1
|
Bolognesi E, Guerini FR, Carta A, Chiappedi M, Sotgiu S, Mensi MM, Agliardi C, Zanzottera M, Clerici M. The Role of SNAP-25 in Autism Spectrum Disorders Onset Patterns. Int J Mol Sci 2023; 24:14042. [PMID: 37762342 PMCID: PMC10531097 DOI: 10.3390/ijms241814042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorders (ASD) can present with different onset and timing of symptom development; children may manifest symptoms early in their first year of life, i.e., early onset (EO-ASD), or may lose already achieved skills during their second year of life, thus showing a regressive-type onset (RO-ASD). It is still controversial whether regression represents a neurobiological subtype of ASD, resulting from distinct genetic and environmental causes. We focused this study on the 25 kD synaptosomal-associated protein (SNAP-25) gene involved in both post-synaptic formation and adhesion and considered a key player in the pathogenesis of ASD. To this end, four single nucleotide polymorphisms (SNPs) of the SNAP-25 gene, rs363050, rs363039, rs363043, and rs1051312, already known to be involved in neurodevelopmental and psychiatric disorders, were analyzed in a cohort of 69 children with EO-ASD and 58 children with RO-ASD. Both the rs363039 G allele and GG genotype were significantly more frequently carried by patients with EO-ASD than those with RO-ASD and healthy controls (HC). On the contrary, the rs1051312 T allele and TT genotype were more frequent in individuals with RO-ASD than those with EO-ASD and HC. Thus, two different SNAP-25 alleles/genotypes seem to discriminate between EO-ASD and RO-ASD. Notably, rs1051312 is located in the 3' untranslated region (UTR) of the gene and is the target of microRNA (miRNA) regulation, suggesting a possible epigenetic role in the onset of regressive autism. These SNPs, by discriminating two different onset patterns, may represent diagnostic biomarkers of ASD and may provide insight into the different biological mechanisms towards the development of better tailored therapeutic and rehabilitative approaches.
Collapse
Affiliation(s)
- Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Matteo Chiappedi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Martina Maria Mensi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
2
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
3
|
Agostini S, Bolognesi E, Mancuso R, Marventano I, Citterio LA, Guerini FR, Clerici M. miR-23a-3p and miR-181a-5p modulate SNAP-25 expression. PLoS One 2023; 18:e0279961. [PMID: 36649268 PMCID: PMC9844927 DOI: 10.1371/journal.pone.0279961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
SNAP-25 protein is a key protein of the SNARE complex that is involved in synaptic vesicles fusion with plasma membranes and neurotransmitter release, playing a fundamental role in neural plasticity. Recently the concentration of three specific miRNAs-miR-27b-3p, miR-181a-5p and miR-23a-3p -was found to be associated with a specific SNAP-25 polymorphism (rs363050). in silico analysis showed that all the three miRNAs target SNAP-25, but the effect of the interaction between these miRNAs and the 3'UTR of SNAP-25 mRNA is currently unknown. For this reason, we verified in vitro whether miR-27b-3p, miR-181a-5p and miR-23a-3p modulate SNAP-25 gene and protein expression. Initial experiments using miRNAs-co-transfected Vero cells and SNAP-25 3'UTR luciferase reporter plasmids showed that miR-181a-5p (p≤0.01) and miR-23a-3p (p<0.05), but not miR-27b-3p, modulate the luciferase signal, indicating that these two miRNAs bind the SNAP-25 3'UTR. Results obtained using human oligodendroglial cell line (MO3.13) transfected with miR-181a-5p or miR-27b-3p confirmed that miR-181a-5p and miR-23a-3p regulate SNAP-25 gene and protein expression. Interestingly, the two miRNAs modulate in an opposite way SNAP-25, as miR-181a-5p significantly increases (p<0.0005), whereas miR-23a-3p decreases (p<0.0005) its expression. These results for the first time describe the ability of miR-181a-5p and miR-23a-3p to modulate SNAP-25 expression, suggesting their possible use as biomarkers or as therapeutical targets for diseases in which SNAP-25 expression is altered.
Collapse
Affiliation(s)
| | | | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- * E-mail:
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Vasiliev GV, Ovchinnikov VY, Lisachev PD, Bondar NP, Grinkevich LN. The Expression of miRNAs Involved in Long-Term Memory Formation in the CNS of the Mollusk Helix lucorum. Int J Mol Sci 2022; 24:ijms24010301. [PMID: 36613744 PMCID: PMC9820140 DOI: 10.3390/ijms24010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mollusks are unique animals with a relatively simple central nervous system (CNS) containing giant neurons with identified functions. With such simple CNS, mollusks yet display sufficiently complex behavior, thus ideal for various studies of behavioral processes, including long-term memory (LTM) formation. For our research, we use the formation of the fear avoidance reflex in the terrestrial mollusk Helix lucorum as a learning model. We have shown previously that LTM formation in Helix requires epigenetic modifications of histones leading to both activation and inactivation of the specific genes. It is known that microRNAs (miRNAs) negatively regulate the expression of genes; however, the role of miRNAs in behavioral regulation has been poorly investigated. Currently, there is no miRNAs sequencing data being published on Helix lucorum, which makes it impossible to investigate the role of miRNAs in the memory formation of this mollusk. In this study, we have performed sequencing and comparative bioinformatics analysis of the miRNAs from the CNS of Helix lucorum. We have identified 95 different microRNAs, including microRNAs belonging to the MIR-9, MIR-10, MIR-22, MIR-124, MIR-137, and MIR-153 families, known to be involved in various CNS processes of vertebrates and other species, particularly, in the fear behavior and LTM. We have shown that in the CNS of Helix lucorum MIR-10 family (26 miRNAs) is the most representative one, including Hlu-Mir-10-S5-5p and Hlu-Mir-10-S9-5p as top hits. Moreover, we have shown the involvement of the MIR-10 family in LTM formation in Helix. The expression of 17 representatives of MIR-10 differentially changes during different periods of LTM consolidation in the CNS of Helix. In addition, using comparative analysis of microRNA expression upon learning in normal snails and snails with deficient learning abilities with dysfunction of the serotonergic system, we identified a number of microRNAs from several families, including MIR-10, which expression changes only in normal animals. The obtained data can be used for further fundamental and applied behavioral research.
Collapse
Affiliation(s)
- Gennady V. Vasiliev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vladimir Y. Ovchinnikov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel D. Lisachev
- Federal Research Center for Information and Computational Technologies, 6 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Larisa N. Grinkevich
- The Federal State Budget Scientific Institution Pavlov Institute of Physiology, Russian Academy of Sciences, 6 nab. Makarova, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
5
|
Therapeutic Implications of microRNAs in Depressive Disorders: A Review. Int J Mol Sci 2022; 23:ijms232113530. [PMID: 36362315 PMCID: PMC9658840 DOI: 10.3390/ijms232113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are hidden players in complex psychophysical phenomena such as depression and anxiety related disorders though the activation and deactivation of multiple proteins in signaling cascades. Depression is classified as a mood disorder and described as feelings of sadness, loss, or anger that interfere with a person’s everyday activities. In this review, we have focused on exploration of the significant role of miRNAs in depression by affecting associated target proteins (cellular and synaptic) and their signaling pathways which can be controlled by the attachment of miRNAs at transcriptional and translational levels. Moreover, miRNAs have potential role as biomarkers and may help to cure depression through involvement and interactions with multiple pharmacological and physiological therapies. Taken together, miRNAs might be considered as promising novel therapy targets themselves and may interfere with currently available antidepressant treatments.
Collapse
|
6
|
Paschou M, Papazafiri P, Charalampous C, Zachariadis M, Dedos SG, Doxakis E. Neuronal microRNAs safeguard ER Ca 2+ homeostasis and attenuate the unfolded protein response upon stress. Cell Mol Life Sci 2022; 79:373. [PMID: 35727337 PMCID: PMC11073139 DOI: 10.1007/s00018-022-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/23/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Ca2+ is a critical mediator of neurotransmitter release, synaptic plasticity, and gene expression, but also excitotoxicity. Ca2+ signaling and homeostasis are coordinated by an intricate network of channels, pumps, and calcium-binding proteins, which must be rapidly regulated at all expression levels. Τhe role of neuronal miRNAs in regulating ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs) was investigated to understand the underlying mechanisms that modulate ER Ca2+ release. RyRs and IP3Rs are critical in mounting and propagating cytosolic Ca2+ signals by functionally linking the ER Ca2+ content, while excessive ER Ca2+ release via these receptors is central to the pathophysiology of a wide range of neurological diseases. Herein, two brain-restricted microRNAs, miR-124-3p and miR-153-3p, were found to bind to RyR1-3 and IP3R3 3'UTRs, and suppress their expression at both the mRNA and protein level. Ca2+ imaging studies revealed that overexpression of these miRNAs reduced ER Ca2+ release upon RyR/IP3R activation, but had no effect on [Ca2+]i under resting conditions. Interestingly, treatments that cause excessive ER Ca2+ release decreased expression of these miRNAs and increased expression of their target ER Ca2+ channels, indicating interdependence of miRNAs, RyRs, and IP3Rs in Ca2+ homeostasis. Furthermore, by maintaining the ER Ca2+ content, miR-124 and miR-153 reduced cytosolic Ca2+ overload and preserved protein-folding capacity by attenuating PERK signaling. Overall, this study shows that miR-124-3p and miR-153-3p fine-tune ER Ca2+ homeostasis and alleviate ER stress responses.
Collapse
Affiliation(s)
- Maria Paschou
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Panagiota Papazafiri
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Chrysanthi Charalampous
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
| | - Michael Zachariadis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
- Material and Chemical Characterization Facility (MC2), Faculty of Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Skarlatos G Dedos
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece.
| | - Epaminondas Doxakis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
7
|
Chen YL, Tong L, Chen Y, Fu CH, Peng JB, Ji LL. MiR-153 downregulation alleviates PTSD-like behaviors and reduces cell apoptosis by upregulating the Sigma-1 receptor in the hippocampus of rats exposed to single-prolonged stress. Exp Neurol 2022; 352:114034. [PMID: 35259352 DOI: 10.1016/j.expneurol.2022.114034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may lead to a series of changes in the central nervous system, including impaired synaptic plasticity, neuronal dendritic spine loss, enhanced apoptosis and increased inflammation. However, the specific mechanism of PTSD has not been studied clearly. In the present study, we found that the level of miR-153-3p in the hippocampus of rats exposed tosingle-prolonged stresss (SPS) was upregulated, but its downstream target σ-1R showed a significant decrease. The downregulation of miR-153 could alleviate the PTSD-like behaviors in the rats exposed to SPS, and this effect might be related to the upregulation of σ-1R and PSD95. Furthermore, anti-miR-153 could also increase the dendritic spine density and reduce cell apoptosis in the hippocampus of SPS rats. In addition, we showed that the mTOR signaling pathway might be involved in the regulation of σ-1R in the hippocampus of rats exposed to SPS. The results of this study indicated that miR-153 might alleviate PTSD-like behaviors by regulating cell morphology and reducing cell apoptosis in the hippocampus of rats exposed to SPS by targeting σ-1R, which might be related to the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu-Lu Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Butti Z, Pan YE, Giacomotto J, Patten SA. Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish. Commun Biol 2021; 4:792. [PMID: 34172817 PMCID: PMC8233344 DOI: 10.1038/s42003-021-02302-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is a hexanucleotide repeat expansion within the C9orf72 gene. Reduced levels of C9orf72 mRNA and protein have been found in ALS/FTD patients, but the role of this protein in disease pathogenesis is still poorly understood. Here, we report the generation and characterization of a stable C9orf72 loss-of-function (LOF) model in the zebrafish. We show that reduced C9orf72 function leads to motor defects, muscle atrophy, motor neuron loss and mortality in early larval and adult stages. Analysis of the structure and function of the neuromuscular junctions (NMJs) of the larvae, reveal a marked reduction in the number of presynaptic and postsynaptic structures and an impaired release of quantal synaptic vesicles at the NMJ. Strikingly, we demonstrate a downregulation of SV2a upon C9orf72-LOF and a reduced rate of synaptic vesicle cycling. Furthermore, we show a reduced number and size of Rab3a-postive synaptic puncta at NMJs. Altogether, these results reveal a key function for C9orf72 in the control of presynaptic vesicle trafficking and release at the zebrafish larval NMJ. Our study demonstrates an important role for C9orf72 in ALS/FTD pathogenesis, where it regulates synaptic vesicle release and neuromuscular functions. Butti et al. generate a C9orf72 loss-of-function model in zebrafish. They find that that C9orf72 is required for presynaptic vesicle trafficking and release at the zebrafish larval neuromuscular junctions. This study provides functional insights into the pathogenesis of amyotrophic lateral sclerosis and fronto-temporal dementia.
Collapse
Affiliation(s)
- Zoé Butti
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.
| |
Collapse
|
11
|
Dakik H, Mantash S, Nehme A, Kobeissy F, Zabet-Moghaddam M, Mirzaei P, Mechref Y, Gaillard A, Prestoz L, Zibara K. Analysis of the Neuroproteome Associated With Cell Therapy After Intranigral Grafting in a Mouse Model of Parkinson Disease. Front Neurosci 2021; 15:621121. [PMID: 33776636 PMCID: PMC7991918 DOI: 10.3389/fnins.2021.621121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
Advances in large-scale proteomics analysis have been very useful in understanding pathogenesis of diseases and elaborating therapeutic strategies. Proteomics has been employed to study Parkinson disease (PD); however, sparse studies reported proteome investigation after cell therapy approaches. In this study, we used liquid chromatography–tandem mass spectrometry and systems biology to identify differentially expressed proteins in a translational mouse model of PD after cell therapy. Proteins were extracted from five nigrostriatal-related brain regions of mice previously lesioned with 6-hydroxydopamine in the substantia nigra. Protein expression was compared in non-grafted brain to 1 and 7 days after intranigral grafting of E12.5 embryonic ventral mesencephalon (VM). We found a total of 277 deregulated proteins after transplantation, which are enriched for lipid metabolism, oxidative phosphorylation and PD, thus confirming that our animal model is similar to human PD and that the presence of grafted cells modulates the expression of these proteins. Notably, seven proteins (Acta1, Atp6v1e1, Eci3, Lypla2, Pip4k2a, Sccpdh, and Sh3gl2) were commonly down-regulated after engraftment in all studied brain regions. These proteins are known to be involved in the formation of lipids and recycling of dopamine (DA) vesicle at the synapse. Moreover, intranigral transplantation of VM cells decreased the expression of proteins related to oxidative stress, especially in the nigrostriatal pathway containing the DA grafted neurons. In the same regions, an up-regulation of several proteins including α-synuclein and tyrosine hydroxylase was observed, whereas expression of tetraspanin 7 was shut down. Overall, these results suggest that intranigral transplantation of VM tissue in an animal model of PD may induce a decrease of oxidative stress in the nigrostriatal pathway and a restoration of the machinery of neurotransmitters, particularly DA release to promote DA transmission through a decrease of D2 DA receptors endocytosis. Identification of new mechanistic elements involved in the nigrostriatal reconstruction process, using translational animal models and systems biology, is a promising approach to enhance the repair of this pathway in PD patients undergoing cell therapy.
Collapse
Affiliation(s)
- Hassan Dakik
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Université de Tours, Tours, France
| | - Sarah Mantash
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Ali Nehme
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,McGill University and Génome Québec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Afsaneh Gaillard
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Laetitia Prestoz
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Kazem Zibara
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
12
|
Yan ML, Zhang S, Zhao HM, Xia SN, Jin Z, Xu Y, Yang L, Qu Y, Huang SY, Duan MJ, Mao M, An XB, Mishra C, Zhang XY, Sun LH, Ai J. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 2020; 18:57. [PMID: 32252776 PMCID: PMC7137307 DOI: 10.1186/s12964-020-00551-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic brain hypoperfusion (CBH) is closely related to Alzheimer’s disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. Methods In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1–43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). Results Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1–43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2′-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3′ untranslated region (3’UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. Conclusions Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3’UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ming-Jing Duan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Meng Mao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xin-Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
13
|
SNHG1 promotes MPP +-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53:1. [PMID: 31907031 PMCID: PMC6943908 DOI: 10.1186/s40659-019-0267-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson’s disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. Results Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. Conclusion SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.
Collapse
|
14
|
Farnsworth DR, Saunders LM, Miller AC. A single-cell transcriptome atlas for zebrafish development. Dev Biol 2019; 459:100-108. [PMID: 31782996 DOI: 10.1016/j.ydbio.2019.11.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
The ability to define cell types and how they change during organogenesis is central to our understanding of animal development and human disease. Despite the crucial nature of this knowledge, we have yet to fully characterize all distinct cell types and the gene expression differences that generate cell types during development. To address this knowledge gap, we produced an atlas using single-cell RNA-sequencing methods to investigate gene expression from the pharyngula to early larval stages in developing zebrafish. Our single-cell transcriptome atlas encompasses transcriptional profiles from 44,102 cells across four days of development using duplicate experiments that confirmed high reproducibility. We annotated 220 identified clusters and highlighted several strategies for interrogating changes in gene expression associated with the development of zebrafish embryos at single-cell resolution. Furthermore, we highlight the power of this analysis to assign new cell-type or developmental stage-specific expression information to many genes, including those that are currently known only by sequence and/or that lack expression information altogether. The resulting atlas is a resource for biologists to generate hypotheses for functional analysis, which we hope integrates with existing efforts to define the diversity of cell-types during zebrafish organogenesis, and to examine the transcriptional profiles that produce each cell type over developmental time.
Collapse
Affiliation(s)
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
15
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
16
|
Monestime CM, Taibi A, Gates KP, Jiang K, Sirotkin HI. CoRest1 regulates neurogenesis in a stage‐dependent manner. Dev Dyn 2019; 248:918-930. [DOI: 10.1002/dvdy.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Andrew Taibi
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Keith P. Gates
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Karen Jiang
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Howard I. Sirotkin
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| |
Collapse
|
17
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
18
|
Wide Profiling of Circulating MicroRNAs in Spinocerebellar Ataxia Type 7. Mol Neurobiol 2019; 56:6106-6120. [PMID: 30721448 DOI: 10.1007/s12035-019-1480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by a CAG repeat expansion in the ATXN7 gene coding region. Disease onset and progression are highly variable between patients, thus identification of specific/sensitive biomarkers that can improve the monitoring of disease progression is an immediate need. Because altered expression of circulating microRNAs (miRNAs) has been shown in various neurological diseases, they could be useful biomarkers for SCA7. In this study, we showed, to our knowledge for the first time, the expression profile of circulating miRNAs in SCA7. Using the TaqMan profiling low density array (TLDA), we found 71 differentially expressed miRNAs in the plasma of SCA7 patients, compared with healthy controls. The reliability of TLDA data was validated independently by quantitative real-time polymerase chain reaction in an independent cohort of patients and controls. We identified four validated miRNAs that possesses the diagnostic value to discriminate between healthy controls and patients (hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-miR-30b-5p). The target genes of these four miRNAs were significantly enriched in cellular processes that are relevant to central nervous system function, including Fas-mediated cell-death, heparansulfate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor activating protein receptor pathways. Finally, we identify a signature of four miRNAs associated with disease severity that discriminate between early onset and adult onset, highlighting their potential utility to surveillance disease progression. In summary, circulating miRNAs might provide accessible biomarkers for disease stage and progression and help to identify novel cellular processes involved in SCA7.
Collapse
|
19
|
Mastrodonato V, Beznoussenko G, Mironov A, Ferrari L, Deflorian G, Vaccari T. A genetic model of CEDNIK syndrome in zebrafish highlights the role of the SNARE protein Snap29 in neuromotor and epidermal development. Sci Rep 2019; 9:1211. [PMID: 30718891 PMCID: PMC6361908 DOI: 10.1038/s41598-018-37780-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
Homozygous mutations in SNAP29, encoding a SNARE protein mainly involved in membrane fusion, cause CEDNIK (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma), a rare congenital neurocutaneous syndrome associated with short life expectancy, whose pathogenesis is unclear. Here, we report the analysis of the first genetic model of CEDNIK in zebrafish. Strikingly, homozygous snap29 mutant larvae display CEDNIK-like features, such as microcephaly and skin defects. Consistent with Snap29 role in membrane fusion during autophagy, we observe accumulation of the autophagy markers p62 and LC3, and formation of aberrant multilamellar organelles and mitochondria. Importantly, we find high levels of apoptotic cell death during early development that might play a yet uncharacterized role in CEDNIK pathogenesis. Mutant larvae also display mouth opening problems, feeding impairment and swimming difficulties. These alterations correlate with defective trigeminal nerve formation and excess axonal branching. Since the paralog Snap25 is known to promote axonal branching, Snap29 might act in opposition with, or modulate Snap25 activity during neurodevelopment. Our vertebrate genetic model of CEDNIK extends the description in vivo of the multisystem defects due to loss of Snap29 and could provide the base to test compounds that might ameliorate traits of the disease.
Collapse
Affiliation(s)
- Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
- University of Milan, Department of Biosciences, Via Celoria 26, 20133, Milan, Italy
| | - Galina Beznoussenko
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Alexandre Mironov
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Laura Ferrari
- IEO, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Gianluca Deflorian
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy.
| | - Thomas Vaccari
- University of Milan, Department of Biosciences, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
20
|
Manipulating Neuronal Activity in the Developing Zebrafish Spinal Cord to Investigate Adaptive Myelination. Methods Mol Biol 2019; 1936:211-225. [PMID: 30820901 DOI: 10.1007/978-1-4939-9072-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the central nervous system, oligodendrocyte-lineage cells and myelination can adapt to physiological brain activity. Since myelin can in turn regulate neuronal function, such "adaptive" myelination has been proposed as a form of nervous system plasticity, implicated in learning and cognition. The molecular and cellular mechanisms underlying adaptive myelination and its functional consequences remain to be fully defined, partly because it remains challenging to manipulate activity and monitor myelination over time in vivo at single-cell resolution, in a model that would also allow examination of the functional output of individual neurons and circuits. Here, we describe a workflow to manipulate neuronal activity and to assess oligodendrocyte-lineage cell dynamics and myelination in larval zebrafish, a vertebrate animal model that is ideal for live imaging and amenable to genetic discovery, and that has well-characterized neuronal circuits with myelinated axons.
Collapse
|
21
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Ren Z, Yu J, Wu Z, Si W, Li X, Liu Y, Zhou J, Deng R, Chen D. MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Front Mol Neurosci 2018; 11:388. [PMID: 30483048 PMCID: PMC6243094 DOI: 10.3389/fnmol.2018.00388] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Vascular dementia (VD) is the most common form of dementia in elderly people. However, little is understood about the role of microRNAs (miRNAs) involved in cognitive impairment in early VD. Here, a VD model induced by chronic cerebral ischemia and fetal bovine serum (FBS)-free cell model that detects synapse formation was established to investigate the function of miRNAs in early VD. The microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) showed that miR-210-5p increased significantly in the hippocampus of rats with 4 weeks of ischemia. The VD model rats also displayed significant cognitive deficits and synaptic loss. The overexpression of miR-210-5p decreased the synaptic number in primary hippocampal neurons, whereas specific suppression of miR-210-5p resulted in the formation of more synapses. Additionally, intracerebroventricular (ICV) injection of miR-210-5p agomir to VD rats aggravated phenotypes of cognitive impairment and synaptic loss. These VD-induced phenotypes were effectively attenuated by miR-210-5p antagomir. Moreover, bioinformatic prediction revealed that synaptosomal-associated protein of 25 KDa (Snap25) mRNA is targeted by miR-210-5p. The miR-210-5p decreased the luciferase activities of 3’ untranslated region (3’UTR) of Snap25 mRNA. Mutation of predicted miR-210-5p binding sites in the 3’ UTR of Snap25 mRNA abolished the miR-210-5p-induced decrease in luciferase activity. Western blot and immunofluorescence staining confirmed that miR-210-5p targets Snap25. Finally, RT-quantitative PCR (qPCR) and immunofluorescence staining detected that miR-210-5p agomir downregulated Snap25 expression in the cornu ammonis1 (CA1) region of hippocampi in VD rats, whereas miR-210-5p antagomir upregulated Snap25 expression. Altogether, miR-210-5p contributes to cognitive impairment in chronic ischemia-induced VD model through the regulation of Snap25 expression, which potentially provides an opportunity to develop a new therapeutic strategy for VD.
Collapse
Affiliation(s)
- Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junlong Yu
- College of Basic Medicine, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianqian Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
24
|
Moravec CE, Yousef H, Kinney BA, Salerno-Eichenholz R, Monestime CM, Martin BL, Sirotkin HI. Zebrafish sin3b mutants are viable but have size, skeletal, and locomotor defects. Dev Dyn 2017; 246:946-955. [PMID: 28850761 DOI: 10.1002/dvdy.24581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The transcriptional co-repressor Sin3 is highly conserved from yeast to vertebrates and has multiple roles controlling cell fate, cell cycle progression, and senescence programming. Sin3 proteins recruit histone deacetylases and other chromatin modifying factors to specific loci through interactions with transcription factors including Myc, Rest, p53 and E2F. Most vertebrates have two Sin3 family members (sin3a and sin3b), but zebrafish have a second sin3a paralogue. In mice, sin3a and sin3b are essential for embryonic development. Sin3b knockout mice show defects in growth as well as bone and blood differentiation. RESULTS To study the requirement for Sin3b during development, we disrupted zebrafish sin3b using CRISPR-Cas9, and studied the effects on early development and locomotor behavior. CONCLUSIONS Surprisingly, Sin3b is not essential in zebrafish. sin3b mutants show a decrease in fitness, small size, changes to locomotor behavior, and delayed bone development. We did not detect a role for Sin3b in cell proliferation. Our analysis of the sin3b mutant revealed a more nuanced requirement for zebrafish Sin3b than would be predicted from analysis of mutants in other species. Developmental Dynamics 246:946-955, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| | - Hakeem Yousef
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Brian A Kinney
- Genetics Gradate Program Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Ryan Salerno-Eichenholz
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Camillia M Monestime
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| |
Collapse
|
25
|
Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b. J Neurosci 2017; 36:9407-19. [PMID: 27605615 DOI: 10.1523/jneurosci.1246-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural genes. We identify several synaptic genes that are repressed by maternal Rest and demonstrate that snap25a/b are key targets of maternal rest that modulate larval locomotor activity. These results reveal that zygotic rest is unable to compensate for deficits in maternally supplied rest and uncovers novel temporal requirements for Rest activity, which has implications for the broad roles of Rest-mediated repression during neural development and in disease states.
Collapse
|
26
|
Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, Zhou J, Tang ZY, Huang XY. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep 2017; 7:5428. [PMID: 28710406 PMCID: PMC5511135 DOI: 10.1038/s41598-017-05432-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) represent a class of endogenous noncoding RNAs that have recently been recognized as important regulators of gene expression and pathological networks. However, their transcriptional activities and functional mechanisms in cancer remain largely unknown. Here, we present results from a global circRNA expression and functional analysis of patients with hepatocellular carcinoma (HCC). Using a circRNA microarray, we identified 226 differentially expressed circRNAs, of which 189 were significantly upregulated and 37 were downregulated. High expression of circRNA_100338, one of the upregulated circRNAs in HCC, is closely correlated with a low cumulative survival rate and metastatic progression in HCC patients with hepatitis B. Furthermore, our in silico and experimental analyses identified miR-141-3p as a direct target of circRNA_100338. Thus, circRNA_100338 functions as an endogenous sponge for miR-141-3p in HCC. In addition, we identified the crucial antagonistic roles of circRNA_100338 and miR-141-3p in the regulation of invasive potential in liver cancer cells. Overall, the differential expression of multiple circRNAs in HCC tissues and their clinical significance in hepatitis B-related HCC patients as revealed by our study suggests that circRNA_100338 is a potentially valuable biomarker for HCC diagnosis and target for HCC therapeutics.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, P.R. China
| | - Yong-Hua Xu
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, P.R. China
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China
| | - Zi Chen
- Thayer School of Engineering, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Song
- Howard Hughes Medical Institute; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| |
Collapse
|
27
|
Kara N, Wei C, Commanday AC, Patton JG. miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development. Dev Biol 2017. [PMID: 28625871 PMCID: PMC5582384 DOI: 10.1016/j.ydbio.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells. Focal adhesion kinase (FAK) is a key regulator in integrin-mediated extracellular matrix (ECM) adhesion and has been proposed to function as a negative regulator of chondrogenesis. We show that FAK is downregulated in the pharyngeal arches during chondrogenesis and is a direct target of miR-27. Suppressing the accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal cartilage defects observed upon knock down of miR-27. These data support a crucial role for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through regulation of FAK.
Collapse
Affiliation(s)
- Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Alexander C Commanday
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
28
|
Hawley ZCE, Campos-Melo D, Droppelmann CA, Strong MJ. MotomiRs: miRNAs in Motor Neuron Function and Disease. Front Mol Neurosci 2017; 10:127. [PMID: 28522960 PMCID: PMC5415563 DOI: 10.3389/fnmol.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| |
Collapse
|
29
|
Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Mol Neurobiol 2017; 55:3021-3032. [PMID: 28456942 DOI: 10.1007/s12035-017-0533-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized in the early stages by loss of learning and memory. However, the mechanism underlying these symptoms remains unclear. The best correlation between cognitive decline and pathological changes is in synaptic dysfunction. Histopathological hallmarks of AD are the abnormal aggregation of Aβ and Tau. Evidence suggests that Aβ and Tau oligomers contribute to synaptic loss in AD. Recently, direct links between epigenetic alterations, such as dysfunction in non-coding RNAs (ncRNAs), and synaptic pathologies have emerged, raising interest in exploring the potential roles of ncRNAs in the synaptic deficits in AD. In this paper, we summarize the potential roles of Aβ, Tau, and epigenetic alterations (especially by ncRNAs) in the synaptic dysfunction of AD and discuss the novel findings in this area.
Collapse
Affiliation(s)
- Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qing Wei
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fang Liu
- Department of Pathology, Central Hospital of Wuhan, Wuhan, 430014, People's Republic of China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ao-Ji Xie
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
30
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
31
|
Ji Q, Gao J, Zheng Y, Liu X, Zhou Q, Shi C, Yao M, Chen X. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21905] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Qiong Ji
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
- Department of Neonatology; Frist Hospital of Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Jianbo Gao
- Department of Pediatrics Neurology; Frist Hospital of Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Yan Zheng
- Cadre's Ward of Frist Hospital of Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Xueli Liu
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Qiangqiang Zhou
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Canxia Shi
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Meng Yao
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Science; Jilin University; Changchun Jilin 130021 People's Republic of China
| |
Collapse
|
32
|
Mathew RS, Tatarakis A, Rudenko A, Johnson-Venkatesh EM, Yang YJ, Murphy EA, Todd TP, Schepers ST, Siuti N, Martorell AJ, Falls WA, Hammack SE, Walsh CA, Tsai LH, Umemori H, Bouton ME, Moazed D. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife 2016; 5. [PMID: 28001126 PMCID: PMC5293492 DOI: 10.7554/elife.22467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI:http://dx.doi.org/10.7554/eLife.22467.001
Collapse
Affiliation(s)
- Rebecca S Mathew
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Antonis Tatarakis
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Andrii Rudenko
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - Erin M Johnson-Venkatesh
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, United States
| | - Elisabeth A Murphy
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States
| | - Travis P Todd
- Department of Psychology, University of Vermont, Burlington, United States
| | - Scott T Schepers
- Department of Psychology, University of Vermont, Burlington, United States
| | - Nertila Siuti
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Anthony J Martorell
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - William A Falls
- Department of Psychology, University of Vermont, Burlington, United States
| | | | - Christopher A Walsh
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Hisashi Umemori
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mark E Bouton
- Department of Psychology, University of Vermont, Burlington, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
33
|
Fontenas L, De Santis F, Di Donato V, Degerny C, Chambraud B, Del Bene F, Tawk M. Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish. PLoS Genet 2016; 12:e1006459. [PMID: 27902705 PMCID: PMC5130175 DOI: 10.1371/journal.pgen.1006459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery. Myelination is an important process that enables fast propagation of action potential along the axons. Schwann cells (SCs) are the specialized glial cells that ensure the ensheathment of the corresponding axons in the Peripheral Nervous System. In order to do so, SCs and axons need to communicate to organize the myelinating segments and the clustering of sodium channels at the nodes of Ranvier. We have investigated the early events of myelination in the zebrafish embryo. We here identify ndrg4 as a novel neuronal factor essential for sodium channel clustering at the nodes. Immuno-labeling analysis show defective vesicle patterning along the axons of ndrg4 mutants, while timelapse experiments monitoring the presence and the transport of these vesicles reveal a normal behavior. Molecular analysis unravels a novel function of ndrg4 in controlling the expression of the t-SNARE/NSF machinery required for vesicle docking and release. However, inhibiting specifically regulated synaptic vesicle release does not lead to sodium channel clustering defects. We thus propose that ndrg4 can regulate this process, at least partially, through its ability to regulate the expression of key components of the t-SNARE/NSF machinery, responsible for clustering of sodium channels along myelinated axons.
Collapse
Affiliation(s)
- Laura Fontenas
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | - Béatrice Chambraud
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Marcel Tawk
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
34
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
35
|
Epigenetic Regulation of SNAP25 Prevents Progressive Glutamate Excitotoxicty in Hypoxic CA3 Neurons. Mol Neurobiol 2016; 54:6133-6147. [PMID: 27699604 DOI: 10.1007/s12035-016-0156-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
Exposure to global hypoxia and ischemia has been reported to cause neurodegeneration in the hippocampus with CA3 neurons. This neuronal damage is progressive during the initial phase of exposure but maintains a plateau on prolonged exposure. The present study on Sprague Dawley rats aimed at understanding the underlying molecular and epigenetic mechanisms that lead to hypoxic adaptation of CA3 neurons on prolonged exposure to a global hypoxia. Our results show stagnancy in neurodegeneration in CA3 region beyond 14 days of chronic exposure to hypobaria simulating an altitude of 25,000 ft. Despite increased synaptosomal glutamate and higher expression of NR1 subunit of NMDA receptors, we observed decrease in post-synaptic density and accumulation of synaptic vesicles at the pre-synaptic terminals. Molecular investigations involving western blot and real-time PCR showed duration-dependent decrease in the expression of SNAP-25 resulting in reduced vesicular docking and synaptic remodeling. ChIP assays for epigenetic factors showed decreased expression of H3K9Ac and H3K14Ac resulting in SNAP-25 promoter silencing during prolonged hypoxia. Administration of sodium butyrate, a non-specific HDAC inhibitor, during 21 days hypoxic exposure prevented SNAP-25 downregulation but increased CA3 neurodegeneration. This epigenetic regulation of SNAP-25 promoter was independent of increased DNMT3b expression and promoter methylation. Our findings provide a novel insight into epigenetic factors-mediated synaptic remodeling to prevent excitotoxic neurodegeneration on prolonged exposure to global hypobaric hypoxia.
Collapse
|
36
|
Tong J, McKinley LA, Cummins TDR, Johnson B, Matthews N, Vance A, Heussler H, Gill M, Kent L, Bellgrove MA, Hawi Z. Identification and functional characterisation of a novel dopamine beta hydroxylase gene variant associated with attention deficit hyperactivity disorder. World J Biol Psychiatry 2016; 16:610-8. [PMID: 25975715 DOI: 10.3109/15622975.2015.1036771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Dysregulation in neurotransmitter signalling has been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Polymorphisms of the gene encoding dopamine beta hydroxylase (DBH) have been reported to be associated with ADHD; however, small sample sizes have led to inconsistency. METHODS We conducted transmission disequilibrium test analysis in 794 nuclear families to examine the relationship between DBH and ADHD. The effects of the ADHD-associated polymorphisms on gene expression were assessed by luciferase reporter assays in a human neuroblastoma cell line, SH-SY5Y. RESULTS A SNP within the 3' untranslated region of DBH rs129882 showed a significant association with ADHD (χ(2) = 9.71, p = 0.0018, OR = 1.37). This association remained significant after Bonferroni correction for multiple testing (p = 0.02). Further, allelic variation in rs129882 significantly impacted luciferase expression. Specifically, the C allele of the ADHD-associated rs129882 SNP produced a 2-fold decrease (p < 0.001) in luciferase activity. CONCLUSIONS These data demonstrate for the first time that a DBH gene variant, rs129882, which confers risk to ADHD is also associated with reduced in vitro gene expression. Reduced DBH expression would be consistent with decreased conversion of dopamine to noradrenaline and thus with a relative hypo-noradrenergic state in ADHD.
Collapse
Affiliation(s)
- Janette Tong
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Leigh-Anne McKinley
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Tarrant D R Cummins
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Beth Johnson
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Natasha Matthews
- b Queensland Brain Institute, University of Queensland , Brisbane , Australia
| | - Alasdair Vance
- c Academic Child Psychiatry Unit, Department of Paediatrics , University of Melbourne, Royal Children's Hospital, Murdoch Children's Research Institute , Parkville, Vic , Australia
| | - Helen Heussler
- d Department of Respiratory and Sleep Medicine , Mater Children's Hospital, Mater Health Services , South Brisbane , Australia
| | - Michael Gill
- e Department of Psychiatry , Trinity College , Dublin , Ireland
| | - Lindsey Kent
- f School of Medicine, University of St Andrews, St Andrews , Scotland , UK
| | - Mark A Bellgrove
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Ziarih Hawi
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| |
Collapse
|
37
|
Li Y, Huang C, Feng P, Jiang Y, Wang W, Zhou D, Chen L. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy. Sci Rep 2016; 6:32091. [PMID: 27554040 PMCID: PMC4995460 DOI: 10.1038/srep32091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
Evidence suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) is linked to multidrug resistance of epilepsy. Here we explored whether aberrant expression of HIF-1α is regulated by miRNAs. Genome-wide microRNA expression profiling was performed on temporal cortex resected from mesial temporal lobe epilepsy (mTLE) patients and age-matched controls. miRNAs that are putative regulator of HIF-1α were predicted via target scan and confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Mimics or miRNA morpholino inhibitors were transfected in astrocytes and luciferase reporter assay was applied to detect HIF-11α expression. Microarray profiling identified down-regulated miR-153 as a putative regulator of HIF-1α in temporal cortex resected from surgical mTLE patients. RT-qPCR confirmed down-regulation of miR-153 in plasma of mTLE patients in an independent validation cohort. Knockdown of miR-153 significantly enhanced expression of HIF-1α while forced expression of miR-153 dramatically inhibited HIF-1α expression in pharmacoresistant astrocyte model. Luciferase assay established that miR-153 might inhibit HIF-1α expression via directly targeting two binding sites in the 3′UTR region of HIF-1α transcript. These data suggest that down-regulation of miR-153 may contribute to enhanced expression of HIF-1α in mTLE and serve as a novel biomarker and treatment target for epilepsy.
Collapse
Affiliation(s)
- Yaohua Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Peimin Feng
- Department of integrated traditional and western medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Yanping Jiang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
38
|
Jauhari A, Singh T, Pandey A, Singh P, Singh N, Srivastava AK, Pant AB, Parmar D, Yadav S. Differentiation Induces Dramatic Changes in miRNA Profile, Where Loss of Dicer Diverts Differentiating SH-SY5Y Cells Toward Senescence. Mol Neurobiol 2016; 54:4986-4995. [PMID: 27525675 DOI: 10.1007/s12035-016-0042-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.
Collapse
Affiliation(s)
- Abhishek Jauhari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), IITR Campus, Lucknow, India
| | - Tanisha Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.,Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Ankita Pandey
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Parul Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.,Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Nishant Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.,Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Ankur Kumar Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), IITR Campus, Lucknow, India
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, UP, 226001, India.
| |
Collapse
|
39
|
REST Regulates Non-Cell-Autonomous Neuronal Differentiation and Maturation of Neural Progenitor Cells via Secretogranin II. J Neurosci 2016; 35:14872-84. [PMID: 26538656 DOI: 10.1523/jneurosci.4286-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED RE-1 silencing transcription factor (REST), a master negative regulator of neuronal differentiation, controls neurogenesis by preventing the differentiation of neural stem cells. Here we focused on the role of REST in the early steps of differentiation and maturation of adult hippocampal progenitors (AHPs). REST knockdown promoted differentiation and affected the maturation of rat AHPs. Surprisingly, REST knockdown cells enhanced the differentiation of neighboring wild-type AHPs, suggesting that REST may play a non-cell-autonomous role. Gene expression analysis identified Secretogranin II (Scg2) as the major secreted REST target responsible for the non-cell-autonomous phenotype. Loss-of-function of Scg2 inhibited differentiation in vitro, and exogenous SCG2 partially rescued this phenotype. Knockdown of REST in neural progenitors in mice led to precocious maturation into neurons at the expense of mushroom spines in vivo. In summary, we found that, in addition to its cell-autonomous function, REST regulates differentiation and maturation of AHPs non-cell-autonomously via SCG2. SIGNIFICANCE STATEMENT Our results reveal that REST regulates differentiation and maturation of neural progenitor cells in vitro by orchestrating both cell-intrinsic and non-cell-autonomous factors and that Scg2 is a major secretory target of REST with a differentiation-enhancing activity in a paracrine manner. In vivo, REST depletion causes accelerated differentiation of newborn neurons at the expense of spine defects, suggesting a potential role for REST in the timing of the maturation of granule neurons.
Collapse
|
40
|
Davis GM, Haas MA, Pocock R. MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front Neurol 2015; 6:245. [PMID: 26635721 PMCID: PMC4656843 DOI: 10.3389/fneur.2015.00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of the brain requires the precise coordination of multilayered gene regulatory networks. The flexibility, speed, and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavor to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.
Collapse
Affiliation(s)
- Gregory M. Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Matilda A. Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Xu H, Abuhatzira L, Carmona GN, Vadrevu S, Satin LS, Notkins AL. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia 2015; 58:2298-306. [PMID: 26141787 PMCID: PMC6754265 DOI: 10.1007/s00125-015-3683-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). METHODS Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. RESULTS Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. CONCLUSIONS/INTERPRETATION miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.
Collapse
Affiliation(s)
- Huanyu Xu
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Liron Abuhatzira
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Gilberto N Carmona
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Suryakiran Vadrevu
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Hu S, Wang H, Chen K, Cheng P, Gao S, Liu J, Li X, Sun X. MicroRNA-34c Downregulation Ameliorates Amyloid-β-Induced Synaptic Failure and Memory Deficits by Targeting VAMP2. J Alzheimers Dis 2015; 48:673-86. [PMID: 26402112 DOI: 10.3233/jad-150432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shunze Hu
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
- Department of Pathology, Maternal and Children’s Hospital of Hubei Province, Wuhan, China
| | - Huan Wang
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Kun Chen
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Peng Cheng
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Shutao Gao
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Xiao Li
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Xuying Sun
- Department of Orthopedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, TongJi Medical College, HuaZhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Tsuyama J, Bunt J, Richards LJ, Iwanari H, Mochizuki Y, Hamakubo T, Shimazaki T, Okano H. MicroRNA-153 Regulates the Acquisition of Gliogenic Competence by Neural Stem Cells. Stem Cell Reports 2015. [PMID: 26212661 PMCID: PMC4618452 DOI: 10.1016/j.stemcr.2015.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex. The transcription factors nuclear factor I (NFI) A and B, essential regulators of the initiation of gliogenesis, were found to be targets of miR-153. Inhibition of miR-153 in early neurogenic NSPCs induced precocious gliogenesis, whereas NFIA/B overexpression rescued the anti-gliogenic phenotypes induced by miR-153 OE. Our results indicate that miR-mediated fine control of NFIA/B expression is important in the molecular networks that regulate the acquisition of gliogenic competence by NSPCs in the developing CNS. We identify miR-153 as a regulator for the acquisition of gliogenic competence NFIA and NFIB are physiological targets of miR-153 Inhibition of miR-153 confers gliogenic competence on early neurogenic NSPCs Fine-tuning of NFIA/B expressions by miR-153 is involved in the timing of gliogenesis
Collapse
Affiliation(s)
- Jun Tsuyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yasuhiro Mochizuki
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Takuya Shimazaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo 160-8582, Japan.
| |
Collapse
|
44
|
Millan MJ. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364287 PMCID: PMC4214179 DOI: 10.31887/dcns.2014.16.3/mmillan] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy-sur-Seine, France
| |
Collapse
|
45
|
Olena AF, Rao MB, Thatcher EJ, Wu SY, Patton JG. miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. Dev Biol 2015; 400:72-81. [PMID: 25645681 DOI: 10.1016/j.ydbio.2015.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 01/13/2023]
Abstract
Precise regulation of Notch signaling is essential for normal vertebrate development. Mind bomb (Mib) is a ubiquitin ligase that is required for activation of Notch by Notch׳s ligand, Delta. Sorting Nexin 5 (SNX5) co-localizes with Mib and Delta complexes and has been shown to directly bind to Mib. We show that microRNA-216a (miR-216a) is expressed in the retina during early development and regulates snx5 to precisely regulate Notch signaling. miR-216a and snx5 have complementary expression patterns. Knocking down miR-216a and/or overexpression of snx5 resulted in increased Notch activation. Conversely, knocking down snx5 and/or miR-216a overexpression caused a decrease in Notch activation. We propose a model in which SNX5, precisely controlled by miR-216a, is a vital partner of Mib in promoting endocytosis of Delta and subsequent activation of Notch signaling.
Collapse
Affiliation(s)
- Abigail F Olena
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Mahesh B Rao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | | | - Shu-Yu Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
46
|
Zhang H, Guo Y, Mishra A, Gou D, Chintagari NR, Liu L. MicroRNA-206 regulates surfactant secretion by targeting VAMP-2. FEBS Lett 2014; 589:172-6. [PMID: 25481410 DOI: 10.1016/j.febslet.2014.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Lung surfactant secretion is a highly regulated process. Our previous studies have shown that VAMP-2 is essential for surfactant secretion. In the present study we investigated the role of miR-206 in surfactant secretion through VAMP-2. VAMP-2 was confirmed to be a target of miR-206 by 3'-untranslational region (3'-UTR) luciferase assay. Mutations in the predicated miR-206 binding sites reduced the binding of miR-206 to the 3'-UTR of VAMP-2. miR-206 decreased the expression of VAMP-2 protein and decreased the lung surfactant secretion in alveolar type II cells. In conclusion, miR-206 regulates lung surfactant secretion by limiting the availability of VAMP-2 protein.
Collapse
Affiliation(s)
- Honghao Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States
| | - Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States.
| |
Collapse
|
47
|
Esguerra JLS, Mollet IG, Salunkhe VA, Wendt A, Eliasson L. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs. Genes (Basel) 2014; 5:1018-31. [PMID: 25383562 PMCID: PMC4276924 DOI: 10.3390/genes5041018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs) is termed "stimulus-secretion coupling." Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D). The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs) are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Inês G Mollet
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Vishal A Salunkhe
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Anna Wendt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| |
Collapse
|
48
|
Ramalingam L, Yoder SM, Oh E, Thurmond DC. Munc18c: a controversial regulator of peripheral insulin action. Trends Endocrinol Metab 2014; 25:601-8. [PMID: 25028245 PMCID: PMC4253632 DOI: 10.1016/j.tem.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 12/19/2022]
Abstract
Insulin resistance, a hallmark of impaired glucose tolerance and type 2 diabetes (T2D), arises from dysfunction of insulin action and subsequent glucose uptake by peripheral tissues, predominantly skeletal muscle and fat. Exocytosis of glucose transporter (GLUT4)-containing vesicles facilitated by soluble NSF (N-ethylmaleimide-sensitive factor) attachment receptor (SNARE) protein isoforms, and Munc18c (mammalian homolog of Unc-18c) mediates this glucose uptake. Emerging evidences, including recent human clinical studies, point to pivotal roles for Munc18c in peripheral insulin action in adipose and skeletal muscle. Intriguing new advances are also initiating debates regarding the molecular mechanism(s) controlling Munc18c action. The objective of this review is therefore to present a balanced perspective of new continuities and controversies surrounding the regulation and requirement for Munc18c in the regulation of peripheral insulin action.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eunjin Oh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Debbie C Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
49
|
Xie J. Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing. Cell Mol Life Sci 2014; 71:4347-60. [PMID: 25064062 PMCID: PMC11113106 DOI: 10.1007/s00018-014-1688-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Cell signal-regulated alternative splicing occurs for many genes but the evolutionary origin of the regulatory components and their relationship remain unclear. This review focuses on the alternative splicing components of several systems based on the available bioinformatics data. Eight mammalian RNA elements for signal-regulated splicing were aligned among corresponding sequences from dozens of representative vertebrate species to allow for assessment of the trends in evolutionary changes. Four distinct trends were observed. Four of the elements are highly conserved in bird, reptile and fish species examined (i); two elements can be found in fish but the sequences have been changing till in marsupials or higher mammals (ii); one element is almost exclusively found in mammals with mostly the same sequence (iii); and one element can be found in birds or lower vertebrates but expanded abruptly to have variable numbers of copies in mammals (iv). All examined prototype trans-acting factors and protein kinases emerged earlier than the RNA elements but additional (paralog) factors emerged in the same or later species. Thus, after their emergence mainly in fish or mammals with pre-existing prototype trans-acting factors/kinases, half of the elements have been highly conserved from fish to humans but the other half have evolved differentially with additional trans-acting factors. Their differential evolution likely contributes to the exon- and species/class-specific control of alternative splicing and its regulation by cell signals. The evolvement of a group of mammal-specific components would help relay signals from extracellular stimuli to the splicing machinery and thus contribute to higher proteomic diversity.
Collapse
Affiliation(s)
- Jiuyong Xie
- Departments of Physiology, Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada,
| |
Collapse
|
50
|
Millan MJ. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? DIALOGUES IN CLINICAL NEUROSCIENCE 2014; 16:373-93. [PMID: 25364287 PMCID: PMC4214179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2024]
Abstract
Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.
Collapse
Affiliation(s)
- Mark J. Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy-sur-Seine, France
| |
Collapse
|