1
|
Lucía Reviglio A, Ariel Alaniz G, Cecilia Liaudat A, Alustiza F, Santo M, Otero L, Fernández L. Evaluation of the antitumor activity of albendazole using Langmuir-Blodgett monolayers as surface mediated drug delivery system. Int J Pharm 2024; 663:124586. [PMID: 39147249 DOI: 10.1016/j.ijpharm.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.
Collapse
Affiliation(s)
- Ana Lucía Reviglio
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Gustavo Ariel Alaniz
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580 Marcos Juárez, Argentina
| | - Marisa Santo
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luis Otero
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| | - Luciana Fernández
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
2
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
3
|
Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology 2021; 464:153000. [PMID: 34695509 DOI: 10.1016/j.tox.2021.153000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful molecular imaging technology that can obtain qualitative, quantitative, and location information by simultaneously detecting and mapping endogenous or exogenous molecules in biological tissue slices without specific chemical labeling or complex sample pretreatment. This article reviews the progress made in MSI and its application in drug toxicology research, including the tissue distribution of toxic drugs and their metabolites, the target organs (liver, kidney, lung, eye, and central nervous system) of toxic drugs, the discovery of toxicity-associated biomarkers, and explanations of the mechanisms of drug toxicity when MSI is combined with the cutting-edge omics methodologies. The unique advantages and broad prospects of this technology have been fully demonstrated to further promote its wider use in the field of pharmaceutical toxicology.
Collapse
|
4
|
Effects of backbone cyclization on the pharmacokinetics and drug efficiency of the orally active analgesic conotoxin cVc1.1. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Davoli E, Zucchetti M, Matteo C, Ubezio P, D'Incalci M, Morosi L. THE SPACE DIMENSION AT THE MICRO LEVEL: MASS SPECTROMETRY IMAGING OF DRUGS IN TISSUES. MASS SPECTROMETRY REVIEWS 2021; 40:201-214. [PMID: 32501572 DOI: 10.1002/mas.21633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) has seen remarkable development in recent years. The possibility of getting quantitative or semiquantitative data, while maintaining the spatial component in the tissues has opened up unique study possibilities. Now with a spatial window of few tens of microns, we can characterize the events occurring in tissue subcompartments in physiological and pathological conditions. For example, in oncology-especially in preclinical models-we can quantitatively measure drug distribution within tumors, correlating it with pharmacological treatments intended to modify it. We can also study the local effects of the drug in the tissue, and their effects in relation to histology. This review focuses on the main results in the field of drug MSI in clinical pharmacology, looking at the literature on the distribution of drugs in human tissues, and also the first preclinical evidence of drug intratissue effects. The main instrumental techniques are discussed, looking at the different instrumentation, sample preparation protocols, and raw data management employed to obtain the sensitivity required for these studies. Finally, we review the applications that describe in situ metabolic events and pathways induced by the drug, in animal models, showing that MSI makes it possible to study effects that go beyond the simple concentration of the drug, maintaining the space dimension. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Enrico Davoli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lavinia Morosi
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
6
|
Wang N, Dartois V, Carter CL. An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4708. [PMID: 33586279 PMCID: PMC8032321 DOI: 10.1002/jms.4708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 05/08/2023]
Abstract
Suboptimal antibiotic dosing has been identified as one of the key drivers in the development of multidrug-resistant (MDR) bacteria that have become a global health concern. Aminoglycosides and vancomycin are broad-spectrum antibiotics used to treat critically ill patients infected by a variety of MDR bacterial species. Resistance to these antibiotics is becoming more prevalent. In order to design proper antibiotic regimens that maximize efficacy and minimize the development of resistance, it is pivotal to obtain the in situ pharmacokinetic-pharmacodynamic profiles at the sites of infection. Mass spectrometry imaging (MSI) is the ideal technique to achieve this. Aminoglycosides, due to their structure, suffer from poor ionization efficiency. Additionally, ion suppression effects by endogenous molecules greatly inhibit the detection of aminoglycosides and vancomycin at therapeutic levels. In the current study, an optimized method was developed that enabled the detection of these antibiotics by MSI. Tissue spotting experiments demonstrated a 5-, 15-, 35-, and 54-fold increase in detection sensitivity in the washed samples for kanamycin, amikacin, streptomycin, and vancomycin, respectively. Tissue mimetic models were utilized to optimize the washing time and matrix additive concentration. These studies determined the improved limit of detection was 40 to 5 μg/g of tissue for vancomycin and streptomycin, and 40 to 10 μg/g of tissue for kanamycin and amikacin. The optimized protocol was applied to lung sections from mice dosed with therapeutic levels of kanamycin and vancomycin. The washing protocol enabled the first drug distribution investigations of aminoglycosides and vancomycin by MSI, paving the way for site-of-disease antibiotic penetration studies.
Collapse
Affiliation(s)
- Ning Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
7
|
Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 2021; 413:2637-2653. [PMID: 33532914 DOI: 10.1007/s00216-021-03189-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.
Collapse
|
8
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
9
|
Goodwin RJA, Takats Z, Bunch J. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery. SLAS DISCOVERY 2020; 25:963-976. [PMID: 32713279 DOI: 10.1177/2472555220941843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past decade, mass spectrometry imaging (MSI) has become a robust and versatile methodology to support modern pharmaceutical research and development. The technologies provide data on the biodistribution, metabolism, and delivery of drugs in tissues, while also providing molecular maps of endogenous metabolites, lipids, and proteins. This allows researchers to make both pharmacokinetic and pharmacodynamic measurements at cellular resolution in tissue sections or clinical biopsies. Despite drug imaging within samples now playing a vital role within research and development (R&D) in leading pharmaceutical companies, however, the challenges in turning compounds into medicines continue to evolve as rapidly as the technologies used to discover them. The increasing cost of development of new and emerging therapeutic modalities, along with the associated risks of late-stage program attrition, means there is still an unmet need in our ability to address an increasing array of challenging bioanalytical questions within drug discovery. We require new capabilities and strategies of integrated imaging to provide context for fundamental disease-related biological questions that can also offer insights into specific project challenges. Integrated molecular imaging and advanced image analysis have the opportunity to provide a world-class capability that can be deployed on projects in which we cannot answer the question with our battery of established assays. Therefore, here we will provide an updated concise review of the use of MSI for drug discovery; we will also critically consider what is required to embed MSI into a wider evolving R&D landscape and allow long-lasting impact in the industry.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK
| | - Josephine Bunch
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK.,National Physical Laboratory, Teddington, London, UK
| |
Collapse
|
10
|
Zhang L, Huang T, Bi J, Zheng Y, Lu C, Hui Q, Wang X, Lin X. Long-Term Toxicity Study of Topical Administration of a Highly-Stable rh-aFGF Carbomer 940 Hydrogel in a Rabbit Skin Wound Model. Front Pharmacol 2020; 11:58. [PMID: 32153396 PMCID: PMC7046797 DOI: 10.3389/fphar.2020.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
We developed a highly stable recombinant human acidic fibroblast growth factor (rh-aFGF) carbomer 940 hydrogel for wound healing. This study aimed to reveal toxicity target organs and the toxicity dose-response in the long-term administration of rh-aFGF carbomer 940 hydrogel in a rabbit skin wound model. New Zealand rabbits were topically administrated rh-aFGF carbomer 940 hydrogel at a daily dose of 900 IU/cm2, 1,800 IU/cm2, and 3,600 IU/cm2 for 28 days. Lyophilized rh-aFGF agent was used as the positive control group. General behavior, serum chemistry, skin irritation, immunogenicity, immunotoxicity, and histopathology were analyzed at designated time points. Results revealed that food intake, body weight, body temperature, heart rate, and eye examinations were all normal, suggesting no obvious toxicity induced by the rh-aFGF hydrogel. Medium and high dose rh-aFGF hydrogel groups and the positive control group displayed increased cell numbers in the local lymph nodes near the site of administration, likely caused mesenteric lymph node follicular hyperplasia, and this observation was alleviated after 14 days of recovery. Immunogenicity studies demonstrated that the serum antibody titer against rh-aFGF increased with the duration and number of drug applications but were not neutralization antibodies. After administration stopped, antibody titer decreased and disappeared in some mice. In summary, the safe dose for long-term administration of rh-aFGF carbomer 940 hydrogel for persistently damaged skin was 900 IU/cm2, which is 10 times that of the proposed clinical dosing.
Collapse
Affiliation(s)
- Li Zhang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Tongzhou Huang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Jianing Bi
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Yingying Zheng
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Chao Lu
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Qi Hui
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Xiaohua Lin
- The Department of Dermatology of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy of Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
11
|
Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol 2019; 55:51-59. [DOI: 10.1016/j.copbio.2018.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
12
|
Sugahara K, Kitao K, Watanabe T, Yamagaki T. Imaging Mass Spectrometry Analysis of Flavonoids in Blue Viola Petals and Their Enclosure Effects on Violanin during Color Expression. Anal Chem 2018; 91:896-902. [DOI: 10.1021/acs.analchem.8b03815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Kazunori Kitao
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Tohru Yamagaki
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
13
|
Imaging Mass Microscopy of Kidneys from Azithromycin-Treated Rats with Phospholipidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1993-2003. [PMID: 29981744 DOI: 10.1016/j.ajpath.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022]
Abstract
Drug-induced phospholipidosis is a lysosomal storage disorder characterized by the excess accumulation of tissue phospholipids. Although azithromycin can be used to induce phospholipidosis, no experimental studies evaluating the relationship between drug accumulation and phospholipid localization have been performed. In this study, azithromycin was orally administered to rats for 7 days, and the relationship between drug and phospholipid accumulation was performed using imaging mass microscopy. The administration of azithromycin induced tubular epithelial vacuolation in the inner stripe of the outer medulla of the kidney, consistent with the lamellar bodies that are typical manifestations of drug-induced phospholipidosis. Azithromycin and phospholipid tissue levels were extensively elevated in the kidneys of azithromycin-treated rats. Imaging mass microscopy revealed that both azithromycin and its metabolites were found in the kidneys of azithromycin-treated rats but not in control animals. The vacuolated areas of the kidneys were primarily found in the inner stripe of the outer medulla, consistent with the areas of high azithromycin concentration. Azithromycin was colocalized with several phospholipids-phosphatidylinositol (18:0/20:4), phosphatidylethanolamine (18:0/20:4 and 16:0/20:4), and possibly didocosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate, a putative biomarker of drug-induced phospholipidosis. In summary, we found correlations between regions of kidney damage and the accumulation of azithromycin, its metabolites, and phospholipids using imaging mass microscopy. Such analyses may help reveal the mechanism and identify putative biomarkers of drug-induced phospholipidosis.
Collapse
|
14
|
Maronpot RR, Nyska A, Troth SP, Gabrielson K, Sysa-Shah P, Kalchenko V, Kuznetsov Y, Harmelin A, Schiffenbauer YS, Bonnel D, Stauber J, Ramot Y. Regulatory Forum Opinion Piece*: Imaging Applications in Toxicologic Pathology-Recommendations for Use in Regulated Nonclinical Toxicity Studies. Toxicol Pathol 2018. [PMID: 28641506 DOI: 10.1177/0192623317710014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Available imaging systems for use in preclinical toxicology studies increasingly show utility as important tools in the toxicologic pathologist's armamentarium, permit longitudinal evaluation of functional and morphological changes in tissues, and provide important information such as organ and lesion volume not obtained by conventional toxicology study parameters. Representative examples of practical imaging applications in toxicology research and preclinical studies are presented for ultrasound, positron emission tomography/single-photon emission computed tomography, optical, magnetic resonance imaging, and matrix-assisted laser desorption ionization-imaging mass spectrometry imaging. Some of the challenges for making imaging systems good laboratory practice-compliant for regulatory submission are presented. Use of imaging data on a case-by-case basis as part of safety evaluation in regulatory submissions is encouraged.
Collapse
Affiliation(s)
| | - Abraham Nyska
- 2 Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | - Sean P Troth
- 3 Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kathleen Gabrielson
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vyacheslav Kalchenko
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Yuval Ramot
- 8 Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Prentice BM, Caprioli RM, Vuiblet V. Label-free molecular imaging of the kidney. Kidney Int 2017; 92:580-598. [PMID: 28750926 PMCID: PMC6193761 DOI: 10.1016/j.kint.2017.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022]
Abstract
In this review, we will highlight technologies that enable scientists to study the molecular characteristics of tissues and/or cells without the need for antibodies or other labeling techniques. Specifically, we will focus on matrix-assisted laser desorption/ionization imaging mass spectrometry, infrared spectroscopy, and Raman spectroscopy.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vincent Vuiblet
- Biophotonic Laboratory, UMR CNRS 7369 URCA, Reims, France; Nephropathology, Department of Biopathology Laboratory, CHU de Reims, Reims, France; Nephrology and Renal Transplantation department, CHU de Reims, Reims, France.
| |
Collapse
|
16
|
Nilsson A, Peric A, Strimfors M, Goodwin RJA, Hayes MA, Andrén PE, Hilgendorf C. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis. Sci Rep 2017; 7:6352. [PMID: 28743866 PMCID: PMC5526999 DOI: 10.1038/s41598-017-06583-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/14/2017] [Indexed: 12/26/2022] Open
Abstract
Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.
Collapse
Affiliation(s)
- Anna Nilsson
- Science for Life Laboratory, Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alexandra Peric
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Marie Strimfors
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Richard J A Goodwin
- Mass Spectrometry Imaging, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca Cambridge, Cambridge, United Kingdom
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Per E Andrén
- Science for Life Laboratory, Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Constanze Hilgendorf
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden. .,Safety and ADME Translational Sciences, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Lenz B, Brink A, Siam M, De Paepe A, Bassett S, Eichinger-Chapelon A, Maliver P, Neff R, Niederhauser U, Steinhuber B, Zurbach R, Singer T, Funk C, Schuler F, Albassam M, Schadt S. Application of Imaging Techniques to Cases of Drug-Induced Crystal Nephropathy in Preclinical Studies. Toxicol Sci 2017; 163:409-419. [DOI: 10.1093/toxsci/kfx044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Barbara Lenz
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Andreas Brink
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Monira Siam
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Anne De Paepe
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Simon Bassett
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Anne Eichinger-Chapelon
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Pierre Maliver
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Rachel Neff
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Urs Niederhauser
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Bernd Steinhuber
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Raphael Zurbach
- Roche Pharma Technical Operation, 4303 Kaiseraugst, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Mudher Albassam
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center New York, New York 10016
| | - Simone Schadt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 4070 Basel, Switzerland
| |
Collapse
|
18
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
19
|
Karlsson O, Hanrieder J. Imaging mass spectrometry in drug development and toxicology. Arch Toxicol 2016; 91:2283-2294. [PMID: 27933369 PMCID: PMC5429351 DOI: 10.1007/s00204-016-1905-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022]
Abstract
During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76, Stockholm, Sweden.
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, WC1N, UK
| |
Collapse
|
20
|
Barré FPY, Flinders B, Garcia JP, Jansen I, Huizing LRS, Porta T, Creemers LB, Heeren RMA, Cillero-Pastor B. Derivatization Strategies for the Detection of Triamcinolone Acetonide in Cartilage by Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2016; 88:12051-12059. [PMID: 28193015 DOI: 10.1021/acs.analchem.6b02491] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA), characterized by degeneration of the cartilaginous tissue in articular joints, severely impairs mobility in many people worldwide. The degeneration is thought to be mediated by inflammatory processes occurring in the tissue of the joint, including the cartilage. Intra-articular administered triamcinolone acetonide (TAA) is one of the drug treatments employed to ameliorate the inflammation and pain that characterizes OA. However, the penetration and distribution of TAA into the avascular cartilage is not well understood. We employed matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which has been previously used to directly monitor the distribution of drugs in biological tissues, to evaluate the distribution of TAA in human cartilage after in vitro incubation. Unfortunately, TAA is not easily ionized by regular electrospray ionization (ESI) or MALDI. To overcome this problem, we developed an on-tissue derivatization method with Girard's reagent T (GirT) in human incubated cartilage being able to study its distribution and quantify the drug abundance (up to 3.3 ng/μL). Our results demonstrate the depth of penetration of a corticosteroid drug in human OA cartilage using MALDI-MSI.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - João P Garcia
- University Medical Centre (UMC) Utrecht , Orthopedics Department, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Imke Jansen
- University Medical Centre (UMC) Utrecht , Orthopedics Department, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lennart R S Huizing
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Tiffany Porta
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Laura B Creemers
- University Medical Centre (UMC) Utrecht , Orthopedics Department, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
21
|
Abstract
During the last decade, lateral and temporal localization of drug compounds and their metabolites have been demonstrated and dynamically developed using MS imaging. The pharmaceutical industry has recognized the potential of the technology that provides simultaneous distribution and quantitative data. In this review, we present the latest technological achievements and summarize applications of drug imaging focusing on studies about metabolites by MALDI-MS imaging. We also introduce potential areas with pharmaceutical applications that are currently under exploration, including pharmacological, toxicological characterizations and metabolic enzyme localization in comparison with drug and metabolite distribution.
Collapse
|
22
|
Abstract
MS imaging has rapidly evolved over the last decade, finding roles in all aspects of pharmaceutical research and development. This article discusses possible methodological and technological future advancements and describes research areas where the technology can expand and continue to prove to be worthwhile tool for drug discovery and development.
Collapse
|
23
|
Abstract
Analysis of drug and metabolite distribution is essential for understanding of the mechanisms underlying the pharmacological or toxicological effects. MS imaging (MSI) can visualize the distribution of drugs or biological molecules in tissue sections without radiolabeling, and distinguish between the distribution of a drug and that of its metabolites in tissue sections. Therefore, it is expected to be a potent imaging technique for drug distribution studies. This article includes cases in which MSI was used to analyze drug and metabolite distribution, and discusses the impact of data obtained by MSI in drug discovery and development.
Collapse
|
24
|
Abstract
A vital process in drug discovery and development is to assess the absorption, distribution, metabolism, excretion and toxicology of potentially therapeutic compounds in the body. The potential utility of MS imaging has been demonstrated in many studies focusing on molecules including peptides, proteins and lipids. However, MS imaging also permits the direct analysis of drugs and drug metabolites in tissue samples without requiring the use of target-specific labels or reagents. Here, a brief technical description of the technique is presented along with examples of its usefulness at different stages of the drug discovery and development process including absorption, distribution, metabolism, excretion and toxicology, and blood–brain barrier drug penetration investigations.
Collapse
|
25
|
Abstract
Pharmacodynamics and toxicodynamics are the study of the biochemical and physiological effects of therapeutic agents and toxicants and their mechanisms of action. MALDI-MS imaging offers great potential for the study of pharmaco/toxicodynamic responses in tissue owing is its ability to study multiple biomarkers simultaneously in a label-free manner. Here, existing examples of such studies examining anticancer drugs and topically applied treatments are described. Examination of the literature shows that the use of MS imaging in pharmaco/toxicodynamic studies is in fact quite low. The reasons for this are discussed and potential developments in the methodology that might lead to its further use are described.
Collapse
|
26
|
Cobice DF, Goodwin RJA, Andren PE, Nilsson A, Mackay CL, Andrew R. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol 2015; 172:3266-83. [PMID: 25766375 DOI: 10.1111/bph.13135] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process.
Collapse
Affiliation(s)
- D F Cobice
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R J A Goodwin
- Drug Metabolism and Distribution, Mass Spectrometry Imaging, AstraZeneca R&D, Macclesfield, UK
| | - P E Andren
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - A Nilsson
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - C L Mackay
- SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - R Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
In situ drug and metabolite analysis [corrected] in biological and clinical research by MALDI MS imaging. Bioanalysis 2015; 6:1241-53. [PMID: 24946924 DOI: 10.4155/bio.14.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years the analysis in mass spectrometry (MS) [corrected] imaging has been expanded to detect a wide variety of low molecular weight compounds (LMWC), including exogenous and endogenous compounds. The high sensitivity and selectivity of MS imaging combined with visualization of molecular spatial distribution in tissues, makes it a valuable [corrected] platform in targeted drug and untargeted metabolomic analysis [corrected] in biological and clinical research. Here, we review the current and potential applications of MALDI MS imaging in these areas. The aim of advancing MALDI MS imaging in the field of LMWC is to support clinical applications by understanding drug and drug-metabolite distribution, investigating toxicity and discovering [corrected] new biomarkers.
Collapse
|
28
|
Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:448-155. [PMID: 26056514 PMCID: PMC4456684 DOI: 10.1016/j.ijms.2014.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Determining the distribution of a drug and its metabolites within tissue is a key facet of evaluating drug candidates. Drug distribution can have a significant implication in appraising drug efficacy and potential toxicity. The specificity and sensitivity of mass spectrometry imaging (MSI) make it a perfect complement to the analysis of drug distributions in tissue. The detection of lapatinib as well as several of its metabolites in liver tissue was determined by MSI using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to high resolving power Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. IR-MALDESI required minimal sample preparation while maintaining high sensitivity. The effect of the electrospray solvent composition on IR-MALDESI MSI signal from tissue analysis was investigated and an empirical comparison of IR-MALDESI and UV-MALDI for MSI analysis is also presented.
Collapse
Affiliation(s)
- Jeremy A. Barry
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - M. Reid Groseclose
- Department of Drug Metabolism& Pharmacokinetics, Platform Science & Technology, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Guillaume Robichaud
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Stephen Castellino
- Department of Drug Metabolism& Pharmacokinetics, Platform Science & Technology, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Author for Correspondence David C. Muddiman, Ph.D. W.M. Keck FT-ICR Mass Spectrometry Laboratory Department of Chemistry North Carolina State University Raleigh, North Carolina 27695 Phone: 919-513-0084 Fax: 919-513-7993
| |
Collapse
|
29
|
Nilsson A, Goodwin RJA, Shariatgorji M, Vallianatou T, Webborn PJH, Andrén PE. Mass Spectrometry Imaging in Drug Development. Anal Chem 2015; 87:1437-55. [DOI: 10.1021/ac504734s] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Nilsson
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Richard J. A. Goodwin
- Drug Safety & Metabolism, Innovative Medicines, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWG, U.K
| | - Mohammadreza Shariatgorji
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Theodosia Vallianatou
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| | - Peter J. H. Webborn
- Drug Safety & Metabolism, Innovative Medicines, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 OWG, U.K
| | - Per E. Andrén
- Biomolecular
Imaging and Proteomics, National Center for Mass Spectrometry Imaging,
Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591 BMC, 75124 Uppsala, Sweden
| |
Collapse
|
30
|
Affiliation(s)
- Bernhard Spengler
- Justus Liebig University Giessen, Institute of Inorganic and Analytical
Chemistry, Schubertstrasse
60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
31
|
Porta T, Lesur A, Varesio E, Hopfgartner G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal Bioanal Chem 2014; 407:2177-87. [PMID: 25486918 DOI: 10.1007/s00216-014-8315-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022]
Abstract
Quantification by mass spectrometry imaging (Q-MSI) is one of the hottest topics of the current discussions among the experts of the MS imaging community. If MSI is established as a powerful qualitative tool in drug and biomarker discovery, its reliability for absolute and accurate quantification (QUAN) is still controversial. Indeed, Q-MSI has to deal with several fundamental aspects that are difficult to control, and to account for absolute quantification. The first objective of this manuscript is to review the state-of-the-art of Q-MSI and the current strategies developed for absolute quantification by direct surface sampling from tissue sections. This includes comments on the quest for the perfect matrix-matched standards and signal normalization approaches. Furthermore, this work investigates quantification at a pixel level to determine how many pixels must be considered for accurate quantification by ultraviolet matrix-assisted laser desorption/ionization (MALDI), the most widely used technique for MSI. Particularly, this study focuses on the MALDI-selected reaction monitoring (SRM) in rastering mode, previously demonstrated as a quantitative and robust approach for small analyte and peptide-targeted analyses. The importance of designing experiments of good quality and the use of a labeled compound for signal normalization is emphasized to minimize the signal variability. This is exemplified by measuring the signal for cocaine and a tryptic peptide (i.e., obtained after digestion of a monoclonal antibody) upon different experimental conditions, such as sample stage velocity, laser power and frequency, or distance between two raster lines. Our findings show that accurate quantification cannot be performed on a single pixel but requires averaging of at least 4-5 pixels. The present work demonstrates that MALDI-SRM/MSI is quantitative with precision better than 10-15 %, which meets the requirements of most guidelines (i.e., in bioanalysis or toxicology) for quantification of drugs or peptides from tissue homogenates.
Collapse
Affiliation(s)
- Tiffany Porta
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
32
|
Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, Muddiman DC. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2038-47. [PMID: 24744212 PMCID: PMC4201889 DOI: 10.1007/s13361-014-0884-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 05/09/2023]
Abstract
This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS(2) imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments.
Collapse
Affiliation(s)
- Jeremy A. Barry
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Guillaume Robichaud
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Mark T. Bokhart
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Corbin Thompson
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Craig Sykes
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - David C. Muddiman
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Author for Correspondence: David C. Muddiman, Ph.D., W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084, Fax: 919-513-7993,
| |
Collapse
|
33
|
Abstract
To fully understand the drug mechanism of action of new chemical entities, pharmacologists need to acquire confident and precise data in pharmacokinetics and in pharmacodynamics and build strong pharmacokinetic/pharmacodynamic relationships. Target engagement in evaluating new chemical entities provides the basis for treatment efficacy. Classical technologies are sometimes limited or inefficient to provide these precise data; however, label-free MS imaging technology is able to provide these molecular features, spatial distributions, quantification and metabolomics data. Important considerations for imaging biological sections are described. Various applications in pharmacology are presented across different therapeutic areas, where MS imaging answers crucial drug discovery and preclinical development needs.
Collapse
|
34
|
Sugihara Y, Végvári Á, Welinder C, Jönsson G, Ingvar C, Lundgren L, Olsson H, Breslin T, Wieslander E, Laurell T, Rezeli M, Jansson B, Nishimura T, Fehniger TE, Baldetorp B, Marko-Varga G. A new look at drugs targeting malignant melanoma-An application for mass spectrometry imaging. Proteomics 2014; 14:1963-70. [DOI: 10.1002/pmic.201300476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/25/2014] [Accepted: 07/16/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yutaka Sugihara
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Ákos Végvári
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- CREATE Health; Lund University; Lund Sweden
| | - Charlotte Welinder
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Göran Jönsson
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Christian Ingvar
- Department of Surgery; Clinical Sciences; Lund University; Lund Sweden
| | - Lotta Lundgren
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Håkan Olsson
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Thomas Breslin
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Elisabet Wieslander
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
| | | | - Toshihide Nishimura
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
| | - Thomas E. Fehniger
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
| | - Bo Baldetorp
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
- First Department of Surgery; Tokyo Medical University; Tokyo Japan
| |
Collapse
|
35
|
Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol 2013; 140:93-104. [PMID: 23881163 DOI: 10.1007/s00418-013-1127-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
Mass spectrometry imaging (MSI) is a rapidly evolving technology that yields qualitative and quantitative distribution maps of small pharmaceutical-active molecules and their metabolites in tissue sections in situ. The simplicity, high sensitivity and ability to provide comprehensive spatial distribution maps of different classes of biomolecules make MSI a valuable tool to complement histopathology for diagnostics and biomarker discovery. In this review, qualitative and quantitative MSI of drugs and metabolites in tissue at therapeutic levels are discussed and the impact of this technique in drug discovery and clinical research is highlighted.
Collapse
|
36
|
Ye H, Wang J, Greer T, Strupat K, Li L. Visualizing neurotransmitters and metabolites in the central nervous system by high resolution and high accuracy mass spectrometric imaging. ACS Chem Neurosci 2013; 4:1049-56. [PMID: 23607816 DOI: 10.1021/cn400065k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The spatial localization and molecular distribution of metabolites and neurotransmitters within biological organisms is of tremendous interest to neuroscientists. In comparison to conventional imaging techniques such as immunohistochemistry, matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) has demonstrated its unique advantage by directly localizing the distribution of a wide range of biomolecules simultaneously from a tissue specimen. Although MALDI-MSI of metabolites and neurotransmitters is hindered by numerous matrix-derived peaks, high-resolution and high-accuracy mass spectrometers (HRMS) allow differentiation of endogenous analytes from matrix peaks, unambiguously obtaining biomolecular distributions. In this study, we present MSI of metabolites and neurotransmitters in rodent and crustacean central nervous systems acquired on HRMS. Results were compared with those obtained from a medium-resolution mass spectrometer (MRMS), tandem time-of-flight instrument, to demonstrate the power and unique advantages of HRMSI and reveal how this new tool would benefit molecular imaging applications in neuroscience.
Collapse
|
37
|
Bylund J, Annas A, Hellgren D, Bjurström S, Andersson H, Svanhagen A. Amide Hydrolysis of a Novel Chemical Series of Microsomal Prostaglandin E Synthase-1 Inhibitors Induces Kidney Toxicity in the Rat. Drug Metab Dispos 2013; 41:634-41. [DOI: 10.1124/dmd.112.048983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|