1
|
Kieran TJ, Sun X, Maines TR, Belser JA. Machine learning approaches for influenza A virus risk assessment identifies predictive correlates using ferret model in vivo data. Commun Biol 2024; 7:927. [PMID: 39090358 PMCID: PMC11294530 DOI: 10.1038/s42003-024-06629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
In vivo assessments of influenza A virus (IAV) pathogenicity and transmissibility in ferrets represent a crucial component of many pandemic risk assessment rubrics, but few systematic efforts to identify which data from in vivo experimentation are most useful for predicting pathogenesis and transmission outcomes have been conducted. To this aim, we aggregated viral and molecular data from 125 contemporary IAV (H1, H2, H3, H5, H7, and H9 subtypes) evaluated in ferrets under a consistent protocol. Three overarching predictive classification outcomes (lethality, morbidity, transmissibility) were constructed using machine learning (ML) techniques, employing datasets emphasizing virological and clinical parameters from inoculated ferrets, limited to viral sequence-based information, or combining both data types. Among 11 different ML algorithms tested and assessed, gradient boosting machines and random forest algorithms yielded the highest performance, with models for lethality and transmission consistently better performing than models predicting morbidity. Comparisons of feature selection among models was performed, and highest performing models were validated with results from external risk assessment studies. Our findings show that ML algorithms can be used to summarize complex in vivo experimental work into succinct summaries that inform and enhance risk assessment criteria for pandemic preparedness that take in vivo data into account.
Collapse
Affiliation(s)
- Troy J Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
2
|
Eraña H, Sampedro-Torres-Quevedo C, Charco JM, Díaz-Domínguez CM, Peccati F, San-Juan-Ansoleaga M, Vidal E, Gonçalves-Anjo N, Pérez-Castro MA, González-Miranda E, Piñeiro P, Fernández-Veiga L, Galarza-Ahumada J, Fernández-Muñoz E, Perez de Nanclares G, Telling G, Geijo M, Jiménez-Osés G, Castilla J. A Protein Misfolding Shaking Amplification-based method for the spontaneous generation of hundreds of bona fide prions. Nat Commun 2024; 15:2112. [PMID: 38459071 PMCID: PMC10923866 DOI: 10.1038/s41467-024-46360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | | | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L, Derio, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Enric Vidal
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Sequential Transmission of Influenza Viruses in Ferrets Does Not Enhance Infectivity and Does Not Predict Transmissibility in Humans. mBio 2022; 13:e0254022. [PMID: 36300929 PMCID: PMC9765597 DOI: 10.1128/mbio.02540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.
Collapse
|
4
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
5
|
Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nat Microbiol 2021; 6:1455-1465. [PMID: 34702977 PMCID: PMC8557130 DOI: 10.1038/s41564-021-00976-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine viruses from 1979–1983, 1984–1987, and 1988–1992 were reconstructed and characterized. Glycan array analyses showed stepwise changes in the hemagglutinin receptor binding specificity from recognizing both alpha2,3- and alpha2,6-sialosides to alpha2,6-sialosides; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein that have been fixed after 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979–1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jump through strategic coordination of surveillance and risk assessment activities.
Collapse
|
6
|
Abstract
Human respiratory virus infections lead to a spectrum of respiratory symptoms and disease severity, contributing to substantial morbidity, mortality and economic losses worldwide, as seen in the COVID-19 pandemic. Belonging to diverse families, respiratory viruses differ in how easy they spread (transmissibility) and the mechanism (modes) of transmission. Transmissibility as estimated by the basic reproduction number (R0) or secondary attack rate is heterogeneous for the same virus. Respiratory viruses can be transmitted via four major modes of transmission: direct (physical) contact, indirect contact (fomite), (large) droplets and (fine) aerosols. We know little about the relative contribution of each mode to the transmission of a particular virus in different settings, and how its variation affects transmissibility and transmission dynamics. Discussion on the particle size threshold between droplets and aerosols and the importance of aerosol transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus is ongoing. Mechanistic evidence supports the efficacies of non-pharmaceutical interventions with regard to virus reduction; however, more data are needed on their effectiveness in reducing transmission. Understanding the relative contribution of different modes to transmission is crucial to inform the effectiveness of non-pharmaceutical interventions in the population. Intervening against multiple modes of transmission should be more effective than acting on a single mode.
Collapse
Affiliation(s)
- Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
7
|
Viboud C, Gostic K, Nelson MI, Price GE, Perofsky A, Sun K, Sequeira Trovão N, Cowling BJ, Epstein SL, Spiro DJ. Beyond clinical trials: Evolutionary and epidemiological considerations for development of a universal influenza vaccine. PLoS Pathog 2020; 16:e1008583. [PMID: 32970783 PMCID: PMC7514029 DOI: 10.1371/journal.ppat.1008583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prospect of universal influenza vaccines is generating much interest and research at the intersection of immunology, epidemiology, and viral evolution. While the current focus is on developing a vaccine that elicits a broadly cross-reactive immune response in clinical trials, there are important downstream questions about global deployment of a universal influenza vaccine that should be explored to minimize unintended consequences and maximize benefits. Here, we review and synthesize the questions most relevant to predicting the population benefits of universal influenza vaccines and discuss how existing information could be mined to begin to address these questions. We review three research topics where computational modeling could bring valuable evidence: immune imprinting, viral evolution, and transmission. We address the positive and negative consequences of imprinting, in which early childhood exposure to influenza shapes and limits immune responses to future infections via memory of conserved influenza antigens. However, the mechanisms at play, their effectiveness, breadth of protection, and the ability to "reprogram" already imprinted individuals, remains heavily debated. We describe instances of rapid influenza evolution that illustrate the plasticity of the influenza virus in the face of drug pressure and discuss how novel vaccines could introduce new selective pressures on the evolution of the virus. We examine the possible unintended consequences of broadly protective (but infection-permissive) vaccines on the dynamics of epidemic and pandemic influenza, compared to conventional vaccines that have been shown to provide herd immunity benefits. In conclusion, computational modeling offers a valuable tool to anticipate the benefits of ambitious universal influenza vaccine programs, while balancing the risks from endemic influenza strains and unpredictable pandemic viruses. Moving forward, it will be important to mine the vast amount of data generated in clinical studies of universal influenza vaccines to ensure that the benefits and consequences of these vaccine programs have been carefully modeled and explored.
Collapse
Affiliation(s)
- Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
- * E-mail:
| | - Katelyn Gostic
- Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States
- Dept. of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Graeme E. Price
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Amanda Perofsky
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Suzanne L. Epstein
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
8
|
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen HL. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583:834-838. [PMID: 32408338 DOI: 10.21203/rs.3.rs-20774/v1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 05/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.
Collapse
MESH Headings
- Aerosols
- Alveolar Epithelial Cells/pathology
- Alveolar Epithelial Cells/virology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Antigens, Viral/metabolism
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- Bronchi/pathology
- Bronchi/virology
- COVID-19
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Disease Models, Animal
- Duodenum/virology
- Fomites/virology
- Housing, Animal
- Kidney/virology
- Lung/pathology
- Lung/virology
- Male
- Mesocricetus/immunology
- Mesocricetus/virology
- Nasal Mucosa/virology
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- RNA, Viral/analysis
- SARS-CoV-2
- Viral Load
- Weight Loss
Collapse
Affiliation(s)
- Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alvina Y L Wong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Prathanporn Kaewpreedee
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen HL. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583:834-838. [PMID: 32408338 PMCID: PMC7394720 DOI: 10.1038/s41586-020-2342-5] [Citation(s) in RCA: 999] [Impact Index Per Article: 249.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alvina Y L Wong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Prathanporn Kaewpreedee
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M, Russell CJ, Subbarao K, Zhu H, Yen HL. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg Infect Dis 2019; 24:965-971. [PMID: 29774862 PMCID: PMC6004870 DOI: 10.3201/eid2406.172114] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.
Collapse
|
11
|
Lumby CK, Nene NR, Illingworth CJR. A novel framework for inferring parameters of transmission from viral sequence data. PLoS Genet 2018; 14:e1007718. [PMID: 30325921 PMCID: PMC6203404 DOI: 10.1371/journal.pgen.1007718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have used genome sequence data to evaluate the number of particles transmitted between hosts, and the role of selection as it operates during the transmission process. However, the interpretation of sequence data describing transmission events is a challenging task. We here present a novel and comprehensive framework for using short-read sequence data to understand viral transmission events, designed for influenza virus, but adaptable to other viral species. Our approach solves multiple shortcomings of previous methods for this purpose; for example, we consider transmission as an event involving whole viruses, rather than sets of independent alleles. We demonstrate how selection during transmission and noisy sequence data may each affect naive inferences of the population bottleneck, accounting for these in our framework so as to achieve a correct inference. We identify circumstances in which selection for increased viral transmission may or may not be identified from data. Applying our method to experimental data in which transmission occurs in the presence of strong selection, we show that our framework grants a more quantitative insight into transmission events than previous approaches, inferring the bottleneck in a manner that accounts for selection, both for within-host virulence, and for inherent viral transmissibility. Our work provides new opportunities for studying transmission processes in influenza, and by extension, in other infectious diseases.
Collapse
Affiliation(s)
- Casper K. Lumby
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R. Nene
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 2018; 10:v10090461. [PMID: 30154345 PMCID: PMC6164301 DOI: 10.3390/v10090461] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
The 1918 H1N1 Spanish Influenza pandemic was the most severe pandemic in modern history. Unlike more recent pandemics, most of the 1918 H1N1 virus' genome was derived directly from an avian influenza virus. Recent avian-origin H5 A/goose/Guangdong/1/1996 (GsGd) and Asian H7N9 viruses have caused several hundred human infections with high mortality rates. While these viruses have not spread beyond infected individuals, if they evolve the ability to transmit efficiently from person-to-person, specifically via the airborne route, they will initiate a pandemic. Therefore, this review examines H5 GsGd and Asian H7N9 viruses that have caused recent zoonotic infections with a focus on viral properties that support airborne transmission. Several GsGd H5 and Asian H7N9 viruses display molecular changes that potentiate transmission and/or exhibit ability for limited transmission between ferrets. However, the hemagglutinin of these viruses is unstable; this likely represents the most significant obstacle to the emergence of a virus capable of efficient airborne transmission. Given the global disease burden of an influenza pandemic, continued surveillance and pandemic preparedness efforts against H5 GsGd and Asian lineage H7N9 viruses are warranted.
Collapse
|
13
|
Price GE, Lo CY, Misplon JA, Epstein SL. Reduction of influenza virus transmission from mice immunized against conserved viral antigens is influenced by route of immunization and choice of vaccine antigen. Vaccine 2018; 36:4910-4918. [DOI: 10.1016/j.vaccine.2018.06.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023]
|
14
|
Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc Natl Acad Sci U S A 2018; 115:E2386-E2392. [PMID: 29463703 PMCID: PMC5877994 DOI: 10.1073/pnas.1716771115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Emerging respiratory pathogens pose significant public health threats as a result of their potential for rapid global spread via multiple non-mutually exclusive modes of transmission. The relative significance of contact, droplet, and airborne transmission for many respiratory pathogens remains a knowledge gap, and better understanding is essential for developing evidence-based measures for effective infection control. Here, we describe and evaluate a transmission chamber that separates virus-laden particles in air by size to study airborne particles that mediate influenza transmission in ferrets. Our results provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency. This transmission device can also be applied to elucidate the mode of transmission of other respiratory pathogens. Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency.
Collapse
|
15
|
Herzog SA, Blaizot S, Hens N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect Dis 2017; 17:775. [PMID: 29254504 PMCID: PMC5735541 DOI: 10.1186/s12879-017-2874-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. METHODS We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. RESULTS We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). CONCLUSIONS Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.
Collapse
Affiliation(s)
- Sereina A. Herzog
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stéphanie Blaizot
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| |
Collapse
|
16
|
Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe 2017; 22:615-626.e8. [PMID: 29056430 DOI: 10.1016/j.chom.2017.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Low pathogenic H7N9 influenza viruses have recently evolved to become highly pathogenic, raising concerns of a pandemic, particularly if these viruses acquire efficient human-to-human transmissibility. We compared a low pathogenic H7N9 virus with a highly pathogenic isolate, and two of its variants that represent neuraminidase inhibitor-sensitive and -resistant subpopulations detected within the isolate. The highly pathogenic H7N9 viruses replicated efficiently in mice, ferrets, and/or nonhuman primates, and were more pathogenic in mice and ferrets than the low pathogenic H7N9 virus, with the exception of the neuraminidase inhibitor-resistant virus, which showed mild-to-moderate attenuation. All viruses transmitted among ferrets via respiratory droplets, and the neuraminidase-sensitive variant killed several of the infected and exposed animals. Neuraminidase inhibitors showed limited effectiveness against these viruses in vivo, but the viruses were susceptible to a polymerase inhibitor. These results suggest that the highly pathogenic H7N9 virus has pandemic potential and should be closely monitored.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromichi Mitake
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Nakao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Beijing 102206, China
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
17
|
Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, Kasson PM, Lloyd-Smith JO, Maurer-Stroh S, Riley S, Beauchemin CA, Bedford T, Friedrich TC, Handel A, Herfst S, Murcia PR, Roche B, Wilke CO, Russell CA. Viral factors in influenza pandemic risk assessment. eLife 2016; 5. [PMID: 27834632 PMCID: PMC5156527 DOI: 10.7554/elife.18491] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk.
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Harvard T. H Chan School of Public Health, Boston, United States.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Wendy Barclay
- Division of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rahul Raman
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jessica A Belser
- Centers for Disease Control and Prevention, Atlanta, United States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore.,National Public Health Laboratory, Communicable Diseases Division, Ministry of Health, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, United States
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, United States
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pablo R Murcia
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | | | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - Colin A Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Handel A, Rohani P. Crossing the scale from within-host infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0302. [PMID: 26150668 DOI: 10.1098/rstb.2014.0302] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The progression of an infection within a host determines the ability of a pathogen to transmit to new hosts and to maintain itself in the population. While the general connection between the infection dynamics within a host and the population-level transmission dynamics of pathogens is widely acknowledged, a comprehensive and quantitative understanding that would allow full integration of the two scales is still lacking. Here, we provide a brief discussion of both models and data that have attempted to provide quantitative mappings from within-host infection dynamics to transmission fitness. We present a conceptual framework and provide examples of studies that have taken first steps towards development of a quantitative framework that scales from within-host infections to population-level fitness of different pathogens. We hope to illustrate some general themes, summarize some of the recent advances and-maybe most importantly-discuss gaps in our ability to bridge these scales, and to stimulate future research on this important topic.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Pejman Rohani
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
20
|
Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, Lloyd-Smith JO. Mapping influenza transmission in the ferret model to transmission in humans. eLife 2015; 4. [PMID: 26329460 PMCID: PMC4586390 DOI: 10.7554/elife.07969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022] Open
Abstract
The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI:http://dx.doi.org/10.7554/eLife.07969.001 Every year, thousands of people develop influenza (flu). After being infected by the influenza virus, the immune systems of most people adapt to fight off the virus if it is encountered again. However, there are many different strains of influenza, and new strains constantly evolve. Therefore, although someone may have developed resistance to one previously encountered strain, they can still become ill if another strain infects them. Different strains of the influenza virus have different abilities to spread between people and make them ill. One way that scientists assess whether a particular strain of influenza is a threat to people is by studying ferrets, which develop many of the same flu symptoms as humans. However, questions have been raised over how accurately ferret studies reflect whether a particular virus strain will spread between humans. Controversy has also arisen over experiments in which ferrets are infected with genetically engineered strains of influenza that mimic how a strain that has evolved in birds could adapt to cause a pandemic in humans. In 2014, the United States government suggested that such research should be temporarily stopped until more is known about the risks and usefulness of these studies. Now, Buhnerkempe, Gostic et al. have compared the results of 240 ferret and human studies that aimed to assess how easily strains of influenza spread. Specifically, the studies looked at how often a healthy ferret or human became ill when exposed to an animal or human infected with a particular strain of influenza. The results of the ferret transmission studies matched well with transmission patterns observed in human studies. Ferret studies that assessed how the influenza virus is transmitted through the air via sneezes and coughs were particularly good at predicting how the virus spreads in humans. But Buhnerkempe, Gostic et al. caution that ferret studies are not always accurate, partly because they involve small numbers of animals, which can skew the results. There also needs to be more effort to standardize the procedures and measurements used in ferret studies. Still, the analysis suggests that overall, ferret studies are a useful tool for making an initial prediction of which influenza strains may cause a pandemic in humans, which can then be verified using other methods. DOI:http://dx.doi.org/10.7554/eLife.07969.002
Collapse
Affiliation(s)
- Michael G Buhnerkempe
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Katelyn Gostic
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Miran Park
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Prianna Ahsan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
21
|
Animal models for influenza virus transmission studies: a historical perspective. Curr Opin Virol 2015; 13:101-8. [PMID: 26126082 DOI: 10.1016/j.coviro.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models-ferrets, mice, and guinea pigs-have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals.
Collapse
|
22
|
Abstract
Inappropriately named gain-of-function influenza research seeks to confer airborne transmission on avian influenza A viruses that otherwise cause only dead-end infections in humans. A recent study has succeeded in doing this with a highly pathogenic ostrich H7N1 virus in a ferret model without loss of virulence. If transposable to humans, this would constitute a novel virus with a case fatality rate ~30 greater than that of Spanish flu. A commentary from three distinguished virologists considered the benefits of this work to outweigh potential risks. I beg to disagree with conclusions in both papers, for the underlying science is not as strong as it appears.
Collapse
|
23
|
Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014; 157:329-339. [PMID: 24725402 DOI: 10.1016/j.cell.2014.02.040] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
Collapse
Affiliation(s)
- Martin Linster
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eefje J A Schrauwen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Benjamin Mänz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Jan Baumann
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
24
|
Wain-Hobson S. The Irrationality of GOF Avian Influenza Virus Research. Front Public Health 2014; 2:77. [PMID: 25077136 PMCID: PMC4099557 DOI: 10.3389/fpubh.2014.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023] Open
Abstract
The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly pathogenic for man. It will be shown here that the benefits of the work are erroneous and overstated while the risk of an accident is finite, if small. The consequence of any accident would be anywhere from a handful of infections to a catastrophic pandemic. There has been a single open international meeting in this period, which is surprising given that openness and discussion are essential to good science. Despite US and EU government funding, no risk–benefit analysis has been published, which again is surprising. This research can be duplicated readily in many labs and requires little high tech. It falls under the definition of DURC without the slightest shadow of a doubt and constitutes the most important challenge facing contemporary biology.
Collapse
Affiliation(s)
- Simon Wain-Hobson
- Molecular Retrovirology Unit, Department of Virology, Institut Pasteur , Paris , France ; Foundation for Vaccine Research , Washington, DC , USA
| |
Collapse
|
25
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
26
|
Nishiura H, Ejima K, Mizumoto K. Missing information in animal surveillance of MERS-CoV. THE LANCET. INFECTIOUS DISEASES 2014; 14:100. [PMID: 24457168 PMCID: PMC7128387 DOI: 10.1016/s1473-3099(13)70699-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Kenji Mizumoto
- University of Tokyo, Tokyo, Japan; Nagasaki University, Nagasaki, Japan
| |
Collapse
|
27
|
Mucosal immunization with a candidate universal influenza vaccine reduces virus transmission in a mouse model. J Virol 2014; 88:6019-30. [PMID: 24623430 DOI: 10.1128/jvi.03101-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Pandemic influenza is a major public health concern, but conventional strain-matched vaccines are unavailable early in a pandemic. Candidate "universal" vaccines targeting the viral antigens nucleoprotein (NP) and matrix 2 (M2), which are conserved among all influenza A virus strains and subtypes, could be manufactured in advance for use at the onset of a pandemic. These vaccines do not prevent infection but can reduce disease severity, deaths, and virus titers in the respiratory tract. We hypothesized that such immunization may reduce virus transmission from vaccinated, infected animals. To investigate this hypothesis, we studied mouse models for direct-contact and airborne transmission of H1N1 and H3N2 influenza viruses. We established conditions under which virus transmission occurs and showed that transmission efficiency is determined in part at the level of host susceptibility to infection. Our findings indicate that virus transmission between mice has both airborne and direct-contact components. Finally, we demonstrated that immunization with recombinant adenovirus vectors expressing NP and M2 significantly reduced the transmission of virus to cohoused, unimmunized mice in comparison to controls. These findings have broad implications for the impact of conserved-antigen vaccines, not only in protecting the vaccinated individual but also in protecting others by limiting influenza virus transmission and potentially reducing the size of epidemics. IMPORTANCE Using a mouse model of influenza A virus transmission, we demonstrate that a candidate "universal" influenza vaccine both protects vaccinated animals from lethal infection and reduces the transmission of virus from vaccinated to nonvaccinated mice. This vaccine induces immunity against proteins conserved among all known influenza A virus strains and subtypes, so it could be used early in a pandemic before conventional strain-matched vaccines are available and could potentially reduce the spread of infection in the community.
Collapse
|
28
|
Sitaras I, Kalthoff D, Beer M, Peeters B, de Jong MCM. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein. PLoS One 2014; 9:e84628. [PMID: 24586231 PMCID: PMC3934824 DOI: 10.1371/journal.pone.0084628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Evolution of Avian Influenza (AI) viruses--especially of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks) is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1), using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA) protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.
Collapse
Affiliation(s)
- Ioannis Sitaras
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Donata Kalthoff
- Institute of Diagnostic Virology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany
| | - Ben Peeters
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
Belser JA, Maines TR, Katz JM, Tumpey TM. Considerations regarding appropriate sample size for conducting ferret transmission experiments. Future Microbiol 2014; 8:961-5. [PMID: 23902143 DOI: 10.2217/fmb.13.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evaluation of: Nishiura H, Yen H-L, Cowling BJ. Sample size considerations for one-to-one animal transmission studies of the influenza A viruses. PLoS ONE 8(1), e55358 (2013). There is an urgent need to model in a laboratory setting the capacity of wild-type influenza viruses to transmit between mammals, to determine the molecular determinants and identify biological properties that confer influenza virus transmissibility, and to explore both pharmaceutical and nonpharmaceutical methods to inhibit virus transmission. Owing to its close physiologic match to humans, researchers typically utilize the ferret to measure influenza virus transmissibility. Nishiura et al. highlight the dilemma facing researchers utilizing the ferret transmission model: how to provide high-quality data to guide public health efforts, while ensuring the ethical use of animals in limited-size, individual, one-to-one transmission experiments. However, the responsible interpretation of data generated using this model can overcome this potential limitation. A closer examination of previously published studies utilizing this model as it is currently employed reveals that the 'sample size' of these studies is not always as small as it may appear.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Richard M, Schrauwen EJA, de Graaf M, Bestebroer TM, Spronken MIJ, van Boheemen S, de Meulder D, Lexmond P, Linster M, Herfst S, Smith DJ, van den Brand JM, Burke DF, Kuiken T, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM. Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 2013; 501:560-3. [PMID: 23925116 PMCID: PMC3819191 DOI: 10.1038/nature12476] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ejima K, Aihara K, Nishiura H. The impact of model building on the transmission dynamics under vaccination: observable (symptom-based) versus unobservable (contagiousness-dependent) approaches. PLoS One 2013; 8:e62062. [PMID: 23593507 PMCID: PMC3625221 DOI: 10.1371/journal.pone.0062062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
Background The way we formulate a mathematical model of an infectious disease to capture symptomatic and asymptomatic transmission can greatly influence the likely effectiveness of vaccination in the presence of vaccine effect for preventing clinical illness. The present study aims to assess the impact of model building strategy on the epidemic threshold under vaccination. Methodology/Principal Findings We consider two different types of mathematical models, one based on observable variables including symptom onset and recovery from clinical illness (hereafter, the “observable model”) and the other based on unobservable information of infection event and infectiousness (the “unobservable model”). By imposing a number of modifying assumptions to the observable model, we let it mimic the unobservable model, identifying that the two models are fully consistent only when the incubation period is identical to the latent period and when there is no pre-symptomatic transmission. We also computed the reproduction numbers with and without vaccination, demonstrating that the data generating process of vaccine-induced reduction in symptomatic illness is consistent with the observable model only and examining how the effective reproduction number is differently calculated by two models. Conclusions To explicitly incorporate the vaccine effect in reducing the risk of symptomatic illness into the model, it is fruitful to employ a model that directly accounts for disease progression. More modeling studies based on observable epidemiological information are called for.
Collapse
Affiliation(s)
- Keisuke Ejima
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Aihara
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishiura
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
33
|
Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol 2013; 87:5746-54. [PMID: 23487452 DOI: 10.1128/jvi.00154-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry.
Collapse
|
34
|
Ejima K, Aihara K, Nishiura H. Modeling the obesity epidemic: social contagion and its implications for control. Theor Biol Med Model 2013; 10:17. [PMID: 23497183 PMCID: PMC3599605 DOI: 10.1186/1742-4682-10-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/02/2013] [Indexed: 11/25/2022] Open
Abstract
Background As an obesity epidemic has grown worldwide, a variety of intervention programs have been considered, but a scientific approach to comparatively assessing the control programs has still to be considered. The present study aims to describe an obesity epidemic by employing a simple mathematical model that accounts for both social contagion and non-contagious hazards of obesity, thereby comparing the effectiveness of different types of interventions. Methods An epidemiological model is devised to describe the time- and age-dependent risk of obesity, the hazard of which is dealt with as both dependent on and independent of obesity prevalence, and parameterizing the model using empirically observed data. The equilibrium prevalence is investigated as our epidemiological outcome, assessing its sensitivity to different parameters that regulate the impact of intervention programs and qualitatively comparing the effectiveness. We compare the effectiveness of different types of interventions, including those directed to never-obese individuals (i.e. primary prevention) and toward obese and ex-obese individuals (i.e. secondary prevention). Results The optimal choice of intervention programs considerably varies with the transmission coefficient of obesity, and a limited transmissibility led us to favour preventing weight gain among never-obese individuals. An abrupt decline in the prevalence is expected when the hazards of obesity through contagious and non-contagious routes fall into a particular parameter space, with a high sensitivity to the transmission potential of obesity from person to person. When a combination of two control strategies can be selected, primary and secondary preventions yielded similar population impacts and the superiority of the effectiveness depends on the strength of the interventions at an individual level. Conclusions The optimality of intervention programs depends on the contagiousness of obesity. Filling associated data gaps of obesity transmission would help systematically understand the epidemiological dynamics and consider required control programs.
Collapse
Affiliation(s)
- Keisuke Ejima
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
35
|
Vaccination and clinical severity: is the effectiveness of contact tracing and case isolation hampered by past vaccination? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:816-29. [PMID: 23446821 PMCID: PMC3709287 DOI: 10.3390/ijerph10030816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/26/2022]
Abstract
While contact tracing and case isolation are considered as the first choice of interventions against a smallpox bioterrorist event, their effectiveness under vaccination is questioned, because not only susceptibility of host and infectiousness of case but also the risk of severe clinical manifestations among cases is known to be reduced by vaccine-induced immunity, thereby potentially delaying the diagnosis and increasing mobility among vaccinated cases. We employed a multi-type stochastic epidemic model, aiming to assess the feasibility of contact tracing and case isolation in a partially vaccinated population and identify data gaps. We computed four epidemiological outcome measures, i.e., (i) the threshold of a major epidemic under the interventions; (ii) the expected total number of cases; (iii) the probability of extinction, and (iv) the expected duration of an outbreak, demonstrating that all of these outcomes critically depend on the clinical impact of past vaccination on the diagnosis and movement of vaccinated cases. We discuss that, even in the absence of smallpox in the present day, one should consider the way to empirically quantify the delay in case detection and an increase in the frequency of contacts among previously vaccinated cases compared to unvaccinated during the early stage of an epidemic so that the feasibility of contact tracing and case isolation in a vaccinated population can be explicitly assessed.
Collapse
|