1
|
Simião GM, Parreira KS, Klein SG, Ferreira FB, Freitas FDS, Silva EFD, Silva NM, Silva MVD, Lima WR. Involvement of Inflammatory Cytokines, Renal NaPi-IIa Cotransporter, and TRAIL Induced-Apoptosis in Experimental Malaria-Associated Acute Kidney Injury. Pathogens 2024; 13:376. [PMID: 38787228 DOI: 10.3390/pathogens13050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA was used to investigate the relationship among pro-inflammatory cytokines, alterations in renal function biomarkers, and the induction of the TRAIL apoptosis pathway during malaria-associated acute kidney injury (AKI). Renal function was evaluated through the measurement of plasma creatinine and blood urea nitrogen (BUN). The mRNA expression of several cytokines and NaPi-IIa was quantified. Kidney sections were examined and cytokine levels were assessed using cytometric bead array (CBA) assays. The presence of glomerular IgG deposits and apoptosis-related proteins were investigated using in situ immunofluorescence assays and quantitative real-time PCR, respectively. NaPi-IIa downregulation in the kidneys provided novel insights into the pathogenesis of hypophosphatemia during CM. Histopathological analysis revealed characteristic features of severe malaria-associated nephritis, including glomerular collapse and tubular alterations. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, were upregulated. The TRAIL apoptosis pathway was significantly activated, implicating its role in renal apoptosis. The observed alterations in renal biomarkers and the downregulation of NaPi-IIa shed light on potential mechanisms contributing to renal dysfunction in ECM. The intricate balance between pro- and anti-inflammatory cytokines, along with the activation of the TRAIL apoptosis pathway, highlights the complexity of malaria-associated AKI and provides new therapeutic targets.
Collapse
Affiliation(s)
- Gustavo Martins Simião
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
| | | | - Sandra Gabriela Klein
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Flávia Batista Ferreira
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | | | | | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | - Murilo Vieira da Silva
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Wânia Rezende Lima
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
- Institute of Biotechnology, Federal University of Catalao, Catalão 75706-881, GO, Brazil
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| |
Collapse
|
2
|
Sun J, Zhao X, Shen H, Dong J, Rong S, Cai W, Zhang R. CD44-targeted melanin-based nanoplatform for alleviation of ischemia/reperfusion-induced acute kidney injury. J Control Release 2024; 368:1-14. [PMID: 38367863 DOI: 10.1016/j.jconrel.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a serious kidney disease with high morbidity and mortality. However, there is no effective clinical treatment strategy. Herein, we developed a CD44 targeting nanoplatform based on HA-assembled melanin NPs covalently coupled with dexamethasone for I/R-induced AKI therapy by alleviating oxidative/inflammatory- induced damage. The constructed HA-MNP-DXM NPs had good dispersion, stability, and broad-spectrum scavenging capabilities against multiple reactive free radicals. Moreover, the NPs could be efficiently internalized and exhibited antioxidative, anti-inflammatory, and antiapoptotic effects in CoCl2-stimulated renal tubular epithelial NRK-52E cells. Furthermore, the I/R-induced AKI murine model was established to evaluate the in vivo performance of NPs. The results suggested the NPs could specifically target impaired kidneys upon intravenous administration according to NIR-II fluorescence imaging and showed high biosafety. Importantly, the NPs could improve renal function, alleviate oxidative stress and inflammatory reactions, inhibit apoptosis of tubular cells, and restore mitochondrial structure and function, exhibiting excellent therapeutic effects. Further therapeutic mechanism indicated the NPs maintained the cellular/mitochondrial redox balance by modulating the Nrf2 and HO-1 expression. Therefore, the NPs can be a promising therapeutic candidate for the treatment of I/R-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xuhui Zhao
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Rong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Wenwen Cai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Kot K, Kupnicka P, Tarnowski M, Tomasiak P, Kosik-Bogacka D, Łanocha-Arendarczyk N. The role of apoptosis and oxidative stress in the pathophysiology of Acanthamoeba spp. infection in the kidneys of hosts with different immunological status. Parasit Vectors 2023; 16:445. [PMID: 38041167 PMCID: PMC10693070 DOI: 10.1186/s13071-023-06052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Acanthamoeba spp. are opportunistic pathogens that cause inflammation, mostly in the brain, lungs and cornea. Recent reports indicate kidney dysfunction in hosts with systemic acanthamoebiasis. The aim of the study was to analyze the gene expression and protein concentration of NADPH oxidase 2 and 4 (NOX2 and NOX4, respectively) and nuclear erythroid 2-related factor (Nrf2) in the kidneys of hosts with systemic acanthamoebiasis. We also aimed to determine the protein and gene expressions of Bcl2, Bax, caspases 3 and 9. METHODS Mice were divided into four groups based on their immunological status and Acanthamoeba sp. infection: A, immunocompetent Acanthamoeba sp.-infected mice; AS, immunosuppressed Acanthamoeba sp.- infected mice; C, immunocompetent uninfected mice; CS, immunosuppressed uninfected mice. NOX2, NOX4 and Nrf2 were analyzed by quantitative reverse transcription PCR (qRT-PCR) and ELISA methods, while pro-apoptotic and anti-apoptotic proteins (Bax and Bcl-2, respectively), Cas9, Cas3 were analyzed by qRT-PCR and western blot methods. RESULTS: Increased gene expression and/or protein concentration of NOX2 and NOX4 were found in both immunocompetent and immunosuppressed mice infected with Acanthamoeba sp. (groups A and AS, respectively). Gene expression and/or protein concentration of Nrf2 were higher in group A than in control animals. Compared to control mice, in the AS group the expression of the Nrf2 gene was upregulated while the concentration of Nrf2 protein was decreased. Additionally in A group, higher gene and protein expression of Bcl-2, and lower gene as well as protein expression of Bax, caspases 3 and 9 were noted. In contrast, the AS group showed lower gene and protein expression of Bcl-2, and higher gene as well as protein expression of Bax, caspases 3 and 9. CONCLUSIONS This study is the first to address the mechanisms occurring in the kidneys of hosts infected with Acanthamoeba sp. The contact of Acanthamoeba sp. with the host cell surface and/or the oxidative burst caused by elevated levels of NOXs lead to an antioxidant response enhanced by the Nrf2 pathway. Acanthamoeba sp. have various strategies concerning apoptosis. In immunocompetent hosts, amoebae inhibit the apoptosis of kidney cells, and in immunosuppressed hosts, they lead to increased apoptosis by the intrinsic pathway and thus to a more severe course of the disease.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
4
|
Bensalel J, Roberts A, Hernandez K, Pina A, Prempeh W, Babalola BV, Cannata P, Lazaro A, Gallego-Delgado J. Novel Experimental Mouse Model to Study Malaria-Associated Acute Kidney Injury. Pathogens 2023; 12:pathogens12040545. [PMID: 37111431 PMCID: PMC10141210 DOI: 10.3390/pathogens12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The impact of malaria-associated acute kidney injury (MAKI), one of the strongest predictors of death in children with severe malaria (SM), has been largely underestimated and research in this area has been neglected. Consequently, a standard experimental mouse model to research this pathology is still lacking. The purpose of this study was to develop an in vivo model that resembles the pathology in MAKI patients. In this study, unilateral nephrectomies were performed on wild-type mice prior to infection with Plasmodium berghei NK65. The removal of one kidney has shown to be an effective approach to replicating the most common findings in humans with MAKI. Infection of nephrectomized mice, compared to their non-nephrectomized counterparts, resulted in the development of kidney injury, evident by histopathological analysis and elevated levels of acute kidney injury (AKI) biomarkers, including urinary neutrophil gelatinase-associated lipocalin, serum Cystatin C, and blood urea nitrogen. Establishment of this in vivo model of MAKI is critical to the scientific community, as it can be used to elucidate the molecular pathways implicated in MAKI, delineate the development of the disease, identify biomarkers for early diagnosis and prognosis, and test potential adjunctive therapies.
Collapse
Affiliation(s)
- Johanna Bensalel
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Alexandra Roberts
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Kiara Hernandez
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Angelica Pina
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Winifred Prempeh
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Blessing V. Babalola
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Pablo Cannata
- Department of Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Alberto Lazaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
5
|
Wahyuni DK, Wacharasindhu S, Bankeeree W, Wahyuningsih SPA, Ekasari W, Purnobasuki H, Punnapayak H, Prasongsuk S. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complement Med Ther 2023; 23:47. [PMID: 36788545 PMCID: PMC9926696 DOI: 10.1186/s12906-023-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural products are a potential source for discovering new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of Sonchus arvensis L. leaf extracts both in vitro and in vivo. METHODS The extracts from S. arvensis L. leaf were prepared by successive maceration with n-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested in vitro against Plasmodium falciparum 3D7 strain while the Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial, hepatoprotective, nephroprotective, and immunomodulatory activities. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. RESULT The n-hexane, ethyl acetate, and ethanolic extracts of S. arvensis L. leaf exhibited good in vitro antiplasmodial activity with IC50 values 5.119 ± 3.27, 2.916 ± 2.34, and 8.026 ± 1.23 μg/mL, respectively. Each of the extracts also exhibited high antioxidant with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED50 = 46.31 ± 9.36 mg/kg body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. CONCLUSION This study highlights the antiplasmodial activities of S. arvensis L. leaf ethyl acetate extract against P. falciparum and P. berghei as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results indicate the potential of Sonchus arvensis L. to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of S. arvensis L. extracts are essential for further study.
Collapse
Affiliation(s)
- Dwi Kusuma Wahyuni
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia.
| | - Sumrit Wacharasindhu
- grid.7922.e0000 0001 0244 7875Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Wichanee Bankeeree
- grid.7922.e0000 0001 0244 7875Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sri Puji Astuti Wahyuningsih
- grid.440745.60000 0001 0152 762XDepartment of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115 Indonesia
| | - Wiwied Ekasari
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Hery Purnobasuki
- grid.440745.60000 0001 0152 762XDepartment of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115 Indonesia
| | - Hunsa Punnapayak
- grid.7922.e0000 0001 0244 7875Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia.
| |
Collapse
|
6
|
Possemiers H, Pollenus E, Prenen F, Knoops S, Koshy P, Van den Steen PE. Experimental malaria-associated acute kidney injury is independent of parasite sequestration and resolves upon antimalarial treatment. Front Cell Infect Microbiol 2022; 12:915792. [PMID: 36004329 PMCID: PMC9394429 DOI: 10.3389/fcimb.2022.915792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria remains a important global disease with more than 200 million cases and 600 000 deaths each year. Malaria-associated acute kidney injury (MAKI) may occur in up to 40% of patients with severe malaria and is associated with increased mortality. Histopathological characteristics of AKI in malaria are acute tubular injury, interstitial nephritis, focal segmental glomerulosclerosis, collapsing glomerulopathy and glomerulonephritis. We observed that C57BL/6 mice infected with Plasmodium berghei NK65 (PbNK65) develop MAKI in parallel with malaria-associated acute respiratory distress syndrome (MA-ARDS). MAKI pathology was associated with proteinuria, acute tubular injury and collapse of glomerular capillary tufts, which resolved rapidly after treatment with antimalarial drugs. Importantly, parasite sequestration was not detected in the kidneys in this model. Furthermore, with the use of skeleton binding protein-1 (SBP-1) KO PbNK65 parasites, we found that parasite sequestration in other organs and its subsequent high parasite load are not required for the development of experimental MAKI. Similar proteinuria, histopathological features, and increases in kidney expression of interferon-γ, TNF-α, kidney injury molecule-1 (KIM-1) and heme oxygenase-1 (HO-1) was observed in both infected groups despite a significant difference in parasite load. Taken together, we introduce a model of experimental AKI in malaria with important similarities to AKI in malaria patients. Therefore, this mouse model might be important to further study the pathogenesis of AKI in malaria.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, KU, Leuven, Belgium
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, KU, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, KU, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, KU, Leuven, Belgium
| | - Priyanka Koshy
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, KU, Leuven, Belgium
- *Correspondence: Philippe E. Van den Steen,
| |
Collapse
|
7
|
Protective Effects of Gymnema inodorum Leaf Extract on Plasmodium berghei-Induced Hypoglycemia, Dyslipidemia, Liver Damage, and Acute Kidney Injury in Experimental Mice. J Parasitol Res 2021; 2021:1896997. [PMID: 34552764 PMCID: PMC8452429 DOI: 10.1155/2021/1896997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Malaria complications are the most frequent cause of mortality from parasite infection. This study is aimed at investigating the protective effect of Gymnema inodorum leaf extract (GIE) on hypoglycemia, dyslipidemia, liver damage, and acute kidney injury induced by Plasmodium berghei infection in mice. Groups of ICR mice were inoculated with 1 × 107 parasitized erythrocytes of P. berghei ANKA and administered orally by gavage with 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated controls were given distilled water, while the positive control was treated with 10 mg/kg of chloroquine. The results showed that malaria-associated hypoglycemia, dyslipidemia, liver damage, and acute kidney injury were found in the untreated mice as indicated by the significant alteration of biological markers. On the contrary, in 250 and 500 mg/kg of GIE-treated mice, the biological markers were normal compared to healthy controls. The highest protective effect was found at 500 mg/kg similar to the CQ-treated group. However, GIE at a dose of 100 mg/kg did not show protection during malaria infection. This study demonstrated that GIE presented potential therapeutic effects on PbANKA-induced hypoglycemia, dyslipidemia, liver damage, and acute kidney injury. The results obtained confirm the prospect of G. inodorum as an essential source of new antimalarial compounds and justify folkloric use as an alternative malarial treatment.
Collapse
|
8
|
Kot K, Kupnicka P, Witulska O, Czepan A, Łanocha-Arendarczyk NA, Łanocha AA, Kosik-Bogacka DI. Potential Biomarkers in Diagnosis of Renal Acanthamoebiasis. Int J Mol Sci 2021; 22:6583. [PMID: 34205319 PMCID: PMC8234237 DOI: 10.3390/ijms22126583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
Recent studies indicate that Acanthamoeba spp. may play a significant role in kidney dysfunction. The aim of the study was to examine the levels of kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and monocyte chemotactic protein 1 (MCP-1), as well as an activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. The levels of KIM-1, NGAL, and MCP-1 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the activity of MMPs was determined by gelatin zymography. The elevated KIM-1 level was found in the kidneys of immunocompetent mice at the beginning of Acanthamoeba spp. infection. In the immunosuppressed mice, the KIM-1 level was statistically different. The statistically decreased NGAL level was found in the kidneys of immunocompetent mice compared to the uninfected mice. In the immunocompromised mice, we found statistically significant differences in MCP-1 levels between the uninfected and infected groups. There was an increase in the expression of both MMP-2 and MMP-9 in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. compared to the uninfected mice. The results indicate that KIM-1, NGAL, MCP-1, MMP-2, MMP-9, and MMP-9/NGAL might be promising biomarkers of renal acanthamoebiasis.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (O.W.); (A.C.); (N.A.Ł.-A.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Oliwia Witulska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (O.W.); (A.C.); (N.A.Ł.-A.)
| | - Aleksandra Czepan
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (O.W.); (A.C.); (N.A.Ł.-A.)
| | - Natalia Agnieszka Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (O.W.); (A.C.); (N.A.Ł.-A.)
| | - Aleksandra Anna Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Kot K, Łanocha-Arendarczyk N, Ptak M, Łanocha A, Kalisińska E, Kosik-Bogacka D. Pathomechanisms in the Kidneys in Selected Protozoan Parasitic Infections. Int J Mol Sci 2021; 22:4209. [PMID: 33921746 PMCID: PMC8073708 DOI: 10.3390/ijms22084209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients' morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Michał Ptak
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Expression of 4-Hydroxynonenal (4-HNE) and Heme Oxygenase-1 (HO-1) in the Kidneys of Plasmodium berghei-Infected Mice. J Trop Med 2020; 2020:8813654. [PMID: 33149743 PMCID: PMC7603615 DOI: 10.1155/2020/8813654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 11/18/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most serious complications of severe Plasmodium falciparum malaria, but the exact pathogenic mechanisms of AKI in P. falciparum infection have not been clearly elucidated. We hypothesized that oxidative stress is a potential mediator of acute tubular necrosis in P. falciparum-infected kidneys. Therefore, this study aimed to investigate the histopathological changes and markers of oxidative stress in kidney tissues from mice with experimental malaria. DBA/2 mice were divided into two groups: the mice in the malaria-infected group (n = 10) were intraperitoneally injected with 1 × 106P. berghei ANKA-infected red blood cells, and the mice in the control group (n = 10) were intraperitoneally injected with a single dose of 0.85% normal saline. Kidney sections were collected and used for histopathological examination and the investigation of 4-hydroxynonenal (4-HNE) and heme oxygenase-1 (HO-1) expression through immunohistochemistry staining. The histopathology study revealed that the P. berghei-infected kidneys exhibited a greater area of tubular necrosis than those of the control group (p < 0.05). The positive staining scores for 4-HNE and HO-1 expression in tubular epithelial cells of the P. berghei-infected group were significantly higher than those found for the control group (p < 0.05). In addition, significant positive correlations were found between the tubular necrosis score and the positive staining scores for 4-HNE and HO-1 in the kidneys from the P. berghei-infected group. In conclusion, this finding demonstrates that increased expression of 4-HNE and HO-1 might be involved in the pathogenesis of acute tubular damage in the kidneys during malaria infection. Our results provide new insights into the pathogenesis of malaria-associated AKI and might provide guidelines for the future development of a therapeutic intervention for malaria.
Collapse
|
11
|
Liu D, Jin F, Shu G, Xu X, Qi J, Kang X, Yu H, Lu K, Jiang S, Han F, You J, Du Y, Ji J. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 2019; 211:57-67. [DOI: 10.1016/j.biomaterials.2019.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
|
12
|
TRPV1 Contributes to Cerebral Malaria Severity and Mortality by Regulating Brain Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9451671. [PMID: 31223430 PMCID: PMC6541938 DOI: 10.1155/2019/9451671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a Ca+2-permeable channel expressed on neuronal and nonneuronal cells, known as an oxidative stress sensor. It plays a protective role in bacterial infection, and recent findings indicate that this receptor modulates monocyte populations in mice with malaria; however, its role in cerebral malaria progression and outcome is unclear. By using TRPV1 wild-type (WT) and knockout (KO) mice, the importance of TRPV1 to this cerebral syndrome was investigated. Infection with Plasmodium berghei ANKA decreased TRPV1 expression in the brain. Mice lacking TRPV1 were protected against Plasmodium-induced mortality and morbidity, a response that was associated with less cerebral swelling, modulation of the brain expression of endothelial tight-junction markers (junctional adhesion molecule A and claudin-5), increased oxidative stress (via inhibition of catalase activity and increased levels of H2O2, nitrotyrosine, and carbonyl residues), and diminished production of cytokines. Plasmodium load was not significantly affected by TRPV1 ablation. Repeated subcutaneous administration of the selective TRPV1 antagonist SB366791 after malaria induction increased TRPV1 expression in the brain tissue and enhanced mouse survival. These data indicate that TRPV1 channels contribute to the development and outcome of cerebral malaria.
Collapse
|
13
|
Park MK, Ko EJ, Jeon KY, Kim H, Jo JO, Baek KW, Kang YJ, Choi YH, Hong Y, Ock MS, Cha HJ. Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:117-125. [PMID: 31104403 PMCID: PMC6526210 DOI: 10.3347/kjp.2019.57.2.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of HIF1α through an intracellular oxygen-sensing pathway. Activation of HIF1α may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of 2×106 parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and HIF1α. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and HIF1α increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxia-induced angiogenesis by stimulation of HIF1α and VEGF in various tissues.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Kyung-Yoon Jeon
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hyunsu Kim
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Jin-Ok Jo
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyung-Wan Baek
- Department of Parasitology, College of Medicine, Pusan National University, Busan 50612, Korea
| | - Yun-Jeong Kang
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| |
Collapse
|
14
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
15
|
Peterson MS, Joyner CJ, Cordy RJ, Salinas JL, Machiah D, Lapp SA, Meyer EVS, Gumber S, Galinski MR. Plasmodium vivax Parasite Load Is Associated With Histopathology in Saimiri boliviensis With Findings Comparable to P vivax Pathogenesis in Humans. Open Forum Infect Dis 2019; 6:ofz021. [PMID: 30937329 PMCID: PMC6436601 DOI: 10.1093/ofid/ofz021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023] Open
Abstract
Background Plasmodium vivax can cause severe malaria with multisystem organ dysfunction and death. Clinical reports suggest that parasite accumulation in tissues may contribute to pathogenesis and disease severity, but direct evidence is scarce. Methods We present quantitative parasitological and histopathological analyses of tissue sections from a cohort of naive, mostly splenectomized Saimiri boliviensis infected with P vivax to define the relationship of tissue parasite load and histopathology. Results The lung, liver, and kidney showed the most tissue injury, with pathological presentations similar to observations reported from autopsies. Parasite loads correlated with the degree of histopathologic changes in the lung and liver tissues. In contrast, kidney damage was not associated directly with parasite load but with the presence of hemozoin, an inflammatory parasite byproduct. Conclusions This analysis supports the use of the S boliviensis infection model for performing detailed histopathological studies to better understand and potentially design interventions to treat serious clinical manifestations caused by P vivax.
Collapse
Affiliation(s)
| | | | - Regina J Cordy
- Emory Vaccine Center, Yerkes National Primate Research Center
| | - Jorge L Salinas
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center
| | | | | | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| |
Collapse
|
16
|
Chin VK, Asyran AMY, Zakaria ZA, Abdullah WO, Chong PP, Nordin N, Ibraheem ZO, Majid RA, Basir R. TREM-1 modulation produces positive outcome on the histopathology and cytokines release profile of Plasmodium berghei-infected mice. J Parasit Dis 2018; 43:139-153. [PMID: 30956457 DOI: 10.1007/s12639-018-1070-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potential molecular therapeutic target for various inflammatory diseases. Despite that, the role of TREM-1 during malaria pathogenesis remains obscure with present literature suggesting a link between TREM-1 with severe malaria development. Therefore, this study aims to investigate the role of TREM-1 and TREM-1 related drugs during severe malaria infection in Plasmodium berghei-infected mice model. Our findings revealed that TREM-1 concentration was significantly increased throughout the infection periods and TREM-1 was positively correlated with malaria parasitemia development. This suggests a positive involvement of TREM-1 in severe malaria development. Meanwhile, blocking of TREM-1 activation using rmTREM-1/Fc and TREM-1 clearance by mTREM-1/Ab had significantly reduced malaria parasitemia and suppressed the production of pro- inflammatory cytokines (TNF-α, IL-6 and IFN-γ) and anti-inflammatory cytokine (IL-10). Furthermore, histopathological analysis of TREM-1 related drug treatments, in particular rmTREM-1/Fc showed significant improvements in the histological conditions of major organs (kidneys, spleen, lungs, liver and brain) of Plasmodium berghei-infected mice. This study showed that modulation of TREM-1 released during malaria infection produces a positive outcome on malaria infection through inhibition of pro-inflammatory cytokines secretion and alleviation of histopathological conditions of affected organs. Nevertheless, further investigation on its optimal dosage and dose dependant study should be carried out to maximise its full potential as immunomodulatory or as an adjuvant in line with current antimalarial agents.
Collapse
Affiliation(s)
- Voon Kin Chin
- 2School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, No 1, Jalan Taylor's, 47500 Subang Jaya, Selangor Malaysia
| | - Afiq Mohd Yusof Asyran
- 1Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Zainul Amiruddin Zakaria
- 4Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wan Omar Abdullah
- 5Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 55100 Pandan Indah, Kuala Lumpur Malaysia
| | - Pei Pei Chong
- 2School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, No 1, Jalan Taylor's, 47500 Subang Jaya, Selangor Malaysia
| | - Norshariza Nordin
- 4Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Zaid Osamah Ibraheem
- 1Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Roslaini Abdul Majid
- 3Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rusliza Basir
- 1Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
17
|
Silva LS, Peruchetti DB, Silva-Aguiar RP, Abreu TP, Dal-Cheri BKA, Takiya CM, Souza MC, Henriques MG, Pinheiro AAS, Caruso-Neves C. The angiotensin II/AT1 receptor pathway mediates malaria-induced acute kidney injury. PLoS One 2018; 13:e0203836. [PMID: 30204779 PMCID: PMC6133374 DOI: 10.1371/journal.pone.0203836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.
Collapse
Affiliation(s)
- Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago P. Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz K. A. Dal-Cheri
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana C. Souza
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria G. Henriques
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
18
|
Fitri LE, Rosmarwati E, Rizky Y, Budiarti N, Samsu N, Mintaroem K. Strong renal expression of heat shock protein 70, high mobility group box 1, inducible nitric oxide synthase, and nitrotyrosine in mice model of severe malaria. Rev Soc Bras Med Trop 2017; 50:489-498. [PMID: 28954070 DOI: 10.1590/0037-8682-0049-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Renal damage is a consequence of severe malaria, and is generally caused by sequestration of Plasmodium falciparum -infected erythrocytes in the renal microcirculation, which leads to obstruction, hypoxia, and ischemia. This triggers high mobility group box 1 (HMGB1) to send a danger signal through toll-like receptors 2 and 4. This signal up-regulates inducible nitric oxide (iNOS) and nitrotyrosine to re-perfuse the tissue, and also increases heat shock protein 70 (HSP70) expression. As no study has examined the involvement of intracellular secondary molecules in this setting, the present study compared the renal expressions of HSP70, HMGB1, iNOS, and nitrotyrosine between mice suffered from severe malaria and normal mice. METHODS C57BL/6 mice were divided into an infected group (intraperitoneal injection of 10 6 P. berghei ANKA) and a non-infected group. Renal damage was evaluated using hematoxylin eosin staining, and immunohistochemistry was used to evaluate the expressions of HSP70, HMGB1, iNOS, and nitrotyrosine. RESULTS Significant inter-group differences were observed in the renal expressions of HSP70, HMGB1, and iNOS (p=0.000, Mann-Whitney test), as well as nitrotyrosine (p=0.000, independent t test). The expressions of HSP70 and HMGB1 were strongly correlated (p=0.000, R=1.000). No correlations were observed between iNOS and HMGB, HMGB1 and nitrotyrosine, HSP70 and nitrotyrosine, or iNOS and nitrotyrosine. CONCLUSIONS It appears that HMGB1, HSP70, iNOS, and nitrotyrosine play roles in the renal damage that is observed in mice with severe malaria. Only HSP70 expression is strongly correlated with the expression of HMGB1.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ervina Rosmarwati
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yesita Rizky
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Niniek Budiarti
- Tropical Medicine Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr. Saiful Anwar Public Hospital, Malang, Indonesia
| | - Nur Samsu
- Renal and Hypertension Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr Saiful Anwar Public Hospital, Malang, Indonesia
| | - Karyono Mintaroem
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
19
|
Kakani P, Suman S, Gupta L, Kumar S. Ambivalent Outcomes of Cell Apoptosis: A Barrier or Blessing in Malaria Progression. Front Microbiol 2016; 7:302. [PMID: 27014225 PMCID: PMC4791532 DOI: 10.3389/fmicb.2016.00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The life cycle of Plasmodium in two evolutionary distant hosts, mosquito, and human, is a complex process. It is regulated at various stages of developments by a number of diverged mechanisms that ultimately determine the outcome of the disease. During the development processes, Plasmodium invades a variety of cells in two hosts. The invaded cells tend to undergo apoptosis and are subsequently removed from the system. This process also eliminates numerous parasites along with these apoptotic cells as a part of innate defense against the invaders. Plasmodium should escape the invaded cell before it undergoes apoptosis or it should manipulate host cell apoptosis for its survival. Interestingly, both these phenomena are evident in Plasmodium at different stages of development. In addition, the parasite also exhibits altruistic behavior and triggers its own killing for the selection of the best ‘fit’ progeny, removal of the ‘unfit’ parasites to conserve the nutrients and to support the host survival. Thus, the outcomes of cell apoptosis are ambivalent, favorable as well as unfavorable during malaria progression. Here we discuss that the manipulation of host cell apoptosis might be helpful in the regulation of Plasmodium development and will open new frontiers in the field of malaria research.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sneha Suman
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| |
Collapse
|
20
|
CAHAYANI WA, NORAHMAWATI E, BUDIARTI N, FITRI LE. Increased CD11b and Hypoxia-Inducible Factors-1alpha Expressions in the Lung Tissue and Surfactant Protein-D Levels in Serum Are Related with Acute Lung Injury in Severe Malaria of C57BL/6 Mice. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:303-315. [PMID: 28127335 PMCID: PMC5256046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to reveal the role of CD11b and hypoxia-inducible factors-1alpha (HIF-1α) expressions on monocytes and alveolar macrophages of lung tissue, and the levels of serum surfactant protein-D (SP-D) in severe malaria-associated acute lung injury (ALI). METHODS The C57BL/6 mice were divided into control group, renal malaria group (inoculated with 106Plasmodium berghei ANKA), and cerebral malaria group (inoculated with 107P. berghei ANKA). The expressions of CD11b and HIF-1α in lung tissue were observed by immunohistochemistry, and serum SP-D levels were measured by ELISA. This study was conducted from June 2014 to February 2015 in the Laboratory of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang. RESULTS The CD11b expression on pulmonary tissue of renal and cerebral malaria mice were significantly higher than control mice (P=0.002; P=0.002), as well as the HIF-1α expression on pulmonary tissue (P=0.002; P=0.002). The level of serum SP-D in renal malaria and cerebral malaria mice were significantly higher than control mice (P=0.002; P=0.002). We found a strong correlation between the expression of CD11b and HIF-1α in lung tissue (r=0.937, P=0.000), as well as between CD11b expression and serum SP-D levels (r=0.907, P=0.000) and between HIF-1α expression and serum SP-D levels (r=0.913, P=0.000). CONCLUSION Severe malaria-associated ALI increased the expression of CD11b and HIF-1α in the lung tissue and increased serum SP-D levels of C57BL/6 mice significantly.
Collapse
Affiliation(s)
- Wike Astrid CAHAYANI
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Eviana NORAHMAWATI
- Dept. of Anatomic Pathology, Dr. Saiful Anwar Hospital/Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Niniek BUDIARTI
- Division of Tropical Infection, Dept. of Internal Medicine, Dr. Saiful Anwar Hospital/Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar FITRI
- Dept. of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia,Correspondence
| |
Collapse
|
21
|
Protective Effects of Tinospora crispa Stem Extract on Renal Damage and Hemolysis during Plasmodium berghei Infection in Mice. J Pathog 2015; 2015:738608. [PMID: 26600953 PMCID: PMC4639667 DOI: 10.1155/2015/738608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 01/19/2023] Open
Abstract
Renal damage and hemolysis induced by malaria are associated with mortality in adult patients. It has been speculated that oxidative stress condition induced by malaria infection is involved in its pathology. Thus, we aimed to investigate the protective effects of Tinospora crispa stem extract on renal damage and hemolysis during Plasmodium berghei infection. T. crispa stem extract was prepared using hot water method and used for oral treatment in mice. Groups of ICR mice were infected with 1 × 107 parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection and given the extracts (500, 1000, and 2000 mg/kg) twice a day for 4 consecutive days. To assess renal damage and hemolysis, blood urea nitrogen (BUN), creatinine, and hematocrit (%Hct) levels were then evaluated, respectively. Malaria infection resulted in renal damage and hemolysis as indicated by increasing of BUN and creatinine and decreasing of %Hct, respectively. However, protective effects on renal damage and hemolysis were observed in infected mice treated with these extracts at doses of 1000 and 2000 mg/kg. In conclusion, T. crispa stem extract exerted protective effects on renal damage and hemolysis induced by malaria infection. This plant may work as potential source in the development of variety of herbal formulations for malarial treatment.
Collapse
|
22
|
Trentin-Sonoda M, da Silva RC, Kmit FV, Abrahão MV, Monnerat Cahli G, Brasil GV, Muzi-Filho H, Silva PA, Tovar-Moll FF, Vieyra A, Medei E, Carneiro-Ramos MS. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice. PLoS One 2015; 10:e0139350. [PMID: 26448184 PMCID: PMC4598103 DOI: 10.1371/journal.pone.0139350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.
Collapse
Affiliation(s)
- Mayra Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Fernanda Vieira Kmit
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Gustavo Monnerat Cahli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Guilherme Visconde Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Paulo André Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Fernanda Freire Tovar-Moll
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | | |
Collapse
|
23
|
Protective Effect of Aqueous Crude Extract of Neem (Azadirachta indica) Leaves on Plasmodium berghei-Induced Renal Damage in Mice. J Trop Med 2015; 2015:961205. [PMID: 26379714 PMCID: PMC4562167 DOI: 10.1155/2015/961205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/26/2022] Open
Abstract
Malaria is a major public health problem in the world because it can cause of death in patients. Malaria-associated renal injury is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. Therefore, new plant extracts to protect against renal injury induced by malaria infection are urgently needed. In this study, we investigated the protective effect of aqueous crude extract of Azadirachta indica (neem) leaves on renal injury induced by Plasmodium berghei ANKA infection in mice. ICR mice were injected intraperitoneally with 1 × 107 parasitized erythrocytes of PbANKA, and neem extracts (500, 1,000, and 2,000 mg/kg) were given orally for 4 consecutive days. Plasma blood urea nitrogen (BUN) and creatinine levels were subsequently measured. Malaria-induced renal injury was evidenced as marked increases of BUN and creatinine levels. However, the oral administration of neem leaf extract to PbANKA infected mice for 4 days brought back BUN and creatinine levels to near normalcy, and the highest activity was observed at doses of 1,000 and 2,000 mg/kg. Additionally, no toxic effects were found in normal mice treated with this extract. Hence, neem leaf extract can be considered a potential candidate for protection against renal injury induced by malaria.
Collapse
|
24
|
TRPV1 antagonism by capsazepine modulates innate immune response in mice infected with Plasmodium berghei ANKA. Mediators Inflamm 2014; 2014:506450. [PMID: 25242870 PMCID: PMC4158567 DOI: 10.1155/2014/506450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022] Open
Abstract
Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host's defence to malaria. Transient receptor potential vanilloid 1 (TRPV1) modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 10(5) red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80(+)Ly6G(+) cell numbers as well as activation of both F4/80(+)and F4/80(+)Ly6G(+) cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1(+) and natural killer (NK) population, without interfering with natural killer T (NKT) cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.
Collapse
|
25
|
Zuzarte-Luis V, Mota MM, Vigário AM. Malaria infections: what and how can mice teach us. J Immunol Methods 2014; 410:113-22. [PMID: 24837740 DOI: 10.1016/j.jim.2014.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 01/07/2023]
Abstract
Malaria imposes a horrific public health burden - hundreds of millions of infections and millions of deaths - on large parts of the world. While this unacceptable health burden and its economic and social impact have made it a focal point of the international development agenda, it became consensual that malaria control or elimination will be difficult to attain prior to gain a better understanding of the complex interactions occurring between its main players: Plasmodium, the causative agent of disease, and its hosts. Practical and ethical limitations exist regarding the ability to carry out research with human subjects or with human samples. In this review, we highlight how rodent models of infection have contributed significantly during the past decades to a better understanding of the basic biology of the parasite, host response and pathogenesis.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Vigário
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Unidade de Ciências Médicas, Centro de Competência de Ciências da Vida, Universidade da Madeira, Funchal, Portugal.
| |
Collapse
|
26
|
N'Dilimabaka N, Taoufiq Z, Zougbédé S, Bonnefoy S, Lorthiois A, Couraud PO, Rebollo A, Snounou G, Mazier D, Moreno Sabater A. P. falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells. PLoS One 2014; 9:e90692. [PMID: 24686750 PMCID: PMC3970966 DOI: 10.1371/journal.pone.0090692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
The factors implicated in the transition from uncomplicated to severe clinical malaria such as pulmonary oedema and cerebral malaria remain unclear. It is known that alterations in vascular integrity due to endothelial cell (EC) activation and death occur during severe malaria. In this study, we assessed the ability of different P. falciparum clinical isolates to induce apoptosis in ECs derived from human lung and brain. We observed that induction of EC apoptosis was sensitive to the environmental pH and required direct contact between the parasite and the cell, though it was not correlated to the ability of the parasite to cytoadhere. Moreover, the extent of induced apoptosis in the two EC types varied with the isolate. Analysis of parasite genes transcript led us to propose that the activation of different pathways, such as Plasmodium apoptosis-linked pathogenicity factors (PALPF), PALPF-2, PALPF-5 and PF11_0521, could be implied in EC death. These observations provide an experimental framework to decipher the molecular mechanism implicated in the genesis of severe malaria.
Collapse
Affiliation(s)
- Nadine N'Dilimabaka
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Zacharie Taoufiq
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Sergine Zougbédé
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Serge Bonnefoy
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, Paris, France
| | - Audrey Lorthiois
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Pierre Oliver Couraud
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelita Rebollo
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Georges Snounou
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
| | - Dominique Mazier
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alicia Moreno Sabater
- Université Pierre et Marie Curie-Paris 6, UMRS 945, Paris, France
- Institut National de la Santé et de la Recherche Médicale, UMRS 945, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Protection of renal function by green tea extract during Plasmodium berghei infection. Parasitol Int 2013; 62:548-51. [DOI: 10.1016/j.parint.2013.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/19/2013] [Indexed: 01/28/2023]
|
28
|
Malarial infection of female BWF1 lupus mice alters the redox state in kidney and liver tissues and confers protection against lupus nephritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:156562. [PMID: 24319531 PMCID: PMC3844167 DOI: 10.1155/2013/156562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/07/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by an imbalanced redox state and increased apoptosis. Tropical infections, particularly malaria, may confer protection against SLE. Oxidative stress is a hallmark of SLE. We have measured changes in the levels of nitric oxide (NO), hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced glutathione (GSH) in both kidney and liver tissues of female BWF1 lupus mice, an experimental model of SLE, after infection with either live or gamma-irradiated malaria. We observed a decrease in NO, H2O2, and MDA levels in kidney tissues after infection of lupus mice with live malaria. Similarly, the levels of NO and H2O2 were significantly decreased in the liver tissues of lupus mice after infection with live malaria. Conversely, GSH levels were obviously increased in both kidney and liver tissues after infection of lupus mice with either live or gamma-irradiated malaria. Liver and kidney functions were significantly altered after infection of lupus mice with live malaria. We further investigated the ultrastructural changes and detected the number of apoptotic cells in kidney and liver tissues in situ by electron microscopy and TUNEL assays. Our data reveal that infection of lupus mice with malaria confers protection against lupus nephritis.
Collapse
|
29
|
Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, Caruthers SD, Lanza GM, Hammerman MR, Wickline SA. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med 2013; 71:2186-96. [PMID: 23929727 DOI: 10.1002/mrm.24851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles and multinuclear (1) H/(19) F MRI. METHODS (19) F spin density weighted and T1 weighted images were used to generate quantitative functional mappings of both healthy and ischemia-reperfusion (acute kidney injury) injured mouse kidneys. (1) H blood-oxygenation-level-dependent (BOLD) MRI was also employed as a supplementary approach to facilitate the comprehensive analysis of renal circulation and its pathological changes in acute kidney injury. RESULTS Heterogeneous blood volume distributions and intrarenal oxygenation gradients were confirmed in healthy kidneys by (19) F MRI. In a mouse model of acute kidney injury, (19) F MRI, in conjunction with blood-oxygenation-level-dependent MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary junction region, we observed 25% lower (19) F signal (P < 0.05) and 70% longer (1) H T2* (P < 0.01) in injured kidneys compared with contralateral kidneys at 24 h after initial ischemia-reperfusion injury. We also detected 71% higher (19) F signal (P < 0.01) and 40% lower (1) H T2* (P < 0.05) in the renal medulla region of injured kidneys compared with contralateral uninjured kidneys. CONCLUSION Integrated (1) H/(19) F MRI using perfluorocarbon nanoparticles provides a multiparametric readout of regional perfusion defects in acutely injured kidneys.
Collapse
Affiliation(s)
- Lingzhi Hu
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 2013; 4:543-55. [PMID: 23924893 PMCID: PMC5359751 DOI: 10.4161/viru.25949] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Malaria affects millions of people around the world and a small subset of those infected develop cerebral malaria. The clinical presentation of cerebral malaria differs between children and adults, and it has been suggested that age-related changes in the endothelial response may account for some of these differences. During cerebral malaria, parasites sequester within the brain microvasculature but do not penetrate into the brain parenchyma and yet, the infection causes severe neurological symptoms. Endothelial dysfunction is thought to play an important role in mediating these adverse clinical outcomes. During infection, the endothelium becomes activated and more permeable, which leads to increased inflammation, hemorrhages, and edema in the surrounding tissue. We hypothesize that post-natal developmental changes, occurring in both endothelial response and the neurovascular unit, account for the differences observed in the clinical presentations of cerebral malaria in children compared with adults.
Collapse
|