1
|
Zhang R, Chen S, Luo T, Guo S, Qu J. Activated Tim-3/Galectin-9 participated in the development of multiple myeloma by negatively regulating CD4 T cells. Hematology 2024; 29:2288481. [PMID: 38108336 DOI: 10.1080/16078454.2023.2288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The interaction between Tim-3 on T cells and its ligand Galectin-9 negatively regulates the cellular immune response. However, the regulation of Tim-3/Galectin-9 on CD4 T cell subsets in multiple myeloma (MM) remains unclear. The aim of this study was to investigate the relationship between the regulation of CD4 T cell subsets by the Tim-3/Galectin-9 pathway and clinical prognostic indicators in MM. Tim-3/Galectin-9 were detected by flow cytometry, PCR and ELISA in 60 MM patients and 40 healthy controls, and its correlation with clinical prognostic parameters was analyzed. The expressions of Tim-3 on CD4 T cells, Galectin-9 mRNA in PBMC and level of Galectin-9 protein in serum were significantly elevated in MM patients, especially those with poor prognostic indicators. In MM patients, Tim-3 was highly expressed on the surfaces of Th1, Th2, and Th17 cells, but lowly expressed on Treg. Moreover, level of cytokine IFN-γ in serum was negatively correlated with Tim-3+Th1 cell and Galectin-9mRNA, Galectin-9 protein level. In addition, cell culture experiments showed that the anti-tumor effect and the ability to secrete IFN-γ were restored by blocking the Tim-3/Galectin-9 pathway. In MM patients, Tim-3/Galectin-9 is elevated and associated with disease progression, by inhibiting the cytotoxic function of Th1, and also promoting Th2 and Th17 to be involved in immune escape of MM. Therefore, Tim-3/Galectin-9 may serve as a new immunotherapeutic target for MM patients.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Shuang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Tingting Luo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Sha Guo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Jianhua Qu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| |
Collapse
|
2
|
Shen J, Senes F, Wen X, Monti P, Lin S, Pinna C, Murtas A, Podda L, Muntone G, Tidore G, Arru C, Sanna L, Contini S, Virdis P, Sechi LA, Fozza C. Pomalidomide in patients with multiple myeloma: potential impact on the reconstitution of a functional T-cell immunity. Immunol Res 2024:10.1007/s12026-024-09546-w. [PMID: 39316338 DOI: 10.1007/s12026-024-09546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Pomalidomide, a third-generation oral immunomodulatory drug, exhibits efficacy in patients with relapsed multiple myeloma or those refractory to bortezomib and lenalidomide (RRMM). METHODS In this clinical context, we employed flow cytometry and CDR3 spectratyping to monitor the dynamics of the T-cell repertoire during Pomalidomide treatment, aiming to investigate its potential to reverse the immunological abnormalities characteristic of RRMM. RESULTS By flow cytometry at baseline we found a significant decrease in CD4 + frequency in MM patients, while CD8 + frequency were significantly higher in patients when compared to controls. Most T cell populations remained stable across all time points, except for CD4 + frequency, which notably decreased from t1 to subsequent assessments. Our investigation revealed as most relevant finding the notable increase in CD4 + expansions and the growing prevalence of patients manifesting these expansions. This pattern is even more evident in patients receiving their treatment until t3 and therefore still responding to treatment with Pomalidomide. We also conducted a comparison of spectratyping data before and after treatment, substantially demonstrating a relatively stable pattern throughout the course of Pomalidomide treatment. CONCLUSIONS These observations imply that Pomalidomide treatment influences the T-cell repertoire, particularly in the CD4 + subpopulation during the later stages of treatment, raising speculation about the potential involvement of these lymphocyte expansions in mechanisms related to antitumor immunity.
Collapse
Affiliation(s)
- Jiaxin Shen
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Francesca Senes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
| | - Patrizia Monti
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Shaoze Lin
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, 515031, Shantou, P. R. China
| | - Claudia Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Andrea Murtas
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Luigi Podda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Giuseppina Muntone
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Gianni Tidore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Claudia Arru
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Luca Sanna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Salvatore Contini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | - Patrizia Virdis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy
| | | | - Claudio Fozza
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Kriegsmann K, Ton GNHQ, Awwad MHS, Benner A, Bertsch U, Besemer B, Hänel M, Fenk R, Munder M, Dürig J, Blau IW, Huhn S, Hose D, Jauch A, Mann C, Weinhold N, Scheid C, Schroers R, von Metzler I, Schieferdecker A, Thomalla J, Reimer P, Mahlberg R, Graeven U, Kremers S, Martens UM, Kunz C, Hensel M, Seidel-Glätzer A, Weisel KC, Salwender HJ, Müller-Tidow C, Raab MS, Goldschmidt H, Mai EK, Hundemer M. CD8 + CD28 - regulatory T cells after induction therapy predict progression-free survival in myeloma patients: results from the GMMG-HD6 multicenter phase III study. Leukemia 2024; 38:1621-1625. [PMID: 38830959 PMCID: PMC11216978 DOI: 10.1038/s41375-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Katharina Kriegsmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Laborarztpraxis Rhein-Main MVZ GbR, Frankfurt am Main, Germany
| | - Gigi Nu Hoang Quy Ton
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohamed H S Awwad
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Uta Bertsch
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Britta Besemer
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz, Chemnitz, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Munder
- Department of Internal Medicine III, University Hospital Mainz, Mainz, Germany
| | - Jan Dürig
- Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Igor W Blau
- Medical Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Stefanie Huhn
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Hose
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Mann
- Department of Hematology, Oncology and Immunology, Phillips-University Marburg, Marburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Roland Schroers
- Department of Hematology, Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ivana von Metzler
- Department of Internal Medicine II, University Hospital Frankfurt a.M., Frankfurt a.M., Germany
| | - Aneta Schieferdecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter Reimer
- Evang. Kliniken Essen-Mitte, Evang. Krankenhaus Essen-Werden, Essen, Germany
| | - Rolf Mahlberg
- Internal Medicine I, Hospital Mutterhaus der Borromäerinnen, Trier, Germany
| | - Ullrich Graeven
- Department of Hematology, Oncology and Gastroenterology, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| | | | - Uwe M Martens
- Hematology, Oncology, Palliative Care, SLK Clinics Heilbronn, Heilbronn, Germany
| | - Christian Kunz
- Hematology and Oncology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | | | | | - Katja C Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans J Salwender
- Asklepios Tumorzentrum Hamburg, Asklepios Hospital Hamburg Altona and St. Georg, Hamburg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Elias K Mai
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
4
|
Huang Y, Zhong M, Gao R, Wang X, Zhong S, Zhong L, Huang X, Li Y, Zeng C. BET Inhibitor JQ1 Selectively Reduce Tregs by Upregulating STAT3 and Suppressing PD-1 Expression in Patients with Multiple Myeloma. Adv Biol (Weinh) 2024; 8:e2300640. [PMID: 38797917 DOI: 10.1002/adbi.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Multiple myeloma (MM) stands as a prevalent hematological malignancy, primarily incurable, originating from plasma cell clones. MM's progression encompasses genetic abnormalities and disruptions in the bone marrow microenvironment, leading to tumor proliferation, immune dysfunction, and compromised treatment outcomes. Emerging evidence highlights the critical role of regulatory T cells (Tregs) in MM progression, suggesting that targeting Tregs could enhance immune functionality and treatment efficacy. In this study, a notable increase in Treg proportions within MM patients' bone marrow (BM) compared to healthy individuals is observed. Additionally, it is found that the bromodomain and extraterminal domain (BET) inhibitor JQ1 selectively diminishes Treg percentages in MM patients' BM and reduces TGF-β1-induced Tregs. This reduction occurs via inhibiting cell viability and promoting apoptosis. RNA sequencing further indicates that JQ1's inhibitory impact on Tregs likely involves upregulating STAT3 and suppressing PD-1 expression. Collectively, these findings suggest JQ1's potential to modulate Tregs, bolstering the immune response in MM and introducing a promising avenue for MM immunotherapy.
Collapse
Affiliation(s)
- Youxue Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Rili Gao
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| |
Collapse
|
5
|
Zhang D, Zhan D, Zhang R, Sun Y, Duan C, Yang J, Wei J, Li X, Lu Y, Lai X. Treg-derived TGF-β1 dampens cGAS-STING signaling to downregulate the expression of class I MHC complex in multiple myeloma. Sci Rep 2024; 14:11593. [PMID: 38773213 PMCID: PMC11109281 DOI: 10.1038/s41598-024-62298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-β1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-β1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-β1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-β1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.
Collapse
Affiliation(s)
- Disi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Dong Zhan
- Department of Human Anatomy and Histology and Embrology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yunyan Sun
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Ci Duan
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jiapeng Yang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jia Wei
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xianshi Li
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yanqi Lu
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China.
| |
Collapse
|
6
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Hagos YB, Lecat CS, Patel D, Mikolajczak A, Castillo SP, Lyon EJ, Foster K, Tran TA, Lee LS, Rodriguez-Justo M, Yong KL, Yuan Y. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res 2024; 84:493-508. [PMID: 37963212 PMCID: PMC10831337 DOI: 10.1158/0008-5472.can-22-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. However, the complexity of bone marrow cellular, morphologic, and spatial architecture preserved in trephine samples hinders comprehensive evaluation. To dissect the diverse cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue architectures and a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types in multiplex immunohistochemistry images. MoSaicNet and AwareNet achieved an AUC of >0.98 for tissue and cellular classification on separate test datasets. Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity and thickness as well as spatial histology analysis of bone marrow trephine samples from monoclonal gammopathies of undetermined significance (MGUS) and from paired newly diagnosed and posttreatment multiple myeloma. The most significant difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples was not related to cell density but to spatial heterogeneity, with reduced spatial proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM samples. Following treatment of patients with multiple myeloma, there was a reduction in the density of BLIMP1+ tumor cells, effector CD8+ T cells, and regulatory T cells, indicative of an altered immune microenvironment. Finally, bone heterogeneity decreased following treatment of patients with multiple myeloma. In summary, deep learning-based spatial mapping of bone marrow trephine biopsies can provide insights into the cellular topography of the myeloma marrow microenvironment and complement aspirate-based techniques. SIGNIFICANCE Spatial analysis of bone marrow trephine biopsies using histology, deep learning, and tailored algorithms reveals the bone marrow architectural heterogeneity and evolution during myeloma progression and treatment.
Collapse
Affiliation(s)
- Yeman Brhane Hagos
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Catherine S.Y. Lecat
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dominic Patel
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Anna Mikolajczak
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Simon P. Castillo
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Emma J. Lyon
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kane Foster
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Thien-An Tran
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia S.H. Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L. Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
8
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhu Y, Chang S, Liu J, Wang B. Identification of a novel cuproptosis-related gene signature for multiple myeloma diagnosis. Immun Inflamm Dis 2023; 11:e1058. [PMID: 38018590 PMCID: PMC10629272 DOI: 10.1002/iid3.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) ranks second among the most prevalent hematological malignancies. Recent studies have unearthed the promise of cuproptosis as a novel therapeutic intervention for cancer. However, no research has unveiled the particular roles of cuproptosis-related genes (CRGs) in the prediction of MM diagnosis. METHODS Microarray data and clinical characteristics of MM patients were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed gene analysis, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential signature genes for MM diagnosis. Predictive performance was further assessed by receiver operating characteristic (ROC) curves, nomogram analysis, and external data sets. Functional enrichment analysis was performed to elucidate the involved mechanisms. Finally, the expression of the identified genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in MM cell samples. RESULTS The optimal gene signature was identified using LASSO and SVM-RFE algorithms based on the differentially expressed CRGs: ATP7A, FDX1, PDHA1, PDHB, MTF1, CDKN2A, and DLST. Our gene signature-based nomogram revealed a high degree of accuracy in predicting MM diagnosis. ROC curves showed the signature had dependable predictive ability across all data sets, with area under the curve values exceeding 0.80. Additionally, functional enrichment analysis suggested significant associations between the signature genes and immune-related pathways. The expression of the genes was validated in MM cells, indicating the robustness of these findings. CONCLUSION We discovered and validated a novel CRG signature with strong predictive capability for diagnosing MM, potentially implicated in MM pathogenesis and progression through immune-related pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shuaikang Chang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Bo Wang
- Department of Endocrinology, Yangpu HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
11
|
Aghaee M, Ledzewicz U, Robbins M, Bezman N, Jay Cho H, Moore H. Determining Optimal Combination Regimens for Patients with Multiple Myeloma. Eur J Pharm Sci 2023:106492. [PMID: 37302768 DOI: 10.1016/j.ejps.2023.106492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
While many novel therapies have been approved in recent years for treating patients with multiple myeloma, there is still no established curative regimen, especially for patients with high-risk disease. In this work, we use a mathematical modeling approach to determine combination therapy regimens that maximize healthy lifespan for patients with multiple myeloma. We start with a mathematical model for the underlying disease and immune dynamics, which was presented and analyzed previously. We add the effects of three therapies to the model: pomalidomide, dexamethasone, and elotuzumab. We consider multiple approaches to optimizing combinations of these therapies. We find that optimal control combined with approximation outperforms other methods, in that it can quickly produce a combination regimen that is clinically-feasible and near-optimal. Implications of this work can be used to optimize doses and advance the scheduling of drugs.
Collapse
Affiliation(s)
- Mahya Aghaee
- Laboratory for Systems Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Urszula Ledzewicz
- Institute of Mathematics, Lodz University of Technology, Lodz, Poland; Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | | | - Natalie Bezman
- Oncology Research and Development, Pfizer, La Jolla, California, USA
| | - Hearn Jay Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Moore
- Laboratory for Systems Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Monoclonal Gammopathies and the Bone Marrow Microenvironment: From Bench to Bedside and Then Back Again. Hematol Rep 2023; 15:23-49. [PMID: 36648882 PMCID: PMC9844382 DOI: 10.3390/hematolrep15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.
Collapse
|
13
|
Ho M, Xiao A, Yi D, Zanwar S, Bianchi G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr Oncol 2022; 29:8975-9005. [PMID: 36421358 PMCID: PMC9689284 DOI: 10.3390/curroncol29110705] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of multiple myeloma (MM) has evolved considerably with the FDA-approval of at least 15 drugs over the past two decades. Together with the use of autologous stem cell transplantation, these novel therapies have resulted in significant survival benefit for patients with MM. In particular, our improved understanding of the BM and immune microenvironment has led to the development of highly effective immunotherapies that have demonstrated unprecedented response rates even in the multiple refractory disease setting. However, MM remains challenging to treat especially in a high-risk setting. A key mediator of therapeutic resistance in MM is the bone marrow (BM) microenvironment; a deeper understanding is necessary to facilitate the development of therapies that target MM in the context of the BM milieu to elicit deeper and more durable responses with the ultimate goal of long-term control or a cure of MM. In this review, we discuss our current understanding of the role the BM microenvironment plays in MM pathogenesis, with a focus on its immunosuppressive nature. We also review FDA-approved immunotherapies currently in clinical use and highlight promising immunotherapeutic approaches on the horizon.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alexander Xiao
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Dongni Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Giada Bianchi
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
14
|
Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, Anel A, Marzo I. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology 2022; 11:2141973. [PMID: 36338146 PMCID: PMC9629093 DOI: 10.1080/2162402x.2022.2141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death (ICD) has been proposed to be a crucial process for antitumor immunosurveillance. ICD is characterized by the exposure and emission of Damage Associated Molecular Patterns (DAMP), including calreticulin (CRT). A positive correlation between CRT exposure or total expression and improved anticancer immunosurveillance has been found in certain cancers, usually accompanied by favorable patient prognosis. In the present study, we sought to evaluate CRT levels in the plasma membrane of CD38+ bone marrow mononuclear cells (BMMCs) isolated from 71 patients with varying degrees of multiple myeloma (MM) disease and examine the possible relationship between basal CRT exposure and the bone marrow immune microenvironment, as well as its connection with different clinical markers. Data show that increased levels of cell surface-CRT were associated with more aggressive clinical features and with worse clinical prognosis in MM. High CRT expression in MM cells was associated with increased infiltration of NK cells, CD8+ T lymphocytes and dendritic cells (DC), indicative of an active anti-tumoral immune response, but also with a significantly higher presence of immunosuppressive Treg cells and increased expression of PD-L1 in myeloma cells.
Collapse
Affiliation(s)
| | - Manuel Beltrán-Visiedo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Victoria de Poo-Rodríguez
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Nelia Jiménez-Alduán
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Beatriz Martínez-Lázaro
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Isabel Izquierdo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,CONTACT Isabel Marzo Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| |
Collapse
|
15
|
Hervás-Salcedo R, Martín-Antonio B. A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers (Basel) 2022; 14:3796. [PMID: 35954459 PMCID: PMC9367481 DOI: 10.3390/cancers14153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression. Understanding cell-cell interactions in the BM and their impact on MM proliferation and the performance of tumor surveillance will help in designing efficient anti-MM therapies. Here, we take a journey through the BM, describing the interactions of MM cells with cells of the non-hematological and hematological compartment to highlight their impact on MM progression and the development of novel MM treatments.
Collapse
Affiliation(s)
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz (IIS-FJD), University Autonomous of Madrid (UAM), 28040 Madrid, Spain
| |
Collapse
|
16
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
17
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
18
|
Füchsl F, Krackhardt AM. Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells 2022; 11:410. [PMID: 35159220 PMCID: PMC8834324 DOI: 10.3390/cells11030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.
Collapse
Affiliation(s)
- Franziska Füchsl
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
| | - Angela M. Krackhardt
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
- German Cancer Consortium (DKTK), Partner-Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Einsteinstraße 25, 81675 Munich, Germany
| |
Collapse
|
19
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
20
|
Hadjiaggelidou C, Katodritou E. Regulatory T-Cells and Multiple Myeloma: Implications in Tumor Immune Biology and Treatment. J Clin Med 2021; 10:4588. [PMID: 34640606 PMCID: PMC8509132 DOI: 10.3390/jcm10194588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and, despite significant advances in treatment, remains an incurable disease. Regulatory T-cells (Tregs) represent a critical subset of CD4 T-cells, characterized by CD4 + CD25+ Forkhead box P3+ (FoxP3+) phenotype, able to control peripheral tolerance and responses to foreign and tumor antigens. Tregs are elevated in various types of cancer, including hematological malignancies; in MM, data regarding Tregs function and numbers and their correlation with survival parameters are controversial. Advances in cancer biology have shown that the tumor microenvironment plays an important role in tumor progression. In MM, the highly immunosuppressive nature of the bone marrow microenvironment has been significantly elucidated in the past decade and it is now well acknowledged that targeting only the tumor clone may not be able to cure MM. Tregs within the tumor microenvironment might play a significant role in the suppression of antitumor immune responses against cancer cells and are considered to predict poor outcome in cancer patients; nonetheless the exact prognostic significance of this cell subpopulation in malignancies is still a matter of debate. In this review, we discuss the role of Tregs as an essential cell population of the MM immune microenvironment.
Collapse
|
21
|
Kalff A, Khong T, Ramachandran M, Ho PJ, Mollee P, D'Rozario J, Taylor K, Estell J, Norton S, Kemp R, Mitchell AJ, Reynolds J, Kennedy N, Quach H, Spencer A. Planned withdrawal of dexamethasone after pomalidomide low dose dexamethasone induction for lenalidomide refractory multiple myeloma (ALLG MM14). Haematologica 2021; 107:321-325. [PMID: 34587718 PMCID: PMC8719089 DOI: 10.3324/haematol.2021.278655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anna Kalff
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia; Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Clayton, Victoria
| | - Tiffany Khong
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia; Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Victoria
| | - Malarmathy Ramachandran
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia; Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Victoria
| | - P Joy Ho
- Royal Prince Alfred Hospital, Sydney
| | - Peter Mollee
- Princess Alexandra Hospital and University of Queensland, Brisbane
| | | | | | - Jane Estell
- Concord Repatriation General Hospital, University of Sydney, Sydney
| | - Sam Norton
- Nanix Ltd., Dunedin, New Zealand; Department of Microbiology and Immunology, University of Otago
| | - Roslyn Kemp
- Department of Microbiology and Immunology, University of Otago
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne
| | - John Reynolds
- Department of Epidemiology and Preventive Medicine, Alfred Health - Monash University, Melbourne, Victoria
| | - Nola Kennedy
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria
| | - Hang Quach
- Faculty of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Australia [on behalf of The Australasian Leukaemia and Lymphoma Group (ALLG)]
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia; Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Clayton, Victoria.
| |
Collapse
|
22
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
23
|
Suzuki K, Nishiwaki K, Yano S. Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity. Cancers (Basel) 2021; 13:4867. [PMID: 34638353 PMCID: PMC8508145 DOI: 10.3390/cancers13194867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Improving the immunological environment and eradicating minimal residual disease (MRD) are the two main treatment goals for long-term survival in patients with multiple myeloma (MM). Immunomodulatory drugs (IMiDs), monoclonal antibody drugs (MoAbs), and autologous grafts for autologous stem cell transplantation (ASCT) can improve the immunological microenvironment. ASCT, MoAbs, and proteasome inhibitors (PIs) may be important for the achievement of MRD negativity. An improved immunological environment may be useful for maintaining MRD negativity, although the specific treatment for persistent MRD negativity is unknown. However, whether the ongoing treatment should be continued or changed if the MRD status remains positive is controversial. In this case, genetic, immunophenotypic, and clinical analysis of residual myeloma cells may be necessary to select the effective treatment for the residual myeloma cells. The purpose of this review is to discuss the MM treatment strategy to "cure MM" based on currently available therapies, including IMiDs, PIs, MoAbs, and ASCT, and expected immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapy, via improvement of the immunological environment and maintenance of MRD negativity.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Kaichi Nishiwaki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Shingo Yano
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
24
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
25
|
Lee MY, Park CJ, Cho YU, You E, Jang S, Seo EJ, Lee JH, Yoon DH, Suh C. Immune Checkpoint Programmed Cell Death Protein-1 (PD-1) Expression on Bone Marrow T Cell Subsets in Patients With Plasma Cell Myeloma. Ann Lab Med 2021; 41:259-267. [PMID: 33303710 PMCID: PMC7748102 DOI: 10.3343/alm.2021.41.3.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Background Plasma cell myeloma (PCM) is caused by immune dysregulation. We evaluated the expression of immune checkpoint programmed cell death protein-1 (PD-1) on T cell subsets in PCM patients according to disease course and cytogenetic abnormalities. This study aimed to find a target group suitable for therapeutic use of PD-1 blockade in PCM. Methods A total of 188 bone marrow (BM) samples from 166 PCM patients and 32 controls were prospectively collected between May 2016 and May 2017. PD-1 expression on BM T cell subsets was measured using flow cytometry. Results At diagnosis, the median PD-1 expression on CD4+ T cells was 24.6%, which did not significantly differ from that in controls. After stem cell transplantation, PD-1 expression on CD4+ T cells was higher than that at diagnosis (P<0.001), regardless of residual disease. PD-1 expression on CD4+ T cells in patients with residual disease after chemotherapy was significantly higher than that at diagnosis (P=0.001) and after complete remission following chemotherapy (P=0.044). PD-1 expression on CD8+ T cells was higher in PCM patients with cytogenetic abnormalities, including monosomy 13, 1q gain, complex karyotype, and hypodiploidy. Conclusions PD-1 blockade might have therapeutic potential in refractory PCM patients after chemotherapy, especially in those with high- or intermediate-risk cytogenetic abnormalities.
Collapse
Affiliation(s)
- Min Young Lee
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Hospital, Gangdong, Seoul, Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunkyoung You
- Department of Laboratory Medicine, Inje University College of Medicine, Busan Baik Hospital, Busan, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hee Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Derman BA, Zha Y, Zimmerman TM, Malloy R, Jakubowiak A, Bishop MR, Kline J. Regulatory T-cell depletion in the setting of autologous stem cell transplantation for multiple myeloma: pilot study. J Immunother Cancer 2021; 8:jitc-2019-000286. [PMID: 31940591 PMCID: PMC7057425 DOI: 10.1136/jitc-2019-000286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Progression after high-dose melphalan with autologous stem cell transplantation (ASCT) in multiple myeloma (MM) may be due in part to immune dysfunction. Regulatory T (Treg) cells reconstitute rapidly after ASCT and inhibit immune responses against myeloma cells. METHODS We performed a randomized study to evaluate two methods of Treg depletion in patients with MM undergoing ASCT. No Treg depletion was performed in the control ASCT arm. An anti-CD25 monoclonal antibody (basiliximab 20 mg IV) was administered on day +1 post-ASCT in the in vivo Treg depletion (IVTRD) arm. Tregs were depleted from autologous stem cell (ASC) grafts with anti-CD25 microbeads and the CliniMACS device in the ex vivo Treg depletion (EVTRD) arm. RESULTS Fifteen patients were enrolled, five in each arm. The conditioning regimen was melphalan 200 mg/m2. Primary objectives included assessments of efficiency of IVTRD/EVTRD, kinetics of Treg depletion and recovery following ASCT, and safety. EVTRD removed 90% of CD4+CD25+ cells from ASC grafts. IVTRD and EVTRD led to reductions in Treg frequency between days +7 and +90 post-transplant compared with the control (p=0.007 and p<0.001, respectively). CONCLUSIONS IVTRD and EVTRD are feasible and significantly reduce and delay Treg recovery post-ASCT for MM, and serve as a platform for using post-transplant immunotherapies to improve post-ASCT outcomes. TRIAL REGISTRATION NUMBER NCT01526096.
Collapse
Affiliation(s)
- Benjamin A Derman
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yuanyuan Zha
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| | | | - Rebecca Malloy
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Andrzej Jakubowiak
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Michael R Bishop
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Justin Kline
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
27
|
Zhaoyun L, Rong F. Predictive Role of Immune Profiling for Survival of Multiple Myeloma Patients. Front Immunol 2021; 12:663748. [PMID: 34290698 PMCID: PMC8287504 DOI: 10.3389/fimmu.2021.663748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Despite new efficacy drugs and cell therapy have been used for multiple myeloma (MM) patients, some patients will relapse over time. We wonder the immune system play a vital role as well as MM cell during the development of disease. It is clear that the characteristic of myeloma cell is associated with the survival of MM patients. However, the link between the immune profiling and the prognosis of the disease is still not entirely clear. As more study focus on the role of immunity on multiple myeloma pathogenesis. There are plenty of study about the predictive role of immunity on the survival of multiple myeloma patients. Up to mow, the majority reviews published have focused on the immunotherapy and immune pathogenesis. It is indispensable to overlook the predictive role of immunity on multiple myeloma patients. Here, we give a review of vital previous works and recent progress related to the predictive role of immune profiling on multiple myeloma, such as absolute lymphocyte count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocytes and cytokines.
Collapse
Affiliation(s)
- Liu Zhaoyun
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu Rong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv 2021; 5:2196-2215. [PMID: 33890981 DOI: 10.1182/bloodadvances.2020003805] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Cell surface expression levels of GPRC5D, an orphan G protein-coupled receptor, are significantly higher on multiple myeloma (MM) cells, compared with normal plasma cells or other immune cells, which renders it a promising target for immunotherapeutic strategies. The novel GPRC5D-targeting T-cell redirecting bispecific antibody, talquetamab, effectively kills GPRC5D+ MM cell lines in the presence of T cells from both healthy donors or heavily pretreated MM patients. In addition, talquetamab has potent anti-MM activity in bone marrow (BM) samples from 45 patients, including those with high-risk cytogenetic aberrations. There was no difference in talquetamab-mediated killing of MM cells from newly diagnosed, daratumumab-naïve relapsed/refractory (median of 3 prior therapies), and daratumumab-refractory (median of 6 prior therapies) MM patients. Tumor cell lysis was accompanied by T-cell activation and degranulation, as well as production of pro-inflammatory cytokines. High levels of GPRC5D and high effector:target ratio were associated with improved talquetamab-mediated lysis of MM cells, whereas an increased proportion of T cells expressing PD-1 or HLA-DR, and elevated regulatory T-cell (Treg) counts were associated with suboptimal killing. In cell line experiments, addition of Tregs to effector cells decreased MM cell lysis. Direct contact with bone marrow stromal cells also impaired the efficacy of talquetamab. Combination therapy with daratumumab or pomalidomide enhanced talquetamab-mediated lysis of primary MM cells in an additive fashion. In conclusion, we show that the GPRC5D-targeting T-cell redirecting bispecific antibody talquetamab is a promising novel antimyeloma agent. These results provide the preclinical rationale for ongoing studies with talquetamab in relapsed/refractory MM.
Collapse
|
29
|
Efficacy and Safety of Durvalumab Combined with Daratumumab in Daratumumab-Refractory Multiple Myeloma Patients. Cancers (Basel) 2021; 13:cancers13102452. [PMID: 34070044 PMCID: PMC8158123 DOI: 10.3390/cancers13102452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The CD38-targeting antibody daratumumab has marked activity in multiple myeloma through direct anti-tumor effects and immunomodulatory activity. However, eventually most patients will develop daratumumab-refractory disease. We hypothesized that daratumumab-resistance could be reversed by the addition of an inhibitor of the PD-1/PD-L1 signaling pathway, resulting in improved T- and NK-cell mediated anti-tumor immune responses. We therefore performed a phase 2 study to investigate the efficacy and safety of adding the PD-L1 checkpoint inhibitor durvalumab to daratumumab at the time of daratumumab failure. The toxicity profile of the daratumumab/durvalumab combination was acceptable, but none of the 18 enrolled patients achieved a clinical response. Immunomonitoring of bone marrow samples at baseline and during treatment showed a reduction of regulatory T-cell numbers and a decrease in the proportion of T-cells expressing LAG3 and CD8+ T-cells expressing TIM-3, whereas tumor cell characteristics were not affected. These results indicate that co-targeting PD-L1 at the time of daratumumab failure is insufficient to reverse daratumumab-resistance. Abstract Daratumumab is active both as a single agent and in combination with other agents in multiple myeloma (MM) patients. However, the majority of patients will develop daratumumab-refractory disease, which carries a poor prognosis. Since daratumumab also has immunomodulatory effects, addition of the PD-L1 blocking antibody durvalumab at the time of progression may reverse daratumumab-resistance. The efficacy and safety of daratumumab and durvalumab in daratumumab-refractory relapsed/refractory MM patients was evaluated in this prospective, single-arm phase 2 study (NCT03000452). None of the 18 enrolled patients achieved PR or better. The frequency of serious adverse events was 38.9%, with one patient experiencing an immune related adverse event (grade 2 hyperthyroidism). No infusion-related reactions were observed. Analysis of tumor- and immune cell characteristics was performed on bone marrow samples obtained at baseline and during treatment. Daratumumab combined with durvalumab reduced the frequency of regulatory T-cells and decreased the proportion of T-cells expressing LAG3 and CD8+ T-cells expressing TIM-3, without altering T- and NK-cell frequencies. Durvalumab did not affect tumor cell characteristics associated with daratumumab resistance. In conclusion, the addition of durvalumab to daratumumab following development of daratumumab-resistance was associated with an acceptable toxicity profile, but was not effective. This indicates that inhibition of the PD-1/PD-L1 signaling pathway at the time of daratumumab-resistance is insufficient to reverse daratumumab-resistance.
Collapse
|
30
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
31
|
Immunological Prognostic Factors in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22073587. [PMID: 33808304 PMCID: PMC8036885 DOI: 10.3390/ijms22073587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by an abnormal proliferation of clonal, terminally differentiated B lymphocytes. Current approaches for the treatment of MM focus on developing new diagnostic techniques; however, the search for prognostic markers is also crucial. This enables the classification of patients into risk groups and, thus, the selection of the most optimal treatment method. Particular attention should be paid to the possible use of immune factors, as the immune system plays a key role in the formation and course of MM. In this review, we focus on characterizing the components of the immune system that are of prognostic value in MM patients, in order to facilitate the development of new diagnostic and therapeutic directions.
Collapse
|
32
|
Damasceno D, Almeida J, Teodosio C, Sanoja-Flores L, Mayado A, Pérez-Pons A, Puig N, Arana P, Paiva B, Solano F, Romero A, Matarraz S, van den Bossche WBL, Flores-Montero J, Durie B, van Dongen JJM, Orfao A. Monocyte Subsets and Serum Inflammatory and Bone-Associated Markers in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13061454. [PMID: 33810169 PMCID: PMC8004952 DOI: 10.3390/cancers13061454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Monocyte/macrophages have been shown to be altered in monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM) and active multiple myeloma (MM), with an impact on the disruption of the homeostasis of the normal bone marrow (BM) microenvironment. METHODS We investigated the distribution of different subsets of monocytes (Mo) in blood and BM of newly-diagnosed untreated MGUS (n = 23), SMM (n = 14) and MM (n = 99) patients vs. healthy donors (HD; n = 107), in parallel to a large panel of cytokines and bone-associated serum biomarkers. RESULTS Our results showed normal production of monocyte precursors and classical Mo (cMo) in MGUS, while decreased in SMM and MM (p ≤ 0.02), in association with lower blood counts of recently-produced CD62L+ cMo in SMM (p = 0.004) and of all subsets of (CD62L+, CD62L- and FcεRI+) cMo in MM (p ≤ 0.02). In contrast, intermediate and end-stage non-classical Mo were increased in BM of MGUS (p ≤ 0.03), SMM (p ≤ 0.03) and MM (p ≤ 0.002), while normal (MGUS and SMM) or decreased (MM; p = 0.01) in blood. In parallel, increased serum levels of interleukin (IL)1β were observed in MGUS (p = 0.007) and SMM (p = 0.01), higher concentrations of serum IL8 were found in SMM (p = 0.01) and MM (p = 0.002), and higher serum IL6 (p = 0.002), RANKL (p = 0.01) and bone alkaline phosphatase (BALP) levels (p = 0.01) with decreased counts of FcεRI+ cMo, were restricted to MM presenting with osteolytic lesions. This translated into three distinct immune/bone profiles: (1) normal (typical of HD and most MGUS cases); (2) senescent-like (increased IL1β and/or IL8, found in a minority of MGUS, most SMM and few MM cases with no bone lesions); and (3) pro-inflammatory-high serum IL6, RANKL and BALP with significantly (p = 0.01) decreased blood counts of immunomodulatory FcεRI+ cMo-, typical of MM presenting with bone lesions. CONCLUSIONS These results provide new insight into the pathogenesis of plasma cell neoplasms and the potential role of FcεRI+ cMo in normal bone homeostasis.
Collapse
Affiliation(s)
- Daniela Damasceno
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Cristina Teodosio
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
| | - Luzalba Sanoja-Flores
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Institute of Biomedicine of Seville, Department of Hematology, University Hospital Virgen del Rocío of the Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, 41013 Seville, Spain
| | - Andrea Mayado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Alba Pérez-Pons
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Noemi Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Service of Hematology, University Hospital of Salamanca (CAUSA) and IBSAL, 37007 Salamanca, Spain
| | - Paula Arana
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Spain;
| | - Bruno Paiva
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Fernando Solano
- Hematology Service, Hospital Nuestra Señora del Prado, Talavera de la Reina, 45600 Toledo, Spain;
| | - Alfonso Romero
- Primary Health Care Center “Miguel Armijo”, Primary Health Care of Salamanca, Conserjería de Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain;
| | - Sergio Matarraz
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Wouter B. L. van den Bossche
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
- Department of Immunology, Erasmus University Medical Center, 3015 GA Rotterdam, The Netherlands
| | - Juan Flores-Montero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Brian Durie
- Centro del Cáncer Cedars-Sinai Samuel Oschin, Los Angeles, CA 90048, USA;
| | - Jacques J. M. van Dongen
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Correspondence:
| |
Collapse
|
33
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
34
|
Schavgoulidze A, Cazaubiel T, Perrot A, Avet-Loiseau H, Corre J. Multiple Myeloma: Heterogeneous in Every Way. Cancers (Basel) 2021; 13:cancers13061285. [PMID: 33805803 PMCID: PMC7998947 DOI: 10.3390/cancers13061285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/23/2023] Open
Abstract
Simple Summary With the development of modern therapies in multiple myeloma, prognosis stratification is becoming an indispensable tool for the choice of treatment between patients. Many factors influence the prognosis in multiple myeloma; scores, mainly based on biochemical parameters and cytogenetics, have been proposed to discriminate patients. However, these scores are not perfect and fail to predict some patients’ outcomes. In this review, we describe current evaluated factors and their limitations. In the second part, we address factors with an impact on treatment escape and prognosis, but which are not available routinely yet. Abstract Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of tumor plasma cells (PCs) in the bone marrow (BM). Despite considerable advances in terms of treatment, patients’ prognosis is still very heterogeneous. Cytogenetics and minimal residual disease both have a major impact on prognosis. However, they do not explain all the heterogeneity seen in the outcomes. Their limitations are the result of the emergence of minor subclones missed at diagnosis, detected by sensible methods such as single-cell analysis, but also the non-exploration in the routine practice of the spatial heterogeneity between different clones according to the focal lesions. Moreover, biochemical parameters and cytogenetics do not reflect the whole complexity of MM. Gene expression is influenced by a tight collaboration between cytogenetic events and epigenetic regulation. The microenvironment also has an important impact on the development and the progression of the disease. Some of these determinants have been described as independent prognostic factors and could be used to more accurately predict patient prognosis and response to treatment.
Collapse
Affiliation(s)
- Anaïs Schavgoulidze
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
| | | | - Aurore Perrot
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Hematology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
| | - Jill Corre
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
35
|
Joshua DE, Vuckovic S, Favaloro J, Lau KHA, Yang S, Bryant CE, Gibson J, Ho PJ. Treg and Oligoclonal Expansion of Terminal Effector CD8 + T Cell as Key Players in Multiple Myeloma. Front Immunol 2021; 12:620596. [PMID: 33708212 PMCID: PMC7940512 DOI: 10.3389/fimmu.2021.620596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The classical paradigm of host-tumor interaction, i.e. elimination, equilibrium, and escape (EEE), is reflected in the clinical behavior of myeloma which progresses from the premalignant condition, Monoclonal Gammopathy of Unknown Significance (MGUS). Despite the role of other immune cells, CD4+ regulatory T cells (Treg) and cytotoxic CD8+ T cells have emerged as the dominant effectors of host control of the myeloma clone. Progression from MGUS to myeloma is associated with alterations in Tregs and terminal effector CD8+ T cells (TTE). These changes involve CD39 and CD69 expression, affecting the adenosine pathway and residency in the bone marrow (BM) microenvironment, together with oligoclonal expansion within CD8+ TTE cells. In this mini-review article, in the context of earlier data, we summarize our recent understanding of Treg involvement in the adenosine pathway, the significance of oligoclonal expansion within CD8+ TTE cells and BM-residency of CD8+ TTE cells in MGUS and newly diagnosed multiple myeloma patients.
Collapse
Affiliation(s)
- Douglas E Joshua
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Slavica Vuckovic
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Favaloro
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ka Hei Aleks Lau
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shihong Yang
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christian E Bryant
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phoebe Joy Ho
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Derman BA, Langerman SS, Maric M, Jakubowiak A, Zhang W, Chiu BCH. Sex differences in outcomes in multiple myeloma. Br J Haematol 2021; 192:e66-e69. [PMID: 33216365 PMCID: PMC8182969 DOI: 10.1111/bjh.17237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin A Derman
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Spencer S Langerman
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Maya Maric
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Safety and Efficacy of Consolidation Therapy with Ipilimumab Plus Nivolumab after Autologous Stem Cell Transplantation. Transplant Cell Ther 2020; 27:391-403. [PMID: 33965177 DOI: 10.1016/j.jtct.2020.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 12/24/2022]
Abstract
Autologous hematopoietic stem cell transplantation (ASCT) is a standard-of-care treatment for many hematologic malignancies. Progression of disease after ASCT is the primary cause of treatment failure. In this Phase Ib trial, we studied the safety and clinical effect of combined checkpoint inhibition therapy (CPIT) with ipilimumab and nivolumab as a consolidation strategy after ASCT for patients with high-risk diffuse large B cell lymphoma (DLBCL), mature T cell lymphoma (TCL), and multiple myeloma (MM). Starting at 14 to 28 days after ASCT, patients received ipilimumab (1 mg/kg i.v. on day 1 of weeks 1, 4, 7, 10, 16, and 22) and nivolumab (3 mg/kg i.v. on day 1 of weeks 1, 4, 7, 10, 12, 14, 16, 18, 20, 22, 24, and 26). Patients received a median of 5 doses of ipilimumab and 8 doses of nivolumab. Thirty-five patients were included in the intent-to-treat population. Ninety-four percent of the patients experienced immune-related adverse events (irAEs) of any grade. Ninety-seven percent of irAEs resolved spontaneously or after holding study drugs and instituting high-dose corticosteroid therapy. Progression-free and overall survival at 18 months post-ASCT for each disease cohort were 85.7% and 100% for primary refractory DLBCL, 28.6% and 57.1% for relapsed DLBCL, not evaluable and 80% for frontline TCL, 25% and 75% for relapsed TCL, 57.1% and 87% for high-risk transplant-naïve MM, and 40% and 100% for MM relapsed within 3 years of first ASCT. We conclude that combined CPIT appears to be tolerable as a consolidation strategy after ASCT and in addition to the potential clinical efficacy observed in some subsets of disease, T cell receptor repertoire, T regulatory cell phenotype, and gut microbiota profiles provide a biologic rationale warranting further study of this approach.
Collapse
|
38
|
Zanwar S, Nandakumar B, Kumar S. Immune-based therapies in the management of multiple myeloma. Blood Cancer J 2020; 10:84. [PMID: 32829378 PMCID: PMC7443188 DOI: 10.1038/s41408-020-00350-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy affecting a predominantly elderly population. The continued development of newer therapies with novel mechanisms of action has reshaped the treatment paradigm of this disorder in the last two decades, leading to a significantly improved prognosis. This has in turn resulted in an increasing number of patients in need of therapy for relapsed/refractory disease. Immune-based therapies, including monoclonal antibodies, immune checkpoint inhibitors, and most promisingly, adoptive cellular therapies represent important therapeutic strategies in these patients due to their non-cross resistant mechanisms of actions with the usual frontline therapies comprising of immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). The anti-CD38 antibodies daratumumab and more recently isatuximab, with their excellent efficacy and safety profile along with its synergy in combination with IMiDs and PIs, are being increasingly incorporated in the frontline setting. Chimeric antigen receptor-T cell (CART) therapies and bi-specific T-cell engager (BiTE) represent exciting new options that have demonstrated efficacy in heavily pretreated and refractory MM. In this review, we discuss the rationale for use of immune-based therapies in MM and summarize the currently available literature for common antibodies and CAR-T therapies that are utilized in MM.
Collapse
Affiliation(s)
- Saurabh Zanwar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
39
|
Alrasheed N, Lee L, Ghorani E, Henry JY, Conde L, Chin M, Galas-Filipowicz D, Furness AJS, Chavda SJ, Richards H, De-Silva D, Cohen OC, Patel D, Brooks A, Rodriguez-Justo M, Pule M, Herrero J, Quezada SA, Yong KL. Marrow-Infiltrating Regulatory T Cells Correlate with the Presence of Dysfunctional CD4 +PD-1 + Cells and Inferior Survival in Patients with Newly Diagnosed Multiple Myeloma. Clin Cancer Res 2020; 26:3443-3454. [PMID: 32220887 DOI: 10.1158/1078-0432.ccr-19-1714] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune dysregulation is described in multiple myeloma. While preclinical models suggest a role for altered T-cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterize marrow-infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first-line therapy. EXPERIMENTAL DESIGN We undertook detailed characterization of T cells from bone marrow (BM) samples, focusing on immune checkpoints and features of immune dysfunction, correlating with clinical features and progression-free survival. RESULTS We found that patients with multiple myeloma had greater abundance of BM regulatory T cells (Tregs) which, in turn, expressed higher levels of the activation marker CD25 compared with healthy donors. Patients with higher frequencies of Tregs had shorter PFS and a distinct Treg immune checkpoint profile (increased PD-1, LAG-3) compared with patients with lower frequencies of Tregs. Analysis of CD4 and CD8 effectors revealed that low CD4effector (CD4eff):Treg ratio and increased frequency of PD-1-expressing CD4eff cells were independent predictors of early relapse over and above conventional risk factors, such as genetic risk and depth of response. Ex vivo functional analysis and RNA sequencing revealed that CD4 and CD8 cells from patients with greater abundance of CD4effPD-1+ cells displayed transcriptional and secretory features of dysfunction. CONCLUSIONS BM-infiltrating T-cell subsets, specifically Tregs and PD-1-expressing CD4 effectors, negatively influence clinical outcomes in newly diagnosed patients. Pending confirmation in larger cohorts and further mechanistic work, these immune parameters may inform new risk models, and present potential targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nouf Alrasheed
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Ehsan Ghorani
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Jake Y Henry
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Melody Chin
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Daria Galas-Filipowicz
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Andrew J S Furness
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Selina J Chavda
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Huw Richards
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dunnya De-Silva
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Oliver C Cohen
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dominic Patel
- Department of Histopathology, University College London, London, United Kingdom
| | - Anthony Brooks
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Martin Pule
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Sergio A Quezada
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
| |
Collapse
|
40
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
41
|
Caraccio C, Krishna S, Phillips DJ, Schürch CM. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front Immunol 2020; 11:501. [PMID: 32391000 PMCID: PMC7193016 DOI: 10.3389/fimmu.2020.00501] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematological neoplasm in adults, comprising 1.8% of all cancers. With an annual incidence of ~30,770 cases in the United States, MM has a high mortality rate, leading to 12,770 deaths per year. MM is a genetically complex, highly heterogeneous malignancy, with significant inter- and intra-patient clonal variability. Recent years have witnessed dramatic improvements in the diagnostics, classification, and treatment of MM. However, patients with high-risk disease have not yet benefited from therapeutic advances. High-risk patients are often primary refractory to treatment or relapse early, ultimately resulting in progression toward aggressive end-stage MM, with associated extramedullary disease or plasma cell leukemia. Therefore, novel treatment modalities are needed to improve the outcomes of these patients. Bispecific antibodies (BsAbs) are immunotherapeutics that simultaneously target and thereby redirect effector immune cells to tumor cells. BsAbs have shown high efficacy in B cell malignancies, including refractory/relapsed acute lymphoblastic leukemia. Various BsAbs targeting MM-specific antigens such as B cell maturation antigen (BCMA), CD38, and CD138 are currently in pre-clinical and clinical development, with promising results. In this review, we outline these advances, focusing on BsAb drugs, their targets, and their potential to improve survival, especially for high-risk MM patients. In combination with current treatment strategies, BsAbs may pave the way toward a cure for MM.
Collapse
|
42
|
Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. Hemasphere 2020; 4:e350. [PMID: 32309787 PMCID: PMC7162079 DOI: 10.1097/hs9.0000000000000350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The alkylating agent cyclophosphamide has been used in the treatment of multiple myeloma for over 60 years. At low doses, cyclophosphamide also has significant immunomodulatory activity, which can be used to modify the immunosuppressive tumor microenvironment in order to augment responses to existing therapies. Immune-mediated therapies are becoming more widespread in modern approaches to myeloma treatment. In this review, we discuss the effects cyclophosphamide has on the immune system, and how it can be used synergistically with other treatment modalities including the immunomodulatory agents, monoclonal antibodies and cellular therapies.
Collapse
|
43
|
Frerichs KA, Broekmans MEC, Marin Soto JA, van Kessel B, Heymans MW, Holthof LC, Verkleij CPM, Boominathan R, Vaidya B, Sendecki J, Axel A, Gaudet F, Pillarisetti K, Zweegman S, Adams HC, Mutis T, van de Donk NWCJ. Preclinical Activity of JNJ-7957, a Novel BCMA×CD3 Bispecific Antibody for the Treatment of Multiple Myeloma, Is Potentiated by Daratumumab. Clin Cancer Res 2020; 26:2203-2215. [PMID: 31969333 DOI: 10.1158/1078-0432.ccr-19-2299] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple myeloma (MM) patients with disease refractory to all available drugs have a poor outcome, indicating the need for new agents with novel mechanisms of action. EXPERIMENTAL DESIGN We evaluated the anti-MM activity of the fully human BCMA×CD3 bispecific antibody JNJ-7957 in cell lines and bone marrow (BM) samples. The impact of several tumor- and host-related factors on sensitivity to JNJ-7957 therapy was also evaluated. RESULTS We show that JNJ-7957 has potent activity against 4 MM cell lines, against tumor cells in 48 of 49 BM samples obtained from MM patients, and in 5 of 6 BM samples obtained from primary plasma cell leukemia patients. JNJ-7957 activity was significantly enhanced in patients with prior daratumumab treatment, which was partially due to enhanced killing capacity of daratumumab-exposed effector cells. BCMA expression did not affect activity of JNJ-7957. High T-cell frequencies and high effector:target ratios were associated with improved JNJ-7957-mediated lysis of MM cells. The PD-1/PD-L1 axis had a modest negative impact on JNJ-7957 activity against tumor cells from daratumumab-naïve MM patients. Soluble BCMA impaired the ability of JNJ-7957 to kill MM cells, although higher concentrations were able to overcome this negative effect. CONCLUSIONS JNJ-7957 effectively kills MM cells ex vivo, including those from heavily pretreated MM patients, whereby several components of the immunosuppressive BM microenvironment had only modest effects on its killing capacity. Our findings support the ongoing trial with JNJ-7957 as single agent and provide the preclinical rationale for evaluating JNJ-7957 in combination with daratumumab in MM.
Collapse
Affiliation(s)
- Kristine A Frerichs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Marloes E C Broekmans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jhon A Marin Soto
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Berris van Kessel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Martijn W Heymans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam, the Netherlands
| | - Lisa C Holthof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Christie P M Verkleij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Bhavesh Vaidya
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Jocelyn Sendecki
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Amy Axel
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Francois Gaudet
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | | | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Homer C Adams
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Tuna Mutis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 2020; 22:7-17. [PMID: 31907409 DOI: 10.1038/s41556-019-0444-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.
Collapse
Affiliation(s)
- Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Myriam Luydmila Rachelle Haltalli
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK.
- Lo Celso Laboratory, The Francis Crick Institute, London, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
| |
Collapse
|
45
|
Batorov EV, Pronkina NV, Tikhonova MA, Kryuchkova IV, Sergeevicheva VV, Sizikova SA, Ushakova GY, Aristova TA, Batorova DS, Shishkova IV, Gilevich AV, Shevela EY, Ostanin AA, Chernykh ER. Increased circulating CD3 + T cells are associated with early relapse following autologous hematopoietic stem cell transplantation in patients with classical Hodgkin lymphoma. Leuk Lymphoma 2019; 60:2488-2497. [PMID: 31609150 DOI: 10.1080/10428194.2019.1581934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Non-malignant host immune cells are the main substrate in classical Hodgkin lymphoma (HL) microenvironment. Reconstitution of lymphocyte populations following the high-dose chemotherapy (HDC) with autologous hematopoietic stem cell transplantation (auto-HSCT) can support tumor growth in HL patients. We investigated recovery dynamics of circulating CD3+, CD4+, CD8+, CD16+/CD56+, CD19+, CD4+FOXP3+ lymphocytes following auto-HSCT in 79 HL patients and assessed relationship between these populations and the development of early relapse. Studied populations were not statistically significant between patients with high or standard/intermediate risk of relapse. CD3+ T cells at the time of engraftment were increased in patients with the early relapse of HL compared to non-relapsed patients (PU = 0.0028). Area under the curve was 0.76 (р = .0037). In logistic regression models, CD3+ T cell count was associated with early relapse/progression as a trend. These findings elucidate several interactions between early systemic T cell recovery and tumor progression following HDC with auto-HSCT.
Collapse
Affiliation(s)
- Egor V Batorov
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Natalia V Pronkina
- Laboratory of Clinical Immunology, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Marina A Tikhonova
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Irina V Kryuchkova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Vera V Sergeevicheva
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Svetlana A Sizikova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Galina Y Ushakova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Tatiana A Aristova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Dariya S Batorova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Irina V Shishkova
- Laboratory of Clinical Immunology, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Andrey V Gilevich
- Intensive Care Unit, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Ekaterina Y Shevela
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Alexander A Ostanin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Elena R Chernykh
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology , Novosibirsk , Russia
| |
Collapse
|
46
|
Lucas F, Pennell M, Huang Y, Benson DM, Efebera YA, Chaudhry M, Hughes T, Woyach JA, Byrd JC, Zhang S, Jones D, Guan X, Burd CE, Rosko AE. T Cell Transcriptional Profiling and Immunophenotyping Uncover LAG3 as a Potential Significant Target of Immune Modulation in Multiple Myeloma. Biol Blood Marrow Transplant 2019; 26:7-15. [PMID: 31445183 DOI: 10.1016/j.bbmt.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/16/2019] [Accepted: 08/11/2019] [Indexed: 12/20/2022]
Abstract
Autologous stem cell transplant (ASCT) is the standard of care for patients with multiple myeloma (MM). The clinical significance of peripheral blood T lymphocyte (PBTL) immunologic changes associated with ASCT is poorly understood. Here we evaluated T cell transcriptional messenger RNA profiles and immunophenotypes to correlate immunologic senescence, exhaustion, and anergy with clinical endpoints in a cohort of patients with MM undergoing ASCT. ASCT induced global transcriptional T cell changes and altered molecular levels of markers of T cell subtypes, T cell activation, and exhaustion. These included reduced CD4/CD8 ratio, skewing toward the Th1 subset, reduced expression of costimulatory receptors CD27 and CD28, heightened T cell activation, and increased expression of immune modulatory molecules LAG3 and PD1. Multicolor flow cytometry experiments confirmed altered circulating CD4 and CD8 subsets and skewing toward differentiated effector cells. Moreover, ASCT promoted an exhausted immunophenotype in CD3+CD4+ subsets and a senescent immunophenotype in CD3+CD8+ subsets. Subset-specific altered expression was also seen for surface molecules with immunomodulatory function. ASCT affected soluble levels of molecules with immunomodulatory function by increasing plasma HVEM and TIM3. High molecular LAG3 level was associated with inferior event-free survival post-ASCT (hazard ratio = 5.44; confidence interval, 1.92 to 15.46; P = .001; adjusted P [controlling for false discovery rate] = .038). Using a comprehensive evaluation of PBTLs on a molecular and phenotypic level, we have identified that ASCT induces global T cell alterations with CD4 and CD8 subset-specific changes. Moreover, LAG3 emerged as an early biomarker of adverse events post-ASCT. These findings will support the development of treatment strategies targeting immune defects in MM to augment or restore T cell responses.
Collapse
Affiliation(s)
- Fabienne Lucas
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Michael Pennell
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Ying Huang
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Don M Benson
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Yvonne A Efebera
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Maria Chaudhry
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Tiffany Hughes
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Suohui Zhang
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Desiree Jones
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Xiangnan Guan
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
47
|
Kibata K, Ito T, Inaba M, Tanaka A, Iwata R, Inagaki-Katashiba N, Phan V, Satake A, Nomura S. The immunomodulatory-drug, lenalidomide, sustains and enhances interferon-α production by human plasmacytoid dendritic cells. J Blood Med 2019; 10:217-226. [PMID: 31372079 PMCID: PMC6635835 DOI: 10.2147/jbm.s206459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Lenalidomide (LEN), an immunomodulatory drug (IMiD), is currently used for treatment of multiple myeloma (MM). LEN potentiates T cell and natural killer cell functions. However, the cellular and molecular mechanisms underlying the immunomodulatory effects of LEN remain unclear. We focused on the effects of LEN on human plasmacytoid dendritic cells (pDCs), which are the major source of interferon (IFN)-α in the blood and play a central role in innate immune responses. Results: We found that bortezomib, a proteasome inhibitor used to treat MM, killed pDCs but that 0.1-3 μM LEN (covering clinical plasma concentration range) did not affect pDC survival or CD86 expression. Bortezomib inhibited pDC-derived IFN-α production in a dose-dependent fashion, but 0.1-3 µM LEN sustained pDC-derived IFN-α production when stimulated with an optimal concentration of CpG-ODN 2216 (3 μM). In pDCs stimulated with a low concentration of CpG-ODN (0.1 μM), LEN enhanced IFN-α production. These results indicated that LEN, when used at a clinically relevant concentration, can potentially enhance IFN-α production by pDCs. Conclusion: Collectively, our findings unveiled a novel target of LEN and extend the repertoire of the drug's known immunomodulatory effects. These effects may explain the low incidence of herpes zoster viral infection observed during LEN treatment compared with bortezomib treatment. LEN may function as an IMiD affecting a wide array of immune cells, including pDCs, leading to amplification of a positive immune axis able to eliminate MM cells.
Collapse
Affiliation(s)
- Kayoko Kibata
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Tomoki Ito
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Muneo Inaba
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Akihiro Tanaka
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Ryoichi Iwata
- Kansai Medical University, Department of Neurosurgery, Osaka, Japan
| | | | - Vien Phan
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Atsushi Satake
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Shosaku Nomura
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| |
Collapse
|
48
|
Bhutani M, Foureau D, Zhang Q, Robinson M, Wynn AS, Steuerwald NM, Druhan LJ, Guo F, Rigby K, Turner M, Slaughter D, Friend R, Atrash S, Symanowski JT, Avalos BR, Copelan EA, Voorhees PM, Usmani SZ. Peripheral Immunotype Correlates with Minimal Residual Disease Status and Is Modulated by Immunomodulatory Drugs in Multiple Myeloma. Biol Blood Marrow Transplant 2019; 25:459-465. [DOI: 10.1016/j.bbmt.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
49
|
Liegel J, Avigan D, Rosenblatt J. Cellular immunotherapy as a therapeutic approach in multiple myeloma. Expert Rev Hematol 2019; 11:525-536. [PMID: 29856648 DOI: 10.1080/17474086.2018.1483718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Immunotherapy seeks to restore and augment the unique ability of the immune system to recognize and kill malignant cells. This strategy has previously been incorporated into standard of care in myeloma with the use of immunomodulatory drugs and allogeneic transplant. The following review will discuss the rationale for immunotherapy to reverse critical aspects of the immunosuppressive milieu in myeloma and avenues where cellular therapies are now revolutionizing myeloma treatment. Areas covered: A particular focus is outcomes of clinical trials in myeloma published in PubMed database or abstract form using vaccines or adoptive cell transfer: marrow infiltrating lymphocytes, T-cell receptor and chimeric antigen receptor T cells. Expert commentary: Immunotherapy has extraordinary potential in myeloma. Combinations of cellular therapies with immunomodulatory molecules or checkpoint inhibitors are likely to be synergistic and now underway. Future directions include neoantigen or nanoparticle vaccines and further modifications of engineered T cells such as use of dual-antigens, suicide genes or allogeneic cells.
Collapse
Affiliation(s)
- Jessica Liegel
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - David Avigan
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Jacalyn Rosenblatt
- a Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
50
|
Lad D, Huang Q, Hoeppli R, Garcia R, Xu L, Levings M, Song K, Broady R. Evaluating the role of Tregs in the progression of multiple myeloma. Leuk Lymphoma 2019; 60:2134-2142. [PMID: 30773086 DOI: 10.1080/10428194.2019.1579324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of regulatory T-cells (Treg) and Th17 cells in the progression of multiple myeloma has been unclear. There are conflicting reports of the Treg and Th17 frequency being increased, decreased, and unchanged as compared with controls. In this study, we sought to characterize the T-cell subsets including Treg function in both blood and marrow compartments of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). The Treg/Th17 ratio is skewed toward the suppressive phenotype in MGUS and MM. There are more activated and memory Tregs in the myeloma marrow. Although the myeloma Tregs are functional, they are less suppressive than Tregs in chronic lymphocytic leukemia where they drive disease progression. None of the T-cell subsets were found to have a clinical correlation with time to progression in MGUS or progression-free survival in myeloma. Tregs are important but unlikely major players in the progression of MGUS to MM.
Collapse
Affiliation(s)
- Deepesh Lad
- Clinical Hematology, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Qing Huang
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Romy Hoeppli
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rosa Garcia
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Lixin Xu
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Megan Levings
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kevin Song
- Leukemia/BMT Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Raewyn Broady
- Leukemia/BMT Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|