1
|
Patwary ZP, Zhao M, Paul NA, Cummins SF. Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes. JOURNAL OF PHYCOLOGY 2024; 60:327-342. [PMID: 38156746 DOI: 10.1111/jpy.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g-1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g-1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.
Collapse
Affiliation(s)
- Zubaida Parveen Patwary
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
2
|
De Saeger J, Coulembier Vandelannoote E, Lee H, Park J, Blomme J. Genome editing in macroalgae: advances and challenges. Front Genome Ed 2024; 6:1380682. [PMID: 38516199 PMCID: PMC10955705 DOI: 10.3389/fgeed.2024.1380682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (Ectocarpus species 7 and Saccharina japonica) and one green seaweed (Ulva prolifera), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted ADENINE PHOSPHORIBOSYL TRANSFERASE to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.
Collapse
Affiliation(s)
- Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Emma Coulembier Vandelannoote
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
4
|
Fukui Y, Abe M, Kobayashi M. Effects of Hyphomonas Strains on the Growth of Red Algae Pyropia Species by Attaching Specifically to Their Rhizoids. MICROBIAL ECOLOGY 2023; 86:2502-2514. [PMID: 37369788 DOI: 10.1007/s00248-023-02257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Bacteria and marine macroalgae form close associations, while various bacteria affect the morphogenesis and growth of macroalgae. Hyphomonas strains exhibit normal morphogenetic activity in protoplasts of the red alga Pyropia yezoensis (nori). However, the effects of the bacteria on the growth of Pyropia from protoplast cells to regenerated thalli remain unknown. Here, we assessed the growth of P. yezoensis and Pyropia tenera using combined cultures of three Hyphomonas strains (LNM10-16, SCM-2, and LNM-9) and three algal media (artificial seawater with vitamins, artificial seawater, and natural seawater) over 7 weeks. Third week after culture, the three Hyphomonas strains showed almost similar levels of normal growth activity for both Pyropia species. However, at 7 weeks, significant differences were observed among the three Hyphomonas strains in terms of length, length-to-width ratio, and normal morphology of Pyropia thalli. LNM10-16 significantly promoted the thalli length and length-to-width ratios of both Pyropia species in artificial seawater without vitamins and natural seawater, compared with the other two Hyphomonas strains. P. yezoensis cultured in artificial seawater with vitamins showed a much higher demand for LNM10-16 in development of the thalli length than P. tenera. These results may be explained by differences in the growth activities of Hyphomonas strains and the nutrient requirements of Pyropia species. Furthermore, the bacteria were more specifically attached to the rhizoid surfaces of both species. This study is the first to reveal that Hyphomonas strains affect the growth of Pyropia species by attaching to their rhizoids.
Collapse
Affiliation(s)
- Youhei Fukui
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise, Japan.
| | - Mahiko Abe
- National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Japan
| | - Masahiro Kobayashi
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
5
|
Borg M, Krueger-Hadfield SA, Destombe C, Collén J, Lipinska A, Coelho SM. Red macroalgae in the genomic era. THE NEW PHYTOLOGIST 2023; 240:471-488. [PMID: 37649301 DOI: 10.1111/nph.19211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.
Collapse
Affiliation(s)
- Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA, 23480, USA
| | - Christophe Destombe
- International Research Laboratory 3614 (IRL3614) - Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, 29680, France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29680, France
| | - Agnieszka Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Zhang B, Liu X, Huan L, Shao Z, Zheng Z, Wang G. Carbonic anhydrase isoforms of Neopyropia yezoensis: Intracellular localization and expression profiles in response to inorganic carbon concentration and life stage. JOURNAL OF PHYCOLOGY 2022; 58:657-668. [PMID: 35757840 DOI: 10.1111/jpy.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Macroalgae, particularly commercially grown seaweed, substantially contribute to CO2 removal and carbon storage. However, knowledge regarding the CO2 concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of the biophysical CCM, plays important roles in many physiological reactions in various organisms. Few characteristics of CA in Neopyropia yezoensis are known, particularly its intracellular location and responses to different concentrations of Ci. We identified, amplified, and characterized 11 putative genes encoding N. yezoensis CA. The predicted corresponding proteins clustered into three subfamilies: α-, β-, and γ-type. The intracellular localization of seven CA isoforms-one in the chloroplasts, three in the cytoplasm, and three in the mitochondria-was elucidated with fusion proteins. Higher NyCA expression, particularly of certain chloroplastic, cytosolic, and mitochondrial CAs, is observed more often during the foliose stage, thus suggesting that CAs play important roles in development in N. yezoensis.
Collapse
Affiliation(s)
- Baoyu Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Li Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhizhuo Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenbing Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Nakamura-Gouvea N, Alves-Lima C, Benites LF, Iha C, Maracaja-Coutinho V, Aliaga-Tobar V, Araujo Amaral Carneiro M, Yokoya NS, Marinho-Soriano E, Graminha MAS, Collén J, Oliveira MC, Setubal JC, Colepicolo P. Insights into agar and secondary metabolite pathways from the genome of the red alga Gracilaria domingensis (Rhodophyta, Gracilariales). JOURNAL OF PHYCOLOGY 2022; 58:406-423. [PMID: 35090189 DOI: 10.1111/jpy.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.
Collapse
Affiliation(s)
- Natalia Nakamura-Gouvea
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Cicero Alves-Lima
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Luiz Felipe Benites
- CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Sorbonne Université, Observatoire Océanologique - F-66650, Banyuls-sur-Mer, France
| | - Cintia Iha
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Victor Aliaga-Tobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Marcella Araujo Amaral Carneiro
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Nair S Yokoya
- Phycology Research Center, Institute of Botany, Secretary of Infrastructure and Environment of São Paulo State, Brazil - Av. Miguel Estefano, 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Eliane Marinho-Soriano
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Campus Ville, Araraquara, SP, 14800-903, Brazil
| | - Jonas Collén
- Station Biologique de Roscoff, UMR 8227, Integrative Biology of Marine Models - CS 90074, Roscoff cedex, 29688, France
| | - Mariana C Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
8
|
Zheng Z, He B, Guo ML, Xie X, Huan L, Zhang B, Shao Z, Wang G. Overexpression of OHPs in Neopyropia yezoensis (Rhodophyta) reveals their possible physiological roles. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Uji T, Kandori T, Konishi S, Mizuta H. Phospholipase D activation is required for 1-aminocyclopropane 1-carboxylic acid signaling during sexual reproduction in the marine red alga Neopyropia yezoensis (Rhodophyta). BMC PLANT BIOLOGY 2022; 22:181. [PMID: 35395727 PMCID: PMC8991923 DOI: 10.1186/s12870-022-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND 1-aminocyclopropane 1-carboxylic acid (ACC) is the immediate precursor of the plant hormone ethylene. However, recent studies have suggested that ACC also acts as a signaling molecule to regulate development and growth independently from ethylene biosynthesis. In red algae, ACC stimulates the switch from a vegetative to a sexual reproductive phase. However, despite evidence that ACC signaling in plants and algae is widespread, the mechanistic basis of the ACC signaling pathway remains unknown. RESULTS We demonstrate that exogenous ACC increased the activity of phospholipase D (PLD) and induced the accumulation of PLD transcripts in the marine red alga Neopyropia yezoensis. The product of PLD, the lipid second messenger phosphatidic acid (PA), also increased in response to ACC. Furthermore, the pharmacological inhibition of PLD by 1-butanol blocked ACC-induced spermatangia and carpospore production, but the inactive isomer t-butanol did not. In addition, 1-butanol prevented ACC-induced growth inhibition and inhibited transcript accumulation of genes upregulated by ACC, including extracellular matrix (ECM)-related genes, and alleviated the transcriptional decrease of genes downregulated by ACC, including photosynthesis-related genes. CONCLUSIONS These results indicate that PLD is a positive regulator of sexual cell differentiation and a negative regulator of growth. This study demonstrates that PLD and its product, PA, are components of ACC signaling during sexual reproduction in N. yezoensis.
Collapse
Affiliation(s)
- Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Takuya Kandori
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Shiho Konishi
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Hiroyuki Mizuta
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| |
Collapse
|
10
|
Kominami S, Mizuta H, Uji T. Transcriptome Profiling in the Marine Red Alga Neopyropia yezoensis Under Light/Dark Cycle. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:393-407. [PMID: 35377066 DOI: 10.1007/s10126-022-10121-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Many organisms are subjected to a daily cycle of light and darkness, which significantly influences metabolic and physiological processes. In the present study, Neopyropia yezoensis, one of the major cultivated seaweeds used in "nori," was harvested in the morning and evening during light/dark treatments to investigate daily changes in gene expression using RNA-sequencing. A high abundance of transcripts in the morning includes the genes associated with carbon-nitrogen assimilations, polyunsaturated fatty acid, and starch synthesis. In contrast, the upregulation of a subset of the genes associated with the pentose phosphate pathway, cell cycle, and DNA replication at evening is necessary for the tight control of light-sensitive processes, such as DNA replication. Additionally, a high abundance of transcripts at dusk encoding asparaginase and glutamate dehydrogenase imply that regulation of asparagine catabolism and tricarboxylic acid cycle possibly contributes to supply nitrogen and carbon, respectively, for growth during the dark. In addition, genes encoding cryptochrome/photolyase family and histone modification proteins were identified as potential key players for regulating diurnal rhythmic genes.
Collapse
Affiliation(s)
- Sayaka Kominami
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Hiroyuki Mizuta
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| |
Collapse
|
11
|
Hiwatashi Y, Shimada M, Mikami K, Takada N. Establishment of a Live-Imaging Analysis for Polarized Growth of Conchocelis in the Multicellular Red Alga Neopyropia yezoensis. FRONTIERS IN PLANT SCIENCE 2022; 12:716011. [PMID: 35251057 PMCID: PMC8888420 DOI: 10.3389/fpls.2021.716011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A wide range of tip-growing cells in plants display polarized cell growth, which is an essential cellular process for the form and function of individual cells. Understanding of the regulatory mechanisms underlying tip growth in terrestrial plants has improved. Cellular processes involved in tip growth have also been investigated in some algae species that form filamentous cells, but their regulatory mechanisms remain unclear. In the macro red alga Neopyropia yezoensis, for which genome information has recently been released, the conchocelis apical cell exhibits tip growth and forms a filamentous structure. Here, we report a live-imaging technique using high-resolution microscopy to analyze the tip growth and cell division of N. yezoensis conchocelis. This imaging analysis addressed tip growth dynamics and cell division in conchocelis apical cells. The directionality and tip growth expansion were disrupted by the application of cytoskeletal drugs, suggesting the involvement of microtubules (MTs) and actin filaments (AFs) in these processes. A growing apical cell mostly contained a single chloroplast that moved toward the expanding part of the apical cell. Drug application also inhibited chloroplast movement, implying that the movement may be dependent on the cytoskeleton. The study determined that live-imaging analysis is a versatile approach for exploring the dynamics of tip growth and cell division in N. yezoensis conchocelis, which provides insights into the regulatory mechanisms underlying cellular growth in multicellular red algae.
Collapse
Affiliation(s)
- Yuji Hiwatashi
- Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Mizuho Shimada
- Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Japan
| | - Koji Mikami
- Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Nagisa Takada
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| |
Collapse
|
12
|
Chen H, Chu JSC, Chen J, Luo Q, Wang H, Lu R, Zhu Z, Yuan G, Yi X, Mao Y, Lu C, Wang Z, Gu D, Jin Z, Zhang C, Weng Z, Li S, Yan X, Yang R. Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of Neoporphyra haitanensis. Mol Biol Evol 2022; 39:msab315. [PMID: 34730826 PMCID: PMC8752119 DOI: 10.1093/molbev/msab315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colonization of land from marine environments was a major transition for biological life on Earth, and intertidal adaptation was a key evolutionary event in the transition from marine- to land-based lifestyles. Multicellular intertidal red algae exhibit the earliest, systematic, and successful adaptation to intertidal environments, with Porphyra sensu lato (Bangiales, Rhodophyta) being a typical example. Here, a chromosome-level 49.67 Mb genome for Neoporphyra haitanensis comprising 9,496 gene loci is described based on metagenome-Hi-C-assisted whole-genome assembly, which allowed the isolation of epiphytic bacterial genome sequences from a seaweed genome for the first time. The compact, function-rich N. haitanensis genome revealed that ancestral lineages of red algae share common horizontal gene transfer events and close relationships with epiphytic bacterial populations. Specifically, the ancestor of N. haitanensis obtained unique lipoxygenase family genes from bacteria for complex chemical defense, carbonic anhydrases for survival in shell-borne conchocelis lifestyle stages, and numerous genes involved in stress tolerance. Combined proteomic, transcriptomic, and metabolomic analyses revealed complex regulation of rapid responses to intertidal dehydration/rehydration cycling within N. haitanensis. These adaptations include rapid regulation of its photosynthetic system, a readily available capacity to utilize ribosomal stores, increased methylation activity to rapidly synthesize proteins, and a strong anti-oxidation system to dissipate excess redox energy upon exposure to air. These novel insights into the unique adaptations of red algae to intertidal lifestyles inform our understanding of adaptations to intertidal ecosystems and the unique evolutionary steps required for intertidal colonization by biological life.
Collapse
Affiliation(s)
- Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | | | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Qijun Luo
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Zhujun Zhu
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Gaigai Yuan
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Xinxin Yi
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Youzhi Mao
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Caiping Lu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zekai Wang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Denghui Gu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zhen Jin
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Caixia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ziyu Weng
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Shuang Li
- Ningbo Customs Technology Center, Ningbo, China
| | - Xiaojun Yan
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Park SJ, Ahn JW, Choi JI. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J Microbiol 2021; 60:63-69. [PMID: 34964943 DOI: 10.1007/s12275-022-1491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Jenkins TL, Guillemin M, Simon‐Nutbrown C, Burdett HL, Stevens JR, Peña V. Whole genome genotyping reveals discrete genetic diversity in north-east Atlantic maerl beds. Evol Appl 2021; 14:1558-1571. [PMID: 34178104 PMCID: PMC8210795 DOI: 10.1111/eva.13219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
Maerl beds are vital habitats for a diverse array of marine species across trophic levels, but they are increasingly threatened by human activities and climate change. Furthermore, little is known about the genetic diversity of maerl-forming species and the population structure of maerl beds, both of which are important for understanding the ability of these species to adapt to changing environments and for informing marine reserve planning. In this study, we used a whole genome genotyping approach to explore the population genomics of Phymatolithon calcareum, a maerl-forming red algal species, whose geographical distribution spans the north-east Atlantic, from Norway to Portugal. Our results, using 14,150 genome-wide SNPs (single nucleotide polymorphisms), showed that P. calcareum maerl beds across the north-east Atlantic are generally structured geographically, a pattern likely explained by low dispersal potential and limited connectivity between regions. Additionally, we found that P. calcareum from the Fal Estuary, south-west England, is genetically distinct from all other P. calcareum sampled, even from The Manacles, a site located only 13 km away. Further analysis revealed that this finding is not the result of introgression from two closely related species, Phymatolithon purpureum or Lithothamnion corallioides. Instead, this unique diversity may have been shaped over time by geographical isolation of the Fal Estuary maerl bed and a lack of gene flow with other P. calcareum populations. The genomic data presented in this study suggest that P. calcareum genetic diversity has accumulated over large temporal and spatial scales, the preservation of which will be important for maximizing the resilience of this species to changes in climate and the environment. Moreover, our findings underline the importance of managing the conservation of maerl beds across western Europe as distinct units, at a site-by-site level.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Marie‐Laure Guillemin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Cornelia Simon‐Nutbrown
- Lyell Centre for Earth and Marine Science and TechnologyEdinburghUK
- School of Energy, Geoscience, Infrastructure and SocietyHeriot‐Watt UniversityEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Heidi L. Burdett
- Lyell Centre for Earth and Marine Science and TechnologyEdinburghUK
- School of Energy, Geoscience, Infrastructure and SocietyHeriot‐Watt UniversityEdinburghUK
| | - Jamie R. Stevens
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Viviana Peña
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA)Universidade da Coruña, A CoruñaSpain
| |
Collapse
|
15
|
Zheng Z, He B, Xie X, Wang G. Co-suppression in Pyropia yezoensis (Rhodophyta) Reveals the Role of PyLHCI in Light Harvesting and Generation Switch. JOURNAL OF PHYCOLOGY 2021; 57:160-171. [PMID: 32965671 DOI: 10.1111/jpy.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The red macroalga Pyropia yezoensis is an economically important seaweed widely cultured in Asian countries and is a model organism for molecular biological and commercial research. This species is unique in that it utilizes both phycobilisomes and transmembrane light-harvesting proteins as its antenna system. Here, one of the genes of P. yezoensis (PyLHCI) was selected for introduction into its genome to overexpress PyLHCI. However, the co-suppression phenomenon occurred. This is the first documentation of co-suppression in algae, in which it exhibits a different mechanism from that in higher plants. The transformant (T1) was demonstrated to have higher phycobilisomes and lower LHC binding pigments, resulting in a redder color, higher sensitivity to salt stress, smaller in size, and slower growth rate than the wildtype (WT). The photosynthetic performances of T1 and WT showed similar characteristics; however, P700 reduction was slower in T1. Most importantly, T1 could release a high percentage of carpospores in young blades to switch generation during its life cycle, which was rarely seen in WT. The co-suppression of PyLHCI revealed its key roles in light harvesting, stress resistance, and generation alternation (generation switch from gametophytes to sporophytes, and reproduction from asexual to sexual).
Collapse
Affiliation(s)
- Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bangxiang He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Zhang B, Xie X, Liu X, He L, Sun Y, Wang G. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC PLANT BIOLOGY 2020; 20:424. [PMID: 32933475 PMCID: PMC7491142 DOI: 10.1186/s12870-020-02629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pyropia yezoensis (Rhodophyta) is widely cultivated in East Asia and plays important economic, ecological and research roles. Although inorganic carbon utilization of P. yezoensis has been investigated from a physiological aspect, the carbon concentration mechanism (CCM) of P. yezoensis remains unclear. To explore the CCM of P. yezoensis, especially during its different life stages, we tracked changes in the transcriptome, photosynthetic efficiency and in key enzyme activities under different inorganic carbon concentrations. RESULTS Photosynthetic efficiency demonstrated that sporophytes were more sensitive to low carbon (LC) than gametophytes, with increased photosynthesis rate during both life stages under high carbon (HC) compared to normal carbon (NC) conditions. The amount of starch and number of plastoglobuli in cells corresponded with the growth reaction to different inorganic carbon (Ci) concentrations. We constructed 18 cDNA libraries from 18 samples (three biological replicates per Ci treatment at two life cycles stages) and sequenced these using the Illumina platform. De novo assembly generated 182,564 unigenes, including approximately 275 unigenes related to CCM. Most genes encoding internal carbonic anhydrase (CA) and bicarbonate transporters involved in the biophysical CCM pathway were induced under LC in comparison with NC, with transcript abundance of some PyCAs in gametophytes typically higher than that in sporophytes. We identified all key genes participating in the C4 pathway and showed that their RNA abundances changed with varying Ci conditions. High decarboxylating activity of PEPCKase and low PEPCase activity were observed in P. yezoensis. Activities of other key enzymes involved in the C4-like pathway were higher under HC than under the other two conditions. Pyruvate carboxylase (PYC) showed higher carboxylation activity than PEPC under these Ci conditions. Isocitrate lyase (ICL) showed high activity, but the activity of malate synthase (MS) was very low. CONCLUSION We elucidated the CCM of P. yezoensis from transcriptome and enzyme activity levels. All results indicated at least two types of CCM in P. yezoensis, one involving CA and an anion exchanger (transporter), and a second, C4-like pathway belonging to the PEPCK subtype. PYC may play the main carboxylation role in this C4-like pathway, which functions in both the sporophyte and gametophyte life cycles.
Collapse
Affiliation(s)
- Baoyu Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuehua Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanyuan Sun
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
|
18
|
Deng YY, Cheng L, Wang Q, Ge ZH, Zheng H, Cao TJ, Lu QQ, Yang LE, Lu S. Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway toward Lutein in Red Algal Seaweeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1354-1363. [PMID: 31933364 DOI: 10.1021/acs.jafc.9b06918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into different downstream branches. Carotenoids of the β,β-branch (e.g., β-carotene) are found in all photosynthetic organisms, but those of the β,ε-branch (e.g., lutein) are generally absent in cyanobacteria, heterokonts, and some red algae. Although both LCYBs and LCYEs have been characterized from land plants, there are only a few reports on LCYs from cyanobacteria and algae. Here, we cloned four LCY genes from Porphyra umbilicalis and Pyropia yezoensis (susabi-nori) of Bangiales, the most primitive red algal order that synthesizes lutein. Our functional characterization in both Escherichia coli and Arabidopsis thaliana demonstrated that each species has a pair of LCYB and LCYE. Similar to LCYs from higher plants, red algal LCYBs cyclize both ends of lycopene, and their LCYEs only cyclize a single end. The characterization of LCYEs from red algae resolved the first bifurcation step toward β-carotene and lutein biosynthesis. Our phylogenetic analysis suggests that LCYEs of the green lineage and the red algae originated separately during evolution.
Collapse
Affiliation(s)
- Yin-Yin Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Lu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zi-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Hui Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qin-Qin Lu
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Li-En Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
19
|
Uji T, Endo H, Mizuta H. Sexual Reproduction via a 1-Aminocyclopropane-1-Carboxylic Acid-Dependent Pathway Through Redox Modulation in the Marine Red Alga Pyropia yezoensis (Rhodophyta). FRONTIERS IN PLANT SCIENCE 2020; 11:60. [PMID: 32117396 PMCID: PMC7028691 DOI: 10.3389/fpls.2020.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
The transition from the vegetative to sexually reproductive phase is the most dynamic change to occur during a plant's life cycle. In the present study, we showed that the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) induces sexual reproduction in the marine red alga Pyropia yezoensis independently from ethylene. Exogenous application of ACC, which contains a three membered carbocyclic ring, promoted the formation of spermatia and carporspores in gametophytes, whereas ethephon, an ethylene-releasing compound, did not stimulate sexual reproduction. In addition, an ACC analog, 1-aminocyclobutane-1-carboxylic acid (ACBC), which contains a four membered carbocyclic ring, promoted sexual reproduction and enhanced tolerance to oxidative stress in the same manner as ACC, but 1-aminocyclopentane-1-carboxylic acid (cycloleucine; which contains a cyclopentane ring) did not. The application of ACC increased the generation of reactive oxygen species (ROS) and induced the expression of PyRboh gene encoding NADPH oxidase. ACC also stimulated the synthesis of ascorbate (AsA) by inducing transcripts of PyGalLDH, which encodes galactono-1,4-lactone dehydrogenase, the catalyst for the final enzymatic step of the AsA biosynthetic pathway. Conversely, ACC caused a decrease in the synthesis of glutathione (GSH) by repressing transcripts of PyGCL, which encodes glutamate cysteine ligase, the catalyst for the rate-limiting step in the formation of GSH. These results suggest a possible role played by ACC as a signaling molecule independent from ethylene in the regulation of sexual reproduction through alterations to the redox state in P. yezoensis.
Collapse
|
20
|
Cho TJ, Rhee MS. Health Functionality and Quality Control of Laver ( Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar Drugs 2019; 18:E14. [PMID: 31877971 PMCID: PMC7024182 DOI: 10.3390/md18010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
The growing interest in laver as a food product and as a source of substances beneficial to health has led to global consumer demand for laver produced in a limited area of northeastern Asia. Here we review research into the benefits of laver consumption and discuss future perspectives on the improvement of laver product quality. Variation in nutritional/functional values among product types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and seasoning on the contents of both beneficial and harmful substances highlight the importance of managing laver processing conditions. Most research into health benefits has focused on substances present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as key strategies for the further improvement of laver product quality. Comprehensive analysis of the literature regarding laver as a food product and as a source of biomedical compounds highlights the possibilities and challenges for application of laver products.
Collapse
Affiliation(s)
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
21
|
Nadel O, Rozenberg A, Flores-Uribe J, Larom S, Schwarz R, Béjà O. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:848-854. [PMID: 31600852 DOI: 10.1111/1758-2229.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes (PBS) are large water-soluble membrane-associated complexes in cyanobacteria and some chloroplasts that serve as light-harvesting antennae for the photosynthetic apparatus. When deplete of nitrogen or sulphur, cyanobacteria readily degrade their phycobilisomes allowing the cell to replenish these vanishing nutrients. The key regulator in the degradation process is NblA, a small protein (∼6 kDa), which recruits proteases to the PBS. It was discovered previously that not only do cyanobacteria possess nblA genes but also that they are encoded by genomes of some freshwater cyanophages. A recent study, using assemblies from oceanic metagenomes, revealed genomes of a novel uncultured marine cyanophage lineage, representatives of which contain genes coding for the PBS degradation protein. Here, we examined the functionality of nblA-like genes from these marine cyanophages by testing them in a freshwater model cyanobacterial nblA knockout. One of the viral NblA variants could complement the non-bleaching phenotype and restore PBS degradation. Our findings reveal a functional NblA from a novel marine cyanophage lineage. Furthermore, we shed new light on the distribution of nblA genes in cyanobacteria and cyanophages.
Collapse
Affiliation(s)
- Omer Nadel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
22
|
Abstract
Over 100 whole-genome sequences from algae are published or soon to be published. The rapidly increasing availability of these fundamental resources is changing how we understand one of the most diverse, complex, and understudied groups of photosynthetic eukaryotes. Genome sequences provide a window into the functional potential of individual algae, with phylogenomics and functional genomics as tools for contextualizing and transferring knowledge from reference organisms into less well-characterized systems. Remarkably, over half of the proteins encoded by algal genomes are of unknown function, highlighting the volume of functional capabilities yet to be discovered. In this review, we provide an overview of publicly available algal genomes, their associated protein inventories, and their quality, with a summary of the statuses of protein function understanding and predictions.
Collapse
Affiliation(s)
| | - Sabeeha S Merchant
- Departments of Plant and Microbial Biology and Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Huang L, Yan X. Construction of a genetic linkage map in Pyropia yezoensis (Bangiales, Rhodophyta) and QTL analysis of several economic traits of blades. PLoS One 2019; 14:e0209128. [PMID: 30849086 PMCID: PMC6407771 DOI: 10.1371/journal.pone.0209128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/20/2019] [Indexed: 11/18/2022] Open
Abstract
Pyropia yezoensis is an economically important seaweed but its molecular genetics is poorly understood. In the present study, we used a doubled haploid (DH) population that was established in our previous work to construct a genetic linkage map of P. yezoensis and analyze the quantitative trait loci (QTLs) of blades. The DH population was genotyped with fluorescent sequence-related amplified polymorphism (SRAP) markers. A chi-square test identified 301 loci with normal segregation (P ≥ 0.01) and 96 loci (24.18%) with low-level skewed segregation (0.001 ≤ P < 0.01). The genetic map was constructed after a total of 92 loci were assembled into three linkage groups (LGs). The map spanned 557.36 cM covering 93.71% of the estimated genome, with a mean interlocus space of 6.23 cM. Kolmogorov-Smirnov test (α = 5%) showed a uniform distribution of the markers along each LG. On the genetic map, 10 QTLs associated with five economic traits of blades were detected. One QTL was for length, one for width, two for fresh weight, two for specific growth rate of length and four for specific growth rate of fresh weight. These QTLs could explain 2.29–7.87% of the trait variations, indicating that their effects were all minor. The results may serve as a framework for future marker-assisted breeding in P. yezoensis.
Collapse
Affiliation(s)
- Linbin Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, P. R. China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P. R. China
| | - Xinghong Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, P. R. China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
24
|
Wei G, Jia Q, Chen X, Köllner TG, Bhattacharya D, Wong GKS, Gershenzon J, Chen F. Terpene Biosynthesis in Red Algae Is Catalyzed by Microbial Type But Not Typical Plant Terpene Synthases. PLANT PHYSIOLOGY 2019; 179:382-390. [PMID: 30538166 PMCID: PMC6426406 DOI: 10.1104/pp.18.01413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 05/27/2023]
Abstract
Red algae (Rhodophyta) and land plants belong to the monophyletic clade Archaeplastida, and taxa of both groups are rich producers of terpene secondary metabolites. The terpene carbon skeletons of land plants are made by two types of terpene synthases: typical plant terpene synthases and microbial-type terpene synthases (MTPSLs); however, terpene biosynthesis in red algae is poorly understood. By systematic sequence analysis of seven genomes and 34 transcriptomes of red algae, MTPSL homologs were identified within one genome and two transcriptomes, whereas no homolog of typical plant terpene synthase genes was found. Phylogenetic analysis showed that red algae MTPSLs group with bacterial terpene synthases. Analysis of the genome assembly and characterization of neighboring genes demonstrated red algal MTPSLs to be bona fide red algal genes and not microbial contaminants. MTPSL genes from Porphyridium purpureum and Erythrolobus australicus were characterized via heterologous expression in Escherichia coli and demonstrated to have sesquiterpene synthase activities. We detected a number of volatile sesquiterpenes in the headspace of P. purpureum and E. australicus cultures, most identical to the in vitro products of the respective MTPSLs. Expression of the MTPSL gene in P. purpureum was found to be induced by methyl jasmonate, suggesting a role for this gene in host defense. In summary, this study indicates that the formation of terpene carbon skeletons in red algae is carried out by MTPSLs that are phylogenetically unrelated to typical plant terpene synthases and most likely originated in Rhodophyta via horizontal gene transfer from bacteria.
Collapse
Affiliation(s)
- Guo Wei
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Qidong Jia
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901
| | - Gane Ka-Shu Wong
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
25
|
A Simple Procedure to Observe Phototropic Responses in the Red Seaweed Pyropia yezoensis. Methods Mol Biol 2019. [PMID: 30694470 DOI: 10.1007/978-1-4939-9015-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The marine red seaweed Pyropia yezoensis exhibits phototropic responses in gametophyte and conchosporangia phases, but not in sporophytes. These responses are easily monitored with a simple culturing box that has one side open to allow for unilateral light irradiation within an incubator. Confirmation of phototropic responses is achieved by changing the direction of unilateral light irradiation via rotation of the culture dishes clockwise 90°.
Collapse
|
26
|
Uji T, Gondaira Y, Fukuda S, Mizuta H, Saga N. Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress Chaperones 2019; 24:223-233. [PMID: 30632066 PMCID: PMC6363611 DOI: 10.1007/s12192-018-00959-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are found in all three domains of life (Bacteria, Archaea, and Eukarya) and play a critical role in protecting organisms from a range of environmental stresses. However, little is known about their physiological functions in red algae. Therefore, we characterized the sHSPs (PysHSPs) in the red macroalga Pyropia yezoensis, which inhabits the upper intertidal zone where it experiences fluctuating stressful environmental conditions on a daily and seasonal basis, and examined their expression profiles at different developmental stages and under varying environmental conditions. We identified five PysHSPs (PysHSP18.8, 19.1, 19.2, 19.5, and 25.8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that expression of the genes PysHSP18.8, PysHSP19.5, and PysHSP25.8 was repressed at all the developmental stages under normal conditions, whereas PysHSP19.1 and PysHSP19.2 were overexpressed in mature gametophytes and sporophytes. Exposure of the gametophytes to high temperature, oxidative stress, or copper significantly increased the mRNA transcript levels of all the five genes, while exogenous application of the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) significantly increased the expression levels of PysHSP19.2, PysHSP19.5, and PysHSP25.8. These findings will help to further our understanding of the role of PysHSP genes and provide clues about how Pyropia species can adapt to the stressful conditions encountered in the upper intertidal zone during their life cycle.
Collapse
Affiliation(s)
- Toshiki Uji
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Yohei Gondaira
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Satoru Fukuda
- Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori, 038-0012, Japan
| | - Hiroyuki Mizuta
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Naotsune Saga
- Section of Food Sciences, Institute for Regional Innovation, Hirosaki University, Aomori, Aomori, 038-0012, Japan
| |
Collapse
|
27
|
Stiller JW, Yang C, Collén J, Kowalczyk N, Thompson BE. Evolution and expression of core SWI/SNF genes in red algae. JOURNAL OF PHYCOLOGY 2018; 54:879-887. [PMID: 30288746 DOI: 10.1111/jpy.12795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Red algae are the oldest identifiable multicellular eukaryotes, with a fossil record dating back more than a billion years. During that time two major rhodophyte lineages, bangiophytes and florideophytes, have evolved varied levels of morphological complexity. These two groups are distinguished, in part, by different patterns of multicellular development, with florideophytes exhibiting a far greater diversity of morphologies. Interestingly, during their long evolutionary history, there is no record of a rhodophyte achieving the kinds of cellular and tissue-specific differentiation present in other multicellular algal lineages. To date, the genetic underpinnings of unique aspects of red algal development are largely unexplored; however, they must reflect the complements and patterns of expression of key regulatory genes. Here we report comparative evolutionary and gene expression analyses of core subunits of the SWI/SNF chromatin-remodeling complex, which is implicated in cell differentiation and developmental regulation in more well studied multicellular groups. Our results suggest that a single, canonical SWI/SNF complex was present in the rhodophyte ancestor, with gene duplications and evolutionary diversification of SWI/SNF subunits accompanying the evolution of multicellularity in the common ancestor of bangiophytes and florideophytes. Differences in how SWI/SNF chromatin remodeling evolved subsequently, in particular gene losses and more rapid divergence of SWI3 and SNF5 in bangiophytes, could help to explain why they exhibit a more limited range of morphological complexity than their florideophyte cousins.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Nathalie Kowalczyk
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Beth E Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
28
|
Koizumi J, Takatani N, Kobayashi N, Mikami K, Miyashita K, Yamano Y, Wada A, Maoka T, Hosokawa M. Carotenoid Profiling of a Red Seaweed Pyropia yezoensis: Insights into Biosynthetic Pathways in the Order Bangiales. Mar Drugs 2018; 16:md16110426. [PMID: 30388860 PMCID: PMC6267214 DOI: 10.3390/md16110426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Carotenoids are natural pigments that contribute to light harvesting and photo-protection in photosynthetic organisms. In this study, we analyzed the carotenoid profiles, including mono-hydroxy and epoxy-carotenoids, in the economically valuable red seaweed Pyropia yezoensis, to clarify the detailed biosynthetic and metabolic pathways in the order Bangiales. P. yezoensis contained lutein, zeaxanthin, α-carotene, and β-carotene, as major carotenoids in both the thallus and conchocelis stages. Monohydroxy intermediate carotenoids for the synthesis of lutein with an ε-ring from α-carotene, α-cryptoxanthin (β,ε-caroten-3’-ol), and zeinoxanthin (β,ε-caroten-3-ol) were identified. In addition, β-cryptoxanthin, an intermediate in zeaxanthin synthesis from β-carotene, was also detected. We also identified lutein-5,6-epoxide and antheraxanthin, which are metabolic products of epoxy conversion from lutein and zeaxanthin, respectively, by LC-MS and 1H-NMR. This is the first report of monohydroxy-carotenoids with an ε-ring and 5,6-epoxy-carotenoids in Bangiales. These results provide new insights into the biosynthetic and metabolic pathways of carotenoids in red seaweeds.
Collapse
Affiliation(s)
- Jiro Koizumi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Naoki Takatani
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Noritoki Kobayashi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo, Morimoto Cho, Sakyoku, Kyoto 606-0805, Japan.
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| |
Collapse
|
29
|
Popova LG, Belyaev DV, Shuvalov AV, Yurchenko AA, Matalin DA, Khramov DE, Orlova YV, Balnokin YV. In silico Analyses of Transcriptomes of the Marine Green Microalga Dunaliella tertiolecta: Identification of Sequences Encoding P-type ATPases. Mol Biol 2018. [DOI: 10.1134/s0026893318040167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Qiu H, Rossoni AW, Weber APM, Yoon HS, Bhattacharya D. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria. BMC Evol Biol 2018; 18:41. [PMID: 29606099 PMCID: PMC5880011 DOI: 10.1186/s12862-018-1161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background Genome reduction in intracellular pathogens and endosymbionts is usually compensated by reliance on the host for energy and nutrients. Free-living taxa with reduced genomes must however evolve strategies for generating functional diversity to support their independent lifestyles. An emerging model for the latter case is the Rhodophyta (red algae) that comprises an ecologically widely distributed, species-rich phylum. Red algae have undergone multiple phases of significant genome reduction, including extremophilic unicellular taxa with limited nuclear gene inventories that must cope with hot, highly acidic environments. Results Using genomic data from eight red algal lineages, we identified 155 spliceosomal machinery (SM)-associated genes that were putatively present in the red algal common ancestor. This core SM gene set is most highly conserved in Galdieria species (150 SM genes) and underwent differing levels of gene loss in other examined red algae (53-145 SM genes). Surprisingly, the high SM conservation in Galdieria sulphuraria coincides with the enrichment of spliceosomal introns in this species (2 introns/gene) in comparison to other red algae (< 0.34 introns/gene). Spliceosomal introns in G. sulphuraria undergo alternatively splicing, including many that are differentially spliced upon changes in culture temperature. Conclusions Our work reveals the unique nature of G. sulphuraria among red algae with respect to the conservation of the spliceosomal machinery and introns. We discuss the possible implications of these findings in the highly streamlined genome of this free-living eukaryote. Electronic supplementary material The online version of this article (10.1186/s12862-018-1161-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Alessandro W Rossoni
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
31
|
Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CMM, Legreve A, Lukeš J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S. Not in your usual Top 10: protists that infect plants and algae. MOLECULAR PLANT PATHOLOGY 2018; 19:1029-1044. [PMID: 29024322 PMCID: PMC5772912 DOI: 10.1111/mpp.12580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 05/09/2023]
Abstract
Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.
Collapse
Affiliation(s)
- Arne Schwelm
- Department of Plant Biology, Uppsala BioCentre, Linnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsala SE‐75007Sweden
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Julia Badstöber
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Simon Bulman
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Nicolas Desoignies
- Applied Plant Ecophysiology, Haute Ecole Provinciale de Hainaut‐CondorcetAth 7800Belgium
| | - Mohammad Etemadi
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Richard E. Falloon
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
| | - Anne Legreve
- Université catholique de Louvain, Earth and Life InstituteLouvain‐la‐Neuve 1348Belgium
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
- Integrated Microbial Biodiversity, Canadian Institute for Advanced ResearchTorontoOntario M5G 1Z8Canada
| | - Ueli Merz
- Plant PathologyInstitute of Integrative Biology, ETH Zurich, Zurich 8092Switzerland
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
| | - Martina Strittmatter
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
- Present address:
Station Biologique de Roscoff, CNRS – UPMC, UMR7144 Adaptation and Diversity in the Marine Environment, Place Georges Teissier, CS 90074, 29688 Roscoff CedexFrance
| | - Brooke K. Sullivan
- School of BiosciencesUniversity of Melbourne, Parkville, Vic. 3010Australia
- School of BiosciencesVictorian Marine Science ConsortiumQueenscliffVic. 3225Australia
| | - Sigrid Neuhauser
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| |
Collapse
|
32
|
Bannerman BP, Kramer S, Dorrell RG, Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One 2018; 13:e0192633. [PMID: 29561870 PMCID: PMC5862402 DOI: 10.1371/journal.pone.0192633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/26/2018] [Indexed: 12/01/2022] Open
Abstract
The degree of conservation and evolution of cytoplasmic mRNA metabolism pathways across the eukaryotes remains incompletely resolved. In this study, we describe a comprehensive genome and transcriptome-wide analysis of proteins involved in mRNA maturation, translation, and mRNA decay across representative organisms from the six eukaryotic super-groups. We demonstrate that eukaryotes share common pathways for mRNA metabolism that were almost certainly present in the last eukaryotic common ancestor, and show for the first time a correlation between intron density and a selective absence of some Exon Junction Complex (EJC) components in eukaryotes. In addition, we identify pathways that have diversified in individual lineages, with a specific focus on the unique gene gains and losses in members of the Excavata and SAR groups that contribute to their unique gene expression pathways compared to other organisms.
Collapse
Affiliation(s)
| | - Susanne Kramer
- Biozentrum, Lehrstuhl für Zell-und Entwicklungsbiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Richard G. Dorrell
- Institute of Biology, École Normale Supérieure, PSL Research University, Paris, France
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
McKain MR, Johnson MG, Uribe‐Convers S, Eaton D, Yang Y. Practical considerations for plant phylogenomics. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1038. [PMID: 29732268 PMCID: PMC5895195 DOI: 10.1002/aps3.1038] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 05/10/2023]
Abstract
The past decade has seen a major breakthrough in our ability to easily and inexpensively sequence genome-scale data from diverse lineages. The development of high-throughput sequencing and long-read technologies has ushered in the era of phylogenomics, where hundreds to thousands of nuclear genes and whole organellar genomes are routinely used to reconstruct evolutionary relationships. As a result, understanding which options are best suited for a particular set of questions can be difficult, especially for those just starting in the field. Here, we review the most recent advances in plant phylogenomic methods and make recommendations for project-dependent best practices and considerations. We focus on the costs and benefits of different approaches in regard to the information they provide researchers and the questions they can address. We also highlight unique challenges and opportunities in plant systems, such as polyploidy, reticulate evolution, and the use of herbarium materials, identifying optimal methodologies for each. Finally, we draw attention to lingering challenges in the field of plant phylogenomics, such as reusability of data sets, and look at some up-and-coming technologies that may help propel the field even further.
Collapse
Affiliation(s)
- Michael R. McKain
- Department of Biological SciencesThe University of AlabamaBox 870344TuscaloosaAlabama35487USA
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech University2901 Main Street, Box 43131LubbockTexas79409USA
| | - Simon Uribe‐Convers
- Department of Ecology and Evolutionary BiologyUniversity of Michigan830 North UniversityAnn ArborMichigan48109USA
| | - Deren Eaton
- Department of Ecology, Evolution, and Environmental BiologyColumbia University1200 Amsterdam AvenueNew YorkNew York10027USA
| | - Ya Yang
- Department of Plant and Microbial BiologyUniversity of Minnesota–Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108USA
| |
Collapse
|
34
|
The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins. Sci Rep 2018; 8:790. [PMID: 29335634 PMCID: PMC5768801 DOI: 10.1038/s41598-017-19046-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
PII superfamily consists of widespread signal transduction proteins found in all domains of life. Whereas they are well-studied in Archaea, Bacteria and Chloroplastida, no PII homolog has been analyzed in Rhodophyta (red algae), where PII is encoded by a chloroplast localized glnB gene. Here, we characterized relevant sensory properties of PII from the red alga Porphyra purpurea (PpPII) in comparison to PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, Chlamydomonas and Physcomitrella) to assess evolutionary conservation versus adaptive properties. Like its cyanobacterial counterparts, PpPII binds ATP/ADP and 2-oxoglutarate in synergy with ATP. However, green algae and land plant PII proteins lost the ability to bind ADP. In contrast to PII proteins from green algae and land plants, PpPII enhances the activity of N-acetyl-L-glutamate kinase (NAGK) and relieves it from feedback inhibition by arginine in a glutamine-independent manner. Like PII from Chloroplastida, PpPII is not able to interact with the cyanobacterial transcriptional co-activator PipX. These data emphasize the conserved role of NAGK as a major PII-interactor throughout the evolution of oxygenic phototrophs, and confirms the specific role of PipX for cyanobacteria. Our results highlight the PII signaling system in red algae as an evolutionary intermediate between Cyanobacteria and Chlorophyta.
Collapse
|
35
|
Dautermann O, Lohr M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:879-891. [PMID: 28949044 DOI: 10.1111/tpj.13725] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from 11 red algae covering all currently recognized red algal classes we identified ZEP candidates in three species. Phylogenetic analyses showed that the red algal ZEP is most closely related to ZEP proteins from photosynthetic chromalveolates possessing secondary plastids of red algal origin. Its enzymatic activity was assessed by high performance liquid chromatography (HPLC) analyses of red algal pigment extracts and by cloning and functional expression of the ZEP gene from Madagascaria erythrocladioides in leaves of the ZEP-deficient aba2 mutant of Nicotiana plumbaginifolia. Unlike other ZEP enzymes examined so far, the red algal ZEP introduces only a single epoxy group into zeaxanthin, yielding antheraxanthin instead of violaxanthin. The results indicate that ZEP evolved before the split of Rhodophyta and Viridiplantae and that chromalveolates acquired ZEP from the red algal endosymbiont and not by lateral gene transfer. Moreover, the red algal ZEP enables engineering of transgenic plants incorporating antheraxanthin instead of violaxanthin in their photosynthetic machinery.
Collapse
Affiliation(s)
- Oliver Dautermann
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Martin Lohr
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| |
Collapse
|
36
|
Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol 2017; 200:255-265. [DOI: 10.1007/s00203-017-1439-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
|
37
|
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 2017; 114:E6361-E6370. [PMID: 28716924 DOI: 10.1073/pnas.1703088114] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.
Collapse
|
38
|
Kakinuma M, Nakamoto C, Kishi K, Coury DA, Amano H. Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). MARINE ENVIRONMENTAL RESEARCH 2017; 128:76-87. [PMID: 27581686 DOI: 10.1016/j.marenvres.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/25/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Ammonium and nitrate are the primary nitrogen sources in natural environments, and are essential for growth and development in photosynthetic eukaryotes. In this study, we report on the isolation and characterization of an ammonium transporter gene (PyAMT1) which performs a key function in nitrogen (N) metabolism of Pyropia yezoensis thalli. The predicted length of PyAMT1 was 483 amino acids (AAs). The AA sequence included 11 putative transmembrane domains and showed approximately 33-44% identity to algal and plant AMT1 AA sequences. Functional complementation in an AMT-defective yeast mutant indicated that PyAMT1 mediated ammonium transport across the plasma membrane. Expression analysis showed that the PyAMT1 mRNA level was strongly induced by N-deficiency, and was more highly suppressed by resupply of inorganic-N than organic-N. These results suggest that PyAMT1 plays important roles in the ammonium transport system, and is highly regulated in response to external/internal N-status.
Collapse
Affiliation(s)
- Makoto Kakinuma
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan.
| | - Chika Nakamoto
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Kazuki Kishi
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Daniel A Coury
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Hideomi Amano
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
39
|
Im S, Lee HN, Jung HS, Yang S, Park EJ, Hwang MS, Jeong WJ, Choi DW. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:232-245. [PMID: 28421378 DOI: 10.1007/s10126-017-9744-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.
Collapse
Affiliation(s)
- Sungoh Im
- Department of Biology Education, Chonnam National University and Khumho Research Institute, Gwangju, 61186, South Korea
| | - Ha-Nul Lee
- Department of Biology Education, Chonnam National University and Khumho Research Institute, Gwangju, 61186, South Korea
| | - Hyun Shin Jung
- Department of Biology Education, Chonnam National University and Khumho Research Institute, Gwangju, 61186, South Korea
| | - Sunghwan Yang
- Department of Biology Education, Chonnam National University and Khumho Research Institute, Gwangju, 61186, South Korea
| | - Eun-Jeong Park
- Seaweed Research Center, National Fisheries Research and Development Institute, Mokpo, 58746, South Korea
| | - Mi Sook Hwang
- Seaweed Research Center, National Fisheries Research and Development Institute, Mokpo, 58746, South Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Dong-Woog Choi
- Department of Biology Education, Chonnam National University and Khumho Research Institute, Gwangju, 61186, South Korea.
| |
Collapse
|
40
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
41
|
Kurotani A, Yamada Y, Sakurai T. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes. PLANT & CELL PHYSIOLOGY 2017; 58:e6. [PMID: 28069893 PMCID: PMC5444574 DOI: 10.1093/pcp/pcw212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
42
|
Yoshimura K, Kosugi C, Imura Y, Kato T, Suzuki M, Yoshimura E. Sample Preparation of the Macro Alga Pyropia yezoensisfor the Determination of Messenger RNA. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1157806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Isolation of Plastid Ribosomes. Methods Mol Biol 2016. [PMID: 27730617 DOI: 10.1007/978-1-4939-6533-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plastid ribosomes are responsible for a large part of the protein synthesis in plant leaves, green algal cells, and the vast majority in the thalli of red algae. Plastid translation is necessary not only for photosynthesis but also for development/differentiation of plants and algae. While some isolated plastid ribosomes from a few green lineages have been characterized by biochemical and proteomic approaches, in-depth proteomics including analyses of posttranslational modifications and processing, comparative proteomics of plastid ribosomes isolated from the cells grown under different conditions, and those from different taxa are still to be carried out. Establishment of isolation methods for pure plastid ribosomes from a wider range of species would be beneficial to study the relationship between structure, function, and evolution of plastid ribosomes. Here I describe methodologies and provide example protocols for extraction and isolation of plastid ribosomes from a unicellular green alga (Chlamydomonas reinhardtii), a land plant (Arabidopsis thaliana), and a marine red macroalga (Pyropia yezoensis).
Collapse
|
44
|
Sato N, Mori N, Hirashima T, Moriyama T. Diverse pathways of phosphatidylcholine biosynthesis in algae as estimated by labeling studies and genomic sequence analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:281-92. [PMID: 27133435 DOI: 10.1111/tpj.13199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 05/03/2023]
Abstract
Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)-choline to diacylglycerol. Phosphocholine, the direct precursor to CDP-choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [(32) P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [(32) P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
45
|
Moenne A, González A, Sáez CA. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:30-37. [PMID: 27107242 DOI: 10.1016/j.aquatox.2016.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects.
Collapse
Affiliation(s)
- Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Claudio A Sáez
- Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile.
| |
Collapse
|
46
|
Shemi A, Ben-Dor S, Vardi A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 2016; 11:701-15. [PMID: 25915714 DOI: 10.1080/15548627.2015.1034407] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance.
Collapse
Key Words
- ATG, autophagy related
- ATG8
- ATG9
- DUF, domain of unknown function
- EST, expressed sequence tag
- EhV, Emiliania huxleyi virus
- GABARAP, GABA(A) receptor-associated protein
- PtdIns3K, phosphatidylinositol 3-kinase
- RPTOR, regulatory associated protein of MTOR, complex 1
- TOR, target of rapamycin
- TORC, target of rapamycin complex
- Ubl, ubiquitin-like
- Vps, vacuolar protein sorting
- algae
- autophagy
- blooms
- chromalveolata
- phylogenetics
- phytoplankton
- rhodophyta
- stress
Collapse
Affiliation(s)
- Adva Shemi
- a Department of Plant Sciences ; Weizmann Institute of Science ; Rehovot , Israel
| | | | | |
Collapse
|
47
|
Banerjee C, Singh PK, Shukla P. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies. Biotechnol J 2016; 11:303-14. [DOI: 10.1002/biot.201500284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science & Engineering; Indian School of Mines; Dhanbad Jharkhand India
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| |
Collapse
|
48
|
Mori N, Moriyama T, Toyoshima M, Sato N. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2016; 7:958. [PMID: 28066454 PMCID: PMC4928187 DOI: 10.3389/fpls.2016.00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid synthesis in the plastid. We will also discuss on the redundant β-oxidation enzymes, which are characteristic to red algae.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
- *Correspondence: Naoki Sato
| |
Collapse
|
49
|
Takahashi M, Mikami K. Phototropism in the Marine Red Macroalga <i>Pyropia yezoensis</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.717211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Inoue A, Mashino C, Uji T, Saga N, Mikami K, Ojima T. Characterization of an Eukaryotic PL-7 Alginate Lyase in the Marine Red Alga Pyropia yezoensis. ACTA ACUST UNITED AC 2015; 4:240-248. [PMID: 28553576 PMCID: PMC5436490 DOI: 10.2174/2211550104666150915210434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alginate lyases belonging to polysaccharide lyase family-7 (PL-7) are the most well studied on their structures and functions among whole alginate lyases. However, all characterized PL-7 alginate lyases are from prokaryotic bacteria cells. Here we report the first identification of eukaryotic PL-7 alginate lyase from marine red alga Pyropia yezoensis. METHODS The cDNA encoding an alginate lyase PyAly was cloned and was used for the construction of recombinant PyAly (rPyAly) expression system in Escherichia coli. Purified rPyAly was assayed to identify its enzymatic properties. Its expression pattern in P. yessoensis was also investigated. RESULTS PyAly is likely a secreted protein consisting of an N-terminal signal peptide of 25 residues and a catalytic domain of 216 residues. The amino-acid sequence of the catalytic domain showed 19-29% identities to those of bacterial characterized alginate lyases classified into family PL-7. Recombinant PyAly protein, rPyAly, which was produced with E. coli BL21(DE3) by cold-inducible expression system, drastically decreased the viscosity of alginate solution in the early stage of reaction. The most preferable substrate for rPyAly was the poly(M) of alginate with an optimal temperature and pH at 35oC and 8.0, respectively. After reaction, unsaturated tri- and tetra-saccharides were produced from poly(M) as major end products. These enzymatic properties indicated that PyAly is an endolytic alginate lyase belonging to PL-7. Moreover, we found that the PyAly gene is split into 4 exons with 3 introns. PyAly was also specifically expressed in the gametophytic haplopid stage. CONCLUSION This study demonstrates that PyAly in marine red alga P. yezoensis is a novel PL-7 alginate lyase with an endolytic manner. PyAly is a gametophyte-specifically expressed protein and its structural gene is composed of four exons and three introns. Thus, PyAly is the first enzymatically characterized eukaryotic PL-7 alginate lyase.
Collapse
Affiliation(s)
- Akira Inoue
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | - Chieco Mashino
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | - Toshiki Uji
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | - Naotsune Saga
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | - Koji Mikami
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| | - Takao Ojima
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|