1
|
Petropavlovskaia M, Assouline-Thomas B, Cuerquis J, Zhao J, Violette-Deslauriers S, Nano E, Eliopoulos N, Rosenberg L. Characterization of MSCs expressing islet neogenesis associated protein (INGAP): INGAP secretion and cell survival in vitro and in vivo. Heliyon 2024; 10:e35372. [PMID: 39170459 PMCID: PMC11336584 DOI: 10.1016/j.heliyon.2024.e35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Jessica Cuerquis
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Shaun Violette-Deslauriers
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Eni Nano
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Wang Z, Liu Z, Zhou P, Niu X, Sun Z, He H, Zhu Z. The involvement of krüppel-like transcription factor 2 in megakaryocytic differentiation induction by phorbol 12-myrestrat 13-acetate. Biomark Res 2024; 12:65. [PMID: 39014479 PMCID: PMC11253501 DOI: 10.1186/s40364-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Megakaryocytic differentiation is a complicated process regulated by a series of transcription factors in a context- and stage-dependent manner. Recent studies have suggested that krüppel-like transcription factor 2 (KLF2) is involved in the control of embryonic erythroid precursor cell differentiation and maturation. However, the function and mechanism of KLF2 in regulating megakaryocytic differentiation remain unclear. METHODS The expression patterns of krüppel-like transcription factors (KLFs) during megakaryocytic differentiation were identified from public databases. Phorbol 12-myristate 13-acetate (PMA) treatment of the myeloid-erythroid-leukemic cell lines K562 and HEL were used as cellular megakaryocytic differentiation models. A lentiviral transduction system was utilized to achieve the goal of amplifying or reducing KLF2. The expression of KLF2 was examined using real-time PCR and western blot. The impact of KLF2 on the megakaryocytic differentiation of K562 cells was examined by flow cytometry, Giemsa staining, Phalloidin staining and western blot. RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) technologies were used to identify the KLF2-regulated targets. RESULTS KLF2 is increased in the maturation process of megakaryocytes. KLF2 overexpression accelerated the PMA-induced megakaryocytic differentiation, as reflected by an increased percentage of CD41/CD61 cells, an increased number of polyploid cells, and an elevated expression of P21 and P27. KLF2 knockdown exhibited the opposite results, indicating that KLF2 knockdown suppressed the megakaryocytic differentiation. Further, combination of the RNA-seq and ChIP-seq results suggested that chimerin 1 (CHN1) and potassium voltage-gated channel subfamily Q member 5 (KCNQ5) may be target genes regulated of KLF2. Both CHN1 and KCNQ5 knockdown could block the megakaryocytic differentiation to some content. CONCLUSION This study implicated a regulatory role of KLF2 in megakaryocytic differentiation, which may suggest KLF2 as a target for illness with abnormal megakaryocytic differentiation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Henan University, Kaifeng, Henan, China.
- Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongwen Liu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan University, Kaifeng, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan University, Kaifeng, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | | | - Huan He
- Zhengzhou University, Zhengzhou, Henan, China
| | - Zunmin Zhu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Henan University, Kaifeng, Henan, China.
- Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Effect of High BMI on Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cell Transplant 2024; 33:9636897241226546. [PMID: 38258516 PMCID: PMC10807335 DOI: 10.1177/09636897241226546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) are attractive candidates in tissue engineering and regenerative medicine. Growing evidence has suggested that a high body mass index (BMI) can affect the properties of BMSCs, resulting in a reduced quality of the cells. However, the results are not consistent. Therefore, this study aimed to investigate the influences of high BMI on human BMSCs (hBMSCs). To avoid gender bias, BMSCs from females and males were studied independently. Finally, hBMSCs from 89 females and 152 males were separately divided into the normal BMI group (18.5 kg/m2 ≤ BMI < 25 kg/m2) and the high BMI group (BMI > 25 kg/m2). The cells were analyzed for the colony-forming potential; proliferation capacity; in vitro adipogenic, osteogenic, and chondrogenic differentiation potentials; and the expression of 32 common surface antigens. The results showed that high BMI did not change the number of colonies at passage 1 in females and males. In contrast, significantly reduced colony numbers at passage 4 (P4) were found in both female and male donors with high BMI. The doubling time of hBMSCs was comparable between the normal and the high BMI groups of females and males. Furthermore, the results of trilineage differentiation did not differ between the different BMI groups of males. In females, the high and the normal BMI groups also showed similar adipogenic and chondrogenic differentiation, while osteogenic differentiation was significantly enhanced in the high-BMI group. Regarding the expression of surface antigens, the expressions of CD200 and SSEA4 on hBMSCs were reduced in the high-BMI group of females and males, respectively. In conclusion, high BMI suppressed the clonogenicity of female and male hBMSCs at P4, improved the in vitro osteogenesis of female hBMSCs, and decreased the expressions of CD200 on hBMSCs in females and SSEA4 in males.
Collapse
Affiliation(s)
- Qiang Zong
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
5
|
CD73-Positive Cell Spheroid Transplantation Attenuates Colonic Atrophy. Pharmaceutics 2023; 15:pharmaceutics15030845. [PMID: 36986706 PMCID: PMC10051511 DOI: 10.3390/pharmaceutics15030845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The incidence of inflammatory bowel diseases (IBD) is increasing worldwide. Mesenchymal stem/stromal cells (MSCs) have immunomodulatory functions and are a promising source for cell transplantation therapy for IBD. However, owing to their heterogeneous nature, their therapeutic efficacy in colitis is controversial and depends on the delivery route and form of transplanted cells. Cluster of differentiation (CD) 73 is widely expressed in MSCs and used to obtain a homogeneous MSC population. Herein, we determined the optimal method for MSC transplantation using CD73+ cells in a colitis model. mRNA sequencing analysis showed that CD73+ cells exhibited a downregulation of inflammatory gene expression and an upregulation of extracellular matrix-related gene expression. Furthermore, three-dimensional CD73+ cell spheroids showed enhanced engraftment at the injured site through the enteral route, facilitated extracellular matrix remodeling, and downregulated inflammatory gene expression in fibroblasts, leading to the attenuation of colonic atrophy. Therefore, the interaction between intestinal fibroblasts and exogenous MSCs via tissue remodeling is one mechanism that can be exploited for colitis prevention. Our results highlight that the transplantation of homogeneous cell populations with well-characterized properties is beneficial for IBD treatment.
Collapse
|
6
|
Matthews EZ, Lanham S, White K, Kyriazi ME, Alexaki K, El-Sagheer AH, Brown T, Kanaras AG, J West J, MacArthur BD, Stumpf PS, Oreffo ROC. Single-cell RNA-sequence analysis of human bone marrow reveals new targets for isolation of skeletal stem cells using spherical nucleic acids. J Tissue Eng 2023; 14:20417314231169375. [PMID: 37216034 PMCID: PMC10192814 DOI: 10.1177/20417314231169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment. Spherical nucleic acids were used to detect these mRNA targets in SSCs. This methodology was able to rapidly isolate potential SSCs found at a frequency of <1 in 1,000,000 in human bone marrow, with the capacity for tri-lineage differentiation in vitro and ectopic bone formation in vivo. The current studies detail the development of a platform to advance SSC enrichment from human bone marrow, offering an invaluable resource for further SSC characterisation, with significant therapeutic impact therein.
Collapse
Affiliation(s)
- Elloise Z Matthews
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Stuart Lanham
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Kate White
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Maria-Eleni Kyriazi
- College of Engineering and Technology,
American University of the Middle East, Kuwait
| | - Konstantina Alexaki
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
- Chemistry Branch, Department of Science
and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez,
Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- Mathematical Sciences, University of
Southampton, Southampton, UK
| | - Patrick S Stumpf
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Joint Research Center for Computational
Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Richard OC Oreffo
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- College of Biomedical Engineering,
China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Bignold R, Shammout B, Rowley JE, Repici M, Simms J, Johnson JR. Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease. Respir Res 2022; 23:183. [PMID: 35831901 PMCID: PMC9277926 DOI: 10.1186/s12931-022-02108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Airway remodeling is a significant contributor to impaired lung function in chronic allergic airway disease. Currently, no therapy exists that is capable of targeting these structural changes and the consequent loss of function. In the context of chronic allergic inflammation, pericytes have been shown to uncouple from the pulmonary microvasculature, migrate to areas of inflammation, and significantly contribute to airway wall remodeling and lung dysfunction. This study aimed to elucidate the mechanism by which pulmonary pericytes accumulate in the airway wall in a model of chronic allergic airway inflammation. Methods Mice were subjected to a protocol of chronic airway inflammation driven by the common environmental aeroallergen house dust mite. Phenotypic changes to lung pericytes were assessed by flow cytometry and immunostaining, and the functional capacity of these cells was evaluated using in vitro migration assays. The molecular mechanisms driving these processes were targeted pharmacologically in vivo and in vitro. Results Pericytes demonstrated increased CXCR4 expression in response to chronic allergic inflammation and migrated more readily to its cognate chemokine, CXCL12. This increase in migratory capacity was accompanied by pericyte accumulation in the airway wall, increased smooth muscle thickness, and symptoms of respiratory distress. Pericyte uncoupling from pulmonary vessels and subsequent migration to the airway wall were abrogated following topical treatment with the CXCL12 neutraligand LIT-927. Conclusion These results provide new insight into the role of the CXCL12/CXCR4 signaling axis in promoting pulmonary pericyte accumulation and airway remodeling and validate a novel target to address tissue remodeling associated with chronic inflammation.
Collapse
Affiliation(s)
- Rebecca Bignold
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Bushra Shammout
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jessica E Rowley
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mariaelena Repici
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - John Simms
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
8
|
Song JH, Kim JW, Lee MN, Oh SH, Piao X, Wang Z, Kwon SH, Kim OS, Koh JT. Isolation of High Purity Mouse Mesenchymal Stem Cells through Depleting Macrophages Using Liposomal Clodronate. Tissue Eng Regen Med 2022; 19:565-575. [PMID: 34973125 PMCID: PMC9130445 DOI: 10.1007/s13770-021-00412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: The use of mouse bone marrow mesenchymal stem cells (mBMSCs) represents a promising strategy for performing preclinical studies in the field of cell-based regenerative medicine; however, mBMSCs obtained via conventional isolation methods have two drawbacks, i.e., (i) they are heterogeneous due to frequent macrophage contamination, and (ii) they require long-term culturing for expansion. METHODS: In the present study, we report a novel strategy to generate highly pure mBMSCs using liposomal clodronate. This approach is based on the properties of the two cell populations, i.e., BMSCs (to adhere to the plasticware in culture dishes) and macrophages (to phagocytose liposomes). RESULTS: Liposomal clodronate added during the first passage of whole bone marrow culture was selectively engulfed by macrophages in the heterogeneous cell population, resulting in their effective elimination without affecting the MSCs. This method allowed the generation of numerous high-purity Sca-1+CD44+F4/80− mBMSCs (> 95%) with just one passaging. Comparative studies with mBMSCs obtained using conventional methods revealed that the mBMSCs obtained in the present study had remarkably improved experimental utilities, as demonstrated by in vitro multilineage differentiation and in vivo ectopic bone formation assays. CONCLUSION: Our newly developed method, which enables the isolation of mBMSCs using simple and convenient protocol, will aid preclinical studies based on the use of MSCs. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00412-6.
Collapse
Affiliation(s)
- Ju Han Song
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jung-Woo Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mi Nam Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Xianyu Piao
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hee Kwon
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ok-Su Kim
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Frangi G, Guicheteau M, Jacquot F, Pyka G, Kerckhofs G, Feyeux M, Veziers J, Guihard P, Halgand B, Sourice S, Guicheux J, Prieur X, Beck L, Beck-Cormier S. PiT2 deficiency prevents increase of bone marrow adipose tissue during skeletal maturation but not in OVX-induced osteoporosis. Front Endocrinol (Lausanne) 2022; 13:921073. [PMID: 36465661 PMCID: PMC9708882 DOI: 10.3389/fendo.2022.921073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Giulia Frangi
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Marie Guicheteau
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Frederic Jacquot
- Nantes Université, CHU Nantes, Inserm, CNRS, CRCI2NA, Nantes, France
| | - Grzegorz Pyka
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- IREC, Institute of Experimental and Clinical Research, UC Louvain, Woluwé-Saint-Lambert, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Joëlle Veziers
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Pierre Guihard
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Boris Halgand
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sophie Sourice
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, Inserm, l’Institut du Thorax, Nantes, France
| | - Laurent Beck
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sarah Beck-Cormier
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
- *Correspondence: Sarah Beck-Cormier,
| |
Collapse
|
10
|
Zhuang M, Zhang W, Cheng N, Zhou L, Liu D, Yan H, Fang G, Heng BC, Sun Y, Tong G. Human umbilical cord mesenchymal stromal cells promote the regeneration of severe endometrial damage in a rat model. Acta Biochim Biophys Sin (Shanghai) 2021; 54:148-151. [PMID: 35130612 PMCID: PMC9909317 DOI: 10.3724/abbs.2021015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mei Zhuang
- Department of GynecologyShanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Wuwen Zhang
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China,Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| | - Nuo Cheng
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ling Zhou
- Department of Obstetrics and GynecologyStrategic Support Force Medical CenterBeijing100101China
| | - Dan Liu
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hua Yan
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ge Fang
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Boon Chin Heng
- Hospital & Institute of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghai200011China
| | - Yan Sun
- Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| | - Guoqing Tong
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China,Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| |
Collapse
|
11
|
Freitas GP, Lopes HB, Souza ATP, Gomes MPO, Quiles GK, Gordon J, Tye C, Stein JL, Stein GS, Lian JB, Beloti MM, Rosa AL. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther 2021; 28:748-759. [PMID: 33686254 PMCID: PMC8423866 DOI: 10.1038/s41434-021-00248-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-β/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.
Collapse
Affiliation(s)
- Gileade P Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helena B Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Paula O Gomes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Georgia K Quiles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Coralee Tye
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Kang IH, Baliga UK, Wu Y, Mehrotra S, Yao H, LaRue AC, Mehrotra M. Hematopoietic stem cell-derived functional osteoblasts exhibit therapeutic efficacy in a murine model of osteogenesis imperfecta. Stem Cells 2021; 39:1457-1477. [PMID: 34224636 DOI: 10.1002/stem.3432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Uday K Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
14
|
Dubon M, Lee S, Park JH, Lee JY, Kang D. The Role of Melanotransferrin (CD228) in the regulation of the differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells (hBM-MSC). Int J Med Sci 2021; 18:1580-1591. [PMID: 33746574 PMCID: PMC7976559 DOI: 10.7150/ijms.53650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Melanotransferrin (CD228), firstly reported as a melanoma-associated antigen, is a membrane-bound glycoprotein of an iron-binding transferrin homolog. CD228 was found to be expressed significantly higher in human bone marrow-derived mesenchymal stem cells (hBM-MSC) than in human embryonic fibroblasts (FB) by RT-PCR, western blotting and flow cytometry. The expression of CD228 declined in aged hBM-MSC as osteogenesis-related genes did. We examined a possible role for CD228 in the regulation of osteogenesis and adipogenesis of hBM-MSC. Surprisingly, siRNA-mediated CD228 knockdown increased the expression of the transcription factor DLX5 and enhanced osteogenesis of hBM-MSC evidenced by an increased expression of the runt-related transcription factor 2 (RUNX2), osterix (Osx), and osteocalcin (OC), as well as higher alkaline phosphatase (ALP) activity and extracellular calcium deposition. Interestingly, hBM-MSC transfected with CD228 siRNA also showed an increase in intracellular lipid level during adipogenesis, indicated by oil red O staining of differentiated adipocytes. Overall, our study unveils CD228 as a cell surface molecule expressed by young hBM-MSC, but not by FB. It also provides evidence to suggest a role for CD228 as a negative regulator of osteogenesis and of lipid accumulation during adipogenesis in hBM-MSC in vitro.
Collapse
Affiliation(s)
- Maria Dubon
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Sooho Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
15
|
Kaur S, Angrish N, Gupta K, Tyagi AK, Khare G. Inhibition of ABCG2 efflux pumps renders the Mycobacterium tuberculosis hiding in mesenchymal stem cells responsive to antibiotic treatment. INFECTION GENETICS AND EVOLUTION 2020; 87:104662. [PMID: 33278633 DOI: 10.1016/j.meegid.2020.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
The lengthy TB chemotherapeutic regimen, resulting in the emergence of drug resistance strains, poses a serious problem in the cure of the disease. Further, one-quarter of the world's population is infected with dormant M.tb, which creates a lifetime risk of reactivation. M.tb has a remarkable tendency to escape the host immune responses by hiding in unconventional niches. Recent studies have shown that bone-marrow mesenchymal stem cells (BM-MSCs) can serve as a reservoir of the pathogen and have been suggested to keep them beyond the reach of anti-TB drugs. In this study, we have shown that M.tb infects and grows inside BM-MSCs and were unresponsive to the anti-TB drugs rifampicin and isoniazid when compared to the pathogen residing inside THP-1 macrophages. It was further shown that the ABCG2 efflux pumps of the BM-MSCs were upregulated upon exposure to rifampicin, which may be the contributing factor for the antibiotic unresponsiveness of the bacteria inside these cells. Subsequently, it was shown that inhibition of ABCG2 efflux pumps along with administration of anti-TB drugs led to an increased susceptibility and consequently an enhanced killing of the M.tb inside BM-MSCs. These findings for the first time show that the MIC99 values of anti-TB drugs increase many folds for the M.tb residing in BM-MSCs as compared to M.tb residing inside macrophages and the involvement of ABCG2 efflux pumps in this phenomenon. Our study substantiates that these BM-MSCs acts as a useful niche for M.tb wherein they can survive by escaping the antibiotic assault that can be attributed to the host ABCG2 efflux pumps. Inhibiting these efflux pumps can be an attractive adjunctive chemotherapy to eliminate the bacteria from this protective niche.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Kajal Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
16
|
Boucher JM, Ryzhova L, Harrington A, Davis-Knowlton J, Turner JE, Cooper E, Maridas D, Ryzhov S, Rosen CJ, Vary CPH, Liaw L. Pathological Conversion of Mouse Perivascular Adipose Tissue by Notch Activation. Arterioscler Thromb Vasc Biol 2020; 40:2227-2243. [PMID: 32640901 DOI: 10.1161/atvbaha.120.314731] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.
Collapse
Affiliation(s)
- Joshua M Boucher
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Larisa Ryzhova
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Anne Harrington
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jessica Davis-Knowlton
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jacqueline E Turner
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Emily Cooper
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - David Maridas
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Sergey Ryzhov
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Clifford J Rosen
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Calvin P H Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| |
Collapse
|
17
|
Shu CC, Zaki S, Ravi V, Schiavinato A, Smith MM, Little CB. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: differential effect of stem cell and hyaluronan treatment. Arthritis Res Ther 2020; 22:29. [PMID: 32059749 PMCID: PMC7023816 DOI: 10.1186/s13075-020-2117-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Synovitis is implicated in the severity and progression of pain and structural pathology of osteoarthritis (OA). Increases in inflammatory or immune cell subpopulations including macrophages and lymphocytes have been reported in OA synovium, but how the particular subpopulations influence symptomatic or structural OA disease progression is unclear. Two therapies, hyaluronan (HA) and mesenchymal stem cells (MSCs), have demonstrated efficacy in some clinical settings: HA acting as device to improve joint function and provide pain relief, while MSCs may have immunomodulatory and disease-modifying effects. We used these agents to investigate whether changes in pain sensitization or structural damage were linked to modulation of the synovial inflammatory response in post-traumatic OA. Methods Skeletally mature C57BL6 male mice underwent medial-meniscal destabilisation (DMM) surgery followed by intra-articular injection of saline, a hyaluronan hexadecylamide derivative (Hymovis), bone marrow-derived stem cells (MSCs), or MSC + Hymovis. We quantified the progression of OA-related cartilage, subchondral bone and synovial histopathology, and associated pain sensitization (tactile allodynia). Synovial lymphocytes, monocyte/macrophages and their subpopulations were quantified by fluorescent-activated cell sorting (FACS), and the expression of key inflammatory mediators and catabolic enzyme genes quantified by real-time polymerase chain reaction (PCR). Results MSC but not Hymovis significantly reduced late-stage (12-week post-DMM) cartilage proteoglycan loss and structural damage. Allodynia was initially reduced by both treatments but significantly better at 8 and 12 weeks by Hymovis. Chondroprotection by MSCs was not associated with specific changes in synovial inflammatory cell populations but rather regulation of post-injury synovial Adamts4, Adamts5, Mmp3, and Mmp9 expression. Reduced acute post-injury allodynia with all treatments coincided with decreased synovial macrophage and T cell numbers, while longer-term effect on pain sensitization with Hymovis was associated with increased M2c macrophages. Conclusions This therapeutic study in mice demonstrated a poor correlation between cartilage, bone or synovium (histo)pathology, and pain sensitization. Changes in the specific synovial inflammatory cell subpopulations may be associated with chronic OA pain sensitization, and a novel target for symptomatic treatment.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Varshini Ravi
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | | | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
18
|
Mohme M, Maire CL, Geumann U, Schliffke S, Dührsen L, Fita K, Akyüz N, Binder M, Westphal M, Guenther C, Lamszus K, Hermann FG, Schmidt NO. Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma. Clin Cancer Res 2020; 26:2626-2639. [PMID: 31988196 DOI: 10.1158/1078-0432.ccr-19-0803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) show an inherent brain tumor tropism that can be exploited for targeted delivery of therapeutic genes to invasive glioma. We assessed whether a motile MSC-based local immunomodulation is able to overcome the immunosuppressive glioblastoma microenvironment and to induce an antitumor immune response. EXPERIMENTAL DESIGN We genetically modified MSCs to coexpress high levels of IL12 and IL7 (MSCIL7/12, Apceth-301). Therapeutic efficacy was assessed in two immunocompetent orthotopic C57BL/6 glioma models using GL261 and CT2A. Immunomodulatory effects were assessed by multicolor flow cytometry to profile immune activation and exhaustion of tumor-infiltrating immune cells. Diversity of the tumor-specific immune response as analyzed using T-cell receptor sequencing. RESULTS Intratumoral administration of MSCIL7/12 induced significant tumor growth inhibition and remission of established intracranial tumors, as demonstrated by MR imaging. Notably, up to 50% of treated mice survived long-term. Rechallenging of survivors confirmed long-lasting tumor immunity. Local treatment with MSCIL7/12 was well tolerated and led to a significant inversion of the CD4+/CD8+ T-cell ratio with an intricate, predominantly CD8+ effector T-cell-mediated antitumor response. T-cell receptor sequencing demonstrated an increased diversity of TILs in MSCIL7/12-treated mice, indicating a broader tumor-specific immune response with subsequent oligoclonal specification during generation of long-term immunity. CONCLUSIONS Local MSC-based immunomodulation is able to efficiently alter the immunosuppressive microenvironment in glioblastoma. The long-lasting therapeutic effects warrant a rapid clinical translation of this concept and have led to planning of a phase I/II study of apceth-301 in recurrent glioblastoma.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Simon Schliffke
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Krystian Fita
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nuray Akyüz
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
20
|
Identification of WNT16 as a Predictable Biomarker for Accelerated Osteogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells In Vitro. Stem Cells Int 2019; 2019:8503148. [PMID: 31582989 PMCID: PMC6754949 DOI: 10.1155/2019/8503148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/30/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.
Collapse
|
21
|
Ryan D, Paul BT, Koziol J, ElShamy WM. The pro- and anti-tumor roles of mesenchymal stem cells toward BRCA1-IRIS-overexpressing TNBC cells. Breast Cancer Res 2019; 21:53. [PMID: 31014367 PMCID: PMC6480921 DOI: 10.1186/s13058-019-1131-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background To evaluate the cross-talk between BRCA1-IRIS (IRIS)-overexpressing (IRISOE) TNBC cells and tumor-resident mesenchymal stem cells (MSCs) that triggers the aggressiveness or elimination of IRISOE TNBC tumors. Methods We analyzed the effect of silencing or inactivating IRIS on the bi-directional interaction between IRISOE TNBC cells and MSCs on tumor formation and progression. We analyzed the downstream signaling in MSCs induced by IL-6 secreted from IRISOE TNBC cells. We compared the effect of MSCs on the formation and progression of IRIS-proficient and deficient-TNBC cells/tumors using in vitro and in vivo models. Finally, we analyzed the association between IL-6, PTGER2, and PTGER4 overexpression and breast cancer subtype; hormone receptor status; and distant metastasis-free or overall survival. Results We show high-level IL-6 secreted from IRISOE TNBC cells that enhances expression of its receptor (IL-6R) in MSCs, their proliferation, and migration toward IRISOE, in vitro, and recruitment into IRISOE TNBC tumors, in vivo. In serum-free medium, recombinant IL-6 and the IL-6-rich IRISOE TNBC cell condition media (CM) decreased STAT3Y705 phosphorylation (p-STAT3Y705) in MSCs. Inhibiting IRIS expression or activity prolonged STAT3Y705 phosphorylation in MSCs. The interaction with IRISOE TNBC cells skewed MSC differentiation toward prostaglandin E2 (PGE2)-secreting pro-aggressiveness cancer-associated fibroblasts (CAFs). Accordingly, co-injecting human or mouse MSCs with IRISOE TNBC tumor cells promoted the formation of aggressive mammary tumors, high circulating IL-6 and PGE2 levels, and reduced overall survival. In contrast, IRIS-silenced or inactivated cells showed reduced tumor formation ability, limited MSC recruitment into tumors, reduced circulating IL-6 and PGE2 levels, and prolonged overall survival. A positive correlation between IL-6, PTGER2, and PTGER4 expression and basal phenotype; ER-negativity; distant metastasis-free and overall survival in basal; or BRCAmutant carriers was observed. Finally, the bi-directional interaction with MSCs triggered death rather than growth of IRIS-silenced TNBC cells, in vitro and in vivo. Conclusions The IL-6/PGE2-positive feedback loop between IRISOE TNBC tumor cells and MSCs enhances tumor aggressiveness. Inhibiting IRIS expression limits TNBC tumor growth and progression through an MSC-induced death of IRIS-silenced/inactivated TNBC cells. Electronic supplementary material The online version of this article (10.1186/s13058-019-1131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Ryan
- Breast Cancer Program, San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA
| | - Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jim Koziol
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wael M ElShamy
- Breast Cancer Program, San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
22
|
Hayes AJ, Smith SM, Caterson B, Melrose J. Concise Review: Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3, and 3-B-3(-) Chondroitin Sulfate Motifs Are Morphogenetic Markers of Tissue Development. Stem Cells 2018; 36:1475-1486. [PMID: 29893019 PMCID: PMC6381390 DOI: 10.1002/stem.2860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023]
Abstract
This study reviewed the occurrence of chondroitin sulfate (CS) motifs 4-C-3, 7-D-4, and 3-B-3(-), which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulfation motifs 7-D-4, 4-C-3, and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. Stem Cells 2018;36:1475-1486.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Susan M Smith
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, New South Wales, Australia
| | - Bruce Caterson
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors. Stem Cell Reports 2018; 11:212-227. [PMID: 29937146 PMCID: PMC6067065 DOI: 10.1016/j.stemcr.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
Bone, cartilage, and marrow adipocytes are generated by skeletal progenitors, but the relationships between lineages and mechanisms controlling their differentiation are poorly understood. We established mouse clonal skeletal progenitors with distinct differentiation properties and analyzed their transcriptome. Unipotent osteogenic and adipogenic cells expressed specific transcriptional programs, whereas bipotent clones combined expression of those genes and did not show a unique signature. We tested potential regulators of lineage commitment and found that in the presence of interferon-γ (IFNγ) adipogenic clones can be induced to osteogenesis and that their adipogenic capacity is inhibited. Analysis of IFNγ-regulated genes showed that lineage signatures and fate commitment of skeletal progenitors were controlled by EGR1 and EGR2. Knockdown experiments revealed that EGR1 is a positive regulator of the adipogenic transcriptional program and differentiation capacity, whereas EGR2 inhibits the osteogenic program and potency. Therefore, our work revealed transcriptional signatures of osteogenic and adipogenic lineages and mechanism triggering cell fate. Bone marrow osteo- and adipogenic progenitors have specific transcriptional profiles Bipotent progenitors combine expression of osteogenic and adipogenic programs IFNγ inhibits adipogenesis and induces osteogenesis via downregulation of Egr1/Egr2 Egr1 maintains adipogenic and Egr2 suppresses osteogenic lineage commitment
Collapse
|
24
|
Kim HJ, Kim KW, Kwon YR, Kim BM, Kim YJ. Forced expression of CD200 improves the differentiation capability and immunoregulatory functions of mesenchymal stromal cells. Biotechnol Lett 2018; 40:1425-1433. [PMID: 29740779 DOI: 10.1007/s10529-018-2561-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In order to identify specific mesenchymal stromal cell (MSC) populations with enhanced therapeutic efficacy, we evaluated the functional changes associated with the stable expression of CD200, which is associated with immune regulatory function and osteogenic differentiation, in human bone marrow-derived MSCs (CD200/MSCs). RESULTS We detected significantly greater osteogenesis and chondrogenesis in CD200/MSCs than in mock-transfected MSCs. In addition, the immune regulatory function of MSCs in mixed lymphocyte reactions was enhanced by CD200 gene transfection. In CD200/MSCs, the secretion of inflammatory cytokines, i.e., IL-6 and IL-8, was reduced, and levels of the anti-inflammatory factors IL-10, FOXP3, and indoleamine 2,3-dioxygenase 1 were elevated. Finally, CD200 transfection increased the stemness of MSCs, as evidenced by greater colony numbers in colony-forming unit fibroblast assays and analyses of NANOG and OCT-4 expression. CONCLUSIONS These results suggest that CD200/MSCs have therapeutic applications, and further in-depth research should focus on the development of a clinically applicable cell-based therapeutic strategy.
Collapse
Affiliation(s)
- Hye Joung Kim
- Laboratory of Hematological Disease and Transplant Immunology, Seoul, Korea.,Department of Hematology, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Kyoung-Woon Kim
- Department of Hematology, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Yong-Rim Kwon
- Laboratory of Hematological Disease and Transplant Immunology, Seoul, Korea.,Department of Hematology, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Bo-Mi Kim
- Department of Hematology, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Yoo-Jin Kim
- Laboratory of Hematological Disease and Transplant Immunology, Seoul, Korea. .,Department of Hematology, Convergent Research Consortium for Immunologic Disease, Seoul, Korea. .,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, Korea. .,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
25
|
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. J Bone Miner Res 2018; 33:930-944. [PMID: 29314250 PMCID: PMC6549722 DOI: 10.1002/jbmr.3379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
Approximately 10% of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days postfracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell (MSC) recruitment, and chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor, and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609-treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609-treated animals with significantly higher torsional strength and stiffness by 28 days postinjury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Roshni B. Patel
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kyung Shin Kang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Elsa Mével
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Austin J Pucylowski
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Mariah A. Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Michael J. Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY
| | - Melissa A. Kacena
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Stuart J. Warden
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
26
|
Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep 2018; 8:3907. [PMID: 29500387 PMCID: PMC5834600 DOI: 10.1038/s41598-018-22326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.
Collapse
|
27
|
Wagner M, Wuest M, Hamann I, Lopez-Campistrous A, McMullen TPW, Wuest F. Molecular imaging of platelet-derived growth factor receptor-alpha (PDGFRα) in papillary thyroid cancer using immuno-PET. Nucl Med Biol 2017; 58:51-58. [PMID: 29367096 DOI: 10.1016/j.nucmedbio.2017.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Receptor tyrosine kinase (RTK) platelet-derived growth factor receptor-alpha (PDGFRα) was recently identified as a molecular switch for dedifferentiation in thyroid cancer that predicts resistance to therapy as well as recurrence of disease in papillary thyroid cancer. Here we describe the radiolabeling and functional characterization of an imaging probe based on a PDGFRα-specific monoclonal antibody (mAb) for immuno-PET imaging of PDGFRα in papillary thyroid cancer. METHODS Antibody D13C6 (Cell Signaling) was decorated with chelator NOTA using bioconjugation reaction with 2-(p-NCS-Bz)-NOTA. Radiolabeling was carried out using 40 μg of antibody-NOTA conjugate with 143-223 MBq of [64Cu]CuCl2 in 0.25 M NaOAc (pH 5.5) at 30 °C for 1 h. The reaction mixture was purified with size-exclusion chromatography (PD-10 column). PDGFRα and mock transfected B-CPAP thyroid cancer cells lines for validation of 64Cu-labeled immuno-conjugates were generated using LVX-Tet-On technology. PET imaging was performed in NSG mice bearing bilaterally-induced PDGFRα (+/-) B-CPAP tumors. RESULTS Bioconjugation of NOTA chelator to monoclonal antibody D13C6 resulted in 2.8 ± 1.3 chelator molecules per antibody as determined by radiometric titration with 64Cu. [64Cu]Cu-NOTA-D13C6 was isolated in high radiochemical purity (>98%) and good radiochemical yields (19-61%). The specific activity was 0.9-5.1 MBq/μg. Cellular uptake studies revealed a specific radiotracer uptake in PDGFRα expressing cells compared to control cells. PET imaging resulted in SUVmean values of ~5.5 for PDGFRα (+) and ~2 for PDGFRα (-) tumors, after 48 h p.i.. After 1 h, radiotracer uptake was also observed in the bone marrow (SUVmean ~5) and spleen (SUVmean ~8.5). CONCLUSION Radiolabeled antibody [64Cu]Cu-NOTA-D13C6 represents a novel and promising radiotracer for immuno-PET imaging of PDGFRα in metastatic papillary thyroid cancer. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The presented work has the potential to allow physicians to identify papillary thyroid cancer patients at risk of metastases by using the novel immuno-PET imaging assay based on PDGFRα-targeting antibody [64Cu]Cu-NOTA-D13C6.
Collapse
Affiliation(s)
- Michael Wagner
- University of Alberta, Department of Oncology, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Melinda Wuest
- University of Alberta, Department of Oncology, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Ingrit Hamann
- University of Alberta, Department of Oncology, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Ana Lopez-Campistrous
- University of Alberta, Department of Surgery, 2D4.41 Walter Mackenzie Centre 8440- 112 Street, Edmonton, AB T6G 2B7, Canada
| | - Todd P W McMullen
- University of Alberta, Department of Oncology, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada; University of Alberta, Department of Surgery, 2D4.41 Walter Mackenzie Centre 8440- 112 Street, Edmonton, AB T6G 2B7, Canada.
| | - Frank Wuest
- University of Alberta, Department of Oncology, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
28
|
Taghiyar L, Hosseini S, Hesaraki M, Azam Sayahpour F, Aghdami N, Baghaban Eslaminejad M. Isolation, Characterization and Osteogenic Potential of Mouse Digit Tip Blastema Cells in Comparison with Bone Marrow-Derived Mesenchymal Stem Cells In Vitro. CELL JOURNAL 2017; 19:585-598. [PMID: 29105393 PMCID: PMC5672097 DOI: 10.22074/cellj.2018.4710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022]
Abstract
Objective Limb regeneration mediated by blastema cells (BlCs) in mammals is limited to the digit tips of neonates.
Due to the lack of access to BlCs in adults and the difficulty in isolating and expanding BlCs from neonates, the use
of a cellular population with similar features of BlCs would be a valuable strategy to direct a non-regenerative wound
towards regeneration. In this study, we have initially isolated and cultured BlCs, and explored their characteristics in
vitro. Next, we compared the capability of bone marrow-derived mesenchymal stem cells (BM-MSCs) as an alternative
accessible cell source to BlCs for regeneration of appendages.
Materials and Methods In this experimental study, BM-MSCs were isolated from BM and we obtained BlCs from the
neonatal regenerating digit tip of C57B/6 mice. The cells were characterized for expressions of cell surface markers by
flow cytometry. Quantitative-reverse transcription polymerase chain reaction (qRT-PCR) and lineage-specific staining
were used to assess their ability to differentiate into skeletal cell lineages. The colony forming ability, proliferation,
alkaline phosphatase (ALP) activity, calcium content, and osteogenic gene expression were evaluated in both BM-
MSCs and BlCs cultures at days 7, 14, and 21.
Results qRT-PCR analysis revealed that the cells from both sources readily differentiated into mesodermal lineages. There
was significantly higher colony forming ability in BM-MSCs compared to BlCs (P<0.05). Alizarin red staining (ARS), calcium,
and the ALP assay showed the same degree of mineral deposition in both BlCs and BM-MSCs. Gene expression levels of
osteblastic markers indicated similar bone differentiation capacity for both BlCs and BM-MSCs at all time-points.
Conclusion Characteristics of BlCs in vitro appear to be similar to BM-MSCs. Therefore, they could be considered as a
substitute for BlCs for a regenerative approach with potential use in future clinical settings for regenerating human appendages.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
McLeod C, Mauck R. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater 2017; 34:217-231. [PMID: 29076514 PMCID: PMC7735381 DOI: 10.22203/ecm.v034a14] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) display substantial cell-to-cell variation. This heterogeneity manifests among donors, among tissue sources, and within cell populations. Such pervasive variability complicates the use of MSCs in regenerative applications and may limit their therapeutic efficacy. Most conventional assays measure MSC properties in bulk and, as a consequence, mask this cell-to-cell variation. Recent studies have identified extensive variability amongst and within clonal MSC populations, in dimensions including functional differentiation capacity, molecular state (e.g. epigenetic, transcriptomic, and proteomic status), and biophysical properties. While the origins of these variations remain to be elucidated, potential mechanisms include in vivo micro-anatomical heterogeneity, epigenetic bistability, and transcriptional fluctuations. Emerging tools for single cell analysis of MSC gene and protein expression may yield further insight into the mechanisms and implications of single cell variation amongst these cells, and ultimately improve the clinical utility of MSCs in tissue engineering and regenerative medicine applications. This review outlines the dimensions across which MSC heterogeneity is present, defines some of the known mechanisms that govern this heterogeneity, and highlights emerging technologies that may further refine our understanding and improve our clinical application of this unique cell type.
Collapse
Affiliation(s)
- C.M. McLeod
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - R.L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.,Address for correspondence: Robert L. Mauck, PhD, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA, Telephone: 1-215-898-3294 FAX: 1-215-573-2133
| |
Collapse
|
30
|
Zhang F, Wang C, Lin J, Wang X. Oxidized low-density lipoprotein (ox-LDL) promotes cardiac differentiation of bone marrow mesenchymal stem cells via activating ERK1/2 signaling. Cardiovasc Ther 2017; 35. [PMID: 28880487 DOI: 10.1111/1755-5922.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS The differentiation efficiency of bone marrow mesenchymal stem cells (BM-MSCs) is low in vivo after transplantation. Therefore, it is necessary to look for effective reagents for enhancing cardiac differentiation of BM-MSCs. It has been reported that cardiac differentiation of stem cells depends on the activation of extracellular signal-regulated protein 1/2 (ERK1/2) signaling. Oxidized low-density lipoprotein (ox-LDL) is a potent reagent for ERK1/2 activation. This indicates that ox-LDL may be a potential reagent to stimulate cardiac differentiation of stem cells. In this study, we investigated the effect of ox-LDL on cardiac differentiation of BM-MSCs and its relationship with ERK1/2 signaling. METHODS BM-MSCs were isolated from mouse bone marrow, cultured in DMEM supplemented with 15% FBS, and passaged up to the 3rd passage. Following culture with 5 μg/mL ox-LDL for 3 weeks, the cardiac differentiation of the 3rd passage BM-MSCs was identified by immunostaining, Western blotting, and RT-PCR assays for measuring the expression of cardiac-specific markers. To further explore the role of ERK1/2 signaling in cardiac differentiation of BM-MSCs, we simultaneously exposed BM-MSCs to ERK1/2 inhibitor (U0126) and ox-LDL, and identified the cardiac differentiation again. RESULTS The expressions of cardiac-specific markers including α-cardiac actin, α-MHC, β-MHC, ANP, and BNP were markedly increased in BM-MSCs following treatment with ox-LDL (P < .05), which indicates a directional differentiation of BM-MSCs to cardiac cells. Further, ox-LDL could also activate ERK1/2 in BM-MSCs, and application of U0126 markedly inhibited ox-LDL-induced cardiac transformation of BM-MSCs. CONCLUSIONS Ox-LDL induces cardiac differentiation of BM-MSCs via activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Fenxi Zhang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Congrui Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
31
|
Yu SJ, Kim HJ, Lee ES, Park CG, Cho SJ, Jeon SH. β-Catenin Accumulation Is Associated With Increased Expression of Nanog Protein and Predicts Maintenance of MSC Self-Renewal. Cell Transplant 2017; 26:365-377. [PMID: 27684957 PMCID: PMC5657765 DOI: 10.3727/096368916x693040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are self-renewing cells with the ability to differentiate into organized, functional network of cells. Recent studies have revealed that activation of the Wnt/β-catenin pathway by a glycogen synthase kinase (GSK)-3-specific pharmacological inhibitor, Bio, results in the maintenance of self-renewal in both mouse and human ES cells. The molecular mechanism behind the maintenance of hMSCs by these factors, however, is not fully understood. We found that rEGF enhances the level of β-catenin, a component of the Wnt/β-catenin signaling pathway. Furthermore, it was found that β-catenin upregulates Nanog. EGF activates the β-catenin pathway via the Ras protein and also increased the Nanog protein and gene expression levels 2 h after rEGF treatment. These results suggest that adding EGF can enhance β-catenin and Nanog expression in MSCs and facilitate EGF-mediated maintenance of MSC self-renewal. EGF was shown to augment MSC proliferation while preserving early progenitors within MSC population and thus did not induce differentiation. Thus, EGF not only can be used to expand MSC in vitro but also be utilized to autologous transplantation of MSCs in vivo.
Collapse
Affiliation(s)
- Sang-Jin Yu
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- FOS Clinic, SM Tower (3rd Floor), 334 Gangnam-Daero, Gangnam-Gu, Seoul 135-936, Republic of Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Eui Seok Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute for Endemic Disease, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Cho
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Soung-Hoo Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute for Endemic Disease, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
33
|
Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 2016; 73:3311-21. [PMID: 27141940 PMCID: PMC11108490 DOI: 10.1007/s00018-016-2229-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.
Collapse
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital, 5 Donghai M Rd, Qingdao, China.
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China.
| |
Collapse
|
34
|
Fan W, Li J, Wang Y, Pan J, Li S, Zhu L, Guo C, Yan Z. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling. Biochem Biophys Res Commun 2016; 474:338-344. [PMID: 27107692 DOI: 10.1016/j.bbrc.2016.04.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation.
Collapse
Affiliation(s)
- Wenshuai Fan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinghuan Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiming Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfeng Pan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuo Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Zhu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changan Guo
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
35
|
Pontikoglou C, Langonné A, Ba MA, Varin A, Rosset P, Charbord P, Sensébé L, Deschaseaux F. CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues. J Cell Mol Med 2016; 20:655-65. [PMID: 26773707 PMCID: PMC5125749 DOI: 10.1111/jcmm.12752] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up-regulated in CD200(pos) cells compared to CD200(neg) fraction. At the functional level, CD200(pos) cells were prone to mineralize the extra-cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200(pos) cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down-regulated. As dexamethasone has anti-inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro-inflammatory cytokines interleukin-1β and tumour necrosis factor-α increased CD200 membrane expression but down-regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro-inflammatory or pro-osteogenic, CD200 expression was down-regulated when nuclear-factor (NF)-κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro-inflammatory cytokines through the same pathway: NF-κB.
Collapse
Affiliation(s)
- Charalampos Pontikoglou
- EA3855, Université François Rabelais, Tours, France.,Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | - Alain Langonné
- Etablissement Français du sang Centre-Atlantique, Tours, France
| | - Mamadou Aliou Ba
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Audrey Varin
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Philippe Rosset
- Service d'orthopédie et traumatologie, CHU Trousseau, Chambray-lès-Tours, France
| | - Pierre Charbord
- Inserm U972 and Université Paris XI, Villejuif Cedex, France
| | - Luc Sensébé
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Frédéric Deschaseaux
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| |
Collapse
|
36
|
Li F, Niyibizi C. Engraftability of Murine Bone Marrow-Derived Multipotent Mesenchymal Stem Cell Subpopulations in the Tissues of Developing Mice following Systemic Transplantation. Cells Tissues Organs 2015; 201:14-25. [PMID: 26447469 DOI: 10.1159/000438985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cell therapies for generalized musculoskeletal diseases would require distribution of cells to all the skeletal tissues; however, there are controversies regarding the transplantability of multipotent mesenchymal stems cells (MSCs). We generated single-cell subpopulations of MSCs from murine bone marrow and assessed them for differences in trafficking through the circulatory system and engraftment in bone and other tissues. MATERIALS AND METHODS Seven single-cell clonal subpopulations were generated by serial dilution of GFP-marked MSCs isolated from bone marrow. The subpopulations were examined for putative MSC surface marker expression, in vitro differentiation toward osteogenic and adipogenic lineages, migration and engraftment in different tissues following intravenous delivery in normal, sublethally irradiated neonatal mice. RESULTS The surface marker expression profile revealed notable differences among clonal cells, specifically CD44 and CD105. All the cell subpopulations differentiated toward osteogenic and adipogenic lineages, with some committed to only one or the other. Two clones enriched in CXCR4 expression were highly efficient in migrating and engrafting in skeletal tissue including bone; this confirmed the role of this chemokine in cell migration. Donor cells retrieved from various tissues displayed different morphologies and potential differentiation into tissue cell type of engraftment, suggesting modification by the tissues in which the donor cells engrafted. CONCLUSION We have reported that, within bone marrow, there are heterogeneous subpopulations of MSCs that may differ in their ability to migrate in the circulatory system and engraft in different tissues.
Collapse
Affiliation(s)
- Feng Li
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pa., USA
| | | |
Collapse
|
37
|
Freeman BT, Jung JP, Ogle BM. Single-Cell RNA-Seq of Bone Marrow-Derived Mesenchymal Stem Cells Reveals Unique Profiles of Lineage Priming. PLoS One 2015; 10:e0136199. [PMID: 26352588 PMCID: PMC4564185 DOI: 10.1371/journal.pone.0136199] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The plasticity and immunomodulatory capacity of mesenchymal stem cells (MSCs) have spurred clinical use in recent years. However, clinical outcomes vary and many ascribe inconsistency to the tissue source of MSCs. Yet unconsidered is the extent of heterogeneity of individual MSCs from a given tissue source with respect to differentiation potential and immune regulatory function. Here we use single-cell RNA-seq to assess the transcriptional diversity of murine mesenchymal stem cells derived from bone marrow. We found genes associated with MSC multipotency were expressed at a high level and with consistency between individual cells. However, genes associated with osteogenic, chondrogenic, adipogenic, neurogenic and vascular smooth muscle differentiation were expressed at widely varying levels between individual cells. Further, certain genes associated with immunomodulation were also inconsistent between individual cells. Differences could not be ascribed to cycles of proliferation, culture bias or other cellular process, which might alter transcript expression in a regular or cyclic pattern. These results support and extend the concept of lineage priming of MSCs and emphasize caution for in vivo or clinical use of MSCs, even when immunomodulation is the goal, since multiple mesodermal (and even perhaps ectodermal) outcomes are a possibility. Purification might enable shifting of the probability of a certain outcome, but is unlikely to remove multilineage potential altogether.
Collapse
Affiliation(s)
- Brian T. Freeman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Jangwook P. Jung
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- * E-mail:
| |
Collapse
|
38
|
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther 2015; 6:143. [PMID: 26282627 PMCID: PMC4539918 DOI: 10.1186/s13287-015-0144-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Johann-Wolfgang-Goethe University Hospital, Sandhofstrasse 1, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Radtke CL, Nino-Fong R, Rodriguez-Lecompte JC, Esparza Gonzalez BP, Stryhn H, McDuffee LA. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:101-108. [PMID: 25852225 PMCID: PMC4365701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/20/2014] [Indexed: 06/04/2023]
Abstract
The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 10(3) MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine.
Collapse
Affiliation(s)
- Catherine L. Radtke
- Address all correspondence to Dr. Catherine Radtke; telephone: (902) 566-0999; fax: (902) 628-4321; e-mail:
| | | | | | | | | | | |
Collapse
|
40
|
Hagmann S, Frank S, Gotterbarm T, Dreher T, Eckstein V, Moradi B. Fluorescence activated enrichment of CD146+ cells during expansion of human bone-marrow derived mesenchymal stromal cells augments proliferation and GAG/DNA content in chondrogenic media. BMC Musculoskelet Disord 2014; 15:322. [PMID: 25262357 PMCID: PMC4196082 DOI: 10.1186/1471-2474-15-322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/08/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND While numerous subpopulations of BM-MSCs have been identified, the relevance of these findings regarding the functional properties remains mostly unclear. With regards to attempts of enhancing differentiation results by preselecting certain MSC subtypes, we have evaluated the efficiency of CD146 purification during expansion, and evaluated whether these measures enhanced MSC differentiation results. METHODS Human MSCs were derived from bone marrow of six donors and cultured in two different culture media. After P1, MSCs were purified by either magnetic or fluorescence sorting for CD146, with unsorted cells as controls. Growth characteristics and typical MSC surface markers were assessed from P0 to P3. After P3, chondrogenic, osteogenic and adipogenic differentiation potential were assessed. RESULTS Despite a high variability of CD146 expression among the donors, fluorescence sorting significantly increased the number of CD146+ cells compared to control MSCs, while magnetic sorting led to a lesser enrichment. Osteogenic and adipogenic differentiation potential was not affected by the sorting process. However, FACS-sorted cells showed significantly increased GAG/DNA content after chondrogenic differentiation compared to control MSCs. CONCLUSION FACS sorting of CD146+ cells was more efficient than magnetic sorting. The underlying mechanism of increased GAG/DNA content after enrichment during expansion remains unclear, but may be linked to increased proliferation rates in these cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Babak Moradi
- Department of Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
41
|
Hong S, Alapure BV, Lu Y, Tian H, Wang Q. 12/15-Lipoxygenase deficiency reduces densities of mesenchymal stem cells in the dermis of wounded and unwounded skin. Br J Dermatol 2014; 171:30-38. [PMID: 24593251 DOI: 10.1111/bjd.12899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) promote skin healing. 12/15-Lipoxgenase (LOX) is crucial in producing specific lipid mediators in wounded skin. The consequences of 12/15-LOX deficiency in MSC densities in skin are unknown. OBJECTIVES To determine the effect of 12/15-LOX deficiency in MSC densities in wounded and unwounded dermis. METHODS Full-thickness skin incisional wounds were made to 12/15-LOX-deficient (12/15-LOX(-/-) ) and wild-type (WT) C57BL/6 mice. Wounded skin was collected at 3, 8, or 14 days postwounding (dpw). MSCs were analysed in skin sections using histology. 12S- or 15S-hydroxy-eicosatetraenoic acid (HETE) was analysed using a reversed-phase Chiral liquid chromatography-ultraviolet-tandem mass spectrometer. RESULTS There were more stem cell antigen (Sca)1(+) CD29(+) MSCs (cells/field) at 3, 8, and 14 dpw, more Sca1(+) CD106(+) MSCs at 3 and 14 dpw in the wounded dermis, more MSCs in unwounded dermis of WT mice compared with 12/15-LOX(-/-) mice, and more MSCs in the wounded dermis than in the unwounded dermis. For 12/15-LOX(-/-) dermis, Sca1(+) CD106(+) MSCs peaked and Sca1(+) CD29(+) MSCs reached a flat level at 8 dpw. However, for the WT dermis, MSCs increased from 8 to 14 dpw. There were more Sca1(+) CD106(+) MSCs than Sca1(+) CD29(+) MSCs in the 12/15-LOX(-/-) wounded dermis at 8 dpw. However, there were more Sca1(+) CD29(+) MSCs in the 12/15-LOX(-/-) than Sca1(+) CD106(+) MSCs in the WT wounded dermis at 3 dpw, and Sca1(+) CD106(+) MSCs and Sca1(+) CD29(+) MSCs were at comparable levels in other conditions. 12/15-LOX deficiency suppressed levels of 12/15-LOX protein and their products, 12S-HETE and 15S-HETE, in wounds. CONCLUSIONS 12/15-LOX deficiency reduces MSC densities in the dermis, which correlates with the suppressed 12/15-LOX pathways in wounded and unwounded skin.
Collapse
Affiliation(s)
- S Hong
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - B V Alapure
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - Y Lu
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - H Tian
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - Q Wang
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
42
|
Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tárnok A, Burk J. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A 2014; 85:678-87. [PMID: 24894974 DOI: 10.1002/cyto.a.22491] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted.
Collapse
Affiliation(s)
- Felicitas Paebst
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, Agata H, Tojo A. Stage-specific embryonic antigen 4 in Wharton's jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency. Tissue Eng Part A 2014; 20:1314-24. [PMID: 24279891 DOI: 10.1089/ten.tea.2013.0333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Umbilical cord Wharton's jelly (WJ) is a rich source of mesenchymal stem cells (MSCs) similar to bone marrow (BM) and adipose tissues. Stage-specific embryonic antigen (SSEA)4 has been reported as a stem cell marker in BM-derived MSCs, but whether SSEA4(+) cells have growth and differentiation advantages over SSEA4(-) cells remains controversial. To gain insight into the role of SSEA4, we studied SSEA4(+) cells in WJ-derived MSCs (WJ-MSCs). METHODS WJ-MSCs were collected by the explant (WJe-MSCs) or collagenase methods (WJc-MSCs) and analyzed by flow cytometry and reverse-transcription polymerase chain reaction (RT-PCR). To evaluate whether culture conditions influenced the SSEA4 expression, WJe-MSCs were cultured in the medium supplemented with different fetal bovine serum (FBS) concentrations. RESULTS SSEA4 was expressed for a long-term culture. In contrast, SSEA3(+) disappeared rapidly in early passages of the culture. The incidence of SSEA4(+) and SSEA3(+) cells was similar between WJe-MSCs and WJc-MSCs at passages P0-P9, except for transient depletion of SSEA4 expression in early passages of WJe-MSCs. These were CD73(+)CD105(+) cells that express embryonic stem cell markers detected by RT-PCR. No differences in growth and differentiation ability of osteocytes and adipocytes were observed between the sorted SSEA4(+) cells and SSEA4(-) cells. Further, SSEA4 expression in WJe-MSCs was significantly correlated with FBS concentration in the culture medium. DISCUSSION SSEA4, which may display altered expression profiles in response to culture conditions, may not be an essential marker of WJ-MSC multipotency.
Collapse
Affiliation(s)
- Haiping He
- 1 Division of Molecular of Therapy, Center for Advanced Medical Research, The Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Targeting the molecular and cellular interactions of the bone marrow niche in immunologic disease. Curr Allergy Asthma Rep 2014; 14:402. [PMID: 24408534 DOI: 10.1007/s11882-013-0402-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent investigations have expanded our knowledge of the regulatory bone marrow (BM) niche, which is critical in maintaining and directing hematopoietic stem cell (HSC) self-renewal and differentiation. Osteoblasts, mesenchymal stem cells (MSCs), and CXCL12-abundant reticular (CAR) cells are niche components in close association with HSCs and have been more clearly defined in immune cell function and homeostasis. Importantly, cellular inhabitants of the BM niche signal through G protein-coupled surface receptors (GPCRs) for various appropriate immune functions. In this article, recent literature on BM niche inhabitants (HSCs, osteoblasts, MSCs, CAR cells) and their GPCR mechanistic interactions are reviewed for better understanding of the BM cells involved in immune development, immunologic disease, and current immune reconstitution therapies.
Collapse
|
45
|
Hagmann S, Moradi B, Frank S, Dreher T, Kämmerer PW, Richter W, Gotterbarm T. FGF-2 addition during expansion of human bone marrow-derived stromal cells alters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif 2014; 46:396-407. [PMID: 23869761 DOI: 10.1111/cpr.12046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Although clinical applications using mesenchymal stromal cells (MSCs) are becoming more frequent, procedures for their in vitro culture are far from standardized. Growth factors such as FGF-2 are frequently added during expansion to improve population growth and differentiation characteristics. However, up to now its influence on surface marker distribution of MSCs has been close to unknown. The purpose of this study was therefore to analyse effects of FGF-2 supplementation on pre-selection of MSC subpopulations. MATERIALS AND METHODS Mesenchymal stromal cells were harvested from bone marrow of six patients and expanded in alpha-MEM or DMEM-LG. Starting in passage 2, 10 ng/ml FGF-2 was administered and non-supplemented media were used as controls. Growth indices were calculated from P0 to P4. After P4, fluorescence cytometry for common MSC surface markers was performed and standard chondrogenic, adipogenic and osteogenic differentiation protocols were applied. RESULTS Cell population growth indices were higher for those in FGF-2 supplemented media. Significant differences in surface marker distribution were observed for CD13, CD14, CD49, CD90, CD340 and STRO-1 depending on respective culture conditions. FGF-2 suppressed CD146 expression in both alpha-MEM and DMEM-LG. No differences in adipogenic and osteogenic differentiation potential could be observed, while FGF-2 significantly improved chondrogenic differentiation in DMEM-LG. CONCLUSIONS While holding the benefit of improving MSC chondrogenic differentiation potential, FGF-2 pre-selects certain MSC subtypes. Our data clearly show that expansion culture conditions have a significant effect on distribution of a number of MSC surface markers.
Collapse
Affiliation(s)
- S Hagmann
- Department of Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, 69118 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Hong S, Alapure BV, Lu Y, Tian H, Wang Q. Immunohistological localization of endogenous unlabeled stem cells in wounded skin. J Histochem Cytochem 2014; 62:276-85. [PMID: 24399040 DOI: 10.1369/0022155414520710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various types of endogenous stem cells (SCs) participate in wound healing in the skin at different anatomical locations. SCs need to be identified through multiple markers, and this is usually performed using flow cytometry. However, immunohistological identification of endogenous stem cells in the skin at different anatomical locations by co-staining multiple SC markers has been seldom explored. We examined the immunohistological localization of four major types of SCs in wounded skin by co-staining for their multiple markers. Hematopoietic SCs were co-stained for Sca1 and CD45; mesenchymal SCs for Sca1, CD29, and CD106; adipose SCs for CD34, CD90, and CD105; and endothelial progenitor cells and their differentiated counterparts were co-stained for CD34, Tie2, and von Willebrand factor. We found Sca1(+)CD45(+) SCs in the epidermis, dermis and hypodermis of wounded skin. Sca1(+)CD29(+) and Sca1(+)CD106(+) mesenchymal SCs, CD34(+)CD105(+), CD34(+)CD90(+), and CD90(+)CD105(+) adipose SCs, as well as CD34(+)Tie2(+) endothelial progenitor cells were also located in the epidermis, dermis, and hypodermis. This study demonstrates the feasibility of using immunohistological staining to determine the location of SCs in wounded skin and the intracellular distribution of their molecular markers.
Collapse
Affiliation(s)
- Song Hong
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | | | | | | | | |
Collapse
|
47
|
Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH, Resende RR. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2013; 85:43-77. [DOI: 10.1002/cyto.a.22402] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna R. Sousa
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Ricardo C. Parreira
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Emerson A Fonseca
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Maria J. Amaya
- Department of Internal Medicine, Section of Digestive Diseases; Yale University School of Medicine; New Haven Connecticut
| | - Fernanda M. P. Tonelli
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Samyra M. S. N. Lacerda
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Pritesh Lalwani
- Faculdade de Ciências Farmacêuticas; Universidade Federal do Amazonas; Manaus AM Brazil
| | - Anderson K. Santos
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Katia N. Gomes
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre H. Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição; Universidade Federal do ABC; Santo André SP Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
48
|
Zhang F, Lu M, Wang H, Ren T. Aspirin attenuates angiotensin II-induced inflammation in bone marrow mesenchymal stem cells via the inhibition of ERK1/2 and NF-κB activation. Biomed Rep 2013; 1:930-934. [PMID: 24649055 DOI: 10.3892/br.2013.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II) is a peptide hormone that plays a critical role in numerous physiological and pathophysiological processes. It is also commonly used as an inducer for the directional differentiation of bone marrow mesenchymal stem cells (bmMSCs). Previous studies demonstrated that Ang II induces inflammatory responses in endothelial cells, smooth muscle cells and fibroblasts. Aspirin is generally used as analgesic, antipyretic and occasionally anti-inflammatory medication. Whether aspirin suppresses inflammatory responses in bmMSCs has not been elucidated. In this study, we investigated the effect of aspirin on Ang II-induced inflammation in bmMSCs. Our results demonstrated that Ang II (10 nM-10 μM) increased the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6 from bmMSCs in a dose-dependent manner. This result was further confirmed by a reverse transcription-polymerase chain reaction (RT-PCR) assay, which demonstrated a dose-dependent increase in the mRNA expression of TNF-α, IL-6, IL-1β and monocyte chemotactic protein-1 (MCP-1) in bmMSCs following exposure to Ang II. Furthermore, it was also observed that Ang II increased the expression of phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) and phospho-nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-p65 in bmMSCs. The application of aspirin (0.1 mM) significantly inhibited the activation of ERK1/2 and NF-κB, the expression of TNF-α, IL-6, IL-1β and MCP-1 genes and the secretion of TNF-α and IL-6. Our findings indicated that aspirin may attenuate Ang II-induced inflammation in bmMSCs via the inhibition of ERK1/2 and NF-κB activation.
Collapse
Affiliation(s)
- Fenxi Zhang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ming Lu
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huaibin Wang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tongming Ren
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
49
|
Filion TM, Song J. A sulfated nanofibrous mesh supporting the osteogenic differentiation of periosteum-derived cells. J BIOMATER TISS ENG 2013; 3:486-493. [PMID: 25309819 PMCID: PMC4193908 DOI: 10.1166/jbt.2013.1103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The periosteum is a thin fibrous membrane covering the surface of long bone and is known to play a critical role in bone development and adult bone fracture healing. Loss or damage of the periosteum tissue during traumatic long bone injuries can lead to retarded healing of bone graft-mediated repair. The regenerative potential of periosteum-derived progenitor cells (PDCs) has inspired their use as an alternative to bone marrow-derived mesenchymal stromal cells (MSCs) to augment scaffold-assisted bone repair. In this study, we first demonstrated that PDCs isolated from adult rat long bone exhibited innate advantages over bone marrow-derived MSCs in terms of faster proliferation and more potent osteogenic differentiation upon induction in plastic-adherent culture. Further, we examined the potential of two electrospun nanofibrous meshes, an uncharged regenerated cellulose mesh and a sulfated mesh, to support the attachment and osteogenic differentiation of PDCs. We showed that both nanofibrous meshes were able to support the attachment and proliferation of PDCs and MSCs alike, with the sulfated mesh enabling significantly higher seeding efficiency than the cellulose mesh. Both meshes were also able to support the osteogenic differentiation of adherent PDCs upon induction by osteogenic media, with the sulfated mesh facilitating more potent mineral deposition by adherent PDCs. Our study supports the sulfated nanofibrous mesh as a promising synthetic periosteal membrane for the delivery of exogenous PDCs to augment bone healing.
Collapse
Affiliation(s)
- Tera M. Filion
- Department of Orthopaedics and Physical Rehabilitation, Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopaedics and Physical Rehabilitation, Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|