1
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
St-Cyr S, Smith AR, Davidson BL. Temporal Phenotypic Changes in Huntington's Disease Models for Preclinical Studies. J Huntingtons Dis 2022; 11:35-57. [PMID: 35213386 PMCID: PMC9028736 DOI: 10.3233/jhd-210515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Mouse models bearing genetic disease mutations are instrumental in the development of therapies for genetic disorders. Huntington’s disease (HD) is a late-onset lethal dominant genetic disorder due to a CAG repeat within exon 1 of the Huntingtin (Htt) gene. Several mice were developed to model HD through the expression of a transgenic fragment (exon 1 of the human HTT), the knock-in mutation of the CAG repeat in the context of the mouse Htt gene, or the full-length HTT human gene. The different mouse models present distinct onset, symptoms, and progression of the disease. Objective: The objective of this study is to advise on the best behavioral tests to assess disease progression in three HD mouse models. Methods: We tested N171-82Q transgenic mice, zQ175 knock-in mice, and BACHD full-length mice in a comprehensive behavior test battery in early, mid-, and late disease stages. Results: We contrast and compare the models and the emerging phenotypes with the available literature. These results suggest the most effective behavioral tests and appropriate sample sizes to detect treatment efficacy in each model at the different ages. We provide options for early detection of motor deficits while minimizing testing time and training. Conclusion: This information will inform researchers in the HD field as to which mouse model, tests and sample sizes can accurately and sensitively detect treatment efficacy in preclinical HD research.
Collapse
Affiliation(s)
- Sophie St-Cyr
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alicia R Smith
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Department of Pathology & Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Santos RPM, Ribeiro R, Ferreira-Vieira TH, Aires RD, de Souza JM, Oliveira BS, Lima ALD, de Oliveira ACP, Reis HJ, de Miranda AS, Vieira EML, Ribeiro FM, Vieira LB. Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of Huntington's disease. Sci Rep 2022; 12:5621. [PMID: 35379852 PMCID: PMC8980063 DOI: 10.1038/s41598-022-08924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity represents a global health problem and is characterized by metabolic dysfunctions and a low-grade chronic inflammatory state, which can increase the risk of comorbidities, such as atherosclerosis, diabetes and insulin resistance. Here we tested the hypothesis that the genetic deletion of metabotropic glutamate receptor 5 (mGluR5) may rescue metabolic and inflammatory features present in BACHD mice, a mouse model of Huntington's disease (HD) with an obese phenotype. For that, we crossed BACHD and mGluR5 knockout mice (mGluR5-/-) in order to obtain the following groups: Wild type (WT), mGluR5-/-, BACHD and BACHD/mGluR5-/- (double mutant mice). Our results showed that the double mutant mice present decreased body weight as compared to BACHD mice in all tested ages and reduced visceral adiposity as compared to BACHD at 6 months of age. Additionally, 12-month-old double mutant mice present increased adipose tissue levels of adiponectin, decreased leptin levels, and increased IL-10/TNF ratio as compared to BACHD mice. Taken together, our preliminary data propose that the absence of mGluR5 reduce weight gain and visceral adiposity in BACHD mice, along with a decrease in the inflammatory state in the visceral adipose tissue (VAT), which may indicate that mGluR5 may play a role in adiposity modulation.
Collapse
Affiliation(s)
- Rebeca P M Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Roberta Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Talita H Ferreira-Vieira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Rosaria D Aires
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Jessica M de Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Luiza D Lima
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Antônio Carlos P de Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Helton J Reis
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Aline S de Miranda
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erica M L Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil.
| | - Luciene B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
4
|
Soylu-Kucharz R, Khoshnan A, Petersén Å. IKKβ signaling mediates metabolic changes in the hypothalamus of a Huntington disease mouse model. iScience 2022; 25:103771. [PMID: 35146388 PMCID: PMC8819015 DOI: 10.1016/j.isci.2022.103771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 01/13/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. Metabolic changes are associated with HD progression, but underlying mechanisms are not fully known. As the IKKβ/NF-κB pathway is an essential regulator of metabolism, we investigated the involvement of IKKβ, the upstream activator of NF-κB in hypothalamus-specific HD metabolic changes. We expressed amyloidogenic N-terminal fragments of mutant HTT (mHTT) in the hypothalamus of mice with brain-specific ablation of IKKβ (Nestin/IKKβlox/lox) and control mice (IKKβlox/lox). We assessed effects on body weight, metabolic hormones, and hypothalamic neuropathology. Hypothalamic expression of mHTT led to an obese phenotype only in female mice. CNS-specific inactivation of IKKβ prohibited weight gain in females, which was independent of neuroprotection and microglial activation. Our study suggests that mHTT in the hypothalamus causes metabolic imbalance in a sex-specific fashion, and central inhibition of the IKKβ pathway attenuates the obese phenotype. Mutant huntingtin in the hypothalamus causes sex-specific metabolic imbalance CNS-specific inactivation of the IKKβ pathway prevents the obese phenotype IKKβ inactivation leads to an increased number of mutant huntingtin inclusions IKKβ inactivation does not prevent orexin or A13 TH neuron loss
Collapse
Affiliation(s)
- Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Ali Khoshnan
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| |
Collapse
|
5
|
Cheong RY, Baldo B, Sajjad MU, Kirik D, Petersén Å. Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model. Neuropathol Appl Neurobiol 2021; 47:564-578. [PMID: 33330988 PMCID: PMC8247873 DOI: 10.1111/nan.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
AIMS Huntington disease (HD) is a fatal neurodegenerative disorder with no disease-modifying treatments approved so far. Ongoing clinical trials are attempting to reduce huntingtin (HTT) expression in the central nervous system (CNS) using different strategies. Yet, the distribution and timing of HTT-lowering therapies required for a beneficial clinical effect is less clear. Here, we investigated whether HD-related behaviours could be prevented by inactivating mutant HTT at different disease stages and to varying degrees in an experimental model. METHODS We generated mutant BACHD mice with either a widespread or circuit-specific inactivation of mutant HTT by using Cre recombinase (Cre) under the nestin promoter or the adenosine A2A receptor promoter respectively. We also simulated a clinical gene therapy scenario with allele-specific HTT targeting by injections of recombinant adeno-associated viral (rAAV) vectors expressing Cre into the striatum of adult BACHD mice. All mice were assessed using behavioural tests to investigate motor, metabolic and psychiatric outcome measures at 4-6 months of age. RESULTS While motor deficits, body weight changes, anxiety and depressive-like behaviours are present in BACHD mice, early widespread CNS inactivation during development significantly improves rotarod performance, body weight changes and depressive-like behaviour. However, conditional circuit-wide mutant HTT deletion from the indirect striatal pathway during development and focal striatal-specific deletion in adulthood failed to rescue any of the HD-related behaviours. CONCLUSIONS Our results indicate that widespread targeting and the timing of interventions aimed at reducing mutant HTT are important factors to consider when developing disease-modifying therapies for HD.
Collapse
Affiliation(s)
- Rachel Y. Cheong
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Barbara Baldo
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
- Present address:
Evotec SEHD Research and Translational SciencesHamburgGermany
| | - Muhammad U. Sajjad
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Åsa Petersén
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| |
Collapse
|
6
|
van Wamelen DJ, Aziz NA. Hypothalamic pathology in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:245-255. [PMID: 34266596 DOI: 10.1016/b978-0-12-819973-2.00017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Huntington's disease (HD), an autosomal dominant hereditary disorder associated with the accumulation of mutant huntingtin, is classically associated with cognitive decline and motor symptoms, notably chorea. However, growing evidence suggests that nonmotor symptoms are equally prevalent and debilitating. Some of these symptoms may be linked to hypothalamic pathology, demonstrated by findings in HD animal models and HD patients showing specific changes in hypothalamic neuropeptidergic populations and their associated functions. At least some of these alterations are likely due to local mutant huntingtin expression and toxicity, while others are likely caused by disturbed hypothalamic circuitry. Common problems include circadian rhythm disorders, including desynchronization of daily hormone excretion patterns, which could be targeted by novel therapeutic interventions, such as timed circadian interventions with light therapy or melatonin. However, translation of these findings from bench-to-bedside is hampered by differences in murine HD models and HD patients, including mutant huntingtin trinucleotide repeat length, which is highly heterogeneous across the various models. In this chapter, we summarize the current knowledge regarding hypothalamic alterations in HD patients and animal models, and the potential for these findings to be translated into clinical practice and management.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom; Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Petkau TL, Hill A, Connolly C, Lu G, Wagner P, Kosior N, Blanco J, Leavitt BR. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington's disease-like phenotype in BACHD mice. Hum Mol Genet 2020; 28:1661-1670. [PMID: 30624705 DOI: 10.1093/hmg/ddz009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/10/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene and is characterized by early and selective striatal neurodegeneration. The huntingtin (HTT) protein is ubiquitously expressed in many tissues and the cellular pathogenesis of the disease is not fully understood. Immune cell dysfunction due to mutant HTT (mHTT) expression and aberrant immune system activation in HD patients suggests that inflammatory processes may contribute to HD pathogenesis. Here we used the BACHD mouse model of HD, which carries a conditional transgene expressing full-length human mHTT, to selectively deplete mHTT expression in myeloid lineage cells, including microglia, and evaluated the effects on HD-related behavior and neuropathology. In the converse experiment, we depleted mHTT expression in the majority of cells in the brain but specifically excluding microglia and again evaluated behavior and neuropathology. In mice with myeloid-specific mHTT-depletion, we observed no significant rescue of any behavioral or neuropathological outcome measures, while neural-specific knockout mice showed significant rescue of body weight, rotarod performance and striatal volume. We conclude that mHTT expression in microglia, though clearly affecting specific aspects of microglia function, does not alter disease pathogenesis in the BACHD mouse model. This may have implications for current or future therapeutic trials testing immune-modulating drugs in HD patients.
Collapse
Affiliation(s)
- Terri L Petkau
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Austin Hill
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Colúm Connolly
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Ge Lu
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Pam Wagner
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Natalia Kosior
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Jake Blanco
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, BC, Canada.,Division of Neurology, Department of Medicine, University of British Columbia Hospital, Wesbrook Mall, Vancouver, BC, Canada.,Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci 2018; 11:2. [PMID: 29403354 PMCID: PMC5780436 DOI: 10.3389/fnmol.2018.00002] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders characterized by progressive deterioration of brain structure and function. Selective neuronal populations are affected leading to symptoms which are prominently motor in amyotrophic lateral sclerosis (ALS) or Huntington’s disease (HD), or cognitive in Alzheimer’s disease (AD) and fronto-temporal dementia (FTD). Besides the common existence of neuronal loss, NDDs are also associated with metabolic changes such as weight gain, weight loss, loss of fat mass, as well as with altered feeding behavior. Importantly, preclinical research as well as clinical studies have demonstrated that altered energy homeostasis influences disease progression in ALS, AD and HD, suggesting that identification of the pathways leading to perturbed energy balance might provide valuable therapeutic targets Signals from both the periphery and central inputs are integrated in the hypothalamus, a major hub for the control of energy balance. Recent research identified major hypothalamic changes in multiple NDDs. Here, we review these hypothalamic alterations and seek to identify commonalities and differences in hypothalamic involvement between the different NDDs. These hypothalamic defects could be key in the development of perturbations in energy homeostasis in NDDs and further understanding of the underlying mechanisms might open up new avenues to not only treat weight loss but also to ameliorate overall neurological symptoms.
Collapse
Affiliation(s)
- Pauline Vercruysse
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France.,Department of Neurology, Ulm University, Ulm, Germany
| | - Didier Vieau
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - David Blum
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit (TNU), Lund University, Lund, Sweden
| | - Luc Dupuis
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Metabolic and behavioral effects of mutant huntingtin deletion in Sim1 neurons in the BACHD mouse model of Huntington's disease. Sci Rep 2016; 6:28322. [PMID: 27334347 PMCID: PMC4917832 DOI: 10.1038/srep28322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic pathology, metabolic dysfunction and psychiatric symptoms are part of Huntington disease (HD), which is caused by an expanded CAG repeat in the huntingtin (HTT) gene. Inactivation of mutant HTT selectively in the hypothalamus prevents the development of metabolic dysfunction and depressive-like behavior in the BACHD mouse model. The hypothalamic paraventricular nucleus (PVN) is implicated in metabolic and emotional control, therefore we here tested whether inactivation of mutant HTT in the PVN affects metabolic and psychiatric manifestations of HD in BACHD mice. BACHD mice were crossed with mice expressing Cre-recombinase under the Sim1 promoter (Sim1-Cre) to inactivate mutant HTT in Sim1 expressing cells, i.e. the PVN of the hypothalamus. We found that inactivation of mutant HTT in Sim1 cells had a sex-specific effect on both the metabolic and the psychiatric phenotype, as these phenotypes were no longer different in male BACHD/Sim1-Cre mice compared to wild-type littermates. We also found a reduced number of GnRH neurons specifically in the anterior hypothalamus and an increased testes weight in male BACHD mice compared to wild-type littermates. Taken together, expression of mutant HTT in Sim1 cells may play a role for the development of metabolic dysfunction and depressive-like behavior in male BACHD mice.
Collapse
|
11
|
Mantovani S, Gordon R, Li R, Christie DC, Kumar V, Woodruff TM. Motor deficits associated with Huntington's disease occur in the absence of striatal degeneration in BACHD transgenic mice. Hum Mol Genet 2016; 25:1780-91. [PMID: 26908618 DOI: 10.1093/hmg/ddw050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative condition characterized by progressive motor and cognitive dysfunction, and depletion of neurons in the striatum. Recently, BACHD transgenic mice expressing the full-length human huntingtin gene have been generated, which recapitulate some of the motor and cognitive deficits seen in HD. In this study, we carried out a series of extensive behavioural and neuropathological tests on BACHD mice, to validate this mouse for preclinical research. Transgenic C57BL/6J BACHD and litter-matched wild-type mice were examined in a battery of motor and cognitive function tests at regular intervals up to 12 months of age. Brains from these mice were also analysed for signs of neurodegeneration and striatal and cortical volume sizes compared using anatomic 16.4T magnetic resonance imaging (MRI) brain scans. BACHD mice showed progressive motor impairments on rotarod and balance beam tests starting from 3 months of age, were hypoactive in the open field tests starting from 6 months of age, however, showed no alterations in gait and grip strength at any age. Surprisingly, despite these distinct motor deficits, no signs of neuronal loss, gliosis or blood-brain barrier degeneration were observed in the striatum of 12-month-old mice. MRI brain scans confirmed no reduction in striatal or cortical volumes at 12 months of age, and BACHD mice had a normal lifespan. These results demonstrate that classical Huntington's-like motor impairments seen in this transgenic model, do not occur due to degeneration of the striatum, and thus caution against the use of this model for preclinical studies into HD.
Collapse
Affiliation(s)
- Susanna Mantovani
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and Wesley Medical Research, Auchenflower, Brisbane, QLD, Australia
| | - Richard Gordon
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and
| | - Rui Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and
| | - Daniel C Christie
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia and
| |
Collapse
|
12
|
Agar E. The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 2015; 132:371-80. [PMID: 25880465 DOI: 10.1111/ane.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.
Collapse
Affiliation(s)
- E. Agar
- Department of Physiology; Faculty of Medicine; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
13
|
van Wamelen DJ, Aziz NA, Roos RAC, Swaab DF. Hypothalamic alterations in Huntington's disease patients: comparison with genetic rodent models. J Neuroendocrinol 2014; 26:761-75. [PMID: 25074766 DOI: 10.1111/jne.12190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/26/2014] [Accepted: 07/26/2014] [Indexed: 11/27/2022]
Abstract
Unintended weight loss, sleep and circadian disturbances and autonomic dysfunction are prevalent features of Huntington's disease (HD), an autosomal dominantly inherited neurodegenerative disorder caused by an expanded CAG repeat sequence in the HTT gene. These features form a substantial contribution to disease burden in HD patients and appear to be accompanied by a number of neuroendocrine and metabolic changes, pointing towards hypothalamic pathology as a likely underlying mechanism. Neuronal inclusion bodies of mutant huntingtin, which are hallmarks of the disease, occur throughout the hypothalamus, and indicate local mutant huntingtin expression that could interfere with hypothalamic neuropeptide production. Also, several genetic rodent models of HD show features that could be related to hypothalamic pathology, such as weight loss and circadian rhythm disturbances. In these rodents, several hypothalamic neuropeptide populations are affected. In the present review, we summarise the changes in genetic rodent models of HD for individual hypothalamic nuclei, compare these observations to the hypothalamic changes that occur in HD patients, and make an inventory of the work that still needs to be done. Surprisingly, there is only limited overlap in the hypothalamic changes reported in HD patients and genetic rodent models. At present, the only similarity between the hypothalamic alterations in HD patients and genetic rodent models is a decrease in the number of orexin-expressing neurones in the lateral hypothalamus. Possible reasons for these discrepancies, as well as potential consequences for the development of novel therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- D J van Wamelen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam ZO, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
14
|
Baldo B, Cheong RY, Petersén Å. Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease. PLoS One 2014; 9:e107691. [PMID: 25271967 PMCID: PMC4182678 DOI: 10.1371/journal.pone.0107691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022] Open
Abstract
Psychiatric and metabolic features appear several years before motor disturbances in the neurodegenerative Huntington’s disease (HD), caused by an expanded CAG repeat in the huntingtin (HTT) gene. Although the mechanisms leading to these aspects are unknown, dysfunction in the hypothalamus, a brain region controlling emotion and metabolism, has been suggested. A direct link between the expression of the disease causing protein, huntingtin (HTT), in the hypothalamus and the development of metabolic and psychiatric-like features have been shown in the BACHD mouse model of HD. However, precisely which circuitry in the hypothalamus is critical for these features is not known. We hypothesized that expression of mutant HTT in the ventromedial hypothalamus, an area involved in the regulation of metabolism and emotion would be important for the development of these non-motor aspects. Therefore, we inactivated mutant HTT in a specific neuronal population of the ventromedial hypothalamus expressing the transcription factor steroidogenic factor 1 (SF1) in the BACHD mouse using cross-breeding based on a Cre-loxP system. Effects on anxiety-like behavior were assessed using the elevated plus maze and novelty-induced suppressed feeding test. Depressive-like behavior was assessed using the Porsolt forced swim test. Effects on the metabolic phenotype were analyzed using measurements of body weight and body fat, as well as serum insulin and leptin levels. Interestingly, the inactivation of mutant HTT in SF1-expressing neurons exerted a partial positive effect on the depressive-like behavior in female BACHD mice at 4 months of age. In this cohort of mice, no anxiety-like behavior was detected. The deletion of mutant HTT in SF1 neurons did not have any effect on the development of metabolic features in BACHD mice. Taken together, our results indicate that mutant HTT regulates metabolic networks by affecting hypothalamic circuitries that do not involve the SF1 neurons of the ventromedial hypothalamus.
Collapse
Affiliation(s)
- Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| | - Rachel Y. Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Spielman LJ, Little JP, Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol 2014; 273:8-21. [PMID: 24969117 DOI: 10.1016/j.jneuroim.2014.06.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
Abstract
Obesity is a growing epidemic that contributes to several brain disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Obesity could promote these diseases through several different mechanisms. Here we review evidence supporting the involvement of two recently recognized factors linking obesity with neurodegeneration: the induction of pro-inflammatory cytokines and onset of insulin and insulin-like growth factor 1 (IGF-1) resistance. Excess peripheral pro-inflammatory mediators, some of which can cross the blood brain barrier, may trigger neuroinflammation, which subsequently exacerbates neurodegeneration. Insulin and IGF-1 resistance leads to weakening of neuroprotective signaling by these molecules and can contribute to onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsay J Spielman
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7 Canada.
| |
Collapse
|
16
|
Baldo B, Soylu R, Petersén Å. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction. PLoS One 2013; 8:e83050. [PMID: 24376631 PMCID: PMC3869748 DOI: 10.1371/journal.pone.0083050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.
Collapse
Affiliation(s)
- Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Hult Lundh S, Nilsson N, Soylu R, Kirik D, Petersén Å. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington's disease. Hum Mol Genet 2013; 22:3485-97. [PMID: 23697793 DOI: 10.1093/hmg/ddt203] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Psychiatric symptoms such as depression and anxiety are important clinical features of Huntington's disease (HD). However, the underlying neurobiological substrate for the psychiatric features is not fully understood. In order to explore the biological origin of depression and anxiety in HD, we used a mouse model that expresses the human full-length mutant huntingtin, the BACHD mouse. We found that the BACHD mice displayed depressive- and anxiety-like features as early as at 2 months of age as assessed using the Porsolt forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM). BACHD mice subjected to chronic treatment with the anti-depressant sertraline were not different to vehicle-treated BACHD mice in the FST and EPM. The behavioral manifestations occurred in the absence of reduced hippocampal cell proliferation/neurogenesis or upregulation of the hypothalamic-pituitary-adrenal axis. However, alterations in anxiety- and depression-regulating genes were present in the hypothalamus of BACHD mice including reduced mRNA expression of neuropeptide Y, tachykinin receptor 3 and vesicular monoamine transporter type 2 as well as increased expression of cocaine and amphetamine regulated transcript. Interestingly, the orexin neuronal population in the hypothalamus was increased and showed cellular atrophy in old BACHD mice. Furthermore, inactivation of mutant huntingtin in a subset of the hypothalamic neurons prevented the development of the depressive features. Taken together, our data demonstrate that the BACHD mouse recapitulates clinical HD with early psychiatric aspects and point to the role of hypothalamic dysfunction in the development of depression and anxiety in the disease.
Collapse
Affiliation(s)
- Sofia Hult Lundh
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund SE-22184, Sweden
| | | | | | | | | |
Collapse
|
18
|
Voorhees JL, Tarr AJ, Wohleb ES, Godbout JP, Mo X, Sheridan JF, Eubank TD, Marsh CB. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS One 2013; 8:e58488. [PMID: 23520517 PMCID: PMC3592793 DOI: 10.1371/journal.pone.0058488] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022] Open
Abstract
Altered inflammatory cytokine profiles are often observed in individuals suffering from major depression. Recent clinical work reports on elevated IL-6 and decreased IL-10 in depression. Elevated IL-6 has served as a consistent biomarker of depression and IL-10 is proposed to influence depressive behavior through its ability to counterbalance pro-inflammatory cytokine expression. Clinical and animal studies suggest a role for IL-10 in modifying depressive behavior. Murine restraint stress (RST) is regularly employed in the study of behavioral and biological symptoms associated with depressive disorders. While responses to acute RST exposure have been widely characterized, few studies have examined the ongoing and longitudinal effects of extended RST and fewer still have examined the lasting impact during the post-stress period. Consistent with clinical data, we report that a protocol of prolonged murine RST produced altered cytokine profiles similar to those observed in major depressive disorder. Parallel to these changes in circulating cytokines, IL-10 mRNA expression was diminished in the cortex and hippocampus throughout the stress period and following cessation of RST. Moreover, chronic RST promoted depressive-like behavior throughout the 28-day stress period and these depressive-like complications were maintained weeks after cessation of RST. Because of the correlation between IL-10 suppression and depressive behavior and because many successful antidepressant therapies yield increases in IL-10, we examined the effects of IL-10 treatment on RST-induced behavioral changes. Behavioral deficits induced by RST were reversed by exogenous administration of recombinant IL-10. This work provides one of the first reports describing the biological and behavioral impact following prolonged RST and, taken together, this study provides details on the correlation between responses to chronic RST and those seen in depressive disorders.
Collapse
Affiliation(s)
- Jeffrey L. Voorhees
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew J. Tarr
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
| | - Eric S. Wohleb
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - John F. Sheridan
- Division of Oral Biology, The Ohio State University, Columbus, Ohio, United States of America
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy D. Eubank
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| | - Clay B. Marsh
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| |
Collapse
|