1
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
2
|
Wang L, Hou M, Liang C, Xu Q, Lu Y, Zhao Z. Role of odorant binding protein C12 in the response of Tribolium castaneum to chemical agents. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105861. [PMID: 38685215 DOI: 10.1016/j.pestbp.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that β-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.
Collapse
Affiliation(s)
- Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Mingrui Hou
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Chuanqi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Qingfen Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, PR China.
| | - Zongpei Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, PR China.
| |
Collapse
|
3
|
de Oliveira JA, Negri BF, Hernández-Martínez P, Basso MF, Escriche B. Mpp23Aa/Xpp37Aa Insecticidal Proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) Are Highly Toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae. Toxins (Basel) 2023; 15:55. [PMID: 36668875 PMCID: PMC9865532 DOI: 10.3390/toxins15010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this insect remains a challenge. The susceptibility of A. grandis larvae to proteins (Cry1Ba, Cry7Ab, and Mpp23Aa/Xpp37Aa) from Bacillus thuringiensis Berliner, 1915, with toxicity reported against Coleopteran, has been evaluated. The ingestion of different protein concentrations (which were incorporated into an artificial diet) by the larvae was tested in the laboratory, and mortality was evaluated after one week. All Cry proteins tested exhibited higher toxicity than that the untreated artificial diet. These Cry proteins showed similar results to the control Cry1Ac, with low toxicity to A. grandis, since it killed less than 50% of larvae, even at the highest concentration applied (100 μg·g-1). Mpp/Xpp proteins provided the highest toxicity with a 0.18 μg·g-1 value for the 50% lethal concentration. Importantly, this parameter is the lowest ever reported for this insect species tested with B. thuringiensis proteins. This result highlights the potential of Mpp23Aa/Xpp37Aa for the development of a biotechnological tool aiming at the field control of A. grandis.
Collapse
Affiliation(s)
- Jéssica A. de Oliveira
- Laboratório de Prospecção de Cepas e Genes, Instituto Mato-Grossense do Algodão (IMAmt), Rondonópolis 78740-970, Mato Grosso, Brazil
| | - Bárbara F. Negri
- Laboratório de Biologia Molecular e Transformação de Plantas, Instituto Mato-Grossense do Algodão (IMAmt), Rondonópolis 78740-970, Mato Grosso, Brazil
| | - Patricia Hernández-Martínez
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Marcos F. Basso
- Dipartimento di Biologia e Incubatore Universitario Fiorentino, Dipartimento di Biologia, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Firenze, Italy
| | - Baltasar Escriche
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Kim IY, Choi B, Park WR, Kim YJ, Kim BE, Mun S, Choi HS, Kim DK. Nuclear receptor HR96 up-regulates cytochrome P450 for insecticide detoxification in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:230-239. [PMID: 34472702 DOI: 10.1002/ps.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Red flour beetle, Tribolium castaneum (T. castaneum), is a major agricultural pest that causes significant damage to stored grains and products. Although hormone receptor 96 (HR96) is known to be the single ortholog corresponding to mammalian constitutive androstane receptor and pregnane X receptor, the structural features of Tribolium HR96 (TcHR96) and its role in insecticide-mediated transcription control of cytochrome P450 enzyme genes in T. castaneum have not been elucidated yet. RESULTS We cloned full-length complementary DNA encoding TcHR96 and revealed the role of TcHR96 in transcriptional control of cytochrome P450 enzyme genes. Interestingly, genome-wide transcriptome analysis of HR96-deficient beetles using RNA sequencing showed a positive correlation between TcHR96 and gene transcription of metabolizing enzymes involved in phase I detoxification processes. Moreover, TcHR96 overexpression significantly increased the promoter activity of genes encoding phase I P450 enzymes such as CYP4Q4, CYP4G7, CYP4BR3, and CYP345A1. Chromatin immunoprecipitation analysis showed that TcHR96 could directly bind to the promoter of gene encoding CYP345A1, an enzyme for metabolizing insecticides in T. castaneum. Furthermore, imidacloprid, a neonicotinoid insecticide, significantly increased gene expression of phase I P450 enzymes in old larvae of T. castaneum, which were reversed by TcHR96 knockdown. Finally, TcHR96 knockdown significantly decreased the resistance of old larvae to imidacloprid concomitant with reduction of imidacloprid-mediated phase I P450 enzyme gene expression. CONCLUSION TcHR96 plays a major role in transcriptional control of P450 enzyme for imidacloprid detoxification. Controlling TcHR96 might facilitate the regulation of insecticide tolerance in T. castaneum, thus providing a promising new strategy to manage pest beetle populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- In-Young Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Bo-Eun Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
5
|
Montagné N, Jager M, Chertemps T, Persyn E, Jaszczyszyn Y, Meslin C, Jacquin-Joly E, Manuel M. The Chemosensory Transcriptome of a Diving Beetle. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.773915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects astoundingly dominate Earth’s land ecosystems and have a huge impact on human life. Almost every aspect of their life relies upon their highly efficient and adaptable chemosensory system. In the air, most chemical signals that are detected at long range are hydrophobic molecules, which insects detect using proteins encoded by multigenic families that emerged following land colonization by insect ancestors, namely the odorant-binding proteins (OBPs) and the odorant receptors (ORs). However, land-to-freshwater transitions occurred in many lineages within the insect tree of life. Whether chemosensory gene repertoires of aquatic insects remained essentially unchanged or underwent more or less drastic modifications to cope with physico-chemical constraints associated with life underwater remains virtually unknown. To address this issue, we sequenced and analyzed the transcriptome of chemosensory organs of the diving beetle Rhantus suturalis (Coleoptera, Dytiscidae). A reference transcriptome was assembled de novo using reads from five RNA-seq libraries (male and female antennae, male and female palps, and wing muscle). It contained 47,570 non-redundant unigenes encoding proteins of more than 50 amino acids. Within this reference transcriptome, we annotated sequences coding 53 OBPs, 48 ORs, 73 gustatory receptors (GRs), and 53 ionotropic receptors (IRs). Phylogenetic analyses notably revealed a large OBP gene expansion (35 paralogs in R. suturalis) as well as a more modest OR gene expansion (9 paralogs in R. suturalis) that may be specific to diving beetles. Interestingly, these duplicated genes tend to be expressed in palps rather than in antennae, suggesting a possible adaptation with respect to the land-to-water transition. This work provides a strong basis for further evolutionary and functional studies that will elucidate how insect chemosensory systems adapted to life underwater.
Collapse
|
6
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
7
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Functional analysis of a novel orthologous small heat shock protein (shsp) hsp21.8a and seven species-specific shsps in Tribolium castaneum. Genomics 2020; 112:4474-4485. [DOI: 10.1016/j.ygeno.2020.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
|
9
|
Hernández-Martínez P, Khorramnejad A, Prentice K, Andrés-Garrido A, Vera-Velasco NM, Smagghe G, Escriche B. The Independent Biological Activity of Bacillus thuringiensis Cry23Aa Protein Against Cylas puncticollis. Front Microbiol 2020; 11:1734. [PMID: 32793170 PMCID: PMC7387505 DOI: 10.3389/fmicb.2020.01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
The Cry23Aa/Cry37Aa proteins from Bacillus thuringiensis (Bt) have been described toxic to Cylas puncticollis larvae. In general, it is believed that Cry23Aa and Cry37Aa act jointly to exert the insecticidal activity, while there is no evidence of their toxicity individually. Therefore, in the present study, the contribution of each protein in the insecticidal activity toward C. puncticollis larvae has been assessed. The results showed that both proteins were toxic for C. puncticollis larvae when tested individually. Contrary to what was claimed previously, our results suggest that the presence of both proteins is not necessary to exert toxicity against C. puncticollis larvae. Also, the binding behavior of Cry23Aa protein to midgut receptors of C. puncticollis larvae has been determined. According to our results, Cry23Aa binds to C. puncticollis brush border membrane vesicles (BBMV) specifically and independently of Cry37Aa. Due to the lack of common binding sites, Cry23Aa can be pyramided with Cry3Aa protein for better management of C. puncticollis.
Collapse
Affiliation(s)
- Patricia Hernández-Martínez
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Katterine Prentice
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ascensión Andrés-Garrido
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Natalia Mara Vera-Velasco
- Laboratory Membrane Proteins, ERI de Biotecnología y Biomedicina, Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pest, ERI de Biotecnología y Biomedicina, Department of Genetics, Universitat de València, Burjassot, Spain
- *Correspondence: Baltasar Escriche,
| |
Collapse
|
10
|
Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel) 2020; 12:toxins12070430. [PMID: 32610662 PMCID: PMC7404982 DOI: 10.3390/toxins12070430] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
Collapse
|
11
|
Zanchi C, Lindeza AS, Kurtz J. Comparative Mortality and Adaptation of a Smurf Assay in two Species of Tenebrionid Beetles Exposed to Bacillus thuringiensis. INSECTS 2020; 11:insects11040261. [PMID: 32344621 PMCID: PMC7240575 DOI: 10.3390/insects11040261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Bacillus thuringiensis is a spore-forming bacterium which infects insect larvae naturally via the oral route. Its virulence factors interact with the epithelium of the digestive tract of insect larvae, disrupting its function and eventually leading to the death of susceptible hosts. The most cited B. thuringiensis killing mechanism is the extensive damage caused to the insect midgut, leading to its leakage. The mortality caused by B. thuringiensis has been shown to vary between serovars and isolates, as well as between host life stages. Moreover, whether susceptibility to B. thuringiensis-induced gut leakage is generalized to all host species and whether there is individual variation within species is unclear. In this study, we adapted a non-invasive “Smurf” assay from Drosophila melanogaster to two species of tenebrionid beetles: The mealworm beetle Tenebrio molitor and the red flour beetle Tribolium castaneum, during exposure to B. thuringiensis. We highlight a differential mortality between two age/size classes of T. molitor larvae, as well as different killing dynamics between B. thuringiensis var. tenebrionis and var. tolworthi in T. castaneum. The Smurf assay did not reveal a high occurrence of extensive gut disintegration in both host species upon ingestion during B. thuringiensis exposure.
Collapse
|
12
|
Liao M, Shi S, Wu H, Yang Q, Zhu Z, Xiao J, Huang Y, Cao H. Effects of terpinen-4-ol fumigation on protein levels of detoxification enzymes in Tribolium confusum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21653. [PMID: 31859418 DOI: 10.1002/arch.21653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum.
Collapse
Affiliation(s)
- Min Liao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qianqian Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zeng Zhu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
García-Robles I, De Loma J, Capilla M, Roger I, Boix-Montesinos P, Carrión P, Vicente M, López-Galiano MJ, Real MD, Rausell C. Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103525. [PMID: 31655128 DOI: 10.1016/j.dci.2019.103525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis (Bt) toxins constitute effective, environmentally safe biopesticides. Nevertheless, insects' tolerance to Bt is influenced by environmental factors affecting immunity. To understand larval immune response in the devastating coleopteran insect pest Colorado potato beetle (CPB), we undertook a proteomic analysis of hemolymph of non-treated control larvae and larvae consuming non-lethal doses of spore-crystal mixtures containing the coleopteran-active Cry3Aa toxin. Results revealed lower amount of proteins involved in insect growth and higher amount of immune response-related proteins in challenged insects, sustaining the larval weight loss observed. Additionally, we found a potential regulatory role of the evolutionary conserved miR-8 in the insect's immune response relying on antimicrobial peptides (AMPs) production. Upon toxin challenge, different patterns of hemolymph AMPs expression and phenoloxidase activity were observed in CPB larvae reared on different Solanaceae plants. This suggests that diet and diet-associated insect midgut microbiota might modulate this insects' tolerance to non-lethal doses of Bt.
Collapse
Affiliation(s)
- Inmaculada García-Robles
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Jessica De Loma
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Miguel Capilla
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Isabel Roger
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Paz Boix-Montesinos
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Pablo Carrión
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Marcos Vicente
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - M José López-Galiano
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - M Dolores Real
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Carolina Rausell
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain.
| |
Collapse
|
14
|
Wang K, Shu C, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: A review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21558. [PMID: 31094011 DOI: 10.1002/arch.21558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.
Collapse
Affiliation(s)
- Kui Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
17
|
Schulz NKE, Sell MP, Ferro K, Kleinhölting N, Kurtz J. Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle Tribolium castaneum. Front Physiol 2019; 10:98. [PMID: 30837885 PMCID: PMC6389831 DOI: 10.3389/fphys.2019.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Immune priming, the increased chance to survive a secondary encounter with a pathogen, has been described for many invertebrate species, which lack the classical adaptive immune system of vertebrates. Priming can be specific even for closely related bacterial strains, last up to the entire lifespan of an individual, and in some species, it can also be transferred to the offspring and is then called transgenerational immune priming (TGIP). In the red flour beetle Tribolium castaneum, a pest of stored grains, TGIP has even been shown to be transferred paternally after injection of adult beetles with heat-killed Bacillus thuringiensis. Here we studied whether TGIP in T. castaneum is also transferred to the second filial generation, whether it can also occur after oral and injection priming of larvae and whether it has effects on offspring development. We found that paternal priming with B. thuringiensis does not only protect the first but also the second offspring generation. Also, fitness costs of the immune priming became apparent, when the first filial generation produced fewer offspring. Furthermore, we used two different routes of exposure to prime larvae, either by injecting them with heat-killed bacteria or orally feeding them B. thuringiensis spore culture supernatant. Neither of the parental larval priming methods led to any direct benefits regarding offspring resistance. However, the injections slowed down development of the injected individuals, while oral priming with both a pathogenic and a non-pathogenic strain of B. thuringiensis delayed offspring development. The long-lasting transgenerational nature of immune priming and its impact on offspring development indicate that potentially underlying epigenetic modifications might be stable over several generations. Therefore, this form of phenotypic plasticity might impact pest control and should be considered when using products of bacterial origin against insects.
Collapse
Affiliation(s)
- Nora K E Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marie Pauline Sell
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Kevin Ferro
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Nico Kleinhölting
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 2018; 8:201. [PMID: 29607282 DOI: 10.1007/s13205-018-1223-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.
Collapse
|
19
|
Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution. INSECTS 2018; 9:insects9010028. [PMID: 29495405 PMCID: PMC5872293 DOI: 10.3390/insects9010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/26/2022]
Abstract
Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonasentomophila in the red flour beetle Triboliumcastaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveriabassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T.castaneum that evolved with B.bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P.entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B.bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T.castaneum as a consequence of its coevolutionary interactions with B.bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B.bassiana results in resistance to B. thuringiensis, but not P.entomophila implies that B. thuringiensis and B.bassiana may share mechanisms of infection or toxicity not shared by P.entomophila. This supports previous suggestions that B.bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally.
Collapse
|
20
|
Ferro K, Ferro D, Corrà F, Bakiu R, Santovito G, Kurtz J. Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming. Front Immunol 2017; 8:1811. [PMID: 29375546 PMCID: PMC5763126 DOI: 10.3389/fimmu.2017.01811] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
The production of reactive oxygen species (ROS) is a normal consequence of the aerobic cell metabolism. Despite their high and potentially detrimental reactivity with various biomolecules, the endogenous production of ROS is a vital part of physiological, immunological, and molecular processes that contribute to fitness. The role of ROS in host-parasite interactions is frequently defined by their contribution to innate immunity as effectors, promoting parasite death during infections. In vertebrates, ROS and antioxidant system enzymes, such as superoxide dismutase (SOD) are also involved in acquired immune memory, where they are responsible for T-cell signalling, activation, proliferation, and viability. Based on recent findings, ROS are now also assumed to play a role in immune priming, i.e., a form of memory in invertebrates. In this study, the potential involvement of Cu,Zn SODs in immunity of the red flour beetle Tribolium castaneum is described for the first time, applying an approach that combines an in silico gene characterisation with an in vivo immune priming experiment using the Gram-positive entomopathogen Bacillus thuringiensis. We identified an unusually high number of three different transcripts for extracellular SOD and found that priming leads to a fine-tuned modulation of SOD expression, highlighting the potential of physiological co-adaptations for immune phenotypes.
Collapse
Affiliation(s)
- Kevin Ferro
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Diana Ferro
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Sci Rep 2017; 7:16245. [PMID: 29176692 PMCID: PMC5701239 DOI: 10.1038/s41598-017-16406-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
The insecticidal Vip3 proteins from Bacillus thuringiensis (Bt), along with the classical Bt Cry proteins, are currently used in Bt-crops to control insect pests, since they do not share the same mode of action. Here we characterized the response of Spodoptera exigua larvae after Vip3 challenge. The expression profile of 47 genes was analyzed in larvae challenged with three concentrations of Vip3Ca. Results showed that the up-regulated genes were mainly involved in immune response, whereas the down-regulated genes were mainly involved in the digestion process. Other mechanisms of cellular response to the damage such as apoptosis were analyzed. For this analysis, sections from the midguts were examined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The nuclei of the midgut epithelial cells were stained at the highest concentration of the Vip3Ca protein and at lower concentrations of Vip3Aa in agreement with the different potency of the two proteins. In addition, apoptosis was also examined by the analysis of the expression of five caspase genes. The present study shows that exposure of S. exigua larvae to sublethal concentrations of Vip3 proteins activates different insect response pathways which trigger the regulation of some genes, APN shedding, and apoptotic cell death.
Collapse
|
22
|
Castagnola A, Jackson J, Perera OP, Oppert C, Eda S, Jurat-Fuentes JL. Alpha-arylphorin is a mitogen in the Heliothis virescens midgut cell secretome upon Cry1Ac intoxication. PeerJ 2017; 5:e3886. [PMID: 29018619 PMCID: PMC5629956 DOI: 10.7717/peerj.3886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) target cells in the midgut epithelium of susceptible larvae. While the mode of action of Cry toxins has been extensively investigated, the midgut response to Cry intoxication and its regulation are not well characterized. In this work, we describe the secreted proteome (secretome) of primary mature midgut cell cultures from Heliothis virescens larvae after exposure to Cry1Ac toxin compared to control buffer treatment. The Cry1Ac-induced secretome caused higher proliferation and differentiation and an overall reduction in total cell mortality over time in primary H. virescens midgut stem cell cultures when compared to treatment with control buffer secretome. Differential proteomics identified four proteins with significant differences in abundance comparing Cry1Ac-treated and control secretomes. The most significant difference detected in the Cry1Ac secretome was an arylphorin subunit alpha protein not detected in the control secretome. Feeding of purified alpha-arylphorin to H. virescens larvae resulted in midgut hyperplasia and significantly reduced susceptibility to Cry1Ac toxin compared to controls. These data identify alpha-arylphorin as a protein with a new putative role in the midgut regeneration process in response to Cry1Ac intoxication and possibly pathogen/abiotic stress, identifying alpha-arylphorin as a potential gene to target with insecticidal gene silencing for pest control.
Collapse
Affiliation(s)
- Anais Castagnola
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America.,Current affiliation: ManTech International Corporation, Herndon, VA, United States of America
| | - Jerreme Jackson
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States of America.,Current affiliation: Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, United States of America
| | - Omaththage P Perera
- Southern Insect Management Research Unit, United States Department of Agriculture-Agricultural Research Service, Stoneville, MS, USA
| | - Cris Oppert
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America.,Current affiliation: Bayer CropScience, Morrisville, NC, United States of America
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States of America
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
23
|
Greenwood JM, Milutinović B, Peuß R, Behrens S, Esser D, Rosenstiel P, Schulenburg H, Kurtz J. Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. BMC Genomics 2017; 18:329. [PMID: 28446171 PMCID: PMC5405463 DOI: 10.1186/s12864-017-3705-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Background The phenomenon of immune priming, i.e. enhanced protection following a secondary exposure to a pathogen, has now been demonstrated in a wide range of invertebrate species. Despite accumulating phenotypic evidence, knowledge of its mechanistic underpinnings is currently very limited. Here we used the system of the red flour beetle, Tribolium castaneum and the insect pathogen Bacillus thuringiensis (Bt) to further our molecular understanding of the oral immune priming phenomenon. We addressed how ingestion of bacterial cues (derived from spore supernatants) of an orally pathogenic and non-pathogenic Bt strain affects gene expression upon later challenge exposure, using a whole-transcriptome sequencing approach. Results Whereas gene expression of individuals primed with the orally non-pathogenic strain showed minor changes to controls, we found that priming with the pathogenic strain induced regulation of a large set of distinct genes, many of which are known immune candidates. Intriguingly, the immune repertoire activated upon priming and subsequent challenge qualitatively differed from the one mounted upon infection with Bt without previous priming. Moreover, a large subset of priming-specific genes showed an inverse regulation compared to their regulation upon challenge only. Conclusions Our data demonstrate that gene expression upon infection is strongly affected by previous immune priming. We hypothesise that this shift in gene expression indicates activation of a more targeted and efficient response towards a previously encountered pathogen, in anticipation of potential secondary encounter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3705-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenny M Greenwood
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Current Address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Sarah Behrens
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Daniela Esser
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
24
|
Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin. Sci Rep 2017; 7:43964. [PMID: 28262736 PMCID: PMC5338291 DOI: 10.1038/srep43964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
The bacterium Bacillus thuringiensis (Bt) produces a wide range of toxins that are effective against a number of insect pests. Identifying the mechanisms responsible for resistance to Bt toxin will improve both our ability to control important insect pests and our understanding of bacterial toxicology. In this study, we investigated the role of MAPK pathways in resistance against Cry1Ca toxin in Chilo suppressalis, an important lepidopteran pest of rice crops. We first cloned the full-length of C. suppressalis mitogen-activated protein kinase (MAPK) p38, ERK1, and ERK2, and a partial sequence of JNK (hereafter Csp38, CsERK1, CsERK2 and CsJNK). We could then measure the up-regulation of these MAPK genes in larvae at different times after ingestion of Cry1Ca toxin. Using RNA interference to knockdown Csp38, CsJNK, CsERK1 and CsERK2 showed that only knockdown of Csp38 significantly increased the mortality of larvae to Cry1Ca toxin ingested in either an artificial diet, or after feeding on transgenic rice expressed Cry1Ca. These results suggest that MAPK p38 is responsible for the resistance of C. suppressalis larvae to Bt Cry1Ca toxin.
Collapse
|
25
|
Xia J, Guo Z, Yang Z, Zhu X, Kang S, Yang X, Yang F, Wu Q, Wang S, Xie W, Xu W, Zhang Y. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:108-117. [PMID: 27521921 DOI: 10.1016/j.pestbp.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 06/06/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080, China.
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xun Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijun Xu
- Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Castagnola A, Jurat-Fuentes JL. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2016; 15:104-10. [PMID: 27436739 PMCID: PMC4957658 DOI: 10.1016/j.cois.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium of insects is exposed to xenobiotics and entomopathogens during the feeding developmental stages. In these conditions, an effective enterocyte turnover mechanism is highly desirable to maintain integrity of the gut epithelial wall. As in other insects, the gut of lepidopteran larvae have stem cells that are capable of proliferation, which occurs during molting and pathogenic episodes. While much is known on the regulation of gut stem cell division during molting, there is a current knowledge gap on the molecular regulation of gut healing processes after entomopathogen exposure. Relevant information on this subject is emerging from studies of the response to exposure to insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) as model intoxicants. In this work we discuss currently available data on the molecular cues involved in gut stem cell proliferation, insect gut healing, and the implications of enhanced healing as a potential mechanism of resistance against Bt toxins.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
27
|
Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep 2016; 6:23861. [PMID: 27025647 PMCID: PMC4812304 DOI: 10.1038/srep23861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura.
Collapse
|
28
|
Lalouette L, Pottier MA, Wycke MA, Boitard C, Bozzolan F, Maria A, Demondion E, Chertemps T, Lucas P, Renault D, Maibeche M, Siaussat D. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3073-3085. [PMID: 26686856 DOI: 10.1007/s11356-015-5923-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive--also called hermetic--effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure.
Collapse
Affiliation(s)
- Lisa Lalouette
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Marie-Anne Pottier
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Marie-Anne Wycke
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Constance Boitard
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Annick Maria
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Elodie Demondion
- Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, INRA, Route de Saint-Cyr, F-78000, Versailles, France
| | - Thomas Chertemps
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Philippe Lucas
- Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, INRA, Route de Saint-Cyr, F-78000, Versailles, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes, France
| | - Martine Maibeche
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - David Siaussat
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
29
|
Ayra-Pardo C, Raymond B, Gulzar A, Rodríguez-Cabrera L, Morán-Bertot I, Crickmore N, Wright DJ. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2015; 24:589-600. [PMID: 26335439 DOI: 10.1111/imb.12186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The widespread and sustainable exploitation of the entomopathogen Bacillus thuringiensis (Bt) in pest control is threatened by the evolution of resistance. Although resistance is often associated with loss of binding of the Bt toxins to the insect midgut cells, other factors have been implicated. Here we used suppressive subtractive hybridization and gene expression suppression to identify additional molecular components involved in Bt-resistance in Plutella xylostella. We isolated transcripts from genes that were differentially expressed in the midgut of larvae from a resistant population, following ingestion of a Bt kurstaki HD1 strain-based commercial formulation (DiPel), and compared with a genetically similar susceptible population. Quantitative real-time polymerase-chain reaction (RT-PCR) analysis confirmed the differential basal expression of a subset of these genes. Gene expression suppression of three of these genes (P. xylostella cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1, stromal cell-derived factor 2-like 1 and hatching enzyme-like 1) significantly increased the pathogenicity of HD1 to the resistant population. In an attempt to link the multitude of factors reportedly influencing resistance to Bt with the well-characterized loss of toxin binding, we also considered Bt-resistance models in P. xylostella and other insects.
Collapse
Affiliation(s)
- C Ayra-Pardo
- Environmental Biotechnology Group, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - B Raymond
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - A Gulzar
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - L Rodríguez-Cabrera
- Environmental Biotechnology Group, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - I Morán-Bertot
- Environmental Biotechnology Group, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - N Crickmore
- School of Life Sciences, University of Sussex, Brighton, UK
| | - D J Wright
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| |
Collapse
|
30
|
Molecular Characterization and Expression Profiling of Odorant-Binding Proteins in Apolygus lucorum. PLoS One 2015; 10:e0140562. [PMID: 26466366 PMCID: PMC4605488 DOI: 10.1371/journal.pone.0140562] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023] Open
Abstract
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important agricultural pests, with broad host range and cryptic feeding habits in China. Chemosensory behavior plays an important role in many crucial stages in the life of A. lucorum, such as the detection of sex pheromone cues during mate pursuit and fragrant odorants during flowering host plant localization. Odorant-binding proteins (OBPs) are involved in the initial biochemical recognition steps in semiochemical perception. In the present study, a transcriptomics-based approach was used to identify potential OBPs in A. lucorum. In total, 38 putative OBP genes were identified, corresponding to 26 ‘classic’ OBPs and 12 ‘Plus-C’ OBPs. Phylogenetic analysis revealed that A. lucorum OBP proteins are more closely related to the OBP proteins of other mirid bugs as the same family OBP clustering together. Quantitative real-time PCR analysis for the first reported 23 AlucOBPs revealed that the expression level of 11 AlucOBP genes were significantly higher in antennae of both sexes than in other tissues. Three of them were male antennae-biased and six were female antennae-biased, suggesting their putative roles in the detection of female sex pheromones and host plant volatiles. In addition, three, four, two and one AlucOBPs had the highest degree of enrichment in the stylet, head, leg, and in abdomen tissues, respectively. Two other OBPs were ubiquitously expressed in the main tissues, including antennae, stylets, heads, legs and wings. Most orthologs had similar expression patterns, strongly indicating that these genes have the same function in olfaction and gustation.
Collapse
|
31
|
Contreras E, Benito-Jardón M, López-Galiano MJ, Real MD, Rausell C. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:139-145. [PMID: 25684675 DOI: 10.1016/j.dci.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced upon Cry3Aa spore-crystal treatment, evidencing a possible association between host immune response and larval susceptibility to B. thuringiensis. We assessed the antimicrobial activity spectra of T. castaneum defensins peptide fragments and found that a peptide fragment of Defensin3 was effective against the human microbial pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans, being S. aureus the most susceptible one.
Collapse
Affiliation(s)
- Estefanía Contreras
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Benito-Jardón
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M José López-Galiano
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M Dolores Real
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carolina Rausell
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
32
|
Taszłow P, Wojda I. Changes in the hemolymph protein profiles in Galleria mellonella infected with Bacillus thuringiensis involve apolipophorin III. The effect of heat shock. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:123-143. [PMID: 25308190 DOI: 10.1002/arch.21208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This report concerns the effect of heat shock on host-pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. We show enhanced activity against Gram-positive bacteria in the hemolymph of larvae pre-exposed to heat shock before infection with B. thuringiensis. Heat shock influenced the protein pattern in the hemolymph of infected larvae: more peptides with a molecular weight below 10 kDa were detected in comparison with nonshocked animals. Additionally, we noticed that the amount of apolipophorin III (apoLp-III) in the hemolymph decreased transiently following infection, which was considerably higher in larvae pre-exposed to heat shock. On the other hand, its expression in the fat body showed a consequent infection-induced decline, observed equally in shocked and nonshocked animals. This suggests that the amount of apoLp-III in the hemolymph of G. mellonella larvae is regulated at multiple levels. We also report that this protein is more resistant to degradation in the hemolymph of larvae pre-exposed to heat shock in comparison to nonshocked larvae. Two-dimensional analysis revealed the presence of three isoforms of apoLp-III, all susceptible to proteolytic degradation. However, one of them was the most abundant, both in the protease-treated and untreated hemolymph. Taking into consideration that, in general, apoLp-III has a stimulative effect on different immune-related hemolymph proteins and peptides, the reported findings bring us closer to understanding the effect of heat shock on the resistance of G. mellonella to infection.
Collapse
Affiliation(s)
- Paulina Taszłow
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | | |
Collapse
|
33
|
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 2014; 15:1141. [PMID: 25523483 PMCID: PMC4377858 DOI: 10.1186/1471-2164-15-1141] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). Results To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. Conclusions Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany.
| | | |
Collapse
|
34
|
Jacobs CGC, Spaink HP, van der Zee M. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. eLife 2014; 3:e04111. [PMID: 25487990 PMCID: PMC4358341 DOI: 10.7554/elife.04111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/10/2014] [Indexed: 01/23/2023] Open
Abstract
Drosophila larvae and adults possess a potent innate immune response, but the response of Drosophila eggs is poor. In contrast to Drosophila, eggs of the beetle Tribolium are protected by a serosa, an extraembryonic epithelium that is present in all insects except higher flies. In this study, we test a possible immune function of this frontier epithelium using Tc-zen1 RNAi-mediated deletion. First, we show that bacteria propagate twice as fast in serosa-less eggs. Then, we compare the complete transcriptomes of wild-type, control RNAi, and Tc-zen1 RNAi eggs before and after sterile or septic injury. Infection induces genes involved in Toll and IMD-signaling, melanisation, production of reactive oxygen species and antimicrobial peptides in wild-type eggs but not in serosa-less eggs. Finally, we demonstrate constitutive and induced immune gene expression in the serosal epithelium using in situ hybridization. We conclude that the serosa provides insect eggs with a full-range innate immune response.
Collapse
Affiliation(s)
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
35
|
Walski T, Van Damme EJM, Smagghe G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:94-101. [PMID: 25240534 DOI: 10.1016/j.jinsphys.2014.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
In the last decades lectins have received a lot of attention as potential tools in pest control. Despite substantial progress in the field not all the factors determining insecticidal potency and selectivity of these proteins have been described. Recently, three lectins, RSA (Rhizoctonia solani agglutinin), SNA-I and SNA-II (Sambucus nigra agglutinin I and II) have been shown to be toxic to aphids and caterpillars. In this project we investigated if these lectins are also toxic against larvae and a cell line of the red flour beetle, Tribolium castaneum, a model organism and important pest of stored products. Furthermore, we analyzed the stability of the lectins in the larval gut and used confocal microscopy to compare their efficiency in passing through the peritrophic matrix (PM). We observed that all three lectins were toxic against the T. castaneum cell line and their effectiveness in vitro was in decreasing order SNA-II>SNA-I>RSA with the respective EC50 being 0.1, 0.5 and 3.6 μg/ml. Larvae feeding for 16 day on diets containing 2% RSA, 2% SNA-II and 2% SNA-I weighed 0.14 ± 0.07 mg, 0.67 ± 0.44 mg and 1.89 ± 0.38 mg, corresponding to approximately 7%, 36% and 80% of control larvae, respectively. As a consequence, RSA increased the time to adult emergence by over 3-fold, SNA-II by 1.9-fold and SNA-I by 1.2-fold. RSA and SNA-II were stable in the larval gut, while SNA-I was digested and excreted with the feces. Finally, confocal microscopy confirmed that RSA passed through the PM more efficiently than SNA-II. In conclusion, our data suggest that the lectin ability to pass through the PM, governed by molecule dimensions, charge and size of PM pores, is one of the features that determine the toxicity of these insecticidal proteins.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium; NB-Photonics, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
36
|
Gindin G, Mendel Z, Levitin B, Kumar P, Levi T, Shahi P, Khasdan V, Weinthal D, Kuznetsova T, Einav M, Kushmaro A, Protasov A, Zaritsky A, Ben-Dov E. The basis for rootstock resilient to Capnodis species: screening for genes encoding δ-endotoxins from Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2014; 70:1283-1290. [PMID: 24293325 DOI: 10.1002/ps.3694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/22/2013] [Accepted: 11/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Conventional methods often fail to control the flatheaded borers Capnodis spp., major pests of stone fruit trees; the larvae are protected from insecticides and predation because they feed deep in the roots. A potential solution is transgenic trees producing in their roots toxic compounds such as Cry proteins of Bacillus thuringiensis (Bt). RESULTS Toxicities against Capnodis larvae were demonstrated by exploiting a recently designed artificial larval diet and an available collection of field isolated Bt. An isolate of Bt tenebrionis (Btt) from commercial bioinsecticide (Novodor) displayed LC50 and LC95 values of 3.2 and 164 mg g(-1) , respectively, against neonates of Capnodis tenebrionis, whereas values of the most toxic field isolate K-7 were 1.9 and 25.6 mg g(-1) respectively. Weights of surviving larvae after 1 month on diets containing low concentrations of K-7 (0.1-1.0 mg g(-1) ) were lower than on Btt or untreated larvae. K-7 was also toxic against larvae of C. cariosa and C. miliaris and found to harbour genes encoding Cry9Ea-like and Cry23Aa/Cry37Aa binary toxins. CONCLUSION Larvae of Capnodis spp. are susceptible to Bt Cry toxins. Expressing cry genes active against these pests thus seems a feasible solution towards production of transgenic rootstock trees resilient to the pest.
Collapse
Affiliation(s)
- Galina Gindin
- Department of Entomology, Agricultural Research Organisation, The Volcani Centre, Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Behrens S, Peuß R, Milutinović B, Eggert H, Esser D, Rosenstiel P, Schulenburg H, Bornberg-Bauer E, Kurtz J. Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics 2014; 15:445. [PMID: 24908078 PMCID: PMC4079954 DOI: 10.1186/1471-2164-15-445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogens can infect their hosts through different routes. For studying the consequences for host resistance, we here used the entomopathogen Bacillus thuringiensis and the red flour beetle Tribolium castaneum for oral and systemic (i. e. pricking the cuticle) experimental infection. In order to characterize the molecular mechanisms underpinning the two different infection routes, the transcriptomes of beetles of two different T. castaneum populations--one recently collected population (Cro1) and a commonly used laboratory strain (SB)--were analyzed using a next generation RNA sequencing approach. RESULTS The genetically more diverse population Cro1 showed a significantly larger number of differentially expressed genes. While both populations exhibited similar reactions to pricking, their expression patterns in response to oral infection differed remarkably. In particular, the Cro1 population showed a strong response of cuticular proteins and developmental genes, which might indicate an adaptive developmental flexibility that was lost in the SB population presumably as a result of inbreeding. The immune response of SB was primarily based on antimicrobial peptides, while Cro1 relied on responses mediated by phenoloxidase and reactive oxygen species, which may explain the higher resistance of this strain against oral infection. CONCLUSIONS Our data demonstrate that immunological and physiological processes underpinning the two different routes of infection are clearly distinct, and that host populations particularly differ in responses to oral infection. Furthermore, gene expression upon pricking infection entailed a strong signal of wounding, highlighting the importance of pricking controls in future infection studies.
Collapse
Affiliation(s)
- Sarah Behrens
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Robert Peuß
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Barbara Milutinović
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Hendrik Eggert
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Daniela Esser
- />Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Philip Rosenstiel
- />Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Hinrich Schulenburg
- />Zoological Institute, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Erich Bornberg-Bauer
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Joachim Kurtz
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| |
Collapse
|
38
|
Hull JJ, Perera OP, Snodgrass GL. Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris. INSECT MOLECULAR BIOLOGY 2014; 23:78-97. [PMID: 24224606 DOI: 10.1111/imb.12064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In insects, the perception and discrimination of odorants requires the involvement of odorant-binding proteins (OBPs). To gain a better molecular understanding of olfaction in the agronomic pest Lygus lineolaris (the tarnished plant bug), we used a transcriptomics-based approach to identify potential OBPs. In total, 33 putative OBP transcripts, including the previously reported Lygus antennal protein (LAP), were identified based on the characteristic OBP Cys signature and/or sequence similarity with annotated orthologous sequences. The L. lineolaris OBP (LylinOBP) repertoire consists of 20 'classic' OBPs, defined by the spacing of six conserved Cys residues, and 12 'Plus-C' OBPs, defined by the spacing of eight conserved Cys and one conserved Pro residue. Alternative splicing of OBP genes appears to contribute significantly to the multiplicity of LylinOBP sequences. Microarray-based analysis of chemosensory tissues (antennae, legs and proboscis) revealed enrichment of 21 LylinOBP transcripts in antennae, 12 in legs, and 15 in proboscis, suggesting potential roles in olfaction and gustation respectively. PCR-based determination of transcript abundance for a subset of the LylinOBP genes across multiple adult tissues yielded results consistent with the hybridization data.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | | | |
Collapse
|
39
|
Bel Y, Jakubowska AK, Costa J, Herrero S, Escriche B. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. PLoS One 2013; 8:e81927. [PMID: 24312604 PMCID: PMC3846680 DOI: 10.1371/journal.pone.0081927] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023] Open
Abstract
Host-pathogen interactions result in complex relationship, many aspects of which are not completely understood. Vip proteins, which are Bacillus thuringensis (Bt) insecticidal toxins produced during the vegetative stage, are selectively effective against specific insect pests. This new group of Bt proteins represents an interesting alternative to the classical Bt Cry toxins because current data suggests that they do not share the same mode of action. We have designed and developed a genome-wide microarray for the beet armyworm Spodoptera exigua, a serious lepidopteran pest of many agricultural crops, and used it to better understand how lepidopteran larvae respond to the treatment with the insecticidal protein Vip3Aa. With this approach, the goal of our study was to evaluate the changes in gene expression levels caused by treatment with sublethal doses of Vip3Aa (causing 99% growth inhibition) at 8 and 24 h after feeding. Results indicated that the toxin provoked a wide transcriptional response, with 19% of the microarray unigenes responding significantly to treatment. The number of up- and down-regulated unigenes was very similar. The number of genes whose expression was regulated at 8 h was similar to the number of genes whose expression was regulated after 24 h of treatment. The up-regulated sequences were enriched for genes involved in innate immune response and in pathogen response such as antimicrobial peptides (AMPs) and repat genes. The down-regulated sequences were mainly unigenes with homology to genes involved in metabolism. Genes related to the mode of action of Bt Cry proteins were found, in general, to be slightly overexpressed. The present study is the first genome-wide analysis of the response of lepidopteran insects to Vip3Aa intoxication. An insight into the molecular mechanisms and components related to Vip intoxication will allow designing of more effective management strategies for pest control.
Collapse
Affiliation(s)
- Yolanda Bel
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | | | - Juliana Costa
- Department of Applied Biology, UNESP, Jaboticabal, Sao Paulo, Brazil
| | - Salvador Herrero
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - Baltasar Escriche
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
40
|
Contreras E, Rausell C, Real MD. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J Invertebr Pathol 2013; 113:209-13. [DOI: 10.1016/j.jip.2013.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
|
41
|
Milutinović B, Stolpe C, Peuβ R, Armitage SAO, Kurtz J. The red flour beetle as a model for bacterial oral infections. PLoS One 2013; 8:e64638. [PMID: 23737991 PMCID: PMC3667772 DOI: 10.1371/journal.pone.0064638] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 04/17/2013] [Indexed: 01/03/2023] Open
Abstract
Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Clemens Stolpe
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Robert Peuβ
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
42
|
Contreras E, Schoppmeier M, Real MD, Rausell C. Sodium solute symporter and cadherin proteins act as Bacillus thuringiensis Cry3Ba toxin functional receptors in Tribolium castaneum. J Biol Chem 2013; 288:18013-21. [PMID: 23645668 DOI: 10.1074/jbc.m113.474445] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.
Collapse
Affiliation(s)
- Estefanía Contreras
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Valencia, Spain
| | | | | | | |
Collapse
|