1
|
Kaji R, Izumi Y, Oki R. Ultra-high dose methylcobalamin and other emerging therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:593-602. [PMID: 39083229 DOI: 10.1097/wco.0000000000001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW Recent development in understanding the pathophysiology of amyotrophic lateral sclerosis (ALS) has led to increasing number of promising test drugs in the pipeline along with the existing ones. We will review these agents focusing on ultra-high dose methylcobalamin, which is pending approval in Japan. Clinical trial design best suited for ALS will also be discussed. RECENT FINDINGS The most recent phase 3 trial (JETALS) of ultra-high dose methylcobalamin demonstrated significant slowing of ALSFRSR changes (0.5/month), with marked reduction of serum homocysteine levels in the initial double-blind period. The post hoc analysis of the previous phase 2/3 study (E761 trial; Eisai) showed that it prolonged survival of ALS patients, if started within 1 year of onset, but the previous studies suggested its efficacy even in later stages, depending upon the rate of progression. Phase 3 trial of AMX0035 or Relyvrio on the other hand showed negative results despite the promising phase 2 data. The latter did not adjust the disease progression rate before entry. SUMMARY Ultra-high dose methylcobalamin is not a vitamin supplement but a novel disease-modifying therapy for ALS, and it emphasizes homocysteine as a key factor in the disease process. Clinical trial design must include entering patients early and with similar rates of progression using pretrial observation periods for meaningful results, since ALS is a chronologically heterogenous condition with similar phenotypes.
Collapse
Affiliation(s)
- Ryuji Kaji
- Department of Neurology, Tokushima University, Tokushima, Japan
| | | | | |
Collapse
|
2
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
Ito-Silva VI, Smith BJ, Martins-de-Souza D. The autophagy proteome in the brain. J Neurochem 2024. [PMID: 39155518 DOI: 10.1111/jnc.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
As one of the most important cellular housekeepers, autophagy directly affects cellular health, homeostasis, and function. Even though the mechanisms behind autophagy are well described, how molecular alterations and dysfunctions can lead to pathology in disease contexts still demands deeper investigation. Proteomics is a widely employed tool used to investigate molecular alterations associated with pathological states and has proven useful in identifying alterations in protein expression levels and post-translational modifications in autophagy. In this narrative review, we expand on the molecular mechanisms behind autophagy and its regulation, and further compile recent literature associating autophagy disturbances in context of brain disorders, utilizing discoveries from varying models and species from rodents and cellular models to human post-mortem brain samples. To outline, the canonical pathways of autophagy, the effects of post-translational modifications on regulating each step of autophagy, and the future directions of proteomics in autophagy will be discussed. We further aim to suggest how advancing proteomics can help further unveil molecular mechanisms with regard to neurological disorders.
Collapse
Affiliation(s)
- Vitor I Ito-Silva
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil
| |
Collapse
|
4
|
Luo X, Zhang J, Tolö J, Kügler S, Michel U, Bähr M, Koch JC. Axonal autophagic vesicle transport in the rat optic nerve in vivo under normal conditions and during acute axonal degeneration. Acta Neuropathol Commun 2024; 12:82. [PMID: 38812004 PMCID: PMC11134632 DOI: 10.1186/s40478-024-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.
Collapse
Affiliation(s)
- Xiaoyue Luo
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jiong Zhang
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Johan Tolö
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
İnan S, Barış E. The role of autophagy in odontogenesis, dental implant surgery, periapical and periodontal diseases. J Cell Mol Med 2024; 28:e18297. [PMID: 38613351 PMCID: PMC11015398 DOI: 10.1111/jcmm.18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.
Collapse
Affiliation(s)
- Sevinç İnan
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| |
Collapse
|
6
|
Ueda T, Takeuchi T, Fujikake N, Suzuki M, Minakawa EN, Ueyama M, Fujino Y, Kimura N, Nagano S, Yokoseki A, Onodera O, Mochizuki H, Mizuno T, Wada K, Nagai Y. Dysregulation of stress granule dynamics by DCTN1 deficiency exacerbates TDP-43 pathology in Drosophila models of ALS/FTD. Acta Neuropathol Commun 2024; 12:20. [PMID: 38311779 PMCID: PMC10840176 DOI: 10.1186/s40478-024-01729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The abnormal aggregation of TDP-43 into cytoplasmic inclusions in affected neurons is a major pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although TDP-43 is aberrantly accumulated in the neurons of most patients with sporadic ALS/FTD and other TDP-43 proteinopathies, how TDP-43 forms cytoplasmic aggregates remains unknown. In this study, we show that a deficiency in DCTN1, a subunit of the microtubule-associated motor protein complex dynactin, perturbs the dynamics of stress granules and drives the formation of TDP-43 cytoplasmic aggregation in cultured cells, leading to the exacerbation of TDP-43 pathology and neurodegeneration in vivo. We demonstrated using a Drosophila model of ALS/FTD that genetic knockdown of DCTN1 accelerates the formation of ubiquitin-positive cytoplasmic inclusions of TDP-43. Knockdown of components of other microtubule-associated motor protein complexes, including dynein and kinesin, also increased the formation of TDP-43 inclusions, indicating that intracellular transport along microtubules plays a key role in TDP-43 pathology. Notably, DCTN1 knockdown delayed the disassembly of stress granules in stressed cells, leading to an increase in the formation of pathological cytoplasmic inclusions of TDP-43. Our results indicate that a deficiency in DCTN1, as well as disruption of intracellular transport along microtubules, is a modifier that drives the formation of TDP-43 pathology through the dysregulation of stress granule dynamics.
Collapse
Affiliation(s)
- Tetsuhiro Ueda
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Toshihide Takeuchi
- Life Science Research Institute, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Eiko N Minakawa
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Morio Ueyama
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yuzo Fujino
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Nobuyuki Kimura
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-8555, Japan
| | - Seiichi Nagano
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Life Science Research Institute, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
7
|
Nambiar A, Manjithaya R. Driving autophagy - the role of molecular motors. J Cell Sci 2024; 137:jcs260481. [PMID: 38329417 DOI: 10.1242/jcs.260481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Most of the vesicular transport pathways inside the cell are facilitated by molecular motors that move along cytoskeletal networks. Autophagy is a well-explored catabolic pathway that is initiated by the formation of an isolation membrane known as the phagophore, which expands to form a double-membraned structure that captures its cargo and eventually moves towards the lysosomes for fusion. Molecular motors and cytoskeletal elements have been suggested to participate at different stages of the process as the autophagic vesicles move along cytoskeletal tracks. Dynein and kinesins govern autophagosome trafficking on microtubules through the sequential recruitment of their effector proteins, post-translational modifications and interactions with LC3-interacting regions (LIRs). In contrast, myosins are actin-based motors that participate in various stages of the autophagic flux, as well as in selective autophagy pathways. However, several outstanding questions remain with regard to how the dominance of a particular motor protein over another is controlled, and to the molecular mechanisms that underlie specific disease variants in motor proteins. In this Review, we aim to provide an overview of the role of molecular motors in autophagic flux, as well as highlight their dysregulation in diseases, such as neurodegenerative disorders and pathogenic infections, and ageing.
Collapse
Affiliation(s)
- Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
8
|
Eck RJ, Stair JG, Kraemer BC, Liachko NF. Simple models to understand complex disease: 10 years of progress from Caenorhabditis elegans models of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Front Neurosci 2024; 17:1300705. [PMID: 38239833 PMCID: PMC10794587 DOI: 10.3389/fnins.2023.1300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Randall J. Eck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
9
|
Chen L, Zhang S, Liu S, Gao S. Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models. Cells 2024; 13:99. [PMID: 38201303 PMCID: PMC10778397 DOI: 10.3390/cells13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition characterized by the progressive degeneration of motor neurons. Despite extensive research in various model animals, the cellular signal mechanisms of ALS remain elusive, impeding the development of efficacious treatments. Among these models, a well-characterized and diminutive organism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molecular and cellular dimensions of ALS pathogenesis. This review summarizes the contributions of C. elegans models to our comprehension of ALS, emphasizing pivotal findings pertaining to genetics, protein aggregation, cellular pathways, and potential therapeutic strategies. We analyze both the merits and constraints of the C. elegans system in the realm of ALS research and point towards future investigations that could bridge the chasm between C. elegans foundational discoveries and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.C.); (S.Z.); (S.L.)
| |
Collapse
|
10
|
Hwang ES, Song SB. Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction. Mol Cells 2023; 46:655-663. [PMID: 37867391 PMCID: PMC10654461 DOI: 10.14348/molcells.2023.0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/24/2023] Open
Abstract
Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Seon Beom Song
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
11
|
Borg R, Herrera P, Purkiss A, Cacciottolo R, Cauchi RJ. Reduced levels of ALS gene DCTN1 induce motor defects in Drosophila. Front Neurosci 2023; 17:1164251. [PMID: 37360176 PMCID: PMC10289029 DOI: 10.3389/fnins.2023.1164251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neuromuscular disease that has a strong genetic component. Deleterious variants in the DCTN1 gene are known to be a cause of ALS in diverse populations. DCTN1 encodes the p150 subunit of the molecular motor dynactin which is a key player in the bidirectional transport of cargos within cells. Whether DCTN1 mutations lead to the disease through either a gain or loss of function mechanism remains unresolved. Moreover, the contribution of non-neuronal cell types, especially muscle tissue, to ALS phenotypes in DCTN1 carriers is unknown. Here we show that gene silencing of Dctn1, the Drosophila main orthologue of DCTN1, either in neurons or muscles is sufficient to cause climbing and flight defects in adult flies. We also identify Dred, a protein with high homology to Drosophila Dctn1 and human DCTN1, that on loss of function also leads to motoric impairments. A global reduction of Dctn1 induced a significant reduction in the mobility of larvae and neuromuscular junction (NMJ) deficits prior to death at the pupal stage. RNA-seq and transcriptome profiling revealed splicing alterations in genes required for synapse organisation and function, which may explain the observed motor dysfunction and synaptic defects downstream of Dctn1 ablation. Our findings support the possibility that loss of DCTN1 function can lead to ALS and underscore an important requirement for DCTN1 in muscle in addition to neurons.
Collapse
Affiliation(s)
- Rebecca Borg
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Paul Herrera
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Angie Purkiss
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Rebecca Cacciottolo
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Ruben J. Cauchi
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
12
|
Kataoka M, Sahashi K, Tsujikawa K, Takeda JI, Hirunagi T, Iida M, Katsunoa M. Dysregulation of Aldh1a2 underlies motor neuron degeneration in spinal muscular atrophy. Neurosci Res 2023:S0168-0102(23)00090-1. [PMID: 37146794 DOI: 10.1016/j.neures.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.
Collapse
Affiliation(s)
- Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan.
| | - Koyo Tsujikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Tomoki Hirunagi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Masahisa Katsunoa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan; Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan.
| |
Collapse
|
13
|
Choong CJ, Aguirre C, Kakuda K, Beck G, Nakanishi H, Kimura Y, Shimma S, Nabekura K, Hideshima M, Doi J, Yamaguchi K, Nakajima K, Wadayama T, Hayakawa H, Baba K, Ogawa K, Takeuchi T, Badawy SMM, Murayama S, Nagano S, Goto Y, Miyanoiri Y, Nagai Y, Mochizuki H, Ikenaka K. Phosphatidylinositol-3,4,5-trisphosphate interacts with alpha-synuclein and initiates its aggregation and formation of Parkinson's disease-related fibril polymorphism. Acta Neuropathol 2023; 145:573-595. [PMID: 36939875 PMCID: PMC10119223 DOI: 10.1007/s00401-023-02555-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023]
Abstract
Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kakuda
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Nabekura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Hideshima
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junko Doi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Wadayama
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Takeuchi
- Department of Neurology, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka, 577-8502, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka, 577-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
15
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
16
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
17
|
Mehta S, Goel A, Singh D, Ray S, Tigari B, Takkar A, Lal V. Dystonia and Optic Neuropathy: Expanded Phenotype of Dynactin 1 Related Neurodegeneration. Mov Disord Clin Pract 2022; 9:535-539. [PMID: 35586532 PMCID: PMC9092729 DOI: 10.1002/mdc3.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sahil Mehta
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Abeer Goel
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Deependra Singh
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sucharita Ray
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Basavaraj Tigari
- Department of OphthalmologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Aastha Takkar
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Vivek Lal
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
18
|
Hideshima M, Kimura Y, Aguirre C, Kakuda K, Takeuchi T, Choong CJ, Doi J, Nabekura K, Yamaguchi K, Nakajima K, Baba K, Nagano S, Goto Y, Nagai Y, Mochizuki H, Ikenaka K. Two-step screening method to identify α-synuclein aggregation inhibitors for Parkinson's disease. Sci Rep 2022; 12:351. [PMID: 35013421 PMCID: PMC8748996 DOI: 10.1038/s41598-021-04131-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by the formation of neuronal inclusions of α-synuclein in patient brains. As the disease progresses, toxic α-synuclein aggregates transmit throughout the nervous system. No effective disease-modifying therapy has been established, and preventing α-synuclein aggregation is thought to be one of the most promising approaches to ameliorate the disease. In this study, we performed a two-step screening using the thioflavin T assay and a cell-based assay to identify α-synuclein aggregation inhibitors. The first screening, thioflavin T assay, allowed the identification of 30 molecules, among a total of 1262 FDA-approved small compounds, which showed inhibitory effects on α-synuclein fibrilization. In the second screening, a cell-based aggregation assay, seven out of these 30 candidates were found to prevent α-synuclein aggregation without causing substantial toxicity. Of the seven final candidates, tannic acid was the most promising compound. The robustness of our screening method was validated by a primary neuronal cell model and a Caenorhabditis elegans model, which demonstrated the effect of tannic acid against α-synuclein aggregation. In conclusion, our two-step screening system is a powerful method for the identification of α-synuclein aggregation inhibitors, and tannic acid is a promising candidate as a disease-modifying drug for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Hideshima
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kakuda
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Takeuchi
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-sayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junko Doi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Nabekura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-sayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1502-1527. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting "dying back" hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.,Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Shiffali Khurana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.,Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Abhishek Vats
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bandana Sahu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | | | | | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| |
Collapse
|
20
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
21
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
DCTN1 Binds to TDP-43 and Regulates TDP-43 Aggregation. Int J Mol Sci 2021; 22:ijms22083985. [PMID: 33924373 PMCID: PMC8070438 DOI: 10.3390/ijms22083985] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.
Collapse
|
23
|
Kuijpers M, Azarnia Tehran D, Haucke V, Soykan T. The axonal endolysosomal and autophagic systems. J Neurochem 2021; 158:589-602. [PMID: 33372296 DOI: 10.1111/jnc.15287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
Neurons, because of their elaborate morphology and the long distances between distal axons and the soma as well as their longevity, pose special challenges to autophagy and to the endolysosomal system, two of the main degradative routes for turnover of defective proteins and organelles. Autophagosomes sequester cytoplasmic or organellar cargos by engulfing them into their lumen before fusion with degradative lysosomes enriched in neuronal somata and participate in retrograde signaling to the soma. Endosomes are mainly involved in the sorting, recycling, or lysosomal turnover of internalized or membrane-bound macromolecules to maintain axonal membrane homeostasis. Lysosomes and the multiple shades of lysosome-related organelles also serve non-degradative roles, for example, in nutrient signaling and in synapse formation. Recent years have begun to shed light on the distinctive organization of the autophagy and endolysosomal systems in neurons, in particular their roles in axons. We review here our current understanding of the localization, distribution, and growing list of functions of these organelles in the axon in health and disease and outline perspectives for future research.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Freie Universität Berlin, Faculty of Biology, Chemistry, Berlin, Germany.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
24
|
Ikenaka K, Ishigaki S, Iguchi Y, Kawai K, Fujioka Y, Yokoi S, Abdelhamid RF, Nagano S, Mochizuki H, Katsuno M, Sobue G. Characteristic Features of FUS Inclusions in Spinal Motor Neurons of Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 79:370-377. [PMID: 32142134 DOI: 10.1093/jnen/nlaa003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations of RNA metabolism caused by mutations in RNA-binding protein genes, such as transactivating DNA-binding protein-43 (TDP-43) and fused in sarcoma (FUS), have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Unlike the accumulation of TDP43, which is accepted as a pathological hall mark of sporadic ALS (sALS), FUS pathology in sALS is still under debate. Although immunoreactive inclusions of FUS have been detected in sALS patients previously, the technical limitation of signal detection, including the necessity of specific antigen retrieval, restricts our understanding of FUS-associated ALS pathology. In this study, we applied a novel detection method using a conventional antigen retrieval technique with Sudan Black B treatment to identify FUS-positive inclusions in sALS patients. We classified pathological motor neurons into 5 different categories according to the different aggregation characteristics of FUS and TDP-43. Although the granular type was more dominant for inclusions with TDP-43, the skein-like type was more often observed in FUS-positive inclusions, suggesting that these 2 proteins undergo independent aggregation processes. Moreover, neurons harboring FUS-positive inclusions demonstrated substantially reduced expression levels of dynactin-1, a retrograde motor protein, indicating that perturbation of nucleocytoplasmic transport is associated with the formation of cytoplasmic inclusions of FUS in sALS.
Collapse
Affiliation(s)
- Kensuke Ikenaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Kawai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Fujioka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rehab F Abdelhamid
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Medical University, Aichi, Japan
| |
Collapse
|
25
|
Castellanos-Montiel MJ, Chaineau M, Durcan TM. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 2020; 14:594975. [PMID: 33281562 PMCID: PMC7691654 DOI: 10.3389/fncel.2020.594975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics (ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high importance for MN health and survival, considering that MNs are large polarized cells with axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate the transport of organelles and molecules across the long axonal distances within the cell, playing a key role in synapse maintenance. The majority of ALS-related genes affecting cytoskeletal dynamics were identified within the past two decades, making it a new area to explore for ALS. The purpose of this review is to provide insights into ALS-associated cytoskeletal genes and outline how recent studies have pointed towards novel pathways that might be impacted in ALS. Further studies making use of extensive analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9, human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the development of more transgenic animal models could potentially help to: differentiate the variants that truly act as a primary cause of the disease from the ones that act as risk factors or disease modifiers, identify potential interactions between two or more ALS-related genes in disease onset and progression and increase our understanding of the molecular mechanisms leading to cytoskeletal defects. Altogether, this information will give us a hint on the real contribution of the cytoskeletal ALS-related genes during this lethal disease.
Collapse
Affiliation(s)
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
28
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Hill SE, Colón-Ramos DA. The Journey of the Synaptic Autophagosome: A Cell Biological Perspective. Neuron 2020; 105:961-973. [PMID: 32191859 DOI: 10.1016/j.neuron.2020.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Autophagy is a key cellular degradative pathway, important for neuronal homeostasis and function. Disruption of autophagy is associated with neuronal dysfunction and neurodegeneration. Autophagy is compartmentalized in neurons, with specific stages of the pathway occurring in distinct subcellular compartments. Coordination of these stages drives progression of autophagy and enables clearance of substrates. Yet, we are only now learning how these distributed processes are integrated across the neuron. In this review, we focus on the cell biological course of autophagy in neurons, from biogenesis at the synapse to degradation in the soma. We describe how the steps of autophagy are distributed across neuronal subcellular compartments, how local machinery regulates autophagy, and the impact of coordinated regulation on neuronal physiology and disease. We also discuss how recent advances in our understanding of neuronal autophagic mechanisms have reframed how we think about the role of local regulation of autophagy in all tissues.
Collapse
Affiliation(s)
- Sarah E Hill
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología José del Castillo, Universidad de Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
31
|
Zhao M, Kao CS, Arndt C, Tran DD, Cho WI, Maksimovic K, Chen XXL, Khan M, Zhu H, Qiao J, Peng K, Hong J, Xu J, Kim D, Kim JR, Lee J, van Bruggen R, Yoon WH, Park J. Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila. FEBS Lett 2020; 594:2800-2818. [PMID: 32515490 DOI: 10.1002/1873-3468.13858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the nuclear matrix protein Matrin 3 (MATR3) have been identified in amyotrophic lateral sclerosis and myopathy. To investigate the mechanisms underlying MATR3 mutations in neuromuscular diseases and efficiently screen for modifiers of MATR3 toxicity, we generated transgenic MATR3 flies. Our findings indicate that expression of wild-type or mutant MATR3 in motor neurons reduces climbing ability and lifespan of flies, while their expression in indirect flight muscles (IFM) results in abnormal wing positioning and muscle degeneration. In both motor neurons and IFM, mutant MATR3 expression results in more severe phenotypes than wild-type MATR3, demonstrating that the disease-linked mutations confer pathogenicity. We conducted a targeted candidate screen for modifiers of the MATR3 abnormal wing phenotype and identified multiple enhancers involved in axonal transport. Knockdown of these genes enhanced protein levels and insolubility of mutant MATR3. These results suggest that accumulation of mutant MATR3 contributes to toxicity and implicate axonal transport dysfunction in disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claudia Arndt
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Woo In Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hongxian Zhu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julia Qiao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kailong Peng
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jingyao Hong
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jialu Xu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Deanna Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Wan Hee Yoon
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Andrés-Benito P, Povedano M, Torres P, Portero-Otín M, Ferrer I. Altered Dynein Axonemal Assembly Factor 1 Expression in C-Boutons in Bulbar and Spinal Cord Motor-Neurons in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 78:416-425. [PMID: 30939186 DOI: 10.1093/jnen/nlz019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dyneins are major components of microtubules. Dynein assembly is modulated by a heterogeneous group of dynein axonemal assembly factors (DNAAFs). The present study analyzes dynein axonemal assembly factor 1 (DNAAF1) and leucine-rich repeat-containing protein 50 (LRRC50), the corresponding encoded protein, in lower motor neurons in spinal cord of sALS postmortem samples and hSOD1-G93A transgenic mice compared with controls. DNAAF1 mRNA is significantly reduced in the anterior horn in sALS, and LRRC50 immunoreactivity is significantly reduced in C-boutons of the remaining motor neurons of the anterior horn, dorsal nucleus of the vagus nerve, and hypoglossal nuclei at terminal stages of ALS. LRRC50 immunoreactivity has a perinuclear distribution in motor neurons in sALS thus suggesting a disorder of transport. The number of LRRC50-/S1R-immunoreactive structures is also significantly decreased in hSOD1-G93A transgenic mice at the age of 90 days (preclinical stages), and the number of motor neurons with LRRC50-immunoreactive structures is significantly reduced in animals aged 150 days (clinical stages). These observations suggest cholinergic denervation of motor neurons as a pathogenic factor in motor neuron disease. LRRC50 protein levels were not detected in human CSF.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.,Institute Carlos III, Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Pascual Torres
- Departament Medicina Experimental, Facultat de Medicina, Universitat de Lleida, IRBLLEIDA, Lleida, Spain
| | - Manuel Portero-Otín
- Departament Medicina Experimental, Facultat de Medicina, Universitat de Lleida, IRBLLEIDA, Lleida, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.,Institute Carlos III, Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
A Novel Cosegregating DCTN1 Splice Site Variant in a Family with Bipolar Disorder May Hold the Key to Understanding the Etiology. Genes (Basel) 2020; 11:genes11040446. [PMID: 32325768 PMCID: PMC7231292 DOI: 10.3390/genes11040446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
A novel cosegregating splice site variant in the Dynactin-1 (DCTN1) gene was discovered by Next Generation Sequencing (NGS) in a family with a history of bipolar disorder (BD) and major depressive diagnosis (MDD). Psychiatric illness in this family follows an autosomal dominant pattern. DCTN1 codes for the largest dynactin subunit, namely p150Glued, which plays an essential role in retrograde axonal transport and in neuronal autophagy. A GT→TT transversion in the DCTN1 gene, uncovered in the present work, is predicted to disrupt the invariant canonical splice donor site IVS22 + 1G > T and result in intron retention and a premature termination codon (PTC). Thus, this splice site variant is predicted to trigger RNA nonsense-mediated decay (NMD) and/or result in a C-terminal truncated p150Glued protein (ct-p150Glued), thereby negatively impacting retrograde axonal transport and neuronal autophagy. BD prophylactic medications, and most antipsychotics and antidepressants, are known to enhance neuronal autophagy. This variant is analogous to the dominant-negative GLUED Gl1 mutation in Drosophila, which is responsible for a neurodegenerative phenotype. The newly identified variant may reflect an autosomal dominant cause of psychiatric pathology in this affected family. Factors that affect alternative splicing of the DCTN1 gene, leading to NMD and/or ct-p150Glued, may be of fundamental importance in contributing to our understanding of the etiology of BD as well as MDD.
Collapse
|
34
|
Darios F, Stevanin G. Impairment of Lysosome Function and Autophagy in Rare Neurodegenerative Diseases. J Mol Biol 2020; 432:2714-2734. [PMID: 32145221 PMCID: PMC7232018 DOI: 10.1016/j.jmb.2020.02.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Rare genetic diseases affect a limited number of patients, but their etiology is often known, facilitating the development of reliable animal models and giving the opportunity to investigate physiopathology. Lysosomal storage disorders are a group of rare diseases due to primary alteration of lysosome function. These diseases are often associated with neurological symptoms, which highlighted the importance of lysosome in neurodegeneration. Likewise, other groups of rare neurodegenerative diseases also present lysosomal alteration. Lysosomes fuse with autophagosomes and endosomes to allow the degradation of their content thanks to hydrolytic enzymes. It has emerged that alteration of the autophagy–lysosome pathway could play a critical role in neuronal death in many neurodegenerative diseases. Using a repertoire of selected rare neurodegenerative diseases, we highlight that a variety of alterations of the autophagy–lysosome pathway are associated with neuronal death. Yet, in most cases, it is still unclear why alteration of this pathway can lead to neurodegeneration. Lysosome function is impaired in many rare neurodegenerative diseases, making it a convergent point for these diseases. Impaired lysosome function is associated with alteration of the autophagy pathway. Autophagy–lysosome pathway can be impaired at various steps in different rare neurodegenerative diseases. The mechanisms linking impaired autophagy–lysosome pathway to neurodegeneration are still not fully elucidated.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, F-75013, Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France.
| | - Giovanni Stevanin
- Sorbonne Université, F-75013, Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France; PSL Research University, Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, F-75013 Paris, France
| |
Collapse
|
35
|
Strohm L, Behrends C. Glia-specific autophagy dysfunction in ALS. Semin Cell Dev Biol 2020; 99:172-182. [DOI: 10.1016/j.semcdb.2019.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
|
36
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
37
|
A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Sci Rep 2019; 9:10104. [PMID: 31300701 PMCID: PMC6626054 DOI: 10.1038/s41598-019-46642-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/01/2019] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, for which there is no effective treatment. Previously, we generated a Caenorhabditis elegans model of ALS, in which the expression of dnc-1, the homologous gene of human dynactin-1, is knocked down (KD) specifically in motor neurons. This dnc-1 KD model showed progressive motor defects together with axonal and neuronal degeneration, as observed in ALS patients. In the present study, we established a behavior-based, automated, and quantitative drug screening system using this dnc-1 KD model together with Multi-Worm Tracker (MWT), and tested whether 38 candidate neuroprotective compounds could improve the mobility of the dnc-1 KD animals. We found that 12 compounds, including riluzole, which is an approved medication for ALS patients, ameliorated the phenotype of the dnc-1 KD animals. Nifedipine, a calcium channel blocker, most robustly ameliorated the motor deficits as well as axonal degeneration of dnc-1 KD animals. Nifedipine also ameliorated the motor defects of other motor neuronal degeneration models of C. elegans, including dnc-1 mutants and human TAR DNA-binding protein of 43 kDa overexpressing worms. Our results indicate that dnc-1 KD in C. elegans is a useful model for the screening of drugs against motor neuron degeneration, and that MWT is a powerful tool for the behavior-based screening of drugs.
Collapse
|
38
|
Lorenzo-Pouso AI, Castelo-Baz P, Pérez-Sayáns M, Lim J, Leira Y. Autophagy in periodontal disease: Evidence from a literature review. Arch Oral Biol 2019; 102:55-64. [DOI: 10.1016/j.archoralbio.2019.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
39
|
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137:859-877. [PMID: 30721407 PMCID: PMC6531423 DOI: 10.1007/s00401-019-01964-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3-5 years and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identified and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany.
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 2019; 697:34-48. [PMID: 29626651 PMCID: PMC6170747 DOI: 10.1016/j.neulet.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Age-dependent neurodegenerative diseases are associated with a decline in protein quality control systems including autophagy. Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disease of complex etiology with increasing connections to other neurodegenerative conditions such as frontotemporal dementia. Among the diverse genetic causes for ALS, a striking feature is the common connection to autophagy and its associated pathways. There is a recurring theme of protein misfolding as in other neurodegenerative diseases, but importantly there is a distinct common thread among ALS genes that connects them to the cascade of autophagy. However, the roles of autophagy in ALS remain enigmatic and it is still unclear whether activation or inhibition of autophagy would be a reliable avenue to ameliorate the disease. The main evidence that links autophagy to different genetic forms of ALS is discussed.
Collapse
Affiliation(s)
- Dao K H Nguyen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Zhou J, Li A, Li X, Yi J. Dysregulated mitochondrial Ca 2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys 2019; 663:249-258. [PMID: 30682329 PMCID: PMC6506190 DOI: 10.1016/j.abb.2019.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by motor neuron loss and prominent skeletal muscle wasting. Despite more than one hundred years of research efforts, the pathogenic mechanisms underlying neuromuscular degeneration in ALS remain elusive. While the death of motor neuron is a defining hallmark of ALS, accumulated evidences suggested that in addition to being a victim of motor neuron axonal withdrawal, the intrinsic skeletal muscle degeneration may also actively contribute to ALS disease pathogenesis and progression. Examination of spinal cord and muscle autopsy/biopsy samples of ALS patients revealed similar mitochondrial abnormalities in morphology, quantity and disposition, which are accompanied by defective mitochondrial respiratory chain complex and elevated oxidative stress. Detailing the molecular/cellular mechanisms and the role of mitochondrial dysfunction in ALS relies on ALS animal model studies. This review article discusses the dysregulated mitochondrial Ca2+ and reactive oxygen species (ROS) signaling revealed in live skeletal muscle derived from ALS mouse models, and a potential role of the vicious cycle formed between the dysregulated mitochondrial Ca2+ signaling and excessive ROS production in promoting muscle wasting during ALS progression.
Collapse
Affiliation(s)
- Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ang Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
42
|
Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colón-Ramos DA. Maturation and Clearance of Autophagosomes in Neurons Depends on a Specific Cysteine Protease Isoform, ATG-4.2. Dev Cell 2019; 49:251-266.e8. [PMID: 30880001 DOI: 10.1016/j.devcel.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 12/17/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
In neurons, defects in autophagosome clearance have been associated with neurodegenerative disease. Yet, the mechanisms that coordinate trafficking and clearance of synaptic autophagosomes are poorly understood. Here, we use genetic screens and in vivo imaging in single neurons of C. elegans to identify mechanisms necessary for clearance of synaptic autophagosomes. We observed that autophagy at the synapse can be modulated in vivo by the state of neuronal activity, that autophagosomes undergo UNC-16/JIP3-mediated retrograde transport, and that autophagosomes containing synaptic material mature in the cell body. Through forward genetic screens, we then determined that autophagosome maturation in the cell body depends on the protease ATG-4.2, but not the related ATG-4.1, and that ATG-4.2 can cleave LGG-1/Atg8/GABARAP from membranes. Our studies revealed that ATG-4.2 is specifically necessary for the maturation and clearance of autophagosomes and that defects in transport and ATG-4.2-mediated maturation genetically interact to enhance abnormal accumulation of autophagosomes in neurons.
Collapse
Affiliation(s)
- Sarah E Hill
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karlina J Kauffman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Blvd del Valle, San Juan 00901, Puerto Rico.
| |
Collapse
|
43
|
Ikenaka K, Atsuta N, Maeda Y, Hotta Y, Nakamura R, Kawai K, Yokoi D, Hirakawa A, Taniguchi A, Morita M, Mizoguchi K, Mochizuki H, Kimura K, Katsuno M, Sobue G. Increase of arginine dimethylation correlates with the progression and prognosis of ALS. Neurology 2019; 92:e1868-e1877. [PMID: 30867270 DOI: 10.1212/wnl.0000000000007311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate whether arginine methylation is altered in patients with amyotrophic lateral sclerosis (ALS) and how it affects disease severity, progression, and prognosis. METHODS We compared the immunoreactivity of protein arginine methyltransferase 1 (PRMT1) and its products, asymmetric dimethylated proteins (ASYM), in postmortem spinal cord. We also measured the concentrations of total l-arginine and methylated arginine residues, including asymmetric dimethyl l-arginine (ADMA), symmetric dimethyl arginine, and monomethyl arginine, in CSF samples from 52 patients with ALS using liquid chromatography-tandem mass spectrometry, and we examined their relationship with the progression and prognosis of ALS. RESULTS The immunoreactivity of both PRMT1 (p < 0.0001) and ASYM (p = 0.005) was increased in patients with ALS. The concentration of ADMA in CSF was substantially higher in patients with ALS than in disease controls. The ADMA/l-arginine ratio was correlated with the change of decline in the ALS Functional Rating Scale at 12 months after the time of measurement (r = 0.406, p = 0.010). A Cox proportional hazards model showed that the ADMA/l-arginine ratio was an independent predictor for overall survival. Moreover, a high ADMA/l-arginine ratio predicted poor prognosis, even in a group with normal percentage forced vital capacity. CONCLUSION There was an enhancement of arginine dimethylation in patients with ALS, and the ADMA/l-arginine ratio predicted disease progression and prognosis in such patients.
Collapse
Affiliation(s)
- Kensuke Ikenaka
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Naoki Atsuta
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Yasuhiro Maeda
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Yuji Hotta
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Ryoichi Nakamura
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Kaori Kawai
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Daichi Yokoi
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Akihiro Hirakawa
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Akira Taniguchi
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Mitsuya Morita
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Kouichi Mizoguchi
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Kazunori Kimura
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Masahisa Katsuno
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan
| | - Gen Sobue
- From the Department of Neurology (K.I., N.A., R.N., K. Kawai, D.Y., M.K., G.S.), Nagoya University Graduate School of Medicine; Department of Neurology (K.I., H.M.), Osaka University Graduate School of Medicine, Suita; Department of Hospital Pharmacy (Y.M., Y.H., K. Kimura), Nagoya City University Graduate School of Pharmaceutical Sciences; Department of Biostatistics and Bioinformatics (A.H.), University of Tokyo; Department of Neurology (A.T.), Mie University Graduate School of Medicine, Tsu; Department of Neurology (M.M.), Jichi Medical University, Shimotsuke, Tochigi; National Hospital Organization, Shizuoka Medical Center (K.M.); and Brain and Mind Research Center (G.S.), Nagoya University, Aichi, Japan.
| |
Collapse
|
44
|
Ishikawa KI, Saiki S, Furuya N, Imamichi Y, Tsuboi Y, Hattori N. p150glued deficiency impairs effective fusion between autophagosomes and lysosomes due to their redistribution to the cell periphery. Neurosci Lett 2019; 690:181-187. [DOI: 10.1016/j.neulet.2018.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
|
45
|
Gasperini L, Rossi A, Cornella N, Peroni D, Zuccotti P, Potrich V, Quattrone A, Macchi P. The hnRNP RALY regulates PRMT1 expression and interacts with the ALS-linked protein FUS: implication for reciprocal cellular localization. Mol Biol Cell 2018; 29:3067-3081. [PMID: 30354839 PMCID: PMC6340211 DOI: 10.1091/mbc.e18-02-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RBP associated with lethal yellow mutation (RALY) is a member of the heterogeneous nuclear ribonucleoprotein family whose transcriptome and interactome have been recently characterized. RALY binds poly-U rich elements within several RNAs and regulates the expression as well as the stability of specific transcripts. Here we show that RALY binds PRMT1 mRNA and regulates its expression. PRMT1 catalyzes the arginine methylation of Fused in Sarcoma (FUS), an RNA-binding protein that interacts with RALY. We demonstrate that RALY down-regulation decreases protein arginine N-methyltransferase 1 levels, thus reducing FUS methylation. It is known that mutations in the FUS nuclear localization signal (NLS) retain the protein to the cytosol, promote aggregate formation, and are associated with amyotrophic lateral sclerosis. Confirming that inhibiting FUS methylation increases its nuclear import, we report that RALY knockout enhances FUS NLS mutants’ nuclear translocation, hence decreasing aggregate formation. Furthermore, we characterize the RNA-dependent interaction of RALY with FUS in motor neurons. We show that mutations in FUS NLS as well as in RALY NLS reciprocally alter their localization and interaction with target mRNAs. These data indicate that RALY’s activity is impaired in FUS pathology models, raising the possibility that RALY might modulate disease onset and/or progression.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Nicola Cornella
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Daniele Peroni
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Paola Zuccotti
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Valentina Potrich
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| |
Collapse
|
46
|
Mariano V, Domínguez-Iturza N, Neukomm LJ, Bagni C. Maintenance mechanisms of circuit-integrated axons. Curr Opin Neurobiol 2018; 53:162-173. [PMID: 30241058 DOI: 10.1016/j.conb.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Adult, circuit-integrated neurons must be maintained and supported for the life span of their host. The attenuation of either maintenance or plasticity leads to impaired circuit function and ultimately to neurodegenerative disorders. Over the last few years, significant discoveries of molecular mechanisms were made that mediate the formation and maintenance of axons. Here, we highlight intrinsic and extrinsic mechanisms that ensure the health and survival of axons. We also briefly discuss examples of mutations associated with impaired axonal maintenance identified in specific neurological conditions. A better understanding of these mechanisms will therefore help to define targets for therapeutic interventions.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
47
|
Van Damme P, Robberecht W, Van Den Bosch L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis Model Mech 2018; 10:537-549. [PMID: 28468939 PMCID: PMC5451175 DOI: 10.1242/dmm.029058] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects the motor system and presents with progressive muscle weakness. Most patients survive for only 2-5 years after disease onset, often due to failure of the respiratory muscles. ALS is a familial disease in ∼10% of patients, with the remaining 90% developing sporadic ALS. Over the past decade, major advances have been made in our understanding of the genetics and neuropathology of ALS. To date, around 20 genes are associated with ALS, with the most common causes of typical ALS associated with mutations in SOD1, TARDBP, FUS and C9orf72. Advances in our understanding of the genetic basis of ALS have led to the creation of different models of this disease. The molecular pathways that have emerged from these systems are more heterogeneous than previously anticipated, ranging from protein aggregation and defects in multiple key cellular processes in neurons, to dysfunction of surrounding non-neuronal cells. Here, we review the different model systems used to study ALS and discuss how they have contributed to our current knowledge of ALS disease mechanisms. A better understanding of emerging disease pathways, the detrimental effects of the various gene mutations and the causes underlying motor neuron denegation in sporadic ALS will accelerate progress in the development of novel treatments. Summary: In this Review, Ludo Van Den Bosch and colleagues discuss the different model systems for studying ALS and how they have contributed to our current understanding of the etiology and pathology of this neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium .,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
48
|
Zhao C, Mei Y, Chen X, Jiang L, Jiang Y, Song X, Xiao H, Zhang J, Wang J. Autophagy plays a pro-survival role against methamphetamine-induced apoptosis in H9C2 cells. Toxicol Lett 2018; 294:156-165. [PMID: 29763685 DOI: 10.1016/j.toxlet.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/03/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023]
Abstract
Methamphetamine (METH) is a commonly abused psychostimulant that can induce severe neurotoxicity. Cardiovascular injury caused by METH has recently gained increasing attention; however, the underlying mechanisms remain unclear. As autophagy has been shown to be associated with cell injury, the association between autophagy and METH-mediated cell apoptosis was investigated in the present study. METH treatment significantly increased the expression of two key autophagy proteins, i.e., Beclin-1 and LC3-II, in the cardiomyocyte cell line H9C2. Furthermore, according to western blot and flow cytometry analyses, METH contributed to cell injury and markedly enhanced cleaved-caspase 3 and PARP expression. In addition, the corresponding AKT-mTOR survival pathway axis was appeared deactivated. The autophagic activity was closely associated with METH-mediated cell injury because rapamycin, which is an autophagy inducer, markedly attenuated METH-induced cell injury, while 3-Methyladenine (3-MA), which is an autophagy inhibitor, and bafilomycinA1 (Baf-A1), which is a blocker of autophagosome-lysosome fusion, markedly exacerbated METH-induced cell injury. Notably, defective autophagosome-lysosome fusion might be partially involved in the METH-induced enhancement of LC3-II expression and cell injury. However, the underlying mechanisms require further investigation.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yunfei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xu Song
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jingsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
49
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
50
|
Abe K. [An early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development]. Rinsho Shinkeigaku 2018; 58:141-165. [PMID: 29491329 DOI: 10.5692/clinicalneurol.cn-001095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present review focuses an early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development. In relation to foreign previous reports, five topics are introduced and discussed on ALS with dementia, ALS/Parkinsonism dementia complex (ALS/PDC), familial ALS (FALS), spinal bulbar muscular atrophy (SBMA), and multisystem involvement especially in cerebellar system of ALS including ALS/SCA (spinocerebellar ataxia) crossroad mutation Asidan. This review found the great contribution of Japanese reports on the above five topics, and confirmed the great development of ALS-related diseases over the past 120 years.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School
| |
Collapse
|