1
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
2
|
Wargent ET, Kępczyńska MA, Kaspersen MH, Ulven ER, Arch JRS, Ulven T, Stocker CJ. Chronic administration of hydrolysed pine nut oil to mice improves insulin sensitivity and glucose tolerance and increases energy expenditure via a free fatty acid receptor 4-dependent mechanism. Br J Nutr 2024; 132:13-20. [PMID: 38751244 DOI: 10.1017/s0007114524000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.
Collapse
Affiliation(s)
- Edward Taynton Wargent
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Małgorzata A Kępczyńska
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Mads H Kaspersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | - Jonathan R S Arch
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | | |
Collapse
|
3
|
Lei L, Gao X, Zhai J, Liu S, Liu Q, Li C, Cao H, Feng C, Chen L, Lei L, Pan X, Li P, Liu Z, Huan Y, Shen Z. The GPR40 novel agonist SZZ15-11 improves non-alcoholic fatty liver disease by activating the AMPK pathway and restores metabolic homeostasis in diet-induced obese mice. Diabetes Obes Metab 2024; 26:2257-2266. [PMID: 38497233 DOI: 10.1111/dom.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
AIM Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Zhai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caina Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cunyu Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leilei Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liran Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pingping Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhanzhu Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Paul A, Nahar S, Nahata P, Sarkar A, Maji A, Samanta A, Karmakar S, Maity TK. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships. Eur J Med Chem 2024; 264:115990. [PMID: 38039791 DOI: 10.1016/j.ejmech.2023.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.
Collapse
Affiliation(s)
- Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| |
Collapse
|
6
|
Yamamoto Y, Narumi K, Yamagishi N, Nishi T, Ito T, Iseki K, Kobayashi M, Kanai Y. Oral administration of linoleic acid immediately before glucose load ameliorates postprandial hyperglycemia. Front Pharmacol 2023; 14:1197743. [PMID: 37583904 PMCID: PMC10424117 DOI: 10.3389/fphar.2023.1197743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: Fatty acids are a major nutrient in dietary fat, some of which are ligands of long-chain fatty acid receptors, including G-protein-coupled receptor (GPR) 40 and GPR120. Pretreatment with GPR40 agonists enhanced the secretion of insulin in response to elevating blood glucose levels after glucose load in a diabetes model, but pretreatment with GPR120 agonist did not ameliorate postprandial hyperglycemia. This study examined whether oral administration of linoleic acid (LA), a GPR40 and GPR120 agonist, immediately before glucose load would affect the elevation of postprandial blood glucose levels in rats. Methods: Male rats and rats with type 1 diabetes administered streptozocin were orally administered LA, trilinolein, α-linolenic acid (α-LA), oleic acid, TAK-875, or TUG-891 immediately before glucose load. Blood glucose levels were measured before, then 15, 30, 60 and 120 min after glucose load. CACO-2 cells were used to measure the uptake of [14C] α-MDG for 30 min with or without LA. Gastric content from rats administered LA was collected 15 and 30 min after glucose load, and blood samples were collected for measurement of glucagon-like peptide 1 (GLP-1) and cholecystokinin concentrations. Results: The elevation of postprandial blood glucose levels was slowed by LA but not by trilinolein in rats without promotion of insulin secretion, and this effect was also observed in rats with type 1 diabetes. The uptake of α-MDG, an SGLT-specific substrate, was, however, not inhibited by LA. Gastric emptying was slowed by LA 15 min after glucose load, and GLP-1, but not cholecystokinin, level was elevated by LA 15 min after glucose load. TUG-891, a GPR120 agonist, ameliorated postprandial hyperglycemia but TAK-875, a GPR40 agonist, did not. Pretreatment with AH7614, a GPR120 antagonist, partially canceled the improvement of postprandial hyperglycemia induced by LA. α-LA, which has high affinity with GPR120 as well as LA, slowed the elevation of postprandial blood glucose levels, but oleic acid, which has lower affinity with GPR120 than LA, did not. Conclusion: Oral administration of LA immediately after glucose load ameliorated postprandial hyperglycemia due to slowing of gastric emptying via promotion of GLP-1 secretion. The mechanisms may be associated with GPR120 pathway.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshio Nishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Ren Q, Fan Y, Yang L, Shan M, Shi W, Qian H. An updated patent review of GPR40/ FFAR1 modulators (2020 - present). Expert Opin Ther Pat 2023; 33:565-577. [PMID: 37947382 DOI: 10.1080/13543776.2023.2272649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for type 2 diabetes mellitus (T2DM) because it could clinically stimulate insulin release in a glucose-dependent manner without inducing hypoglycemia. In both the pharmaceutical industry and academic community, FFAR1 agonists have attracted considerable attention. AREAS COVERED The review presents a patent overview of FFAR1 modulators in 2020-2023, along with chemical structures, the biological activities and therapeutic applications of the representative compounds. Our patent survey used the major electronic databases, namely SciFinder, and Web of Science and Innojoy. EXPERT OPINION Although FFAR1 agonists exhibit outstanding advantages, they are also associated with significant challenges. At present, reducing the molecular weight and overall lipophilicity and developing tissue-specific FFAR1 agonists may be the strategies for alleviating hepatotoxicity.
Collapse
Affiliation(s)
- Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Lixin Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mayu Shan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
8
|
Chen C, Guo SM, Sun Y, Li H, Hu N, Yao K, Ni H, Xia Z, Xu B, Xie X, Long YQ. Discovery of orally effective and safe GPR40 agonists by incorporating a chiral, rigid and polar sulfoxide into β-position to the carboxylic acid. Eur J Med Chem 2023; 251:115267. [PMID: 36933395 DOI: 10.1016/j.ejmech.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
GPR40 is primarily expressed in pancreatic islet β-cells, and its activation by endogenous ligands of medium to long-chain free fatty acids or synthetic agonists is clinically proved to improve glycemic control by stimulating glucose-dependent insulin secretion. However, most of the reported agonists are highly lipophilic, which might cause lipotoxicity and the off-target effects in CNS. Particularly, the withdrawal of TAK-875 from clinical trials phase III due to liver toxicity concern threw doubt over the long-term safety of targeting GPR40. Improving the efficacy and the selectivity, thus enlarging the therapeutic window would provide an alternative to develop safe GPR40-targeted therapeutics. Herein, by employing an innovative "three-in-one" pharmacophore drug design strategy, the optimal structural features for GPR40 agonist was integrated into one functional group of sulfoxide, which was incorporated into the β-position of the propanoic acid core pharmacophore. As a result, the conformational constraint, polarity as well as chirality endowed by the sulfoxide significantly enhanced the efficacy, selectivity and ADMET properties of the novel (S)- 2-(phenylsulfinyl)acetic acid-based GPR40 agonists. The lead compounds (S)-4a and (S)-4s exhibited robust plasma glucose-lowering effects and insulinotropic action during an oral glucose tolerance test in C57/BL6 mice, excellent pharmacokinetic profile and little hepatobiliary transporter inhibition, marginal cell toxicities against human primary hepatocyte at 100 μM.
Collapse
Affiliation(s)
- Cheng Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Meng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuanjun Sun
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - He Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Nan Hu
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Kun Yao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Huxin Ni
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Zhikan Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Bin Xu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
9
|
Jurica EA, Wu X, Williams KN, Haque LE, Rampulla RA, Mathur A, Zhou M, Cao G, Cai H, Wang T, Liu H, Xu C, Kunselman LK, Antrilli TM, Hicks MB, Sun Q, Dierks EA, Apedo A, Moore DB, Foster KA, Cvijic ME, Panemangalore R, Khandelwal P, Wilkes JJ, Zinker BA, Robertson DG, Janovitz EB, Galella M, Li YX, Li J, Ramar T, Jalagam PR, Jayaram R, Whaley JM, Barrish JC, Robl JA, Ewing WR, Ellsworth BA. Optimization of Physicochemical Properties of Pyrrolidine GPR40 AgoPAMs Results in a Differentiated Profile with Improved Pharmacokinetics and Reduced Off-Target Activities. Bioorg Med Chem 2023; 85:117273. [PMID: 37030194 DOI: 10.1016/j.bmc.2023.117273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.
Collapse
Affiliation(s)
- Elizabeth A Jurica
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States.
| | - Ximao Wu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kristin N Williams
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lauren E Haque
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Richard A Rampulla
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Min Zhou
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Gary Cao
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Hong Cai
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Tao Wang
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Heng Liu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Carrie Xu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lori K Kunselman
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thomas M Antrilli
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael B Hicks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Qin Sun
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Elizabeth A Dierks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Atsu Apedo
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Douglas B Moore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kimberly A Foster
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Reshma Panemangalore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jason J Wilkes
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bradley A Zinker
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Donald G Robertson
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Evan B Janovitz
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael Galella
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Yi-Xin Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Julia Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thangeswaran Ramar
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Prasada Rao Jalagam
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Ramya Jayaram
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jean M Whaley
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Joel C Barrish
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jeffrey A Robl
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - William R Ewing
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bruce A Ellsworth
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| |
Collapse
|
10
|
Dhankhar S, Chauhan S, Mehta DK, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
11
|
Synthesis of Chromone‐Spiroindolinone‐Cyclopentene Derivatives through Phosphine‐Catalyzed (3+2) Annulation of Morita‐Baylis‐Hillman Carbonates with Oxindole‐Chromones. ChemistrySelect 2022. [DOI: 10.1002/slct.202203340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
13
|
How Arrestins and GRKs Regulate the Function of Long Chain Fatty Acid Receptors. Int J Mol Sci 2022; 23:ijms232012237. [PMID: 36293091 PMCID: PMC9602559 DOI: 10.3390/ijms232012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with β-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of β-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how β-arrestins and GRKs regulate the function of long chain fatty acid receptors.
Collapse
|
14
|
Xu J, Hu Y, Liao J, Du J, Wang L, Wang W, Wu Y, Guo H. Synthesis of Fluoroalkyl Cyclopentenes: Highly Diastereoselective Phosphine‐Catalyzed [3+2] Annulation of β‐Fluoroalkylvinyl Arylsulfones with Morita‐Baylis‐Hillman Carbonates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Juan Du
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | | | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
15
|
Teng D, Zhou Y, Tang Y, Liu G, Tu Y. Mechanistic Studies on the Stereoselectivity of FFAR1 Modulators. J Chem Inf Model 2022; 62:3664-3675. [PMID: 35877470 PMCID: PMC9364411 DOI: 10.1021/acs.jcim.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for the treatment of type 2 diabetes (T2D). It has been validated that agonists targeting FFAR1 can achieve the initial therapeutic endpoints of T2D, and the epimer agonists (R,S) AM-8596 can activate FFAR1 differently, with one acting as a partial agonist and the other as a full agonist. Up to now, the origin of the stereoselectivity of FFAR1 agonists remains elusive. In this work, we used molecular simulation methods to elucidate the mechanism of the stereoselectivity of the FFAR1 agonists (R)-AM-8596 and (S)-AM-8596. We found that the full agonist (R)-AM-8596 disrupts the residue interaction network around the receptor binding pocket and promotes the opening of the binding site for the G-protein, thereby resulting in the full activation of FFAR1. In contrast, the partial agonist (S)-AM-8596 forms stable electrostatic interactions with FFAR1, which stabilizes the residue network and hinders the conformational transition of the receptor. Our work thus clarifies the selectivity and underlying molecular activation mechanism of FFAR1 agonists.
Collapse
Affiliation(s)
- Dan Teng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| |
Collapse
|
16
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
17
|
Zhou Y, Qin Y, Wang Q, Zhang Z, Zhu G. Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angew Chem Int Ed Engl 2022; 61:e202110864. [PMID: 34747130 DOI: 10.1002/anie.202110864] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Cyclopentenes and indenes are important structural scaffolds in synthetic, medical, and material chemistry. Cyclization of alkynes via remote C-H functionalization is an appealing approach to construct these motifs due to its high efficiency and step-economy. Herein, a traceless directing group strategy was designed to reverse the regioselectivity of radical addition which enabled an unprecedented photocatalytic sulfonylcarbocyclization of terminal alkynes by forming C-C bond on inert C(sp3 )-H bond. It offers a facile access to decorated cyclopentenes and indenes under mild conditions. The resultant products could be converted into a set of valuable molecular scaffolds, including a key intermediate of AM-6226. Mechanistic experiments suggest a radical cascade pathway comprising a Markovnikov-type sulfonylation, 1,5-hydrogen atom transfer, 5-endo-trig cyclization, and β-elimination. This study lays further groundwork for the use of anti-Baldwin 5-endo-trig radical cyclization in rapidly assembling five-membered carbocycles.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Yizhou Qin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Qinggui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
18
|
Zhou Y, Qin Y, Wang Q, Zhang Z, Zhu G. Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yizhou Qin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qinggui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
19
|
Miedzybrodzka EL, Gribble FM, Reimann F. Targeting the Enteroendocrine System for Treatment of Obesity. Handb Exp Pharmacol 2022; 274:487-513. [PMID: 35419620 DOI: 10.1007/164_2022_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
20
|
Wang G, Song J, Huang Y, Li X, Wang H, Zhang Y, Suo H. Lactobacillus plantarum SHY130 isolated from yak yogurt attenuates hyperglycemia in C57BL/6J mice by regulating the enteroinsular axis. Food Funct 2021; 13:675-687. [PMID: 34935020 DOI: 10.1039/d1fo02387j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes, one of the most serious and common chronic metabolic diseases affecting people worldwide in the 21st century, has become a major problem that needs to be addressed urgently. This study was designed to elucidate the anti-diabetic effect of yak yogurt-derived Lactobacillus (L.) plantarum SHY130 on C57BL/6J mice fed high-fat diet and streptozotocin (HFD/STZ), and the potential regulatory mechanisms involved. Mice were divided into 3 groups: normal control, diabetes, and diabetes treated with L. plantarum SHY130 (SHY130). Treatment with L. plantarum SHY130 had a regulatory effect on blood glucose and clearly ameliorated insulin resistance in T2DM mice. L. plantarum SHY130 inhibited the reduction in β-cell mass and α-cell proliferation in the pancreas and increased the expression of the short-chain fatty acid (SCFA) receptors GPR43 and GPR41 in the colon of T2DM mice. Furthermore, L. plantarum SHY130 treatment readjusted intestinal flora structure, enhanced the abundance of SCFA-producing bacteria, such as Faecalibaculum, Odoribacter, Alistipes, and increased the levels of SCFAs in diabetic mice. In summary, L. plantarum SHY130 ameliorated hyperglycemia in HFD/STZ-induced diabetic mice by regulating the enteroinsular axis.
Collapse
Affiliation(s)
- Guangqi Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Xueqiong Li
- Chongqing Agricultural Product Quality and Safety Center, Chongqing 400020, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Nishizaki H, Matsuoka O, Kagawa T, Kobayashi A, Watanabe M, Moritoh Y. SCO-267, a GPR40 Full Agonist, Stimulates Islet and Gut Hormone Secretion and Improves Glycemic Control in Humans. Diabetes 2021; 70:2364-2376. [PMID: 34321316 PMCID: PMC8571351 DOI: 10.2337/db21-0451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022]
Abstract
SCO-267 is a full agonist of the free fatty acid receptor 1 (GPR40), which regulates the secretion of islet and gut hormones. In this phase 1 study, we aimed to evaluate the clinical profile of single and multiple once-daily oral administration of SCO-267 in healthy adults and patients with diabetes. Plasma SCO-267 concentration was seen to increase in a dose-dependent manner after administration, and its plasma exposure was maintained for 24 h. Repeated dose did not alter the pharmacokinetic profile of SCO-267 in healthy adults. SCO-267 was generally safe and well tolerated at all evaluated single and multiple doses. Single and repeated doses of SCO-267 stimulated the secretion of insulin, glucagon, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and peptide YY in healthy adults. Furthermore, a single dose of SCO-267 stimulated the secretion of these hormones, decreased fasting hyperglycemia, and improved glycemic control during an oral glucose tolerance test in patients with diabetes, without inducing hypoglycemia. This study is the first to demonstrate the clinical effects of a GPR40 full agonist. SCO-267 is safe and well tolerated and exhibits once-daily oral dosing potential. Its robust therapeutic effects on hormonal secretion and glycemic control make SCO-267 an attractive drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Osamu Matsuoka
- Medical Corporation Heishinkai ToCROM Clinic, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Murata Y, Harada N, Kishino S, Iwasaki K, Ikeguchi-Ogura E, Yamane S, Kato T, Kanemaru Y, Sankoda A, Hatoko T, Kiyobayashi S, Ogawa J, Hirasawa A, Inagaki N. Medium-chain triglycerides inhibit long-chain triglyceride-induced GIP secretion through GPR120-dependent inhibition of CCK. iScience 2021; 24:102963. [PMID: 34466786 PMCID: PMC8382997 DOI: 10.1016/j.isci.2021.102963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/14/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain triglycerides (LCTs) intake strongly stimulates GIP secretion from enteroendocrine K cells and induces obesity and insulin resistance partly due to GIP hypersecretion. In this study, we found that medium-chain triglycerides (MCTs) inhibit GIP secretion after single LCT ingestion and clarified the mechanism underlying MCT-induced inhibition of GIP secretion. MCTs reduced the CCK effect after single LCT ingestion in wild-type (WT) mice, and a CCK agonist completely reversed MCT-induced inhibition of GIP secretion. In vitro studies showed that medium-chain fatty acids (MCFAs) inhibit long-chain fatty acid (LCFA)-stimulated CCK secretion and increase in intracellular Ca2+ concentrations through inhibition of GPR120 signaling. Long-term administration of MCTs reduced obesity and insulin resistance in high-LCT diet-fed WT mice, but not in high-LCT diet-fed GIP-knockout mice. Thus, MCT-induced inhibition of GIP hypersecretion reduces obesity and insulin resistance under high-LCT diet feeding condition.
Collapse
Affiliation(s)
- Yuki Murata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eri Ikeguchi-Ogura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Kato
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Kanemaru
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Sankoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomonobu Hatoko
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Corresponding author
| |
Collapse
|
23
|
Mach M, Bazydło-Guzenda K, Buda P, Matłoka M, Dzida R, Stelmach F, Gałązka K, Wąsińska-Kałwa M, Smuga D, Hołowińska D, Dawid U, Gurba-Bryśkiewicz L, Wiśniewski K, Dubiel K, Pieczykolan J, Wieczorek M. Discovery and development of CPL207280 as new GPR40/FFA1 agonist. Eur J Med Chem 2021; 226:113810. [PMID: 34537444 DOI: 10.1016/j.ejmech.2021.113810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Due to a unique mechanism that limits the possibility of hypoglycemia, the free fatty acid receptor (FFA1) is an attractive target for the treatment of type 2 diabetes. So far, however, none of the promising agonists have been able to enter the market. The most advanced clinical candidate, TAK-875, was withdrawn from phase III clinical trials due to liver safety issues. In this article, we describe the key aspects leading to the discovery of CPL207280 (13), the design of which focused on long-term safety. The introduction of small, nature-inspired acyclic structural fragments resulted in compounds with retained high potency and a satisfactory pharmacokinetic profile. Optimized synthesis and upscaling provided a stable, solid form of CPL207280-51 (45) with the properties required for the toxicology studies and ongoing clinical trials.
Collapse
Affiliation(s)
- Mateusz Mach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland.
| | - Katarzyna Bazydło-Guzenda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Paweł Buda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Mikołaj Matłoka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Radosław Dzida
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Filip Stelmach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Kinga Gałązka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | - Damian Smuga
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Dagmara Hołowińska
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Urszula Dawid
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | | | - Krzysztof Dubiel
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Jerzy Pieczykolan
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Maciej Wieczorek
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| |
Collapse
|
24
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
25
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
26
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
27
|
Tian M, Wu Z, Heng J, Chen F, Guan W, Zhang S. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance. Nutr Rev 2021; 80:187-199. [PMID: 34027989 DOI: 10.1093/nutrit/nuab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.
Collapse
Affiliation(s)
- Min Tian
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
28
|
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver Disease. Front Physiol 2021; 12:656441. [PMID: 33897464 PMCID: PMC8058363 DOI: 10.3389/fphys.2021.656441] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Free fatty acid receptors (FFARs) are a class of G protein-coupled receptors (GPCRs) that have wide-ranging effects on human physiology. The four well-characterized FFARs are FFAR1/GPR40, FFAR2/GPR43, FFAR3/GPR41, and FFAR4/GPR120. Short-chain (<6 carbon) fatty acids target FFAR2/GPR43 and FFAR3/GPR41. Medium- and long-chain fatty acids (6-12 and 13-21 carbon, respectively) target both FFAR1/GPR40 and FFAR4/GPR120. Signaling through FFARs has been implicated in non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), intestinal failure-associated liver disease (IFALD), and a variety of other liver disorders. FFARs are now regarded as targets for therapeutic intervention for liver disease, diabetes, obesity, hyperlipidemia, and metabolic syndrome. In this review, we provide an in-depth, focused summary of the role FFARs play in liver health and disease.
Collapse
Affiliation(s)
- Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
29
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
30
|
Kuranov SO, Luzina OA, Salakhutdinov NF. FFA1 (GPR40) Receptor Agonists Based on Phenylpropanoic Acid as Hypoglycemic Agents: Structure–Activity Relationship. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Furukawa H, Miyamoto Y, Hirata Y, Watanabe K, Hitomi Y, Yoshitomi Y, Aida J, Noguchi N, Takakura N, Takami K, Miwatashi S, Hirozane Y, Hamada T, Ito R, Ookawara M, Moritoh Y, Watanabe M, Maekawa T. Design and Identification of a GPR40 Full Agonist ( SCO-267) Possessing a 2-Carbamoylphenyl Piperidine Moiety. J Med Chem 2020; 63:10352-10379. [PMID: 32900194 DOI: 10.1021/acs.jmedchem.0c00843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
GPR40/FFAR1 is a G-protein-coupled receptor expressed in pancreatic β-cells and enteroendocrine cells. GPR40 activation stimulates secretions of insulin and incretin, both of which are the pivotal regulators of glycemic control. Therefore, a GPR40 agonist is an attractive target for the treatment of type 2 diabetes mellitus. Using the reported biaryl derivative 1, we shifted the hydrophobic moiety to the terminal aryl ring and replaced the central aryl ring with piperidine, generating 2-(4,4-dimethylpentyl)phenyl piperidine 4a, which had improved potency for GPR40 and high lipophilicity. We replaced the hydrophobic moiety with N-alkyl-N-aryl benzamides to lower the lipophilicity and restrict the N-alkyl moieties to the presumed lipophilic pocket using the intramolecular π-π stacking of cis-preferential N-alkyl-N-aryl benzamide. Among these, orally available (3S)-3-cyclopropyl-3-(2-((1-(2-((2,2-dimethylpropyl)(6-methylpyridin-2-yl)carbamoyl)-5-methoxyphenyl)piperidin-4-yl)methoxy)pyridin-4-yl)propanoic acid (SCO-267) effectively stimulated insulin secretion and GLP-1 release and ameliorated glucose tolerance in diabetic rats via GPR40 full agonism.
Collapse
Affiliation(s)
- Hideki Furukawa
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasufumi Miyamoto
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuhiro Hirata
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Watanabe
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuko Hitomi
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yayoi Yoshitomi
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoyoshi Noguchi
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Takakura
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuaki Takami
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Seiji Miwatashi
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiko Hirozane
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruki Hamada
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryo Ito
- Research, Takeda Pharmaceutical Company, Ltd., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsugi Ookawara
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Moritoh
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Watanabe
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Research Division, SCOHIA PHARMA Inc., Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
32
|
He J, Chu Y. Small-molecule GLP-1 secretagogs: challenges and recent advances. Drug Discov Today 2020; 25:S1359-6446(20)30308-1. [PMID: 32835725 DOI: 10.1016/j.drudis.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent anti-hyperglycemic hormone that is an alternative treatment choice for patients with type 2 diabetes mellitus (T2DM). The glucose-dependent mechanism of GLP-1 is particularly important because it does not stimulate insulin secretion and cause hypoglycemia when plasma glucose concentrations are in the normal fasting range. Although several peptide drugs of GLP-1 analogs are clinically available, research on the small molecules that stimulate GLP-1 secretion is still struggling. In this review, we summarize recent updates in the discovery of small-molecule GLP-1 secretagogs targeting the G-protein-coupled receptor (GPCR) family. We also discuss the challenges and strategies for the study and describe the latest developments.
Collapse
Affiliation(s)
- Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
33
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 2019; 30:27-38. [DOI: 10.1080/13543776.2020.1698546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
36
|
Zhang X, Sun H, Wen X, Yuan H. A Selectivity Study of FFAR4/FFAR1 Agonists by Molecular Modeling. J Chem Inf Model 2019; 59:4467-4474. [PMID: 31580060 DOI: 10.1021/acs.jcim.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
FFAR4 has been considered as a potential target for metabolic diseases, including diabetes. Some compounds with biphenyl scaffold, represented by compound SR13 reported by our group, showed significant FFAR4 selectivity. However, the molecular basis for their selectivity has not been definitely disclosed. This study provided insights into the protein-ligand interactions between agonists and FFAR4/FFAR1 by molecular modeling. The important residues identified were consistent with those found in experimental studies. Moreover, the results proposed that the selectivity of SR13 between FFAR4 and FFAR1 depended on whether it can enter the ligand-binding site through the entrance region by adopting its preferential conformation. The big difference between the preferential conformation of SR13 and the narrow entrance region determined its poor agonist activity against FFAR1. These findings will facilitate the further development of selective FFAR4 agonists.
Collapse
Affiliation(s)
- Xiangying Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
37
|
GPR40 full agonism exerts feeding suppression and weight loss through afferent vagal nerve. PLoS One 2019; 14:e0222653. [PMID: 31525244 PMCID: PMC6746387 DOI: 10.1371/journal.pone.0222653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
GPR40/FFAR1 is a Gq protein-coupled receptor expressed in pancreatic β cells and enteroendocrine cells, and mediates insulin and incretin secretion to regulate feeding behavior. Several GPR40 full agonists have been reported to reduce food intake in rodents by regulating gut hormone secretion in addition to their potent glucose-lowering effects; however, detailed mechanisms of feeding suppression are still unknown. In the present study, we characterized T-3601386, a novel compound with potent full agonistic activity for GPR40, by using in vitro Ca2+ mobilization assay in Chinese hamster ovary (CHO) cells expressing FFAR1 and in vivo hormone secretion assay. We also evaluated feeding suppression and weight loss after the administration of T-3601386 and investigated the involvement of the vagal nerve in these effects. T-3601386, but not a partial agonist fasiglifam, increased intracellular Ca2+ levels in CHO cells with low FFAR1 expression, and single dosing of T-3601386 in diet-induced obese (DIO) rats elevated plasma incretin levels, suggesting full agonistic properties of T-3601386 against GPR40. Multiple doses of T-3601386, but not fasiglifam, in DIO rats showed dose-dependent weight loss accompanied by feeding suppression and durable glucagon-like peptide-1 elevation, all of which were completely abolished in Ffar1-/- mice. Immunohistochemical analysis in the nuclei of the solitary tract demonstrated that T-3601386 increased the number of c-Fos positive cells, which also disappeared in Ffar1-/- mice. Surgical vagotomy and drug-induced deafferentation counteracted the feeding suppression and weight loss induced by the administration of T-3601386. These results suggest that T-3601386 exerts incretin release and weight loss in a GPR40-dependent manner, and that afferent vagal nerves are important for the feeding suppression induced by GPR40 full agonism. Our novel findings raise the possibility that GPR40 full agonist can induce periphery-derived weight reduction, which may provide benefits such as less adverse effects in central nervous system compared to centrally-acting anti-obesity drugs.
Collapse
|
38
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
39
|
Targeting GPCRs Activated by Fatty Acid-Derived Lipids in Type 2 Diabetes. Trends Mol Med 2019; 25:915-929. [PMID: 31377146 DOI: 10.1016/j.molmed.2019.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, because of their diversity, cell-specific expression, and druggable sites accessible at the cell surface. Preclinical and clinical studies suggest that targeting GPCRs activated by fatty acid-derived lipids may have potential to improve glucose homeostasis and reduce complications in patients with type 2 diabetes (T2D). Despite the discontinued development of fasiglifam (TAK-875), the first FFA1 agonist to reach late-stage clinical trials, lipid-sensing receptors remain a viable target, albeit with a need for further characterization of their binding mode, intracellular signaling, and toxicity. Herein, we analyze general discovery trends, various signaling pathways, as well as possible challenges following activation of GPCRs that have been validated clinically to control blood glucose levels.
Collapse
|
40
|
Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, Miyamoto Y, Yoshihara T, Kobayashi A, Tsujihata Y, Takeuchi K, Watanabe M, Yamada Y, Maekawa T, Nishigaki N, Moritoh Y. SCO-267, a GPR40 Full Agonist, Improves Glycemic and Body Weight Control in Rat Models of Diabetes and Obesity. J Pharmacol Exp Ther 2019; 370:172-181. [DOI: 10.1124/jpet.118.255885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
|
41
|
Ackerson T, Amberg A, Atzrodt J, Arabeyre C, Defossa E, Dorau M, Dudda A, Dwyer J, Holla W, Kissner T, Kohlmann M, Kürzel U, Pánczél J, Rajanna S, Riedel J, Schmidt F, Wäse K, Weitz D, Derdau V. Mechanistic investigations of the liver toxicity of the free fatty acid receptor 1 agonist fasiglifam (TAK875) and its primary metabolites. J Biochem Mol Toxicol 2019; 33:e22345. [DOI: 10.1002/jbt.22345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Jens Atzrodt
- Integrated Drug Discovery, Sanofi Frankfurt Germany
| | | | | | | | - Angela Dudda
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | | | | | | | - Markus Kohlmann
- Global Project Management Unit, DCV, Sanofi Frankfurt Germany
| | - Ulrich Kürzel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | - József Pánczél
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | - Jens Riedel
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | | | | - Dietmar Weitz
- Drug Metabolism and Pharmacokinetics, Sanofi Frankfurt Germany
| | | |
Collapse
|
42
|
Huang H, Meegalla SK, Lanter JC, Winters MP, Zhao S, Littrell J, Qi J, Rady B, Lee PS, Liu J, Martin T, Lam WW, Xu F, Lim HK, Wilde T, Silva J, Otieno M, Pocai A, Player MR. Discovery of a GPR40 Superagonist: The Impact of Aryl Propionic Acid α-Fluorination. ACS Med Chem Lett 2019; 10:16-21. [PMID: 30655940 PMCID: PMC6331191 DOI: 10.1021/acsmedchemlett.8b00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
GPR40 is a G-protein-coupled receptor which mediates fatty acid-induced glucose-stimulated insulin secretion from pancreatic beta cells and incretion release from enteroendocrine cells of the small intestine. GPR40 full agonists exhibit superior glucose lowering compared to partial agonists in preclinical species due to increased insulin and GLP-1 secretion, with the added benefit of promoting weight loss. In our search for potent GPR40 full agonists, we discovered a superagonist which displayed excellent in vitro potency and superior efficacy in the Gαs-mediated signaling pathway. Most synthetic GPR40 agonists have a carboxylic acid headgroup, which may cause idiosyncratic toxicities, including drug-induced-liver-injury (DILI). With a methyl group and a fluorine atom substituted at the α-C of the carboxylic acid group, 19 is not only highly efficacious in lowering glucose and body weight in rodent models but also has a low DILI risk due to its stable acylglucuronide metabolite.
Collapse
Affiliation(s)
- Hui Huang
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Sanath K. Meegalla
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - James C. Lanter
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Michael P. Winters
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Shuyuan Zhao
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - James Littrell
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jenson Qi
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Brian Rady
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Paul S. Lee
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jianying Liu
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Tonya Martin
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Wing W. Lam
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Fran Xu
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Heng Keang Lim
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Thomas Wilde
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jose Silva
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Monicah Otieno
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Alessandro Pocai
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Mark R. Player
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| |
Collapse
|
43
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
44
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
45
|
Chen JJ, Gong YH, He L. Role of GPR40 in pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. J Drug Target 2018; 27:347-354. [PMID: 29929407 DOI: 10.1080/1061186x.2018.1491979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein coupled receptor 40 (GPR40) is also known as free fatty acid receptor 1. It is a typical 7 transmembrane receptor and currently the natural receptor of the saturated or unsaturated long-chain fatty acids. It could trigger the intracellular signalling pathway when combined with the free long-chain fatty acids, thereby controlling cells physiological function. In this review, we summarised the relationships and the potential mechanisms between the promising target GPR40, and pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. It may provide a theoretical reference for the development of clinical drug targeting GPR40.
Collapse
Affiliation(s)
- Jing-Jing Chen
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Yu-Hang Gong
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Ling He
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
46
|
Brown SP, Dransfield P, Vimolratana M, Zhu L, Luo J, Zhang J, Jiao X, Pattaropong V, Wong S, Zhuang R, Swaminath G, Houze JB, Lin DCH. Discovery of AM-6226: A Potent and Orally Bioavailable GPR40 Full Agonist That Displays Efficacy in Nonhuman Primates. ACS Med Chem Lett 2018; 9:757-760. [PMID: 30034614 DOI: 10.1021/acsmedchemlett.8b00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
GPR40 (FFA1) is a G-protein-coupled receptor, primarily expressed in pancreatic islets and enteroendocrine L-cells, and, when activated, elicits increased insulin secretion only in the presence of elevated glucose levels. We recently reported the discovery of AM-1638 (2), a full agonist of GPR40. Herein, we present further structure-activity relationships progressing from AM-1638 (2) to AM-6226 (14) that possesses a profile acceptable for dosing cynomolgus monkeys. The GPR40 full agonist AM-6226 (14) is the first molecule to display significant glucose lowering in cynomolgus monkeys providing additional evidence that GPR40 full agonists afford access to a powerful mechanism for maintaining glycemic control.
Collapse
Affiliation(s)
- Sean P. Brown
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Dransfield
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Marc Vimolratana
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Liusheng Zhu
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jian Luo
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jane Zhang
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - XianYun Jiao
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vatee Pattaropong
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Simon Wong
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Run Zhuang
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Gayathri Swaminath
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jonathan B. Houze
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Daniel C.-H. Lin
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
47
|
Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat Commun 2018; 9:1645. [PMID: 29695780 PMCID: PMC5917010 DOI: 10.1038/s41467-017-01240-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022] Open
Abstract
Activation of free fatty acid receptor 1 (GPR40) by synthetic partial and full agonists occur via distinct allosteric sites. A crystal structure of GPR40-TAK-875 complex revealed the allosteric site for the partial agonist. Here we report the 2.76-Å crystal structure of human GPR40 in complex with a synthetic full agonist, compound 1, bound to the second allosteric site. Unlike TAK-875, which acts as a Gαq-coupled partial agonist, compound 1 is a dual Gαq and Gαs-coupled full agonist. compound 1 binds in the lipid-rich region of the receptor near intracellular loop 2 (ICL2), in which the stabilization of ICL2 by the ligand is likely the primary mechanism for the enhanced G protein activities. The endogenous free fatty acid (FFA), γ-linolenic acid, can be computationally modeled in this site. Both γ-linolenic acid and compound 1 exhibit positive cooperativity with TAK-875, suggesting that this site could also serve as a FFA binding site. GPR40 is a G-protein coupled receptor that binds to free fatty acids, mediating insulin and incretin secretion. Here, the authors present the crystal structure of human GPR40 with an agonist bound to an allosteric site located near the lipid-rich region that suggests a mechanism for biased agonism.
Collapse
|
48
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
49
|
Rives ML, Rady B, Swanson N, Zhao S, Qi J, Arnoult E, Bakaj I, Mancini A, Breton B, Lee SP, Player MR, Pocai A. GPR40-Mediated G α12 Activation by Allosteric Full Agonists Highly Efficacious at Potentiating Glucose-Stimulated Insulin Secretion in Human Islets. Mol Pharmacol 2018; 93:581-591. [PMID: 29572336 DOI: 10.1124/mol.117.111369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
GPR40 is a clinically validated molecular target for the treatment of diabetes. Many GPR40 agonists have been identified to date, with the partial agonist fasiglifam (TAK-875) reaching phase III clinical trials before its development was terminated due to off-target liver toxicity. Since then, attention has shifted toward the development of full agonists that exhibit superior efficacy in preclinical models. Full agonists bind to a distinct binding site, suggesting conformational plasticity and a potential for biased agonism. Indeed, it has been suggested that alternative pharmacology may be required for meaningful efficacy. In this study, we described the discovery and characterization of Compound A, a newly identified GPR40 allosteric full agonist highly efficacious in human islets at potentiating glucose-stimulated insulin secretion. We compared Compound A-induced GPR40 activity to that induced by both fasiglifam and AM-1638, another allosteric full agonist previously reported to be highly efficacious in preclinical models, at a panel of G proteins. Compound A was a full agonist at both the Gαq and Gαi2 pathways, and in contrast to fasiglifam Compound A also induced Gα12 coupling. Compound A and AM-1638 displayed similar activity at all pathways tested. The Gα12/Gα13-mediated signaling pathway has been linked to protein kinase D activation as well as actin remodeling, well known to contribute to the release of insulin vesicles. Our data suggest that the pharmacology of GPR40 is complex and that Gα12/Gα13-mediated signaling, which may contribute to GPR40 agonists therapeutic efficacy, is a specific property of GPR40 allosteric full agonists.
Collapse
Affiliation(s)
- Marie-Laure Rives
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Brian Rady
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Nadia Swanson
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Shuyuan Zhao
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Jenson Qi
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Eric Arnoult
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Ivona Bakaj
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Arturo Mancini
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Billy Breton
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - S Paul Lee
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Mark R Player
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Alessandro Pocai
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| |
Collapse
|
50
|
Discovery of a novel potent GPR40 full agonist. Bioorg Med Chem Lett 2018; 28:720-726. [DOI: 10.1016/j.bmcl.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
|