Laboratory for Innovative Bran Biorefinery, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | | | | |
Collapse
|
47
|
Sun X, He X, Xue KS, Li Y, Xu D, Qian H. Biological detoxification of zearalenone by Aspergillus niger strain FS10. Food Chem Toxicol 2014; 72:76-82. [PMID: 25007785 DOI: 10.1016/j.fct.2014.06.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) contamination of corn and cereal products is a serious health hazard throughout the world and its elimination by microbial methods is now being widely examined. In this study, an Aspergillus niger strain, FS10, isolated from Chinese fermented soybean, was shown to reduce levels of ZEN in corn steep liquor (CSL). Spores, mycelium and culture filtrate of the strain FS10 were tested for their ability to remove ZEN. The results indicated that strain FS10 could remove 89.56% of ZEN from potato dextrose broth (PDB) medium. Mycelium and culture filtrate decreased the ZEN content by 43.10% and 68.16%, respectively. The contaminated corn steep liquor initially contained ZEN 29 μg/ml, 60.01% of which could be removed by strain FS10. To demonstrate the loss of toxicity in vivo, the culture filtrate incubated with the contaminated corn steep liquor for 48 h was administered to rats. The results indicated that the contaminated corn steep liquor severely damaged liver and kidney tissue. Rats administered with contaminated corn steep liquor treated with the strain FS10 culture filtrate showed significantly less severe liver and kidney damage, and organ index values were comparable to the non-ZEN-exposed control (p<0.05). Our study suggests an effective approach to reduce the hazards of ZEN in corn steep liquor.
Collapse
Affiliation(s)
- Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xingxing He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kathy siyu Xue
- Department of Environmental Health Science, The University of Georgia, Athens, GA 30602, United States
| | - Yun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Dan Xu
- Department of Food Science, Shaanxi University of Science Technology, Xian 710021, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
48
|
Popiel D, Koczyk G, Dawidziuk A, Gromadzka K, Blaszczyk L, Chelkowski J. Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases. BMC Microbiol 2014; 14:82. [PMID: 24708405 PMCID: PMC4021089 DOI: 10.1186/1471-2180-14-82] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/20/2014] [Indexed: 01/05/2023] Open
Abstract
Background Zearalenone is a mycotoxin produced by several species of Fusarium genus, most notably Fusarium graminearum and Fusarium culmorum. This resorcylic acid lactone is one of the most important toxins causing serious animal and human diseases. For over two decades it has been known that the mycoparasitic fungus Clonostachys rosea (synonym: Gliocladium roseum, teleomorph: Bionectria ochroleuca) can detoxify zearalenone, however no such attributes have been described within the Trichoderma genus. Results We screened for the presence of zearalenone lactonohydrolase homologs in isolates of Clonostachys and Trichoderma genera. We report first finding of expressed zearalenone lactonohydrolase in Trichoderma aggressivum. For three isolates (T. aggressivum, C. rosea and Clonostachys catenulatum isolates), we were able to reconstruct full coding sequence and verify the biotransformation ability potential. Additionally, we assessed progression of the detoxification process (in terms of transcript accumulation and mycotoxin decomposition in vitro). In silico, search for origins of zearalenone lactonohydrolase activity in model fungal and bacterial genomes has shown that zearalenone lactonohydrolase homologs form a monophyletic fungal clade among the a/b hydrolase superfamily representatives. We corroborated the finding of functional enzyme homologs by investigating the functional sites (active site pocket with postulated, noncanonical Ser-Glu-His catalytic triad) conserved in both multiple sequence alignment and in homology-based structural models. Conclusions Our research shows the first finding of a functional zearalenone lactonohydrolase in mycoparasitic Trichoderma aggressivum (an activity earlier characterised in the Clonostachys rosea strains). The supporting evidence for presence and activity of functional enzyme homologs is based on the chemical analyses, gene expression patterns, homology models showing conservation of key structural features and marked reduction of zearalenone content in cultured samples (containing both medium and mycelium). Our findings also show divergent strategies of zearalenone biotransformation ability (rapid induced expression and detoxification vs. gradual detoxification) present in several members of Hypocreales order (Trichoderma and Clonostachys genera). The potential for lactonhydrolase activity directed towards zearalenone and/or similar compounds is likely ancient, with homologs present in several divergent filamentous fungi among both Sordariomycetes (Bionectria sp., Trichoderma sp., Apiospora montagnei) and Leotiomycetes (Marssonina brunnea f. sp. ‘multigermtubi’).
Collapse
Affiliation(s)
- Delfina Popiel
- Institute of Plant Genetics Polish Academy of Sciences, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Kosawang C, Karlsson M, Jensen DF, Dilokpimol A, Collinge DB. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics 2014; 15:55. [PMID: 24450745 PMCID: PMC3902428 DOI: 10.1186/1471-2164-15-55] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. RESULTS We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. CONCLUSION The present study identifies a number of transcripts encoding proteins that are potentially involved in conferring resistance to DON and ZEA in the mycoparasitic fungus C. rosea. Whilst metabolic readjustment is potentially the key to withstanding DON, the fungus produces ZHD101 to detoxify ZEA and ABC transporters to transport ZEA or its degradation products out from the fungal cell.
Collapse
Affiliation(s)
- Chatchai Kosawang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
50
|
Czeh A, Schwartz A, Mandy F, Szoke Z, Koszegi B, Feher-Toth S, Nagyeri G, Jakso P, Katona RL, Kemeny A, Woth G, Lustyik G. Comparison and evaluation of seven different bench-top flow cytometers with a modified six-plexed mycotoxin kit. Cytometry A 2013; 83:1073-84. [DOI: 10.1002/cyto.a.22335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/09/2013] [Accepted: 06/21/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Arpad Czeh
- Department of Biophysics, Faculty of Medicine; University of Pecs; Pecs Hungary
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| | - Abe Schwartz
- Center for Quantitative Cytometry; San Juan Puerto Rico
| | - Frank Mandy
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| | | | - Balazs Koszegi
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| | - Szilvia Feher-Toth
- Department of Biophysics, Faculty of Medicine; University of Pecs; Pecs Hungary
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| | - Gyorgy Nagyeri
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| | - Pal Jakso
- Department of Pathology, Faculty of Medicine; University of Pecs; Pecs Hungary
| | - Robert L. Katona
- Institute of Genetics; Biological Research Center of the Hungarian Academy of Sciences; Szeged Hungary
| | - Agnes Kemeny
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine; University of Pecs; Pecs Hungary
| | - Gabor Woth
- Department of Laboratory Medicine, Faculty of Medicine; University of Pecs; Pecs Hungary
| | - Gyorgy Lustyik
- Department of Biophysics, Faculty of Medicine; University of Pecs; Pecs Hungary
- R&D Laboratory; Soft Flow Hungary R&D Ltd.; Pecs Hungary
| |
Collapse
|