1
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
2
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
3
|
Bararu Bojan I, Dobreanu S, Vladeanu MC, Ciocoiu M, Badescu C, Plesoianu C, Filip N, Iliescu D, Frasinariu O, Bojan A, Tudor R, Badulescu OV. The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease-What Is the Role of Thrombophilic Genes in the Development of This Pathology? Int J Mol Sci 2024; 25:5228. [PMID: 38791267 PMCID: PMC11120830 DOI: 10.3390/ijms25105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases, among which includes coronary artery disease, represent one of the most important causes of mortality and morbidity worldwide. Research aimed at determining the risk factors involved recognizes a group of "traditional" risk factors, but also more recent studies identified over 100 "novel" ones which may have a role in the disease. Among the latter is the thrombophilia profile of a patient, a pathology well-established for its involvement in venous thromboembolism, but with less studied implications in arterial thrombosis. This paper reviews the literature, explaining the pathophysiology of the thrombophilia causes associated most with coronary thrombosis events. Results of several studies on the subject, including a meta-analysis with over 60,000 subjects, determined the significant involvement of factor V Leiden, prothrombin G20210A mutation, plasminogen activator inhibitor-1 and antiphospholipid syndrome in the development of coronary artery disease. The mechanisms involved are currently at different stages of research, with some already established and used as therapeutic targets.
Collapse
Affiliation(s)
- Iris Bararu Bojan
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Stefan Dobreanu
- Recuperare Hospital Iasi, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania (C.B.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Codruta Badescu
- Recuperare Hospital Iasi, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania (C.B.)
| | - Carmen Plesoianu
- Department of Internal Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Nina Filip
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Dan Iliescu
- Department of Internal Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Otilia Frasinariu
- Department of Pediatry, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Razvan Tudor
- Department of Orthopedy, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| |
Collapse
|
4
|
Badescu MC, Badulescu OV, Costache AD, Mitu O, Lupu VV, Dmour BA, Lupu A, Foia LG, Costache II, Rezus C. Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease. Life (Basel) 2023; 13:2221. [PMID: 38004361 PMCID: PMC10672485 DOI: 10.3390/life13112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Advances in the treatment of hemophilia have increased the life expectancy of this population and we are currently facing diseases associated with aging, including cardiovascular ones. Coronary atherosclerosis, with acute myocardial infarction as the most severe form of manifestation, has been recognized as part of the comorbidities of hemophiliacs. However, little is known about peripheral artery disease. Available data show that hemophiliacs have cardiovascular risk factors and atherosclerosis similar to the general population. Impaired thrombus formation and phenotype of atheroma plaque rather than the burden of atherosclerosis explains their lower cardiovascular mortality. Since the effect of traditional cardiovascular risk factors overpowers that of decreased coagulability and promotes the onset and progression of atherosclerotic lesions, screening for traditional cardiovascular risk factors and peripheral artery disease should be integrated into standard hemophilia care. There is evidence that invasive treatments and long-term antithrombotic therapy are generally safe, provided that coagulation factor levels are taken into account and replacement therapy is given when necessary.
Collapse
Affiliation(s)
- Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Hematology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania (A.L.)
| | - Bianca-Ana Dmour
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania (A.L.)
| | - Liliana Georgeta Foia
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (M.C.B.); (O.M.); (B.-A.D.); (I.-I.C.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| |
Collapse
|
5
|
Kadoglou NPE, Stasinopoulou M, Gkougkoudi E, Christodoulou E, Kostomitsopoulos N, Valsami G. The Complementary Effects of Dabigatran Etexilate and Exercise Training on the Development and Stability of the Atherosclerotic Lesions in Diabetic ApoE Knockout Mice. Pharmaceuticals (Basel) 2023; 16:1396. [PMID: 37895867 PMCID: PMC10609840 DOI: 10.3390/ph16101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Aim: To determine the complementary effects of dabigatran etexilate (DE), exercise training (ET), and combination (DE + ET) on the development and stability of the atherosclerotic lesions in diabetic apoE knockout (apoE-/-) mice. Methods: In 48 male apoE-/- diabetic mice, streptozotocin (STZ) was induced for 5 consecutive days. Mice received a high-fat diet (HFD) for 8 weeks and then were randomized into four groups (1. Control/CG, 2. DEG: HFD with DE, 3. ETG: ET on treadmill, 4. DE + ETG: combination DE and ET treatment). At the end of the eighth week, all mice were euthanatized and morphometry of the aortic lesions at the level of aortic valve was obtained. Collagen, elastin, MCP-1, TNF-a, matrix metalloproteinases (MMP-2,-3,-9), and TIMP-1 concentrations within plaques at the aortic valve were determined. Results: All active groups had significantly smaller aorta stenosis (DEG:7.9 ± 2.2%, ETG:17.3 ± 5.3%, DE + ETG:7.1 ± 2.7%) compared to CG (23.3 ± 5.5% p < 0.05), reduced the relative intra-plaque content of MCP-1, macrophages, MMP-3, and MMP-9, and considerably increased collagen, elastin, and TIMP-1 (p < 0.05). Group 4 showed the most pronounced results (p < 0.05). Both DEG and DE + ETG significantly reduced MMP-2 and TNF-a concentrations compared to ETG and CG (p < 0.010). Conclusion: DE and ET treatment of diabetic apoE-/- mice resulted in complementary amelioration of atherosclerotic lesions development and stability, mediated by the anti-inflammatory modulation of both DE and ET.
Collapse
Affiliation(s)
| | - Marianna Stasinopoulou
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Eirini Christodoulou
- Laboratory of Biopharmaceutics & Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece (G.V.)
| | - Nikolaos Kostomitsopoulos
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics & Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece (G.V.)
| |
Collapse
|
6
|
Derosa G, Rizzo M, Brunetti ND, Raddino R, Gavazzoni M, Pasini G, Gaudio G, Maggi A, D'Angelo A, De Gennaro L, Maffioli P. ORal anticoaGulants in diAbetic and Nondiabetic patients with nOn-valvular atrial fibrillatioN (ORGANON). J Diabetes Complications 2023; 37:108512. [PMID: 37390799 DOI: 10.1016/j.jdiacomp.2023.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Diabetes represents a pro-thrombotic condition. OBJECTIVES The primary objective was to evaluate the effects of Vitamin K Antagonist (VKA) compared to direct oral anticoagulants (DOACs) in diabetic and nondiabetic patients with non-valvular atrial fibrillation, newly diagnosed. The secondary objective was to evaluate the effects on the risk of bleeding. METHODS We enrolled 300 patients with newly diagnosed atrial fibrillation. One hundred and sixteen patients were taking warfarin, 31 acenocumarol, 22 dabigatran, 80 rivaroxaban, 34 apixaban, and 17 edoxaban. We evaluated: anthropometric parameters, glycated hemoglobin (HbA1c), fasting and post-prandial glucose (FPG, and PPG), lipid profile, Lp(a), small and dense low-density lipoprotein (SD-LDL), oxidized LDL (Ox-LDL), I-troponin (I-Tn), creatinine, transaminases, iron, red blood cells (RBC); hemoglobin (Hb), platelets (PLT), fibrinogen, D-dimer, anti-thrombin III, C-reactive protein (Hs-CRP), Metalloproteinases-2 (MMP-2), Metalloproteinases-9 (MMP-9), and incidence of bleeding. RESULTS We did not record any differences among nondiabetic patients between VKA and DOACs. However, when we considered diabetic patients, we found a slight, but significant improvement of triglycerides and SD-LDL. As regards incidence of bleeding, minor bleeding was more frequent in VKA diabetic group compared to DOACs diabetic group; furthermore, the incidence of major bleeding was higher with VKA in nondiabetic and diabetic group, compared to patients with DOACs. Among DOACs, we recorded a higher incidence of bleeding (minor and major) with dabigatran compared to rivaroxaban, apixaban and edoxaban in nondiabetic and diabetic patients. CONCLUSION DOACs seem to be metabolically favourable in diabetic patients. Regarding incidence of bleeding, DOACs with the exception of dabigatran, seem better than VKA in diabetic patients.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Riccardo Raddino
- Cardiology Department, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Mara Gavazzoni
- Cardiology Department, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Gianfranco Pasini
- Cardiologic Unit, Presidio Ospedaliero di Gavardo, Gavardo, Brescia, Italy
| | - Giovanni Gaudio
- Internal Medicine Division, Ospedale Angelo Bellini, Somma Lombardo, Varese, Italy
| | - Antonio Maggi
- Cardiologic Unit, Poliambulanza Foundation, Brescia, Italy
| | - Angela D'Angelo
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Pamela Maffioli
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
7
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
8
|
Hara T, Sata M, Fukuda D. Emerging roles of protease-activated receptors in cardiometabolic disorders. J Cardiol 2023; 81:337-346. [PMID: 36195252 DOI: 10.1016/j.jjcc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1-4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
9
|
Agosti P, Mancini I, Sadeghian S, Pagliari MT, Abbasi SH, Pourhosseini H, Boroumand M, Lotfi-Tokaldany M, Pappalardo E, Maino A, Rosendaal FR, Peyvandi F. Factor V Leiden but not the factor II 20210G>A mutation is a risk factor for premature coronary artery disease: a case-control study in Iran. Res Pract Thromb Haemost 2023; 7:100048. [PMID: 36798900 PMCID: PMC9926016 DOI: 10.1016/j.rpth.2023.100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
Background Factor V Leiden (FVL) and factor II c.∗97G>A (rs1799963) are genetic risk factors for venous thromboembolism. Their contribution to coronary artery disease (CAD) is less clear. Objectives This study aimed to investigate the association between FVL, rs1799963, and premature CAD in Iranians. Methods We performed a genetic case-control study of 944 cases and 1081 controls from the premature CAD Milano-Iran study, including patients aged 18-55 (female) and 18-45 years (male) who underwent coronary angiography at the Tehran Heart Centre (Iran) in 2004-2011. Cases had luminal stenosis ≥50% in at least 1 main coronary artery or branch. Controls were age- and sex-matched with no CAD history. FVL and rs1799963 were genotyped using TaqMan SNP genotyping assays. Association was tested by logistic regression adjusted for matching factors and ethnicity. Effect modification by sex and cardiovascular risk factors (metabolic [obesity, hypertension, hyperlipidemia, and diabetes], and smoking) was assessed. Results The risk of premature CAD was increased by 50% in FVL carriers (adjusted odds ratio [adjOR] 1.54 [95% CI, 0.95-2.48]) and slightly reduced in rs1799963 carriers (adjOR 0.71 [95% CI, 0.40-1.27]). These effects were more pronounced in women than men (FVL, adjOR 1.66 vs 1.25; rs1799963, adjOR 0.60 vs 1.07). The risk of premature CAD was substantially increased in carriers of FVL with at least 1 metabolic risk factor compared with noncarriers without metabolic risk factors (adjOR 25.14 [95% CI, 12.51-50.52]). Conclusion FVL but not FII rs1799963 was associated with an increased risk of CAD in young Iranians. This risk increased considerably when combined with metabolic cardiovascular risk factors.
Collapse
Affiliation(s)
- Pasquale Agosti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - Ilaria Mancini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - Saeed Sadeghian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Seyed Hesameddin Abbasi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Global Health and Population, Bernard Lown Scholar in Cardiovascular Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hamidreza Pourhosseini
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Lotfi-Tokaldany
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Emanuela Pappalardo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - Alberto Maino
- Azienda Provinciale per i Servizi Sanitari, Ospedale Santa Chiara, Unit of Internal Medicine, Trento, Italy
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
10
|
Ferreira LGR, Figueiredo RC, das Graças Carvalho M, Rios DRA. Thrombin generation assay as a biomarker of cardiovascular outcomes and mortality: A narrative review. Thromb Res 2022; 220:107-115. [DOI: 10.1016/j.thromres.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
11
|
Nagy M, van der Meijden PEJ, Glunz J, Schurgers L, Lutgens E, ten Cate H, Heitmeier S, Spronk HMH. Integrating Mechanisms in Thrombotic Peripheral Arterial Disease. Pharmaceuticals (Basel) 2022; 15:1428. [PMID: 36422558 PMCID: PMC9695058 DOI: 10.3390/ph15111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Peripheral arterial disease (PAD), a manifestation of systemic atherosclerosis, is underdiagnosed in the general population. Despite the extensive research performed to unravel its pathophysiology, inadequate knowledge exists, thus preventing the development of new treatments. This review aims to highlight the essential elements of atherosclerosis contributing to the pathophysiology of PAD. Furthermore, emphasis will be placed on the role of thrombo-inflammation, with particular focus on platelet and coagulation activation as well as cell-cell interactions. Additional insight will be then discussed to reveal the contribution of hypercoagulability to the development of vascular diseases such as PAD. Lastly, the current antithrombotic treatments will be discussed, and light will be shed on promising new targets aiming to aid the development of new treatments.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Julia Glunz
- Cardiovascular Research, Bayer AG, 42117 Wuppertal, Germany
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, 80539 Munich, Germany
- Experimental Cardiovascular Immunology Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, Gutenberg University Mainz, 55122 Mainz, Germany
| | | | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Li S, Chen H, Zhou L, Cui H, Liang S, Li H. Neutrophil-to-lymphocyte ratio predicts coronary artery lesion severity and long-term cardiovascular mortality in patients with unstable angina pectoris. Acta Cardiol 2022; 77:708-715. [PMID: 35969267 DOI: 10.1080/00015385.2021.1963564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Neutrophil-to-lymphocyte ratio (NLR), one of the composite biomarker of systemic inflammatory status, was proved promising in predicting clinical outcomes of acute coronary syndrome (ACS). However, there were no evidences that NLR was directly relative to the clinical outcomes of unstable angina pectoris (UAP). Therefore, this study was aimed to detect whether NLR could predict the coronary artery lesion severity (indicated as SYNTAX score) and clinical outcomes (especially long-term cardiovascular mortality) in patients with. METHODS In the single-centre retrospective study, 4110 patients with UAP were enrolled and divided into two groups according to their primary NLR values and followed up at a median time duration of 36 months. The differences of SYNTAX score and cardiovascular mortality between groups were analysed, and the predictive value of NLR was determined. RESULTS NLR was positively and linearly correlated with SYNTAX score (r = 0.270). Diabetes (p = 0.049), lymphocyte (p = 0.004), NLR (p = 0.002) and SYNTAX score (p < 0.001) were independent predictors of long-term cardiovascular mortality in patients with UAP. Kaplan-Meier analysis revealed higher occurrence of cardiovascular mortality when NLR > 2.38 (p = 0.015). Receiver operating characteristic (ROC) analysis showed that NLR = 2.76 is an effective cut point for predicting cardiovascular mortality (69.2% sensitivity, 64.8% specificity). CONCLUSIONS NLR value was positively related to the severity of coronary artery lesion and proved to be an independent predictor of cardiovascular mortality in patients with UAP. This study would contribute to therapy and prognosis optimisation of UAP.
Collapse
Affiliation(s)
- Shunbao Li
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, Baoding First Central Hospital, Baoding, China
| | - Hui Chen
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Zhou
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hehe Cui
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siwen Liang
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Li
- Internal Medical Department, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Russo V, Fabiani D. Put out the fire: The pleiotropic anti-inflammatory action of non-vitamin K oral anticoagulants. Pharmacol Res 2022; 182:106335. [PMID: 35781059 DOI: 10.1016/j.phrs.2022.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Non-vitamin K antagonist oral anticoagulants (NOACs) should be the preferred anticoagulant strategy for preventing ischemic stroke in patients with atrial fibrillation (AF) at increased thromboembolic risk and for treating deep venous thromboembolism (DVT) in the general population. Beyond their inhibiting action on the activated factor X (FXa) or thrombin (FIIa), NOACs showed some pleiotropic anti-inflammatory effects. The present review aimed to describe the role of FXa and FIIa in the inflammation pathway and the potential anti-inflammatory effects of NOACs.
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy.
| | - Dario Fabiani
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy
| |
Collapse
|
15
|
Hypercoagulability Impairs Plaque Stability in Diabetes-Induced Atherosclerosis. Nutrients 2022; 14:nu14101991. [PMID: 35631132 PMCID: PMC9143009 DOI: 10.3390/nu14101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus, which is largely driven by nutritional and behavioral factors, is characterized by accelerated atherosclerosis with impaired plaque stability. Atherosclerosis and associated complications are the major cause of mortality in diabetic patients. Efficient therapeutic concepts for diabetes-associated atherosclerosis are lacking. Atherosclerosis among diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we demonstrate that atherosclerotic plaque stability is reduced in hyperglycemic mice expressing dysfunctional TM (TMPro/Pro mice), which have a pro-coagulant phenotype due to impaired thrombin inhibition and markedly reduced aPC generation. The vessel lumen and plaque size of atherosclerotic lesions in the truncus brachiocephalic were decreased in diabetic TMPro/Pro ApoE-/- mice compared to diabetic ApoE-/- mice. While lipid accumulation in lesions of diabetic TMPro/Pro ApoE-/- mice was lower than that in diabetic ApoE-/- mice, morphometric analyses revealed more prominent signs of instable plaques, such as a larger necrotic core area and decreased fibrous cap thickness in diabetic TMPro/Pro ApoE-/- mice. Congruently, more macrophages and fewer smooth muscle cells were observed within lesions of diabetic TMPro/Pro ApoE-/- mice. Thus, impaired TM function reduces plaque stability, a characteristic of hyperglycemia-associated plaques, thus suggesting the crucial role of impaired TM function in mediating diabetes-associated atherosclerosis.
Collapse
|
16
|
Shapiro S, Benson G, Evans G, Harrison C, Mangles S, Makris M. Cardiovascular disease in hereditary haemophilia: The challenges of longevity. Br J Haematol 2022; 197:397-406. [PMID: 35191019 PMCID: PMC9306870 DOI: 10.1111/bjh.18085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
The development of effective and safe treatments has significantly increased the life expectancy of persons with haemophilia (PWH). This has been accompanied by an increase in the comorbidities of ageing including cardiovascular disease, which poses particular challenges due to the opposing risks of bleeding from haemophilia and antithrombotic treatments versus thrombosis. Although mortality secondary to coronary artery disease in PWH is less than in the general population, the rate of atherosclerosis appears similar. The prevalence of atrial fibrillation in PWH and risk of secondary thromboembolic stroke are not well established. PWH can be safely supported through acute coronary interventions but data on the safety and efficacy of long-term antithrombotics are scarce. Increased awareness and research on cardiovascular disease in PWH will be crucial to improve primary prevention, acute management, secondary prevention and to best support ageing PWH.
Collapse
Affiliation(s)
- Susan Shapiro
- Oxford University Hospitals NHS Foundation TrustOxford NIHR Biomedical Research CentreOxfordUK
- Radcliffe Department of MedicineOxford UniversityOxfordUK
| | | | - Gillian Evans
- Kent Haemophilia and Thrombosis CentreEast Kent Hospitals University Foundation NHS TrustCanterburyUK
| | - Catherine Harrison
- Sheffield Haemophilia and Thrombosis CentreRoyal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
| | - Sarah Mangles
- Haemophilia, Haemostasis and Thrombosis Centre, Hampshire Hospitals NHS Foundation TrustBasingstokeUK
| | - Mike Makris
- Sheffield Haemophilia and Thrombosis CentreRoyal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
- Department of Infection, Immunity and Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| |
Collapse
|
17
|
Gao F, Rahman F. DOACs and Atherosclerotic Cardiovascular Disease Management: Can We Find the Right Balance Between Efficacy and Harm. Curr Atheroscler Rep 2022; 24:457-469. [PMID: 35386093 DOI: 10.1007/s11883-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The balance between efficacy and harm remains a challenge in the adoption of non-vitamin K antagonist direct oral anticoagulants (DOACs) for secondary atherosclerotic disease prevention. We provide a comprehensive review of the evidence for and against the addition of DOACs to the current management of atherosclerotic cardiovascular disease, including stable coronary artery disease (CAD), acute coronary syndrome (ACS), peripheral artery disease (PAD), and percutaneous coronary interventions (PCI). RECENT FINDINGS The DOAC class exerts pleiotropic effects on atherosclerotic progression through coagulation and inflammatory pathways. In ACS, low-dose DOAC provides no added efficacy in the setting of dual antiplatelet therapy; however, full-dose DOAC increases bleeding. Efficacy-safety profile favor use of low-dose rivaroxaban in select stable CAD or PAD patients. Atrial fibrillation patients undergoing PCI resort to dual therapy with DOAC due to prohibitory bleeding with triple anti-thrombotic therapy. Evidence favors DOAC use in CAD and PAD; however, careful individual considerations must be undertaken.
Collapse
Affiliation(s)
- Feng Gao
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Faisal Rahman
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Effect of combining aspirin and rivaroxaban on atherosclerosis in mice. Atherosclerosis 2022; 345:7-14. [DOI: 10.1016/j.atherosclerosis.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022]
|
19
|
Kott KA, Morel-Kopp MC, Vernon ST, Takagi Y, Di Bartolo BA, Peter K, Yang JY, Grieve SM, Ward C, Figtree GA. Association of Global Coagulation Profiles With Cardiovascular Risk Factors and Atherosclerosis: A Sex Disaggregated Analysis From the BioHEART-CT Study. J Am Heart Assoc 2021; 10:e020604. [PMID: 34622670 PMCID: PMC8751896 DOI: 10.1161/jaha.120.020604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Although the association between dysregulated coagulation and atherosclerosis is well recognized, individual assays have been of minimal value in understanding disease susceptibility. Here we investigated the association of global coagulation profiles with coronary artery disease with consideration of sex differences. Methods and Results The study included patients from the BioHEART‐CT (The BioHEART Study: Assessing Patients With Suspected Cardiovascular Disease for New Disease Markers and Risk Factors) biobank who had computed tomography coronary angiograms scored for coronary artery calcium score (CACS) and Gensini score. The cohort included 206 adult patients who were referred for clinically indicated computed tomography coronary angiography and had a median of 2 major cardiac risk factors; 50% were women and the average age was 62.6 years (±9.9 years). The overall hemostatic potential (OHP) and calibrated automated thrombography generation assays were performed on platelet‐poor plasma. CACS and Gensini score in men were significantly correlated in bivariate analysis with measures from the OHP assay, and regression models predicting disease severity by CACS or Gensini score were improved by adding the OHP assay variables in men but not in women. The calibrated automated thrombography generation assay demonstrated a more hypercoagulable profile in women than in men. The OHP assay showed hypercoagulable profiles in women with hyperlipidemia and men with obesity. Conclusions The OHP assay identified hypercoagulable profiles associated with different risk factors for each sex and was associated with CACS and Gensini score severity in men, emphasizing the associations between increased fibrin generation and reduced fibrinolysis with cardiac risk factors and early atherosclerosis. Registration Information www.anzctr.org.au. Identifier: ACTRN12618001322224.
Collapse
Affiliation(s)
- Katharine A Kott
- Cardiovascular Discovery Group Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia.,Department of Cardiology Royal North Shore Hospital Sydney Australia.,Northern Clinical School Faculty of Medicine and Health University of Sydney Sydney Australia
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney Australia.,Northern Blood Research Centre Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia
| | - Stephen T Vernon
- Cardiovascular Discovery Group Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia.,Department of Cardiology Royal North Shore Hospital Sydney Australia.,Northern Clinical School Faculty of Medicine and Health University of Sydney Sydney Australia
| | - Yuki Takagi
- Northern Blood Research Centre Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia
| | - Belinda A Di Bartolo
- Cardiovascular Discovery Group Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute Melbourne Australia
| | - Jean Y Yang
- Charles Perkins Centre University of Sydney Sydney Australia.,School of Mathematics and Statistics University of Sydney Sydney Australia
| | - Stuart M Grieve
- Northern Clinical School Faculty of Medicine and Health University of Sydney Sydney Australia.,Department of Radiology Royal Price Alfred Hospital Sydney Australia.,Imaging and Phenotyping Laboratory Charles Perkins Centre Faculty of Medicine and Health University of Sydney Australia
| | - Christopher Ward
- Northern Clinical School Faculty of Medicine and Health University of Sydney Sydney Australia.,Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney Australia.,Northern Blood Research Centre Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia
| | - Gemma A Figtree
- Cardiovascular Discovery Group Kolling Institute of Medical ResearchUniversity of Sydney Sydney Australia.,Department of Cardiology Royal North Shore Hospital Sydney Australia.,Northern Clinical School Faculty of Medicine and Health University of Sydney Sydney Australia.,Charles Perkins Centre University of Sydney Sydney Australia
| |
Collapse
|
20
|
Jang GW, Lee JM, Choi SW, Kim J, Lee YS, Kim HO, Chung H, Woo JS, Kim JB, Kim WS, Kim W. Vascular Protective Effects of New Oral Anticoagulants in Patients with Atrial Fibrillation. J Clin Med 2021; 10:jcm10194332. [PMID: 34640348 PMCID: PMC8509820 DOI: 10.3390/jcm10194332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
This study was designed to determine the efficacy of a new oral anticoagulant (NOAC) therapy for the prevention of endothelial dysfunction and atherosclerosis progression in patients with atrial fibrillation (AF). Sixty-five AF patients with a CHA2DS2-VASc score ≥2 without previous history of cardiovascular disease were registered and randomly assigned to either an NOAC group (dabigatran or rivaroxaban) or the warfarin group. Reactive hyperemia peripheral arterial tonometry (RH-PAT) measurements reflecting endothelial function were taken using Endo-PAT2000. Carotid intima–media thickness (IMT) was measured at baseline, 12 months, and 24 months, and several biomarkers were also analyzed. For the primary end point, the reactive hyperemia index (RHI) for the NOAC group was 1.5 ± 0.4 and that for the warfarin group was 1.6 ± 0.5. The left and right carotid IMT was 0.7 mm in the NOAC groups and 0.8 mm in the warfarin group. At 12 months, RHI was 1.6 ± 0.3 for the dabigatran group, 1.6 ± 0.5 for the rivaroxaban group, and 1.6 ± 0.3 for the warfarin group. The three groups did not differ statistically with respect to change in left and right carotid IMT at 12 and 24 months, respectively. The biomarkers for endothelial function and atherosclerosis were not significantly different. There was a trend of reduced P-selectin levels in the NOAC group compared to the warfarin group. In patients with AF, there were no significant differences in the prevention of endothelial dysfunction and atherosclerosis progression between the NOAC and warfarin groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weon Kim
- Correspondence: ; Tel.: +82-2-958-8167; Fax: +82-2-958-8160
| |
Collapse
|
21
|
Poredos P, Poredos P. Involvement of Inflammation in Venous Thromboembolic Disease: An Update in the Age of COVID-19. Semin Thromb Hemost 2021; 48:93-99. [PMID: 34388843 DOI: 10.1055/s-0041-1732372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inflammatory process is strongly involved in the pathophysiology of venous thromboembolism (VTE) and has a significant role in disease prediction. Inflammation most probably represents a common denominator through which classical and nonclassical risk factors stimulate thrombotic process. Inflammation of the venous wall promotes the release of tissue factor, inhibits the release of anticoagulant factors, and hampers endogenous fibrinolysis. Systemic inflammatory response also inhibits restoration of blood flow in the occluded vessel. Recent studies indicate that increased inflammatory response ("cytokine storm") is related to prothrombotic state and thromboembolic events in patients with coronavirus disease 2019 (COVID-19). The growing evidence of involvement of inflammation in the pathogenesis of VTE indicates the importance of anti-inflammatory treatment and prevention of VTE. While aspirin was shown to be effective in prevention of recurrent venous thrombosis after treatment with anticoagulant drugs, some other anti-inflammatory drugs like nonsteroidal anti-inflammatory agents may have prothrombotic effect, thus potentially increasing the risk of VTE. Recently, new specific anti-inflammatory drug inhibitors of inflammatory markers that have been shown to be involved in the pathogenesis of VTE are being searched. As thrombogenesis is based on activation of coagulation provoked by inflammation, then prevention and treatment of VTE should include both anticoagulant and anti-inflammatory agents. Combined treatment is related to increased risk of bleeding complications, therefore subtherapeutic doses of both drugs should be used to improve the efficacy of management of VTE without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Peter Poredos
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
23
|
Fibrin Clot Properties in Atherosclerotic Vascular Disease: From Pathophysiology to Clinical Outcomes. J Clin Med 2021; 10:jcm10132999. [PMID: 34279484 PMCID: PMC8268932 DOI: 10.3390/jcm10132999] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Fibrin is a major component of thrombi formed on the surface of atherosclerotic plaques. Fibrin accumulation as a consequence of local blood coagulation activation takes place inside atherosclerotic lesions and contributes to their growth. The imbalance between thrombin-mediated fibrin formation and fibrin degradation might enhance atherosclerosis in relation to inflammatory states reflected by increased fibrinogen concentrations, the key determinant of fibrin characteristics. There are large interindividual differences in fibrin clot structure and function measured in plasma-based assays and in purified fibrinogen-based systems. Several observational studies have demonstrated that subjects who tend to generate denser fibrin networks displaying impaired clot lysis are at an increased risk of developing advanced atherosclerosis and arterial thromboembolic events. Moreover, the majority of cardiovascular risk factors are also associated with unfavorably altered fibrin clot properties, with their improvement following effective therapy, in particular with aspirin, statins, and anticoagulant agents. The prothrombotic fibrin clot phenotype has been reported to have a predictive value in terms of myocardial infarction, ischemic stroke, and acute limb ischemia. This review article summarizes available data on the association of fibrin clot characteristics with atherosclerotic vascular disease and its potential practical implications.
Collapse
|
24
|
Abstract
The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
van Gorp RH, Dijkgraaf I, Bröker V, Bauwens M, Leenders P, Jennen D, Dweck MR, Bucerius J, Briedé JJ, van Ryn J, Brandenburg V, Mottaghy F, Spronk HMH, Reutelingsperger CP, Schurgers LJ. Off-target effects of oral anticoagulants - vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J Thromb Haemost 2021; 19:1348-1363. [PMID: 33687782 PMCID: PMC8252511 DOI: 10.1111/jth.15289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.
Collapse
Affiliation(s)
- Rick H. van Gorp
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Nattopharma ASAOsloNorway
| | - Ingrid Dijkgraaf
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Bröker
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Matthias Bauwens
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - Peter Leenders
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Danyel Jennen
- Department of ToxicogenomicsGROW School of Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Marc R. Dweck
- Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Jan Bucerius
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - Jacco J. Briedé
- Department of ToxicogenomicsGROW School of Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Joanne van Ryn
- Department of Cardiometabolic ResearchBoehringer IngelheimBiberachGermany
| | - Vincent Brandenburg
- Klinik Für Kardiologie und NephrologieRhein‐Maas Klinikum WürselenWürselenGermany
| | - Felix Mottaghy
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- Department of Nuclear MedicineUniversity Hospital RWTH Aachen UniversityAachenGermany
| | - Henri M. H. Spronk
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Chris P. Reutelingsperger
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Leon J. Schurgers
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
26
|
Pisaniello AD, Psaltis PJ, King PM, Liu G, Gibson RA, Tan JT, Duong M, Nguyen T, Bursill CA, Worthley MI, Nicholls SJ, Di Bartolo BA. Omega-3 fatty acids ameliorate vascular inflammation: A rationale for their atheroprotective effects. Atherosclerosis 2021; 324:27-37. [PMID: 33812168 DOI: 10.1016/j.atherosclerosis.2021.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Clinical trials have demonstrated reductions in major adverse cardiovascular events with purified high-dose eicosapentaenoic acid (EPA), independent of effects on lipids. We aimed to investigate whether omega-3 fatty acids reduce vascular inflammation, a critical mediator of atherosclerosis, and hypothesised that EPA is superior to docosahexaenoic acid (DHA). METHODS In a double-blind randomised controlled trial and cell-culture study, 40 healthy volunteers were supplemented with 4 g daily of either EPA, DHA, fish oil (2:1 EPA:DHA), or placebo for 30 days. Serum was incubated with TNF-stimulated human umbilical vein endothelial cells (HUVECs), and markers of acute vascular inflammation (AVI) were measured. The effects of EPA, DHA (600 mg/kg/day), olive oil, or no treatment were also measured in preclinical models of [1] AVI using a periarterial collar (C57Bl/6J; n = 40 mice) and [2] atherosclerosis where ApoE-/- mice (n = 40) were fed a 16-week atherogenic diet. RESULTS EPA supplementation reduced expression of C-C motif chemokine ligand 2 (CCL2) by 25% compared to placebo (p = 0.03). In the AVI model, EPA reduced vascular expression of VCAM1 by 43% (p = 0.02) and CCL2 by 41% (p = 0.03). Significant inverse correlations were observed between EPA levels and vascular expression of VCAM1 (r = -0.56, p = 0.001) and CCL2 (r = -0.56, p = 0.001). In ApoE-/- mice, EPA reduced aortic expression of Il1b by 44% (p = 0.04) and Tnf by 49% (p = 0.04), with similar inverse correlations between EPA levels and both Il1b (r = -0.63, p = 0.009) and Tnf (r = -0.50, p = 0.04). CONCLUSIONS Supplementation with EPA, more so than DHA, ameliorates acute and chronic vascular inflammation, providing a rationale for the cardiovascular benefit observed with high dose omega-3 fatty acid administration.
Collapse
Affiliation(s)
- Anthony D Pisaniello
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Peter J Psaltis
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peta M King
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Ge Liu
- School of Agriculture, Food and Wine, FOODPlus Research Centre, University of Adelaide, Adelaide, Australia
| | - Robert A Gibson
- School of Agriculture, Food and Wine, FOODPlus Research Centre, University of Adelaide, Adelaide, Australia
| | - Joanne Tm Tan
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | | | - Christina A Bursill
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew I Worthley
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, Adelaide, Australia; Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, Australia
| | - Belinda A Di Bartolo
- Discipline of Medicine, University of Adelaide, Adelaide, Australia; Kolling Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Ngo ATP, Jordan KR, Mueller PA, Hagen MW, Reitsma SE, Puy C, Revenko AS, Lorentz CU, Tucker EI, Cheng Q, Hinds MT, Fazio S, Monia BP, Gailani D, Gruber A, Tavori H, McCarty OJT. Pharmacological targeting of coagulation factor XI mitigates the development of experimental atherosclerosis in low-density lipoprotein receptor-deficient mice. J Thromb Haemost 2021; 19:1001-1017. [PMID: 33421301 PMCID: PMC8549080 DOI: 10.1111/jth.15236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Human coagulation factor (F) XI deficiency, a defect of the contact activation system, protects against venous thrombosis, stroke, and heart attack, whereas FXII, plasma prekallikrein, or kininogen deficiencies are asymptomatic. FXI deficiency, inhibition of FXI production, activated FXI (FXIa) inhibitors, and antibodies to FXI that interfere with FXI/FXII interactions reduce experimental thrombosis and inflammation. FXI inhibitors are antithrombotic in patients, and FXI and FXII deficiencies are atheroprotective in apolipoprotein E-deficient mice. OBJECTIVES Investigate the effects of pharmacological targeting of FXI in experimental models of atherogenesis and established atherosclerosis. METHODS AND RESULTS Low-density lipoprotein receptor-knockout (Ldlr-/- ) mice were administered high-fat diet (HFD) for 8 weeks; concomitantly, FXI was targeted with anti-FXI antibody (14E11) or FXI antisense oligonucleotide (ASO). 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas when compared with controls, and 14E11 also reduced aortic sinus lesions. In an established disease model, in which therapy was given after atherosclerosis had developed, Ldlr-/- mice were fed HFD for 8 weeks and then administered 14E11 or FXI-ASO weekly until 16 weeks on HFD. In this established disease model, 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas, but not in aortic sinus. In cultures of human endothelium, FXIa exposure disrupted VE-Cadherin expression and increased endothelial lipoprotein permeability. Strikingly, we found that 14E11 prevented the disruption of VE-Cadherin expression in aortic sinus lesions observed in the atherogenesis mouse model. CONCLUSION Pharmacological targeting of FXI reduced atherogenesis in Ldlr-/- mice. Interference with the contact activation system may safely reduce development or progression of atherosclerosis.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Kelley R. Jordan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Paul A. Mueller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Matthew W. Hagen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Stéphanie E. Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | - Christina U. Lorentz
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Erik I. Tucker
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Quifang Cheng
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Sergio Fazio
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - András Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
28
|
Noonan J, Bobik A, Peter K. The tandem stenosis mouse model: Towards understanding, imaging, and preventing atherosclerotic plaque instability and rupture. Br J Pharmacol 2020; 179:979-997. [PMID: 33368184 DOI: 10.1111/bph.15356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
The rupture of unstable atherosclerotic plaques is the major cause of cardiovascular mortality and morbidity. Despite significant limitations in our understanding and ability to identify unstable plaque pathology and prevent plaque rupture, most atherosclerosis research utilises preclinical animal models exhibiting stable atherosclerosis. Here, we introduce the tandem stenosis (TS) mouse model that reflects plaque instability and rupture, as seen in patients. The TS model involves dual ligation of the right carotid artery, leading to locally predefined unstable atherosclerosis in hypercholesterolaemic mice. It exhibits key characteristics of human unstable plaques, including plaque rupture, luminal thrombosis, intraplaque haemorrhage, large necrotic cores, thin or ruptured fibrous caps and extensive immune cell accumulation. Altogether, the TS model represents an ideal preclinical tool for improving our understanding of human plaque instability and rupture, for the development of imaging technologies to identify unstable plaques, and for the development and testing of plaque-stabilising treatments for the prevention of atherosclerotic plaque rupture.
Collapse
Affiliation(s)
- Jonathan Noonan
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Alex Bobik
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.,Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020; 309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
The association between thrombosis and acute coronary syndromes is well established. Inflammation and activation of innate and adaptive immunity are another important factor implicated in atherosclerosis. However, the exact interactions between thrombosis and inflammation in atherosclerosis are less well understood. Accumulating data suggest a firm interaction between these two key pathophysiologic processes. Pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and interleukin-1, have been implicated in the thrombotic cascade following plaque rupture and myocardial infarction. Furthermore, cell adhesion molecules accelerate not only atheromatosis but also thrombosis formation while activated platelets are able to trigger leukocyte adhesion and accumulation. Additionally, tissue factor, thrombin, and activated coagulation factors induce the release of pro-inflammatory cytokines such as prostaglandin and C reactive protein, which may further induce von Willebrand factor secretion. Treatments targeting immune activation (i.e. interleukin-1 inhibitors, colchicine, statins, etc.) may also beneficially modulate platelet activation while common anti-thrombotic therapies appear to attenuate the inflammatory process. Taken together in the context of cardiovascular diseases, thrombosis and inflammation should be studied and managed as a common entity under the concept of thrombo-inflammation.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Marianna Leopoulou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasiliki Chara Mystakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
30
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
31
|
Torramade-Moix S, Palomo M, Vera M, Jerez D, Moreno-Castaño AB, Zafar MU, Rovira J, Diekmann F, Garcia-Pagan JC, Escolar G, Cases A, Diaz-Ricart M. Apixaban Downregulates Endothelial Inflammatory and Prothrombotic Phenotype in an In Vitro Model of Endothelial Dysfunction in Uremia. Cardiovasc Drugs Ther 2020; 35:521-532. [PMID: 32651897 DOI: 10.1007/s10557-020-07010-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic kidney disease (CKD) associates with inflammatory and prothrombotic phenotypes, resulting in higher cardiovascular risk. Factor Xa displays functions beyond coagulation, exhibiting proinflammatory effects. The aim of the present study was to investigate whether a direct FXa inhibitor protects from the endothelial dysfunction (ED) caused by uremia. METHODS Macro (HUVEC) and microvascular (HMEC) endothelial cells (ECs) were exposed to serum from uremic patients or healthy donors, in absence and presence of apixaban (60 ng/ml). We evaluated changes in surface VCAM-1 and ICAM-1, intracellular eNOS, reactive oxygen species (ROS), and von Willebrand Factor (VWF) production by immunofluorescence, reactivity of the extracellular matrix (ECM) towards platelets, and intracellular signaling. RESULTS ECs exposed to uremic serum triggered dysregulation of all the parameters. Presence of apixaban resulted in decreased expression of VCAM-1 (178 ± 14 to 89 ± 2% on HMEC and 324 ± 71 to 142 ± 25% on HUVEC) and ICAM-1 (388 ± 60 to 111 ± 10% on HMEC and 148 ± 9% to 90 ± 7% on HUVEC); increased eNOS (72 ± 8% to 95 ± 10% on HMEC); normalization of ROS levels (173 ± 21 to 114 ± 13% on HMEC and 165 ± 14 to 127 ± 7% on HUVEC); lower production of VWF (168 ± 14 to 92 ± 4% on HMEC and 151 ± 22 to 99 ± 11% on HUVEC); and decreased platelet adhesion onto ECM (134 ± 22 to 93 ± 23% on HMEC and 161 ± 14 to 117 ± 7% on HUVEC). Apixaban inhibited p38MAPK and p42/44 activation in HUVEC (139 ± 15 to 48 ± 15% and 411 ± 66 to 177 ± 57%, respectively) (p < 0.05 vs control for all parameters). CONCLUSION Anti-FXa strategies, such as apixaban, prevented ED caused by the uremic milieu, exhibiting anti-inflammatory and antioxidant properties and modulating the reactivity of the ECM.
Collapse
Affiliation(s)
- Sergi Torramade-Moix
- Pathology Department, CDB, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Pathology Department, CDB, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
- Hospital Clinic, Josep Carreras Leukaemia Research Institute, University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team (BET), Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Manel Vera
- Nephrology Department, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Didac Jerez
- Pathology Department, CDB, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - M Urooj Zafar
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigacion Renal (REDINREN), Madrid, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigacion Renal (REDINREN), Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Institut Clinic de Nefrologia i Urologia (ICNU), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Joan Carles Garcia-Pagan
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Universidad de Barcelona, Barcelona, Spain
- Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), University of Barcelona, Barcelona, Spain
| | - Gines Escolar
- Pathology Department, CDB, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Aleix Cases
- Nephrology Department, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Pathology Department, CDB, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain.
- Barcelona Endothelium Team (BET), Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| |
Collapse
|
32
|
Chen D, Li K, Festenstein S, Karegli J, Wilkinson H, Leonard H, Wei L, Ma N, Xia M, Tam H, Wang J, Xu Q, McVey JH, Smith RAG, Dorling A. Regression of Atherosclerosis in ApoE-/- Mice Via Modulation of Monocyte Recruitment and Phenotype, Induced by Weekly Dosing of a Novel "Cytotopic" Anti-Thrombin Without Prolonged Anticoagulation. J Am Heart Assoc 2020; 9:e014811. [PMID: 32611229 PMCID: PMC7670518 DOI: 10.1161/jaha.119.014811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Background Anticoagulants induce atherosclerosis regression in animal models but exploiting this clinically is limited by bleeding events. Here we test a novel thrombin inhibitor, PTL060, comprising hirulog covalently linked to a synthetic myristoyl electrostatic switch to tether to cell membranes. Methods and Results ApoE-/- mice were fed chow or high-fat diets, before transplantation of congenic aortic segments or injection of PTL060, parental hirulog, control saline, or labeled CD11b positive cells. Aortic transplants from transgenic mice expressing anticoagulants on endothelium did not develop atherosclerosis. A single intravenous injection of PTL060, but not hirulog inhibited atheroma development by >50% compared with controls when assessed 4 weeks later. Mice had prolonged bleeding times for only one seventh of the time that PTL060 was biologically active. Repeated weekly injections of PTL060 but not hirulog caused regression of atheroma. We dissected 2 contributory mechanisms. First, the majority of CCR2+ (C-C chemokine receptor type 2+) monocytes recruited into plaques expressed CCR7 (C-C chemokine receptor type 7), ABCA1 (ATP-binding cassette transporter - 1), and interleukin-10 in PTL060 mice, a phenotype seen in <20% of CCR2+ recruits in controls. Second, after several doses, there was a significant reduction in monocyte recruits, the majority of which were CCR2-negative with a similar regression-associated phenotype. Regression equivalent to that induced by intravenous PTL060 was induced by adoptive transfer of CD11b+ cells pre-coated with PTL060. Conclusions Covalent linkage of a myristoyl electrostatic switch onto hirulog in PTL060 uncouples the pharmacodynamic effects on hemostasis and atherosclerosis, such that plaque regression, mediated predominantly via effects on monocytes, is accompanied by only transient anticoagulation.
Collapse
Affiliation(s)
- Daxin Chen
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Ke Li
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Sam Festenstein
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Julieta Karegli
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Hannah Wilkinson
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Hugh Leonard
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Lin‐Lin Wei
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Ning Ma
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Min Xia
- Thrombosis Research InstituteLondonUnited Kingdom
| | - Henry Tam
- Department of ImagingImperial College Healthcare NHS TrustCharing Cross HospitalLondonUnited Kingdom
| | - Jian‐an Wang
- Department of CardiologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingbo Xu
- Cardiovascular DivisionKing’s College LondonJames Black CentreLondonUnited Kingdom
| | - John H. McVey
- School of Bioscience & MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUnited Kingdom
| | - Richard A. G. Smith
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Anthony Dorling
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| |
Collapse
|
33
|
Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307:80-86. [PMID: 32674807 DOI: 10.1016/j.atherosclerosis.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the formation of lipid rich plaques in the wall of medium to large sized arteries. Atherothrombosis represents the terminal manifestation of this pathology in which atherosclerotic plaque rupture or erosion triggers the formation of occlusive thrombi. Occlusion of arteries and resultant tissue ischemia in the heart and brain causes myocardial infarction and stroke, respectively. Tissue factor (TF) is the receptor for the coagulation protease factor VIIa, and formation of the TF:factor VIIa complex triggers blood coagulation. TF is expressed at high levels in atherosclerotic plaques by both macrophage-derived foam cells and vascular smooth muscle cells, as well as extracellular vesicles derived from these cells. Importantly, TF mediated activation of coagulation is critically important for arterial thrombosis in the setting of atherosclerotic disease. The major endogenous inhibitor of the TF:factor VIIa complex is TF pathway inhibitor 1 (TFPI-1), which is also present in atherosclerotic plaques. In mouse models, increased or decreased expression of TFPI-1 has been found to alter atherosclerosis. This review highlights the contribution of TF-dependent activation of coagulation to atherthrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Correale M, Leopizzi A, Mallardi A, Ranieri A, Suriano MP, D'Alessandro D, Tricarico L, Mazzeo P, Tucci S, Pastore G, Maulucci G, Di Biase M, Brunetti ND. Switch to direct anticoagulants and improved endothelial function in patients with chronic heart failure and atrial fibrillation. Thromb Res 2020; 195:16-20. [PMID: 32634728 DOI: 10.1016/j.thromres.2020.06.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic heart failure (CHF) is characterized by higher rates of atrial fibrillation (AF) and endothelial dysfunction (ED). First line anticoagulant therapy in AF is represented by direct oral anticoagulants (DOACs); several patients, however, are still treated with vitamin-K inhibitors. The use of DOACs is associated in previous studies with an improved vascular function. We therefore sought to evaluate possible changes in endothelial function assessed by flow-mediated dilation (FMD) in patients with CHF and AF shifting from warfarin to DOACs. METHODS Forty-three consecutive outpatients were enrolled in the study. FMD was assessed at baseline and after 4 months. Patients were compared according to AC therapy. RESULTS After the first measurement of FMD, 18 patients "switched" to DOACs because of poor compliance to warfarin therapy or time in therapeutic range, 19 patients continued to use DOACs, 6 warfarin. "Switched" patients to DOACs therapy showed an improved FMD (19.0 ± 6.6% vs 3.8 ± 1.3%, p < 0.0001); C-reactive protein (CRP) levels decreased in "switched" patients from 1.4 ± 0.5 to 1.0 ± 0.7 mg/dl (p < 0.05). FMD and CRP changes were not significant in patients who did not changed anticoagulant therapy. In switched patients, changes in CRP levels were proportional to FMD changes (r = -0.50, p < 0.05). Shifting from warfarin to DOACs was significantly correlated to improved FMD levels even at multivariable analysis (p < 0.05). CONCLUSIONS Switch from warfarin to DOACs in patents with CHF and AF was associated in an observational non randomized study with an improved endothelial function. Changes in FMD values were related to changes in CRP levels.
Collapse
Affiliation(s)
- Michele Correale
- Cardiology Department, Ospedali Riuniti University Hospital, Foggia, Italy
| | - Alessandra Leopizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Adriana Mallardi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Alessandro Ranieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Miriam Pia Suriano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Damiano D'Alessandro
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Salvatore Tucci
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pastore
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Guglielmo Maulucci
- Cardiology Department, Ospedali Riuniti University Hospital, Foggia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
35
|
Wypasek E, Natorska J, Mazur P, Kopytek M, Gawęda B, Kapusta P, Madeja J, Iwaniec T, Kapelak B, Undas A. Effects of rivaroxaban and dabigatran on local expression of coagulation and inflammatory factors within human aortic stenotic valves. Vascul Pharmacol 2020; 130:106679. [PMID: 32387621 DOI: 10.1016/j.vph.2020.106679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment with non-vitamin K antagonist oral anticoagulants (NOACs) such as dabigatran (a direct thrombin inhibitor) or rivaroxaban (a direct inhibitor of factor [F] Xa) attenuates atherosclerotic plaque progression in hypercholesterolemic mice. PURPOSE To evaluate the effect of NOACs application on the expression of coagulation proteins in loco within stenotic aortic valves and in valve interstitial cells (VICs) from patients with severe aortic stenosis (AS). METHODS Primary cultures of VICs obtained from 90 patients undergoing aortic valve replacement were stimulated with TNF-α (50 ng/mL) and pre-treated with rivaroxaban (1 and 10 ng/mL) or dabigatran (25 and 250 ng/mL). The expression of coagulation proteins was analyzed by immunofluorescence. Cytokine levels were measured by ELISA. RESULTS FX, FXa, FVII, thrombin and PAR1/2 were present in loco within human aortic stenotic valves. Cultured VICs exhibited constant expression of FX, TF, PAR1/2. Exposure of VICs to TNF-α caused the upregulated expression of TF, PAR1/2 and induced expression of thrombin, FVII and FXa. FX was expressed by 80% of VICs, regardless of stimulation. Cultured VICs were able to synthesize metalloproteinases 1-3, IL-6, IL-32, IL-34, osteopontin and osteocalcin, the levels of which increased under TNF-α stimulation. NOACs added to culture inhibited coagulation factor and PAR1/2 expression. Moreover, NOACs down-regulated VIC-derived proteins responsible for valve calcification and extracellular matrix remodeling. CONCLUSIONS NOACs at therapeutic concentrations may inhibit the effects of FXa and thrombin at in vitro level. It might be speculated that long-term treatment with rivaroxaban or dabigatran could attenuate the progression of AS in humans.
Collapse
Affiliation(s)
- Ewa Wypasek
- John Paul II Hospital, Cracow, Poland; Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Cracow University, Cracow, Poland.
| | - Joanna Natorska
- John Paul II Hospital, Cracow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Piotr Mazur
- John Paul II Hospital, Cracow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Kopytek
- John Paul II Hospital, Cracow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Bogusław Gawęda
- Division of Cardiovascular Surgery, St. Jadwiga Provincial Clinical Hospital, Rzeszow, Poland
| | | | | | - Teresa Iwaniec
- Department of Hematology, Jagiellonian University, Krakow, Poland
| | - Bogusław Kapelak
- John Paul II Hospital, Cracow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anetta Undas
- John Paul II Hospital, Cracow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
36
|
Binder CJ, Borén J, Catapano AL, Dallinga-Thie G, Kronenberg F, Mallat Z, Negrini S, Raggi P, von Eckardstein A. The year 2019 in Atherosclerosis. Atherosclerosis 2020; 299:67-75. [PMID: 32248950 DOI: 10.1016/j.atherosclerosis.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Geesje Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Hamanaka Y, Sotomi Y, Hirata A, Kobayashi T, Ichibori Y, Makino N, Hayashi T, Sakata Y, Hirayama A, Higuchi Y. Persistent Systemic Inflammation Is Associated With Bleeding Risk in Atrial Fibrillation Patients. Circ J 2020; 84:411-418. [PMID: 32051386 DOI: 10.1253/circj.cj-19-1006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study investigated the impact of systemic inflammation on bleeding risk in non-valvular atrial fibrillation (NVAF) patients treated with direct oral anticoagulants (DOAC). METHODS AND RESULTS We conducted a single-center prospective registry of 2,216 NVAF patients treated with DOAC: the DIRECT registry (UMIN000033283). High-sensitivity C-reactive protein (hsCRP) was measured ≤3 months before (pre-DOAC hsCRP) and 6±3 months after initiation of DOAC (post-DOAC hsCRP). Multivariate logistic regression model was used to assess the influence of systemic inflammation and conventional bleeding risk factors on major bleeding according to International Society on Thrombosis and Haemostasis criteria. Based on the findings, we created a new bleeding risk assessment score: the ORBIT-i score, which included post-DOAC hsCRP >0.100 mg/dL and all components of the ORBIT score. A total of 1,848 patients had both pre- and post-DOAC hsCRP data (follow-up duration, 460±388 days). Post-DOAC hsCRP was associated with major bleeding (OR, 2.770; 95% CI: 1.687-4.548, P<0.001). Patients with post-DOAC hsCRP >0.100 mg/dL more frequently had major bleeding than those without (log-rank test, P<0.001). ORBIT-i score had the highest C-index of 0.711 (95% CI, 0.654-0.769) compared with the ORBIT and HAS-BLED scores. CONCLUSIONS Persistent systemic inflammation was associated with major bleeding risk. ORBIT-i score had a higher discriminative performance compared with the conventional bleeding risk scores.
Collapse
Affiliation(s)
| | | | - Akio Hirata
- Department of Cardiology, Osaka Police Hospital
| | | | | | | | | | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | | |
Collapse
|
38
|
Tang X, Zhang Z, Fang M, Han Y, Wang G, Wang S, Xue M, Li Y, Zhang L, Wu J, Yang B, Mwangi J, Lu Q, Du X, Lai R. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res 2020; 30:119-132. [PMID: 31811276 PMCID: PMC7015052 DOI: 10.1038/s41422-019-0260-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023] Open
Abstract
Coagulation balance is maintained through fine-tuned interactions among clotting factors, whose physiological concentrations vary substantially. In particular, the concentrations of coagulation proteases (pM to nM) are much lower than their natural inactivator antithrombin (AT, ~ 3 μM), suggesting the existence of other coordinators. In the current study, we found that transferrin (normal plasma concentration ~40 μM) interacts with fibrinogen, thrombin, factor XIIa (FXIIa), and AT with different affinity to maintain coagulation balance. Normally, transferrin is sequestered by binding with fibrinogen (normal plasma concentration ~10 μM) at a molar ratio of 4:1. In atherosclerosis, abnormally up-regulated transferrin interacts with and potentiates thrombin/FXIIa and blocks AT's inactivation effect on coagulation proteases by binding to AT, thus inducing hypercoagulability. In the mouse model, transferrin overexpression aggravated atherosclerosis, whereas transferrin inhibition via shRNA knockdown or treatment with anti-transferrin antibody or designed peptides interfering with transferrin-thrombin/FXIIa interactions alleviated atherosclerosis. Collectively, these findings identify that transferrin is an important clotting regulator and an adjuster in the maintenance of coagulation balance and modifies the coagulation cascade.
Collapse
Affiliation(s)
- Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Ministry of Education, College of Life Science and Technology, 430070, Wuhan, Hubei, China
| | - Min Xue
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 650041, Kunming, Yunnan, China
| | - Li Zhang
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 650041, Kunming, Yunnan, China
| | - Jian Wu
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 650041, Kunming, Yunnan, China
| | - Biqing Yang
- Department of Laboratory, Dehong People's Hospital, 678400, Dehong, Yunnan, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China.
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, 201203, Shanghai, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Visser M, van Oerle R, ten Cate H, Laux V, Mackman N, Heitmeier S, Spronk HM. Plasma Kallikrein Contributes to Coagulation in the Absence of Factor XI by Activating Factor IX. Arterioscler Thromb Vasc Biol 2020; 40:103-111. [DOI: 10.1161/atvbaha.119.313503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives:
FXIa (factor XIa) induces clot formation, and human congenital FXI deficiency protects against venous thromboembolism and stroke. In contrast, the role of FXI in hemostasis is rather small, especially compared with FIX deficiency. Little is known about the cause of the difference in phenotypes associated with FIX deficiency and FXI deficiency. We speculated that activation of FIX via the intrinsic coagulation is not solely dependent on FXI(a; activated FXI) and aimed at identifying an FXI-independent FIX activation pathway.
Approach and Results:
We observed that ellagic acid and long-chain polyphosphates activated the coagulation system in FXI-deficient plasma, as could be demonstrated by measurement of thrombin generation, FIXa-AT (antithrombin), and FXa-AT complex levels, suggesting an FXI bypass route of FIX activation. Addition of a specific PKa (plasma kallikrein) inhibitor to FXI-deficient plasma decreased thrombin generation, prolonged activated partial thromboplastin time, and diminished FIXa-AT and FXa-AT complex formation, indicating that PKa plays a role in the FXI bypass route of FIX activation. In addition, FIXa-AT complex formation was significantly increased in
F11
−/−
mice treated with ellagic acid or long-chain polyphosphates compared with controls and this increase was significantly reduced by inhibition of PKa.
Conclusions:
We demonstrated that activation of FXII leads to thrombin generation via FIX activation by PKa in the absence of FXI. These findings may, in part, explain the different phenotypes associated with FIX and FXI deficiencies.
Collapse
Affiliation(s)
- Mayken Visser
- From the Bayer AG, Cardiovascular Research, Wuppertal, Germany (M.V., V.L., S.H.)
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.V., R.v.O., H.t.C., H.M.H.S.)
| | - René van Oerle
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.V., R.v.O., H.t.C., H.M.H.S.)
| | - Hugo ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.V., R.v.O., H.t.C., H.M.H.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany (H.t.C.)
| | - Volker Laux
- From the Bayer AG, Cardiovascular Research, Wuppertal, Germany (M.V., V.L., S.H.)
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Stefan Heitmeier
- From the Bayer AG, Cardiovascular Research, Wuppertal, Germany (M.V., V.L., S.H.)
| | - Henri M.H. Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.V., R.v.O., H.t.C., H.M.H.S.)
| |
Collapse
|
40
|
Olie RH, van der Meijden PEJ, Spronk HMH, Ten Cate H. Antithrombotic Therapy: Prevention and Treatment of Atherosclerosis and Atherothrombosis. Handb Exp Pharmacol 2020; 270:103-130. [PMID: 32776281 DOI: 10.1007/164_2020_357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a multifactorial vascular disease that develops in the course of a lifetime. Numerous risk factors for atherosclerosis have been identified, mostly inflicting pro-inflammatory effects. Vessel injury, such as occurring during erosion or rupture of atherosclerotic lesions triggers blood coagulation, in attempt to maintain hemostasis (protect against bleeding). However, thrombo-inflammatory mechanisms may drive blood coagulation such that thrombosis develops, the key process underlying myocardial infarction and ischemic stroke (not due to embolization from the heart). In the blood coagulation system, platelets and coagulation proteins are both essential elements. Hyperreactivity of blood coagulation aggravates atherosclerosis in preclinical models. Pharmacologic inhibition of blood coagulation, either with platelet inhibitors, or better documented with anticoagulants, or both, limits the risk of thrombosis and may potentially reverse atherosclerosis burden, although the latter evidence is still based on animal experimentation.Patients at risk of atherothrombotic complications should receive a single antiplatelet agent (acetylsalicylic acid, ASA, or clopidogrel); those who survived an atherothrombotic event will be prescribed temporary dual antiplatelet therapy (ASA plus a P2Y12 inhibitor) in case of myocardial infarction (6-12 months), or stroke (<6 weeks), followed by a single antiplatelet agent indefinitely. High risk for thrombosis patients (such as those with peripheral artery disease) benefit from a combination of an anticoagulant and ASA. The price of gained efficacy is always increased risk of (major) bleeding; while tailoring therapy to individual needs may limit the risks to some extent, new generations of agents that target less critical elements of hemostasis and coagulation mechanisms are needed to maintain efficacy while reducing bleeding risks.
Collapse
Affiliation(s)
- R H Olie
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands.,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P E J van der Meijden
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands. .,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
41
|
Rahadian A, Fukuda D, Salim HM, Yagi S, Kusunose K, Yamada H, Soeki T, Shimabukuro M, Sata M. Thrombin inhibition by dabigatran attenuates endothelial dysfunction in diabetic mice. Vascul Pharmacol 2019; 124:106632. [PMID: 31759113 DOI: 10.1016/j.vph.2019.106632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Diabetic patients have coagulation abnormalities, in which thrombin plays a key role. Whereas accumulating evidence suggests that it also contributes to the development of vascular dysfunction through the activation of protease-activated receptors (PARs). Here we investigated whether the blockade of thrombin attenuates endothelial dysfunction in diabetic mice. Induction of diabetes by streptozotocin (STZ) increased the expression of PAR1, PAR3, and PAR4 in the aorta. STZ-induced diabetic mice showed impairment of endothelial function, while the administration of dabigatran etexilate, a direct thrombin inhibitor, significantly attenuated endothelial dysfunction in diabetic mice with no alteration of metabolic parameters including blood glucose level. Dabigatran did not affect endothelium-independent vasodilation. Dabigatran decreased the expression of inflammatory molecules (e.g., MCP-1 and ICAM-1) in the aorta of diabetic mice. Thrombin increased the expression of these inflammatory molecules and the phosphorylation of IκBα, and decreased the phosphorylation of eNOSSer1177 in human umbilical endothelial cells (HUVEC). Thrombin significantly impaired the endothelium-dependent vascular response of aortic rings obtained from wild-type mice. Inhibition of NF-κB attenuated thrombin-induced inflammatory molecule expression in HUVEC and ameliorated thrombin-induced endothelial dysfunction in aortic rings. Dabigatran attenuated the development of diabetes-induced endothelial dysfunction. Thrombin signaling may serve as a potential therapeutic target in diabetic condition.
Collapse
Affiliation(s)
- Arief Rahadian
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan.
| | - Hotimah Masdan Salim
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; Department of Diabetes, Endocrinology and Metabolism School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
42
|
Decreased M1 macrophage polarization in dabigatran-treated Ldlr-deficient mice: Implications for atherosclerosis and adipose tissue inflammation. Atherosclerosis 2019; 287:81-88. [DOI: 10.1016/j.atherosclerosis.2019.06.897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
|
43
|
Ruf W. Proteases, Protease-Activated Receptors, and Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:1252-1254. [PMID: 29793990 DOI: 10.1161/atvbaha.118.311139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wolfram Ruf
- From the Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; and Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA.
| |
Collapse
|
44
|
Ouweneel AB, Verwilligen RAF, Van Eck M. Vulnerable plaque and vulnerable blood: Two critical factors for spontaneous atherothrombosis in mouse models. Atherosclerosis 2019; 284:160-164. [PMID: 30913516 DOI: 10.1016/j.atherosclerosis.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023]
Abstract
Atherothrombotic events such as myocardial infarction and ischemic stroke are a major cause of morbidity and mortality worldwide. Understanding the molecular and cellular mechanisms of atherosclerotic plaque destabilization or erosion, and developing new therapeutics to prevent acute cardiovascular events is important for vascular biology research and clinical cardiovascular medicine. However, basic research on plaque destabilization, rupture and erosion is hampered by the lack of appropriate animal models of atherothrombosis. Unprovoked atherothrombosis is very scarce in commonly used mouse models for atherosclerosis, the low-density lipoprotein receptor knockout and apolipoprotein E knockout mice. Therefore, specific interventions are required to induce atherothrombosis in these models. Two strategies can be employed to induce atherothrombosis: 1) plaque destabilization and 2) induction of blood hypercoagulability. Although the individual strategies yield atherothrombosis at low incidence, it appears that the combination of both plaque destabilization and an increase in blood coagulability is the most promising strategy to induce atherothrombosis on a larger scale. In this review, we summarize the recent developments on mouse models for the investigation of atherothrombosis.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| |
Collapse
|
45
|
Posthuma JJ, Posma JJN, van Oerle R, Leenders P, van Gorp RH, Jaminon AMG, Mackman N, Heitmeier S, Schurgers LJ, Ten Cate H, Spronk HMH. Targeting Coagulation Factor Xa Promotes Regression of Advanced Atherosclerosis in Apolipoprotein-E Deficient Mice. Sci Rep 2019; 9:3909. [PMID: 30846818 PMCID: PMC6405752 DOI: 10.1038/s41598-019-40602-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory vascular disorder, complicated by plaque rupture and subsequently atherothrombosis. In vitro studies indicate that key clotting proteases, such as factor Xa (FXa), can promote atherosclerosis, presumably mediated through protease activated receptors (PARs). Although experimental studies showed reduced onset of atherosclerosis upon FXa inhibition, the effect on pre-existing plaques has never been studied. Therefore, we investigated effects of FXa inhibition by rivaroxaban on both newly-formed and pre-existing atherosclerotic plaques in apolipoprotein-e deficient (ApoE-/-) mice. Female ApoE-/- mice (age: 8-9 weeks, n = 10/group) received western type diet (WTD) or WTD supplemented with rivaroxaban (1.2 mg/g) for 14 weeks. In a second arm, mice received a WTD for 14 weeks, followed by continuation with either WTD or WTD supplemented with rivaroxaban (1.2 mg/g) for 6 weeks (total 20 weeks). Atherosclerotic burden in aortic arch was assessed by haematoxilin & eosin immunohistochemistry (IHC); plaque vulnerability was examined by IHC against macrophages, collagen, vascular smooth muscle cells (VSMC) and matrix metalloproteinases (MMPs). In addition, PAR1 and -2 expressions and their main activators thrombin and FXa in the plaque were determined in the plaque. Administration of rivaroxaban at human therapeutic concentrations reduced the onset of atherosclerosis (-46%, p < 0.05), and promoted a regression of pre-existing plaques in the carotids (-24%, p < 0.001). In addition, the vulnerability of pre-existing plaques was reduced by FXa inhibition as reflected by reduced macrophages (-39.03%, p < 0.05), enhanced collagen deposition (+38.47%, p < 0.05) and diminished necrotic core (-31.39%, p < 0.05). These findings were accompanied with elevated vascular smooth muscle cells and reduced MMPs. Furthermore, expression of PARs and their activators, thrombin and FXa was diminished after rivaroxaban treatment. Pharmacological inhibition of FXa promotes regression of advanced atherosclerotic plaques and enhances plaque stability. These data suggest that inhibition of FXa may be beneficial in prevention and regression of atherosclerosis, possibly mediated through reduced activation of PARs.
Collapse
Affiliation(s)
- Jelle J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Surgery, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Jens J N Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rene van Oerle
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter Leenders
- Department of Pharmacology-Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Armand M G Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefan Heitmeier
- Research & Development,Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Scridon A, Mărginean A, Huțanu A, Chinezu L, Gheban D, Perian M, Vântu A, Gherțescu D, Fișcă PC, Șerban RC, Chevalier P, Dobreanu D. Vascular protease-activated receptor 4 upregulation, increased platelet aggregation, and coronary lipid deposits induced by long-term dabigatran administration - results from a diabetes animal model. J Thromb Haemost 2019; 17:538-550. [PMID: 30653813 DOI: 10.1111/jth.14386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Essentials The impact of long-term thrombin inhibition outside the coagulation cascade is far from clear. We aimed to assess the impact of dabigatran etexilate (DE) in diabetic and control rats. In diabetic rats, DE increased platelet aggregation and lead to coronary lipid deposits. Long-term thrombin inhibition may increase atherosclerotic and atherothrombotic risk. SUMMARY: Background Besides its role in the coagulation cascade, thrombin contributes to platelet aggregation and to a plethora of non-hemostatic functions. Objectives To assess the impact of long-term thrombin inhibition with dabigatran etexilate (DE) on platelet aggregation and on extrahemostatic thrombin-related functions in diabetic and control rats. Methods Markers of inflammation, endothelial dysfunction, oxidative stress, angiogenesis and cell adhesion molecules were quantified in control rats (Control; n = 6), DE-treated control rats (Control-Dabi; n = 8), diabetic rats (Diabetes; n = 5), and DE-treated diabetic rats (Diabetes-Dabi; n = 8). Agonist-induced platelet aggregation, aortic and coronary lipid deposits and aortic protease-activated receptor 4 (PAR4) expression were also assessed. Results Control-Dabi rats showed significantly higher high-sensitivity C-reactive protein, von Willebrand factor (VWF), vascular endothelial growth factor (VEGF) and fibronectin levels, and significantly lower PAR4 agonist-induced aggregation, than Control rats. Control-Dabi rats also showed mild aortic lipid deposits, whereas no such changes were observed in Control rats. Diabetes-Dabi rats showed significantly higher VWF, VEGF and fibronectin levels than Diabetes rats, and similar PAR4 agonist-induced aggregation as Diabetes rats, and significantly higher ADP-induced aggregation than Diabetes rats. Coronary lipid deposits were observed in 75% of Diabetes-Dabi rats and in none of the Diabetes rats. PAR4 expression was 20.4% higher in Control-Dabi rats and 27.4% higher in Diabetes-Dabi rats than in their non-treated peers. Conclusions This study indicates that long-term thrombin inhibition increases vascular PAR4 expression, promotes atherosclerosis-related mechanisms, and, in diabetic rats, increases platelet aggregation and favors the occurrence of coronary lipid deposits. These experimental data suggest that long-term thrombin inhibition may increase atherosclerotic and atherothrombotic risk, particularly in the presence of diabetes.
Collapse
Affiliation(s)
- Alina Scridon
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, Tîrgu Mureș, Romania
| | - Alina Mărginean
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Military Hospital 'Dr Constantin Papilian', Cluj-Napoca, Romania
| | - Adina Huțanu
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, Tîrgu Mureș, Romania
| | - Laura Chinezu
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Histopathological Department, Forensic Medicine Institute of Tîrgu Mureș, Tîrgu Mureș, Romania
| | - Dan Gheban
- Pathology Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcel Perian
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
| | - Adriana Vântu
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
| | - Doina Gherțescu
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Paul C Fișcă
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | - Rǎzvan C Șerban
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| | | | - Dan Dobreanu
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureș, Romania
- Emergency Institute for Cardiovascular Diseases and Transplantation, Tîrgu Mureș, Romania
| |
Collapse
|
47
|
Eggebrecht L, Prochaska JH, Tröbs SO, Schwuchow-Thonke S, Göbel S, Diestelmeier S, Schulz A, Arnold N, Panova-Noeva M, Koeck T, Rapp S, Gori T, Lackner KJ, Ten Cate H, Münzel T, Wild PS. Direct oral anticoagulants and vitamin K antagonists are linked to differential profiles of cardiac function and lipid metabolism. Clin Res Cardiol 2019; 108:787-796. [PMID: 30604046 DOI: 10.1007/s00392-018-1408-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Experimental data indicate that direct acting oral anticoagulants (DOAC) and vitamin K antagonists (VKA) may exert differential effects on cardiovascular disease. METHODS Data from the prospective, observational, single-center MyoVasc Study were used to examine associations of DOAC as compared to VKA with subclinical markers of cardiovascular disease, cardiac function, and humoral biomarkers in heart failure (HF). RESULTS Multivariable analysis adjusted for age, sex, traditional cardiovascular risk factors, comorbidities, and medications with correction for multiple testing demonstrated that DOAC therapy was among all investigated parameters an independent significant predictor of better diastolic function (E/E': β - 0.24 [- 0.36/- 0.12]; P < 0.0001) and higher levels of ApoA1 (β + 0.11 g/L [0.036/0.18]; P = 0.0038) compared to VKA therapy. In propensity score-weighted analyses, the most pronounced differences between DOAC and VKA-based therapy were also observed for E/E' (∆ - 2.36) and ApoA1 (∆ + 0.06 g/L). Sensitivity analyses in more homogeneous subsamples of (i) individuals with AF and (ii) individuals with asymptomatic HF confirmed the consistency and robustness of these findings. In the comparison of factor IIa and Xa-directed oral anticoagulation, no differences were observed regarding cardiac function (E/E' ratio: βIIa inhibitor - 0.22 [- 0.36/- 0.08] vs. βXa inhibitor - 0.24 [- 0.37/- 0.11]) and lipid metabolism (ApoA1: βIIa inhibitor 0.10 [0.01/0.18] vs. βXa inhibitor 0.12 [0.04/0.20]) compared to VKA therapy. CONCLUSION This study provides the first evidence for differential, non-conventional associations of oral anticoagulants on cardiac function and lipid metabolism in humans. The potentially beneficial effect of DOACs in the highly vulnerable population of HF individuals needs to be further elucidated and may have implications for individually tailored anticoagulation therapy.
Collapse
Affiliation(s)
- Lisa Eggebrecht
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven-Oliver Tröbs
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sören Schwuchow-Thonke
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Göbel
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Simon Diestelmeier
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Natalie Arnold
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marina Panova-Noeva
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Koeck
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Tommaso Gori
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Hugo Ten Cate
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Thrombosis Expertise Center Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200, Maastricht, The Netherlands
| | - Thomas Münzel
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp Sebastian Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany. .,Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany. .,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
48
|
Posma JJ, Grover SP, Hisada Y, Owens AP, Antoniak S, Spronk HM, Mackman N. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2019; 39:13-24. [PMID: 30580574 PMCID: PMC6310042 DOI: 10.1161/atvbaha.118.311655] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Activation of the blood coagulation cascade leads to fibrin deposition and platelet activation that are required for hemostasis. However, aberrant activation of coagulation can lead to thrombosis. Thrombi can cause tissue ischemia, and fibrin degradation products and activated platelets can enhance inflammation. In addition, coagulation proteases activate cells by cleavage of PARs (protease-activated receptors), including PAR1 and PAR2. Direct oral anticoagulants have recently been developed to specifically inhibit the coagulation proteases FXa (factor Xa) and thrombin. Administration of these inhibitors to wild-type mice can be used to determine the roles of FXa and thrombin in different inflammatory diseases. These results can be compared with the phenotypes of mice with deficiencies of either Par1 (F2r) or Par2 (F2rl1). However, inhibition of coagulation proteases will have effects beyond reducing PAR signaling, and a deficiency of PARs will abolish signaling from all proteases that activate these receptors. We will summarize studies that examine the roles of coagulation proteases, particularly FXa and thrombin, and PARs in different mouse models of inflammatory disease. Targeting FXa and thrombin or PARs may reduce inflammatory diseases in humans.
Collapse
Affiliation(s)
- Jens J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Steven P Grover
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henri M Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
49
|
Comparison of anti-inflammatory effects of rivaroxaban vs. dabigatran in patients with non-valvular atrial fibrillation (RIVAL-AF study): multicenter randomized study. Heart Vessels 2019; 34:1002-1013. [PMID: 30599063 DOI: 10.1007/s00380-018-01324-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Some experimental studies have shown that direct oral anticoagulants (DOACs) have anti-inflammatory effects. However, the interval changes in inflammatory markers in patients with non-valvular atrial fibrillation (AF) who receive DOACs remain unknown. Between July 2013 and April 2014, a total of 187 AF patients randomly assigned to receive rivaroxaban (n = 91) or dabigatran (n = 96) were assessed for eligibility. The levels of the following inflammatory markers were serially evaluated: high-sensitivity C-reactive protein, pentraxin-3, interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor-α, monocyte chemotactic protein-1, growth and differentiation factor-15, and soluble thrombomodulin (sTM). The aim in this study was to evaluate the anti-inflammatory effects of rivaroxaban and dabigatran in patients with AF, in addition to the impact of markers on bleeding events. Finally, 117 patients (rivaroxaban: n = 55, dabigatran: n = 62) were included in the analysis at 12 months. Although the interval changes in sTM levels tended to be greater in the dabigatran group [0.3 (0-0.7) vs. 0.5 (0-1.0) FU/ml, p = 0.061], there were no significant differences in the interval changes in any inflammatory marker between 2 groups. There were no significant differences in bleeding events between 2 groups. The interval changes in sTM levels were significantly greater in patients with bleeding compared with those without [0.8 (0.5-1.3) vs. 0.4 (- 0.1-0.8) FU/ml, p = 0.017]. There were no significant differences in the interval changes in any inflammatory marker between rivaroxaban and dabigatran treatments in patients with AF. The increased levels of sTM after DOACs treatment might be related to bleeding events.
Collapse
|
50
|
Verdecchia P, Reboldi G, Angeli F, Mazzotta G, Lip GYH, Brueckmann M, Kleine E, Wallentin L, Ezekowitz MD, Yusuf S, Connolly SJ, Di Pasquale G. Dabigatran vs. warfarin in relation to the presence of left ventricular hypertrophy in patients with atrial fibrillation- the Randomized Evaluation of Long-term anticoagulation therapY (RE-LY) study. Europace 2018; 20:253-262. [PMID: 28520924 PMCID: PMC5834147 DOI: 10.1093/europace/eux022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/01/2017] [Indexed: 11/12/2022] Open
Abstract
Aim We tested the hypothesis that left ventricular hypertrophy (LVH) interferes with the antithrombotic effects of dabigatran and warfarin in patients with atrial fibrillation (AF). Methods and results This is a post-hoc analysis of the Randomized Evaluation of Long-term anticoagulation therapY (RE-LY) Study. We defined LVH by electrocardiography (ECG) and included patients with AF on the ECG tracing at entry. Hazard ratios (HR) for each dabigatran dose vs. warfarin were calculated in relation to LVH. LVH was present in 2353 (22.7%) out of 10 372 patients. In patients without LVH, the rates of primary outcome were 1.59%/year with warfarin, 1.60% with dabigatran 110 mg (HR vs. warfarin 1.01, 95% confidence interval (CI) 0.75-1.36) and 1.08% with dabigatran 150 mg (HR vs. warfarin 0.68, 95% CI 0.49-0.95). In patients with LVH, the rates of primary outcome were 3.21%/year with warfarin, 1.69% with dabigatran 110 mg (HR vs. warfarin 0.52, 95% CI 0.32-0.84) and 1.55% with 150 mg (HR vs. warfarin 0.48, 95% CI 0.29-0.78). The interaction between LVH status and dabigatran 110 mg vs. warfarin was significant for the primary outcome (P = 0.021) and stroke (P = 0.016). LVH was associated with a higher event rate with warfarin, not with dabigatran. In the warfarin group, the time in therapeutic range was significantly lower in the presence than in the absence of LVH. Conclusions LVH was associated with a lower antithrombotic efficacy of warfarin, but not of dabigatran, in patients with AF. Consequently, the relative benefit of the lower dose of dabigatran compared to warfarin was enhanced in patients with LVH. The higher dose of dabigatran was superior to warfarin regardless of LVH status. Clinical trial registration http:www.clinicaltrials.gov. Unique identifier: NCT00262600.
Collapse
Affiliation(s)
| | | | - Fabio Angeli
- Department of Cardiology and Cardiovascular Pathophysiology, Hospital S.M. della Misericordia, Perugia, Italy
| | | | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Martina Brueckmann
- Boehringer Ingelheim GmbH & Co, Ingelheim am Rhein, Germany.,Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eva Kleine
- Boehringer Ingelheim GmbH & Co, Ingelheim am Rhein, Germany
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Michael D Ezekowitz
- Sidney Kimmel Medical College at Jefferson University, Philadelphia, PA, USA.,Medical College and Lankenau Medical Center, Wynnewood, PA, USA
| | - Salim Yusuf
- McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|