1
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, Barakat K, El-Kadi AOS. Modulation of aryl hydrocarbon receptor activity by tyrosine kinase inhibitors (ponatinib and tofacitinib). Arch Biochem Biophys 2024; 759:110088. [PMID: 38992456 DOI: 10.1016/j.abb.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Zuo B, Yang F, Huang L, Han J, Li T, Ma Z, Cao L, Li Y, Bai X, Jiang M, He Y, Xia L. Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:1039-1061. [PMID: 38467191 PMCID: PMC11061248 DOI: 10.1016/j.jcmgh.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.
Collapse
Affiliation(s)
- Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
3
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
4
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
5
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
6
|
Strauss B, Bisserier M, Obus E, Katz MG, Fargnoli A, Cacheux M, Akar JG, Hummel JP, Hadri L, Sassi Y, Akar FG. Right predominant electrical remodeling in a pure model of pulmonary hypertension promotes reentrant arrhythmias. Heart Rhythm 2022; 19:113-124. [PMID: 34563688 PMCID: PMC8742785 DOI: 10.1016/j.hrthm.2021.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.
Collapse
Affiliation(s)
- Benjamin Strauss
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Emerson Obus
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Michael G. Katz
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Anthony Fargnoli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Marine Cacheux
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - Joseph G. Akar
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - James P Hummel
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
- Center for Vascular and Heart Research, Fralin Biomedical research Institute at Virginia Tech Carilion
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University
| | - Fadi G. Akar
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| |
Collapse
|
7
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
8
|
Lan G, Wang P, Chan RB, Liu Z, Yu Z, Liu X, Yang Y, Zhang J. Astrocytic VEGFA: An essential mediator in blood-brain-barrier disruption in Parkinson's disease. Glia 2021; 70:337-353. [PMID: 34713920 DOI: 10.1002/glia.24109] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
The integrity of blood-brain-barrier (BBB) is essential for normal brain functions, synaptic remodeling, and angiogenesis. BBB disruption is a common pathology during Parkinson's disease (PD), and has been hypothesized to contribute to the progression of PD. However, the molecular mechanism of BBB disruption in PD needs further investigation. Here, A53T PD mouse and a 3-cell type in vitro BBB model were used to study the roles of α-synuclein (α-syn) in BBB disruption with the key results confirmed in the brains of PD patients obtained at autopsy. The A53T PD mouse studies showed that the expression of tight junction-related proteins decreased, along with increased vascular permeability and accumulation of oligomeric α-syn in activated astrocytes in the brain. The in vitro BBB model studies demonstrated that treatment with oligomeric α-syn, but not monomeric or fibrillar α-syn, resulted in significant disruption of BBB integrity. This process involved the expression and release of vascular endothelial growth factor A (VEGFA) and nitric oxide (NO) from oligomeric α-syn treated astrocytes. Increased levels of VEGFA and iNOS were also observed in the brain of PD patients. Blocking the VEGFA signaling pathway in the in vitro BBB model effectively protected the barrier against the harmful effects of oligomeric α-syn. Finally, the protective effects on BBB integrity associated with inhibition of VEGFA signaling pathway was also confirmed in PD mice. Taken together, our study concluded that oligomeric α-syn is critically involved in PD-associated BBB disruption, in a process that is mediated by astrocyte-derived VEGFA.
Collapse
Affiliation(s)
- Guoyu Lan
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Zongran Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaodan Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ying Yang
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Luo C, Ai J, Ren E, Li J, Feng C, Li X, Luo X. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti-cancer activity and bioavailability (Review). Exp Ther Med 2021; 22:1327. [PMID: 34630681 DOI: 10.3892/etm.2021.10762] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Evodiae fructus (Wu-Zhu-Yu in Chinese) can be isolated from the dried, unripe fruits of Tetradium ruticarpum and is a well-known traditional Chinese medicine that is applied extensively in China, Japan and Korea. Evodiae fructus has been traditionally used to treat headaches, abdominal pain and menorrhalgia. In addition, it is widely used as a dietary supplement to provide carboxylic acids, essential oils and flavonoids. Evodiamine (EVO) is one of the major bioactive components contained within Evodiae fructus and is considered to be a potential candidate anti-cancer agent. EVO has been reported to exert anti-cancer effects by inhibiting cell proliferation, invasion and metastasis, whilst inducing apoptosis in numerous types of cancer cells. However, EVO is susceptible to metabolism and may inhibit the activities of metabolizing enzymes, such as cytochrome P450. Clinical application of EVO in the treatment of cancers may prove difficult due to poor bioavailability and potential toxicity due to metabolism. Currently, novel drug carriers involving the use of solid dispersion techniques, phospholipids and nanocomplexes to deliver EVO to improve its bioavailability and mitigate side effects have been tested. The present review aims to summarize the reported anti-cancer effects of EVO whilst discussing the pharmacokinetic behaviors, characteristics and effective delivery systems of EVO.
Collapse
Affiliation(s)
- Chaodan Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jingwen Ai
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Erfang Ren
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jianqiang Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Chunmei Feng
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xinrong Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xiaojie Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
10
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is a member of the PER-ARNT-SIM superfamily of environmental sensors. This receptor has been a molecule of interest for many years in the field of toxicology, as it was originally discovered to mediate the toxic effects of certain environmental pollutants like benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. While all animals express this protein, there is naturally occurring variability in receptor size and responsiveness to ligand. This naturally occurring variation, particularly in mice, has been an essential tool in the discovery and early characterization of the AHR. Genetic models including congenic mice and induced mutations at the Ahr locus have proven invaluable in further understanding the role of the AHR in adaptive metabolism and TCDD-induced toxicity. The creation and examination of Ahr null mice revealed an important physiological role for the AHR in vascular and hepatic development and mediation of the immune system. In this review, we attempt to provide an overview to many of the AHR models that have aided in the understanding of AHR biology thus far. We describe the naturally occurring polymorphisms, congenic models, induced mutations at the Ahr locus and at the binding partner Ah Receptor Nuclear Translocator and chaperone, Ah receptor associated 9 loci in mice, with a brief description of naturally occurring and induced mutations in rats.
Collapse
Affiliation(s)
- Rachel H Wilson
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Biotechnology Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Wyatt M, Greathouse KL. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients 2021; 13:1189. [PMID: 33916690 PMCID: PMC8066279 DOI: 10.3390/nu13041189] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Tryptophan metabolism, via the kynurenine (Kyn) pathway, and microbial transformation of tryptophan to indolic compounds are fundamental for host health; both of which are altered in colon carcinogenesis. Alterations in tryptophan metabolism begin early in colon carcinogenesis as an adaptive mechanism for the tumor to escape immune surveillance and metastasize. The microbial community is a key part of the tumor microenvironment and influences cancer initiation, promotion and treatment response. A growing awareness of the impact of the microbiome on tryptophan (Trp) metabolism in the context of carcinogenesis has prompted this review. We first compare the different metabolic pathways of Trp under normal cellular physiology to colon carcinogenesis, in both the host cells and the microbiome. Second, we review how the microbiome, specifically indoles, influence host tryptophan pathways under normal and oncogenic metabolism. We conclude by proposing several dietary, microbial and drug therapeutic modalities that can be utilized in combination to abrogate tumorigenesis.
Collapse
Affiliation(s)
- Madhur Wyatt
- Human Health, Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798-7346, USA;
| | - K. Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798-7346, USA
| |
Collapse
|
12
|
Aryl hydrocarbon receptor is essential for the pathogenesis of pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2021; 118:2023899118. [PMID: 33836606 PMCID: PMC7980441 DOI: 10.1073/pnas.2023899118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Inflammatory signals are thought to be crucial for the pathogenesis of PAH; however, the underlying mechanism is still largely unknown. In this study, we demonstrate that AHR makes a causal contribution to the pathogenesis of PAH, activating a focal inflammatory response in the lungs and promoting infiltration of immune cells from the bone marrow. Furthermore, we found that PAH patients with higher AHR agonistic activity in sera are more susceptible to severe clinical events than those with lower activity. Because conventional therapy for pulmonary hypertension targeting pulmonary artery vasodilation has limited efficacy against severe PAH, the AHR-signaling pathway represents a promising therapeutic target for PAH. In addition, AHR agonistic activity in serum represents a biomarker for PAH. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague–Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague–Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr−/−) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr−/− rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.
Collapse
|
13
|
Hawerkamp HC, Kislat A, Gerber PA, Pollet M, Rolfes KM, Soshilov AA, Denison MS, Momin AA, Arold ST, Datsi A, Braun SA, Oláh P, Lacouture ME, Krutmann J, Haarmann‐Stemmann T, Homey B, Meller S. Vemurafenib acts as an aryl hydrocarbon receptor antagonist: Implications for inflammatory cutaneous adverse events. Allergy 2019; 74:2437-2448. [PMID: 31269229 DOI: 10.1111/all.13972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, the BRAF inhibitor vemurafenib has been successfully established in the therapy of advanced melanoma. Despite its superior efficacy, the use of vemurafenib is limited by frequent inflammatory cutaneous adverse events that affect patients' quality of life and may lead to dose reduction or even cessation of anti-tumor therapy. To date, the molecular and cellular mechanisms of vemurafenib-induced rashes have remained largely elusive. METHODS In this study, we deployed immunohistochemistry, RT-qPCR, flow cytometry, lymphocyte activation tests, and different cell-free protein-interaction assays. RESULTS We here demonstrate that vemurafenib inhibits the downstream signaling of the canonical pathway of aryl hydrocarbon receptor (AhR) in vitro, thereby inducing the expression of proinflammatory cytokines (eg, TNF) and chemokines (eg, CCL5). In line with these results, we observed an impaired expression of AhR-regulated genes (eg, CYP1A1) and an upregulation of the corresponding proinflammatory genes in vivo. Moreover, results of lymphocyte activation tests showed the absence of drug-specific T cells in respective patients. CONCLUSION Taken together, we obtained no hint of an underlying sensitization against vemurafenib but found evidence suggesting that vemurafenib enhances proinflammatory responses by inhibition of canonical AhR signaling. Our findings contribute to our understanding of the central role of the AhR in skin inflammation and may point toward a potential role for topical AhR agonists in supportive cancer care.
Collapse
Affiliation(s)
- Heike C. Hawerkamp
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Andreas Kislat
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Peter A. Gerber
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Marius Pollet
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Anatoly A. Soshilov
- Department of Environmental Toxicology University of California Davis CA USA
| | - Michael S. Denison
- Department of Environmental Toxicology University of California Davis CA USA
| | - Afaque A. Momin
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Stefan T. Arold
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Angeliki Datsi
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan A. Braun
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Péter Oláh
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
- Department of Dermatology, Venereology and Oncodermatology University of Pécs Pécs Hungary
| | - Mario E. Lacouture
- Dermatology Service, Department of Medicine Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Jean Krutmann
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Bernhard Homey
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| |
Collapse
|
14
|
Chitrala KN, Yang X, Busbee B, Singh NP, Bonati L, Xing Y, Nagarkatti P, Nagarkatti M. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Rep 2019; 9:6810. [PMID: 31048752 PMCID: PMC6497656 DOI: 10.1038/s41598-019-43232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
The toxic manifestations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, primarily depend on its ability to activate aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor belonging to the superfamily of basic-helix-loop-helix DNA-binding proteins. In the present study, we aimed to identify novel protein receptor targets for TCDD using computational and in vitro validation experiments. Interestingly, results from computational methods predicted that Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) could be one of the potential targets for TCDD in both mouse and humans. Results from molecular docking studies showed that human VEGFR1 (hVEGFR1) has less affinity towards TCDD compared to the mouse VEGFR1 (mVEGFR1). In vitro validation results showed that TCDD can bind and phosphorylate hVEGFR1. Further, results from molecular dynamic simulation studies showed that hVEGFR1 interaction with TCDD is stable throughout the simulation time. Overall, the present study has identified VEGFR1 as a novel target for TCDD, which provides the basis for further elucidating the role of TCDD in angiogenesis.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Misumi K, Ogo T, Ueda J, Tsuji A, Fukui S, Konagai N, Asano R, Yasuda S. Development of Pulmonary Arterial Hypertension in a Patient Treated with Qing-Dai (Chinese Herbal Medicine). Intern Med 2019; 58:395-399. [PMID: 30210129 PMCID: PMC6395113 DOI: 10.2169/internalmedicine.1523-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, devastating disease, characterized by elevated pulmonary arterial pressure due to pulmonary microvascular obstruction, which can result in heart failure and death. PAH can be associated with exposure to certain drugs or toxins. We herein report a case in which PAH developed in a patient with refractory ulcerative colitis during treatment with "Qing-Dai," a Chinese herbal medicine. The patient's PAH improved after the discontinuation of Qing-Dai.
Collapse
Affiliation(s)
- Kayo Misumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Takeshi Ogo
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
- Department of Advanced Medicine in Pulmonary Hypertension, National Cerebral and Cardiovascular Center, Japan
| | - Jin Ueda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Sigefumi Fukui
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Nao Konagai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Ryotaro Asano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
16
|
O'Driscoll CA, Mezrich JD. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front Immunol 2018; 9:2833. [PMID: 30574142 PMCID: PMC6291477 DOI: 10.3389/fimmu.2018.02833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
This review examines the current literature on the effects of atmospheric particulate matter (PM) on autoimmune disease and proposes a new role for the aryl hydrocarbon receptor (AHR) as a modulator of T cells in PM-mediated autoimmune disease. There is a significant body of literature regarding the strong epidemiologic correlations between PM exposures and worsened autoimmune diseases. Genetic predispositions account for 30% of all autoimmune disease leaving environmental factors as major contributors. Increases in incidence and prevalence of autoimmune disease have occurred concurrently with an increase in air pollution. Currently, atmospheric PM is considered to be the greatest environmental health risk worldwide. Atmospheric PM is a complex heterogeneous mixture composed of diverse adsorbed organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and dioxins, among others. Exposure to atmospheric PM has been shown to aggravate several autoimmune diseases. Despite strong correlations between exposure to atmospheric PM and worsened autoimmune disease, the mechanisms underlying aggravated disease are largely unknown. The AHR is a ligand activated transcription factor that responds to endogenous and exogenous ligands including toxicants present in PM, such as PAHs and dioxins. A few studies have investigated the effects of atmospheric PM on AHR activation and immune function and demonstrated that atmospheric PM can activate the AHR, change cytokine expression, and alter T cell differentiation. Several studies have found that the AHR modulates the balance between regulatory and effector T cell functions and drives T cell differentiation in vitro and in vivo using murine models of autoimmune disease. However, there are very few studies on the role of AHR in PM-mediated autoimmune disease. The AHR plays a critical role in the balance of effector and regulatory T cells and in autoimmune disease. With increased incidence and prevalence of autoimmune disease occurring concurrently with increases in air pollution, potential mechanisms that drive inflammatory and exacerbated disease need to be elucidated. This review focuses on the AHR as a potential mechanistic target for modulating T cell responses associated with PM-mediated autoimmune disease providing the most up-to-date literature on the role of AHR in autoreactive T cell function and autoimmune disease.
Collapse
Affiliation(s)
- Chelsea A. O'Driscoll
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua D. Mezrich
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
18
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
19
|
Pollet M, Krutmann J, Haarmann-Stemmann T. Commentary: Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:935. [PMID: 30177882 PMCID: PMC6110190 DOI: 10.3389/fphar.2018.00935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Marius Pollet
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
20
|
Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW, MacLean MR. Role of the Aryl Hydrocarbon Receptor in Sugen 5416-induced Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2018; 58:320-330. [PMID: 28956952 DOI: 10.1165/rcmb.2017-0260oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rats dosed with the vascular endothelial growth factor inhibitor Sugen 5416 (Su), subjected to hypoxia, and then restored to normoxia have become a widely used model of pulmonary arterial hypertension (PAH). However, the mechanism by which Su exacerbates pulmonary hypertension is unclear. We investigated Su activation of the aryl hydrocarbon receptor (AhR) in human pulmonary artery smooth muscle cells (hPASMCs) and blood outgrowth endothelial cells (BOECs) from female patients with PAH. We also examined the effect of AhR on aromatase and estrogen levels in the lung. Protein and mRNA analyses demonstrated that CYP1A1 was very highly induced in the lungs of Su/hypoxic (Su/Hx) rats. The AhR antagonist CH223191 (8 mg/kg/day) reversed the development of PAH in this model in vivo and normalized lung CYP1A1 expression. Increased lung aromatase and estrogen levels in Su/Hx rats were also normalized by CH223191, as was AhR nuclear translocator (ARNT [HIF-1β]), which is shared by HIF-1α and AhR. Su reduced HIF-1α expression in hPASMCs. Su induced proliferation in BOECs and increased apoptosis in human pulmonary microvascular ECs and also induced translocation of AhR to the nucleus in hPASMCs. Under normoxic conditions, hPASMCs did not proliferate to Su. However, when grown in hypoxia (1%), Su induced hPASMC proliferation. In combination with hypoxia, Su is proliferative in hPASMCs and BOECs from patients with PAH, and Su/Hx-induced PAH in rats may be facilitated by AhR-induced CYP1A1, ARNT, and aromatase. Inhibition of AhR may be a novel approach to the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Afshan Dean
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Teja Gregorc
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Craig K Docherty
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Katie Y Harvey
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Margaret Nilsen
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Nicholas W Morrell
- 2 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Margaret R MacLean
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| |
Collapse
|
21
|
O'Donnell EF, Jang HS, Pearce M, Kerkvliet NI, Kolluri SK. The aryl hydrocarbon receptor is required for induction of p21cip1/waf1 expression and growth inhibition by SU5416 in hepatoma cells. Oncotarget 2018; 8:25211-25225. [PMID: 28424418 PMCID: PMC5421923 DOI: 10.18632/oncotarget.16056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a potential clinical target for cancer and autoimmune dysfunction. Identifying selective AhR modulators that produce desirable clinical outcomes represents an opportunity for developing new anti-cancer agents. Repurposing clinically-used drugs with established safety profiles that activate the AhR represents a good starting place to pursue this goal. In this study, we characterized the AhR-dependent effects of SU5416 (Semaxanib) following its identification in a small-molecule library screen. SU5416 potently activated AhR-dependent reporter genes, induced AhR nuclear localization, facilitated AhR-DNA binding, and increased, expression of its endogenous target genes. SU5416 significantly inhibited proliferation of Hepa1 hepatoma cells in an AhR-dependent manner, but did not induce apoptosis. SU5416 also inhibited the growth of human HepG2 liver cancer cells. The effects of SU5416 correlated with an increased G1 population and increased expression of cell cycle inhibitor p21cip1/waf1 at both the mRNA and protein level. Increased expression of p21cip1/waf1 by SU5416 required expression of both AhR and Arnt. In addition, evidence for long-term activation of the AhR in vivo by a single dose of SU5416 was identified by analyzing published microarray data. Our results provide support for continued investigation of the AhR as therapeutic for cancers such as hepatocellular carcinoma. In addition, our findings raise the possibility that some of the previously observed anti-proliferative effects of SU5416 may be due to activation of the AhR.
Collapse
Affiliation(s)
- Edmond F O'Donnell
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Martin Pearce
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
22
|
Smith KJ, Murray IA, Boyer JA, Perdew GH. Allelic variants of the aryl hydrocarbon receptor differentially influence UVB-mediated skin inflammatory responses in SKH1 mice. Toxicology 2017; 394:27-34. [PMID: 29197551 DOI: 10.1016/j.tox.2017.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
The mouse strain SKH1 is widely used in skin research due to its hairless phenotype and intact immune system. Due to the complex nature of aryl hydrocarbon receptor (AHR) function in the skin, the development of additional in vivo models is necessary to study its role in cutaneous homeostasis and pathology. Variants of the Ah allele, exist among different mouse strains. The Ahb-1 and Ahd alleles express high and low affinity ligand binding forms of the AHR, respectively. The outbred SKH1 mice express the Ahb-2 and/or Ahd alleles. SKH1 mice were crossed with C57BL/6J mice, which harbor the Ahb-1 allele, to create useful models for studying endogenous AHR function. SKH1 mice were bred to be homozygous for either the Ahb-1 or Ahd allele to establish strains for use in comparative studies of the effects of differential ligand-mediated activation through gene expression changes upon UVB exposure. Ahb-1 or Ahd allelic status was confirmed by DNA sequence analysis. We tested the hypothesis that SKH1-Ahb-1 mice would display enhanced inflammatory signaling upon UVB exposure compared to SKH1-Ahd mice. Differential basal AHR activation between the strains was determined by assessing Cyp1a1 expression levels in the small intestine, liver, and skin of the SKH1-Ahb-1 mice compared to SKH1-Ahd mice. To determine whether SKH1-Ahb-1 mice are more prone to a pro-inflammatory phenotype in response to UVB, gene expression of inflammatory mediators was analyzed. SKH1-Ahb-1 mice expressed enhanced gene expression of the chemotactic factors Cxcl5, Cxcl1, and Ccl20, as well as the inflammatory signaling factors S100a9 and Ptgs2, compared to SKH1-Ahd mice in skin. These data supports a role for AHR activation and enhanced inflammatory signaling in skin.
Collapse
Affiliation(s)
- Kayla J Smith
- The Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University,University Park, PA 16802, United States; Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University,University Park, PA 16802, United States
| | - Jacob A Boyer
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University,University Park, PA 16802, United States
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University,University Park, PA 16802, United States; Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University,University Park, PA 16802, United States.
| |
Collapse
|
23
|
Jurado-Manzano BB, Zavala-Reyes D, Turrubiartes-Martínez EA, Portales-Pérez DP, González-Amaro R, Layseca-Espinosa E. FICZ generates human tDCs that induce CD4 + CD25 high Foxp3 + Treg-like cell differentiation. Immunol Lett 2017; 190:84-92. [PMID: 28765071 DOI: 10.1016/j.imlet.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) play a central role in the maintenance of immune homeostasis, their participation as professional antigen presenting cells is essential to the initiation of the adaptive immune response as well as to the induction of tolerance. The recently described role of the aryl hydrocarbon receptor (AhR) in the immune system, particularly in the modulation of the adaptive immune response has attracted the attention as a potential player in the induction of immune tolerance. However, the effects of AhR activation through endogenous ligands on human DCs have been poorly evaluated. In this study, we investigated the effect of FICZ, a natural AhR ligand, on monocyte-derived dendritic cells (Mo-DCs) from healthy subjects. We found that the activation of AhR through FICZ during DCs differentiation and maturation processes resulted in a decreased expression of CD83, an increased expression of the enzyme IDO and a reduced production of the pro-inflammatory cytokines IL-6 and TNF-α. More importantly, FICZ-treated DCs were able to induce the differentiation of naive T lymphocytes into CD4+ CD25high Foxp3+ T reg-like cells. Our results show that the activation of the AhR on human DCs induces a tolerogenic phenotype with potential implications in immunotherapy.
Collapse
Affiliation(s)
- Brenda B Jurado-Manzano
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Daniel Zavala-Reyes
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Edgar A Turrubiartes-Martínez
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Esther Layseca-Espinosa
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
24
|
Julliard W, Fechner JH, Owens L, O'Driscoll CA, Zhou L, Sullivan JA, Frydrych L, Mueller A, Mezrich JD. Modeling the Effect of the Aryl Hydrocarbon Receptor on Transplant Immunity. Transplant Direct 2017; 3:e157. [PMID: 28573192 PMCID: PMC5441988 DOI: 10.1097/txd.0000000000000666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exposure to pollutants through inhalation is a risk factor for lung diseases including cancer, asthma, and lung transplant rejection, but knowledge of the effects of inhaled pollutants on pathologies outside of the lung is limited. METHODS Using the minor-mismatched model of male C57BL/6J (B6) to female B6 skin grafts, recipient mice were treated with an inhaled urban dust particle sample every 3 days before and after grafting. Graft survival time was determined, and analysis of the resulting immune response was performed at time before rejection. RESULTS Significant prolongation of male skin grafts occurred in recipient female mice treated with urban dust particles compared with controls and was found to be dependent on aryl hydrocarbon receptor (AHR) expression in the recipient mouse. T cell responses to the male histocompatibility antigen (H-Y) Dby were not altered by exposure to pollutants. A reduction in the frequency of IFNγ-producing CD4 T cells infiltrating the graft on day 7 posttransplant was observed. Flow cytometry analysis revealed that AHR expression is upregulated in IFNγ-producing CD4 T cells during immune responses in vitro and in vivo. CONCLUSIONS Surprisingly, inhalation of a pollutant standard was found to prolong graft survival in a minor-mismatched skin graft model in an AHR-dependent manner. One possible mechanism may be an effect on IFNγ-producing CD4 T cells responding to donor antigen. The increased expression of AHR in this CD4 T cell subset suggests that AHR ligands within the particulate matter may be directly affecting the type 1 T helper cell response in this model.
Collapse
Affiliation(s)
- Walker Julliard
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John H Fechner
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Leah Owens
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Chelsea A O'Driscoll
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ling Zhou
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jeremy A Sullivan
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lynn Frydrych
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Amanda Mueller
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Joshua D Mezrich
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
25
|
Sehgal PB, Yang YM, Miller EJ. Hypothesis: Neuroendocrine Mechanisms (Hypothalamus-Growth Hormone-STAT5 Axis) Contribute to Sex Bias in Pulmonary Hypertension. Mol Med 2015; 21:688-701. [PMID: 26252185 PMCID: PMC4749490 DOI: 10.2119/molmed.2015.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with high morbidity and mortality. The prevalence of idiopathic pulmonary arterial hypertension (IPAH) and hereditary pulmonary arterial hypertension (HPAH) is approximately two- to four-fold higher in women than in men. Paradoxically, there is an opposite male bias in typical rodent models of PH (chronic hypoxia or monocrotaline); in these models, administration of estrogenic compounds (for example, estradiol-17β [E2]) is protective. Further complexities are observed in humans ingesting anorexigens (female bias) and in rodent models, such as after hypoxia plus SU5416/Sugen (little sex bias) or involving serotonin transporter overexpression or dexfenfluramine administration (female bias). These complexities in sex bias in PH remain incompletely understood. We recently discovered that conditional deletion of signal transducer and activator of transcription 5a/b (STAT5a/b) in vascular smooth muscle cells abrogated the male bias in PH in hypoxic mice and that late-stage obliterative lesions in patients of both sexes with IPAH and HPAH showed reduced STAT5a/b, reduced Tyr-P-STAT5 and reduced B-cell lymphoma 6 protein (BCL6). In trying to understand the significance of these observations, we realized that there existed a well-characterized E2-sensitive central neuroendocrine mechanism of sex bias, studied over the last 40 years, that, at its peripheral end, culminated in species-specific male ("pulsatile") versus female ("more continuous") temporal patterns of circulating growth hormone (GH) levels leading to male versus female patterned activation of STAT5a/b in peripheral tissues and thus sex-biased expression of hundreds of genes. In this report, we consider the contribution of this neuroendocrine mechanism (hypothalamus-GH-STAT5) in the generation of sex bias in different PH situations.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
- Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Edmund J Miller
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
26
|
Sehgal PB, Yang YM, Yuan H, Miller EJ. STAT5a/b contribute to sex bias in vascular disease: A neuroendocrine perspective. JAKSTAT 2015; 4:1-20. [PMID: 27141328 DOI: 10.1080/21623996.2015.1090658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
Previous studies have elucidated a neuroendocrine mechanism consisting of the hypothalamus (growth hormone releasing hormone, GHRH) - pituitary (growth hormone, GH) - STAT5a/b axis that underlies sex-biased gene expression in the liver. It is now established that male vs female patterned secretion of GHRH, and thus of circulating GH levels ("pulsatile" vs "more continuous" respectively), leading to differently patterned activation of PY-STAT5a/b in hepatocytes results in sex-biased gene expression of cohorts of hundreds of downstream genes. This review outlines new data in support of a STAT5a/b-based mechanism of sex bias in the vascular disease pulmonary hypertension (PH). Puzzling observations in PH include its 2-4-fold higher prevalence in women but a male-dominance in many rodent models, and, paradoxically, inhibition of PH development by estrogens in such models. We observed that conditional deletion of STAT5a/b in vascular smooth muscle cells (SMC) in mice converted the male-dominant model of chronic hypoxia-induced PH into a female-dominant phenotype. In human idiopathic PH, there was reduced STAT5a/b and PY-STAT5 in cells in late-stage obliterative pulmonary arterial lesions in both men and women. A juxtaposition of the prior liver data with the newer PH-related data drew attention to the hypothalamus-GH-STAT5 axis, which is the major target of estrogens at the level of the hypothalamus. This hypothesis explains many of the puzzling aspects of sex bias in PH in humans and rodent models. The extension of STAT5-anchored mechanisms of sex bias to vascular disease emphasizes the contribution of central neuroendocrine processes in generating sexual dimorphism in different tissues and cell types.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy; New York Medical College; Valhalla, NY USA; Department of Medicine; New York Medical College; Valhalla, NY USA
| | - Yang-Ming Yang
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Huijuan Yuan
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Edmund J Miller
- Center for Heart and Lung Research; The Feinstein Institute for Medical Research ; Manhasset, NY USA
| |
Collapse
|
27
|
Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci 2015; 35:5128-43. [PMID: 25834040 DOI: 10.1523/jneurosci.2810-14.2015] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common comorbidity in stroke patients and a strong predictor of poor functional outcome. To provide a more mechanistic understanding of this clinically relevant problem, we focused on how diabetes affects blood-brain barrier (BBB) function after stroke. Because the BBB can be compromised for days after stroke and thus further exacerbate ischemic injury, manipulating its function presents a unique opportunity for enhancing stroke recovery long after the window for thrombolytics has passed. Using a mouse model of Type 1 diabetes, we discovered that ischemic stroke leads to an abnormal and persistent increase in vascular endothelial growth factor receptor 2 (VEGF-R2) expression in peri-infarct vascular networks. Correlating with this, BBB permeability was markedly increased in diabetic mice, which could not be prevented with insulin treatment after stroke. Imaging of capillary ultrastructure revealed that BBB permeability was associated with an increase in endothelial transcytosis rather than a loss of tight junctions. Pharmacological inhibition (initiated 2.5 d after stroke) or vascular-specific knockdown of VEGF-R2 after stroke attenuated BBB permeability, loss of synaptic structure in peri-infarct regions, and improved recovery of forepaw function. However, the beneficial effects of VEGF-R2 inhibition on stroke recovery were restricted to diabetic mice and appeared to worsen BBB permeability in nondiabetic mice. Collectively, these results suggest that aberrant VEGF signaling and BBB dysfunction after stroke plays a crucial role in limiting functional recovery in an experimental model of diabetes. Furthermore, our data highlight the need to develop more personalized stroke treatments for a heterogeneous clinical population.
Collapse
|
28
|
LIU XIANGCHUN, ZHANG HONG, WANG QUN, YU KEZHOU, WANG RONG, SUN JING. Blockade of vascular endothelial growth factor-A/receptor 2 exhibits a protective effect on angiotensin-II stimulated podocytes. Mol Med Rep 2015; 12:4340-4345. [DOI: 10.3892/mmr.2015.3911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
|
29
|
Curran CS, Carrillo ER, Ponik SM, Keely PJ. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:114-124. [PMID: 25481308 PMCID: PMC4323890 DOI: 10.1016/j.etap.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-κB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-κB transcriptional factors, and the levels of ARNT.
Collapse
Affiliation(s)
- Colleen S Curran
- Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Esteban R Carrillo
- Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, WI 53706, USA.
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin at Madison, Madison, WI 53706, USA.
| |
Collapse
|
30
|
Domigan CK, Ziyad S, Iruela-Arispe ML. Canonical and noncanonical vascular endothelial growth factor pathways: new developments in biology and signal transduction. Arterioscler Thromb Vasc Biol 2014; 35:30-9. [PMID: 25278287 DOI: 10.1161/atvbaha.114.303215] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past 5 years have witnessed a significant expansion in our understanding of vascular endothelial growth factor (VEGF) signaling. In particular, the process of canonical activation of VEGF receptor tyrosine kinases by homodimeric VEGF molecules has now been broadened by the realization that heterodimeric ligands and receptors are also active participants in the signaling process. Although heterodimer receptors were described 2 decades ago, their impact, along with the effect of additional cell surface partners and novel autocrine VEGF signaling pathways, are only now starting to be clarified. Furthermore, ligand-independent signaling (noncanonical) has been identified through galectin and gremlin binding and upon rise of intracellular levels of reactive oxygen species. Activation of the VEGF receptors in the absence of ligand holds immediate implications for therapeutic approaches that exclusively target VEGF. The present review provides a concise summary of the recent developments in both canonical and noncanonical VEGF signaling and places these findings in perspective to their potential clinical and biological ramifications.
Collapse
Affiliation(s)
- Courtney K Domigan
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles
| | - Safiyyah Ziyad
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles
| | - M Luisa Iruela-Arispe
- From the Department of Molecular, Cell, and Developmental Biology (C.K.D., S.Z., M.L.I.-A.), Molecular Biology Institute (M.L.I.-A.), and Jonsson Comprehensive Cancer Center (M.L.I.-A.), University of California, Los Angeles.
| |
Collapse
|
31
|
VEGF increases the permeability of sheep pleura ex vivo through VEGFR2 stimulation. Cytokine 2014; 69:284-8. [DOI: 10.1016/j.cyto.2014.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/30/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
|
32
|
Frauenstein K, Tigges J, Soshilov AA, Kado S, Raab N, Fritsche E, Haendeler J, Denison MS, Vogel CFA, Haarmann-Stemmann T. Activation of the aryl hydrocarbon receptor by the widely used Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2). Arch Toxicol 2014; 89:1329-36. [PMID: 25082669 DOI: 10.1007/s00204-014-1321-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023]
Abstract
Small molecular weight protein kinase inhibitors are frequently used tools to unravel the complex network of cellular signal transduction under certain physiological and pathophysiological conditions. 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) is a widely used compound to block the activity of Src family kinases, the major group of non-receptor tyrosine kinases, which trigger multiple cellular signaling pathways. Here, we show that PP2 induces cytochrome P450 1A1 mRNA expression and enzyme activity in a dose-dependent manner in human HepG2 hepatoma cells and NCTC 2544 keratinocytes. By means of reporter gene assays, RNA interference, electrophoretic mobility shift assay, and competitive ligand-binding assay, we further demonstrate that PP2 is a ligand for the aryl hydrocarbon receptor (AHR), an intracellular chemosensor that regulates xenobiotic metabolism, environmental stress responses, and immune functions. Upon ligand-dependent activation, the AHR translocates into the nucleus and dimerizes with the AHR nuclear translocator (ARNT) to modulate the expression of its target genes. In addition, AHR activation is frequently accompanied by an activation of the tyrosine kinase c-Src, resulting in stimulation of cell-surface receptors and downstream signal transduction. As PP2 activates the AHR/ARNT pathway by simultaneously blocking c-Src-mediated alternative signaling routes, this compound may be a suitable tool to study the contribution of the different AHR-dependent signaling pathways to biological processes and adverse outcomes. On the other hand, the unexpected property of PP2 to stimulate AHR/ARNT signaling should be carefully taken into account in future investigations in order to avoid a false interpretation of experimental results and molecular interrelations.
Collapse
Affiliation(s)
- Katrin Frauenstein
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beamer CA, Shepherd DM. Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Semin Immunopathol 2013; 35:693-704. [PMID: 23963493 PMCID: PMC3821999 DOI: 10.1007/s00281-013-0391-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
Abstract
Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the AhR in regulating inflammation during acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, Skaggs School of Pharmacy and Allied Health Sciences, The University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA
| | | |
Collapse
|
34
|
Vogel CFA, Wu D, Goth SR, Baek J, Lollies A, Domhardt R, Grindel A, Pessah IN. Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation. Immunol Cell Biol 2013; 91:568-75. [PMID: 23999131 PMCID: PMC3806313 DOI: 10.1038/icb.2013.43] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/26/2022]
Abstract
How the aryl hydrocarbon receptor (AhR) regulates dendritic-cell (DC) differentiation is unknown. We show that activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) caused enhanced differentiation from immature DCs (IDCs) to mature DCs (MDCs) in the bone-marrow-derived DCs (BMDC) from B6 wild-type mice but not in the BMDCs from AhR-null mice as indicated by the expression of CD11c and class II major histocompatibility complex (MHC). Enhanced maturation of BMDCs was associated with elevated levels of CD86 and an increased AhR-dependent nuclear accumulation of nuclear factor-kappa-light-chain enhancer of activated B cell (NF-κB) member RelB in BMDCs. The expression of interleukin (IL) 10 and chemokine DC-CK1 was suppressed, whereas that of CXCL2, CXCL3 and IL-22 was significantly increased in AhR-activated BMDCs. Furthermore, TCDD induced expression of the regulatory enzymes indoleamine 2,3-dioxygenase (IDO1) and indoleamine 2,3-dioxygenase-like 1 (IDO2). Increased expression of IDO2 was associated with coexpression of the cell-surface marker CCR6. Interestingly, mRNA expression of the chemokine receptor CCR6 was drastically decreased in AhR-null IDCs and MDCs. Overall, these data demonstrate that AhR modifies the maturation of BMDCs associated with the induction of the regulatory enzyme IDO and altered expression of cytokine, chemokines and DC-specific surface markers and receptors.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Dalei Wu
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Samuel R Goth
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| | - Jaeeun Baek
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Anna Lollies
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Rowena Domhardt
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Annemarie Grindel
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Isaac N Pessah
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| |
Collapse
|
35
|
Aryl hydrocarbon receptor ligands inhibit igf-ii and adipokine stimulated breast cancer cell proliferation. ISRN ENDOCRINOLOGY 2013; 2013:104850. [PMID: 24171117 PMCID: PMC3793317 DOI: 10.1155/2013/104850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/13/2013] [Indexed: 02/04/2023]
Abstract
Obesity increases human cancer risk and the risk for cancer recurrence. Adipocytes secrete paracrine factors termed adipokines that stimulate signaling in cancer cells that induce proliferation. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays roles in tumorigenesis, is regulated by exogenous lipophilic chemicals, and has been explored as a therapeutic target for cancer therapy. Whether exogenous AHR ligands modulate adipokine stimulated breast cancer cell proliferation has not been investigated. We provide evidence that adipocytes secrete insulin-like growth factor 2 (IGF-2) at levels that stimulate the proliferation of human estrogen receptor (ER) positive breast cancer cells. Using highly specific AHR ligands and AHR short interfering RNA (AHR-siRNA), we show that specific ligand-activated AHR inhibits adipocyte secretome and IGF-2-stimulated breast cancer cell proliferation. We also report that a highly specific AHR agonist significantly (P < 0.05) inhibits the expression of E2F1, CCND1 (known as Cyclin D1), MYB, SRC, JAK2, and JUND in breast cancer cells. Collectively, these data suggest that drugs that target the AHR may be useful for treating cancer in human obesity.
Collapse
|
36
|
Hung CH, Yang SN, Wang YF, Liao WT, Kuo PL, Tsai EM, Lee CL, Chao YS, Yu HS, Huang SK, Suen JL. Environmental alkylphenols modulate cytokine expression in plasmacytoid dendritic cells. PLoS One 2013; 8:e73534. [PMID: 24039973 PMCID: PMC3770601 DOI: 10.1371/journal.pone.0073534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alkylphenols, such as nonylphenol (NP) and 4-octylphenol (4-OP), have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs) can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. OBJECTIVE The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. METHODS Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. RESULTS The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. CONCLUSION Alkylphenols may influence pDCs' functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN-α and IFN-β, suggesting the potential impact of endocrine disrupting chemicals on immune regulation.
Collapse
Affiliation(s)
- Chih-Hsing Hung
- Department of Pediatrics, Faculty of Pediatrics, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center of Excellence For Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, Faculty of Pediatrics, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Fang Wang
- Departments of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Center of Excellence For Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence For Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Shen Chao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Center of Excellence For Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli County, Taiwan
- Johns Hopkins Asthma and Allergy Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence For Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
The aryl hydrocarbon receptor: a novel target for immunomodulation in organ transplantation. Transplantation 2013; 95:983-90. [PMID: 23263608 DOI: 10.1097/tp.0b013e31827a3d1d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR), which has been central to studies in toxicology for years as the receptor for the toxicant dioxin, is rapidly gaining interest in immunology based on its ability to influence T-cell differentiation. Multiple studies have documented that binding of this receptor with certain ligands favors T-cell differentiation toward regulatory T cells, and paradoxically, binding of this same receptor with different ligands enhances Th17 effector cell differentiation. This finding has been confirmed in both in vitro and in vivo models, where different ligands are able to either ameliorate or conversely aggravate autoimmunity in experimental autoimmune encephalomyelitis. The AHR has both an endogenous role that is important in development and normal physiology and an exogenous role as a receptor for manmade toxicants, with their binding leading to transcription of cytochrome P450 enzymes that metabolize these same ligands. Based on recent reports that will be summarized in this overview, we will consider the role that the AHR might play as a sensor to the outside environment, leading to alteration of the acquired immune system that might have relevance in transplantation or other medical conditions. In addition to describing the data in normal physiology and T-cell differentiation, we will present examples of the importance of this receptor in preclinical models of disease and highlight specific ligands that target the AHR and will have efficacy in treating transplant rejection and in tolerance protocols.
Collapse
|
38
|
Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, Xu H, Mason J, Wang W, Cockerill G, Mori K, Li JYS, Chien S, Hu Y, Xu Q. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 2013; 127:1712-22. [PMID: 23529610 DOI: 10.1161/circulationaha.112.001337] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vascular endothelial cell growth factor plays a pivotal role in angiogenesis via regulating endothelial cell proliferation. The X-box binding protein 1 (XBP1) is believed to be a signal transducer in the endoplasmic reticulum stress response. It is unknown whether there is crosstalk between vascular endothelial cell growth factor signaling and XBP1 pathway. METHODS AND RESULTS We found that vascular endothelial cell growth factor induced the kinase insert domain receptor internalization and interaction through C-terminal domain with the unspliced XBP1 and the inositol requiring enzyme 1 α in the endoplasmic reticulum, leading to inositol requiring enzyme 1 α phosphorylation and XBP1 mRNA splicing, which was abolished by siRNA-mediated knockdown of kinase insert domain receptor. Spliced XBP1 regulated endothelial cell proliferation in a PI3K/Akt/GSK3β/β-catenin/E2F2-dependent manner and modulated the cell size increase in a PI3K/Akt/GSK3β/β-catenin/E2F2-independent manner. Knockdown of XBP1 or inositol requiring enzyme 1 α decreased endothelial cell proliferation via suppression of Akt/GSK3β phosphorylation, β-catenin nuclear translocation, and E2F2 expression. Endothelial cell-specific knockout of XBP1 (XBP1ecko) in mice retarded the retinal vasculogenesis in the first 2 postnatal weeks and impaired the angiogenesis triggered by ischemia. Reconstitution of XBP1 by Ad-XBP1s gene transfer significantly improved angiogenesis in ischemic tissue in XBP1ecko mice. Transplantation of bone marrow from wild-type o XBP1ecko mice could also slightly improve the foot blood reperfusion in ischemic XBP1ecko mice. CONCLUSIONS These results suggest that XBP1 can function via growth factor signaling pathways to regulate endothelial proliferation and angiogenesis.
Collapse
Affiliation(s)
- Lingfang Zeng
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London, UK. or
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pharmacological actions of multi-target-directed evodiamine. Molecules 2013; 18:1826-43. [PMID: 23434865 PMCID: PMC6270287 DOI: 10.3390/molecules18021826] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/09/2023] Open
Abstract
Evodiamine, a naturally occurring indole alkaloid, is one of the main bioactive ingredients of Evodiae fructus. With respect to the pharmacological actions of evodiamine, more attention has been paid to beneficial effects in insults involving cancer, obesity, nociception, inflammation, cardiovascular diseases, Alzheimer's disease, infectious diseases and themoregulative effects. evodiamine has evolved a superior ability to bind various proteins, so we also argue that it is good starting point for multi-target drugs. This review is primarily addressed to the description of the recent advances in the biological activity studies of evodiamine, with a focus on pharmacological mechanism. The present review also includes the pharmacokinetics and the detailed exploration of target-binding properties of evodiamine in an attempt to provide a direction for further multi-target drug design.
Collapse
|