1
|
Trojan D, García-Robledo E, Hausmann B, Revsbech NP, Woebken D, Eichorst S. A respiro-fermentative strategy to survive nanoxia in Acidobacterium capsulatum. FEMS Microbiol Ecol 2024; 100:fiae152. [PMID: 39557655 PMCID: PMC11636273 DOI: 10.1093/femsec/fiae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/20/2024] Open
Abstract
Microbial soil habitats are characterized by rapid shifts in substrate and nutrient availabilities, as well as chemical and physical parameters. One such parameter that can vary in soil is oxygen; thus, microbial survival is dependent on adaptation to this substrate. To better understand the metabolic abilities and adaptive strategies to oxygen-deprived environments, we combined genomics with transcriptomics of a model organism, Acidobacterium capsulatum, to explore the effect of decreasing, environmentally relevant oxygen concentrations. The decrease from 10 to 0.1 µM oxygen (3.6 to 0.036 pO2% present atmospheric level, respectively) caused the upregulation of the transcription of genes involved in signal transduction mechanisms, energy production and conversion and secondary metabolites biosynthesis, transport, and catabolism based on clusters of orthologous group categories. Contrary to established observations for aerobic metabolism, key genes in oxidative stress response were significantly upregulated at lower oxygen concentrations, presumably due to an NADH/NAD+ redox ratio imbalance as the cells transitioned into nanoxia. Furthermore, A. capsulatum adapted to nanoxia by inducing a respiro-fermentative metabolism and rerouting fluxes of its central carbon and energy pathways to adapt to high NADH/NAD+ redox ratios. Our results reveal physiological features and metabolic capabilities that allowed A. capsulatum to adapt to oxygen-limited conditions, which could expand into other environmentally relevant soil strains.
Collapse
Affiliation(s)
- Daniela Trojan
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Emilio García-Robledo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11002 Cádiz, Spain
| | - Bela Hausmann
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1030 Vienna, Austria
| | | | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Stephanie A Eichorst
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
2
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Chen F, Zhao Q, Yang Z, Chen R, Pan H, Wang Y, Liu H, Cao Q, Gan J, Liu X, Zhang N, Yang CG, Liang H, Lan L. Citrate serves as a signal molecule to modulate carbon metabolism and iron homeostasis in Staphylococcus aureus. PLoS Pathog 2024; 20:e1012425. [PMID: 39078849 PMCID: PMC11315280 DOI: 10.1371/journal.ppat.1012425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.
Collapse
Affiliation(s)
- Feifei Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingmin Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiong Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Cao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Diving and Hyperbaric Medicine, Navy Medical Center, Naval Medical University, Shanghai, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Wang H, Fan Q, Gao S, Yi L, Wang Y, Wang Y. Transposon library screening to identify genes with a potential role in Streptococcus suis biofilm formation. Future Microbiol 2024; 19:107-115. [PMID: 38305226 DOI: 10.2217/fmb-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 02/03/2024] Open
Abstract
Background: Biofilm formation is considered to be one of reasons for difficulty in the prevention and control of Streptococcus suis. Aims: To explore the potential genes involved in the biofilm formation of S. suis. Methods: Transposon mutagenesis technology was used to screen biofilm-defective strains of S. suis, and the potential genes related to biofilm were identified. Results: A total of 19 genes were identified that were involved in bacterial metabolism, peptidoglycan-binding protein, cell wall synthesis, ABC transporters, and so on. Conclusion: This study constructed 979 transposon mutation libraries of S. suis. A total of 19 gene loci related to the formation of S. suis biofilm were identified, providing a reference for exploring the mechanism of S. suis biofilm formation in the future.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Qingying Fan
- College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Shuji Gao
- College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Yang Wang
- College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China
- Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China
| |
Collapse
|
5
|
Kim JH, Kim YH, Park BI, Choi NY, Kim KJ. Pinus koraiensis Essential Oil Attenuates the Pathogenicity of Superbacteria by Suppressing Virulence Gene Expression. Molecules 2023; 29:37. [PMID: 38202618 PMCID: PMC10779922 DOI: 10.3390/molecules29010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
In the quest to combat infections attributable to antibiotic-resistant superbacteria, an essential oil derived from the needles of Pinus koraiensis Sieb. et Zucc. (PKEO) has emerged as a promising solution. In this study, we demonstrate that PKEO can be used to inhibit the growth, glucose metabolite acidogenicity, and biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA). Quantitative PCR analysis provided direct evidence that PKEO reduces the mRNA expression of the accessory gene regulator A (agrA) and staphylococcal accessory regulator A (sarA), thereby indicating its inhibitory effect on pathogenic regulatory genes. Chromatographic analyses of PKEO identified terpene hydrocarbons as prominent essential oil constituents. These compounds, notably α-pinene, limonene, and β-caryophyllene, have been established to have antimicrobial properties. Our findings indicate that an oil derived from P. koraiensis can effectively combat antibiotic-resistant strains by disrupting the pathogenicity regulatory system, thereby establishing PKEO as a promising candidate for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Convergence Technology for Food Industry, Wonkwang University, Iksan 54538, Republic of Korea;
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hoi Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Bog-Im Park
- Department of Food and Nutrition, Kunsan National University, Kunsan 54150, Republic of Korea;
| | - Na-Young Choi
- College of Education, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kang-Ju Kim
- Department of Oral Microbiology, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
6
|
Król J, Wanecka A, Twardoń J, Florek M, Marynowska M, Banaszkiewicz S, Kaczmarek-Pieńczewska A, Pląskowska E, Brodala M, Chwirot W, Korzeniowska-Kowal A, De Buck J. Staphylococcus borealis - A newly identified pathogen of bovine mammary glands. Vet Microbiol 2023; 286:109876. [PMID: 37776630 DOI: 10.1016/j.vetmic.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Twelve Staphylococcus borealis strains, isolated in Canada and Poland from milk of cows with intramammary infections, were characterized phenotypically (biochemical reactions on ID 32 STAPH and Biolog Phenotype MicroArrays™ PM1 and PM2A, ability of biofilm production) and genotypically (random amplified polymorphic DNA). In addition, a genomic comparison was done with S. borealis strains of human and porcine origin using the multilocus sequence typing (MLST) technique. The bovine isolates showed a high degree of phenotypic and genotypic diversity, however, they could be differentiated from human strains by the negative test for urease (found in all but one bovine isolate examined with ID 32 STAPH) and positive reaction for D-galactose (on Biolog phenotype microarray PM1) and D-lactose (on both commercial systems). The MLST method, utilizing six concatenated genes of the total length of ∼2930 bp, revealed that bovine strains (irrespective of the country of origin) show a distinctly greater degree of mutual relationship than to the strains of human and porcine origin, suggesting that S. borealis has evolved independently in these hosts. In conclusion, bovine-specific S. borealis can be involved in intramammary infections in cattle.
Collapse
Affiliation(s)
- Jarosław Król
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland.
| | - Anna Wanecka
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Jan Twardoń
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Pl. Grunwaldzki 49, 50-366 Wrocław, Poland
| | - Magdalena Florek
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Maja Marynowska
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Sylwia Banaszkiewicz
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, St. Norwida 31, 50-375 Wrocław, Poland
| | - Agata Kaczmarek-Pieńczewska
- Department of Plant Protection, Division of Plant Pathology and Mycology, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Plant Pathology and Mycology, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Maria Brodala
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Wojciech Chwirot
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. Weigla 12, 53-114 Wrocław, Poland
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Alberta, Canada
| |
Collapse
|
7
|
Suthi S, Mounika A, Potukuchi VGKS. Elevated acetate kinase (ackA) gene expression, activity, and biofilm formation observed in methicillin-resistant strains of Staphylococcus aureus (MRSA). J Genet Eng Biotechnol 2023; 21:100. [PMID: 37831271 PMCID: PMC10575836 DOI: 10.1186/s43141-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Staphylococcus aureus spreads its infections through biofilms. This usually happens in the stationary phase of S. aureus growth where it utilizes accumulated acetate as a carbon source via the phosphotrans-acetylase-acetate kinase (Pta-Ack) pathway. In which acetate kinase (ackA) catalyzes the substrate-level phosphorylation, a vital secondary energy-yielding pathway that promotes biofilms formation aids bacterium survival in hostile environments. In this study, we describe the cloning, sequencing, and expression of S. aureus ackA gene. The expression analysis of ackA gene in methicillin-resistant strains of S. aureus (MRSA) correlates with ackA activity and biofilm units. The uniqueness of ackA was analyzed by using in silico methods. RESULTS Elevated ackA gene expression was observed in MRSA strains, which correlates with increased ackA activity and biofilm units, explaining ackA role in MRSA growth and pathogenicity. The pure recombinant acetate kinase showed a molecular weight of 44 kDa, with enzyme activity of 3.35 ± 0.05 μM/ml/min. The presence of ACKA-1, ACKA-2 sites, one ATP, and five serine/threonine-protein kinase sites in the ackA gene (KC954623.1) indicated that acetyl phosphate production is strongly controlled. The comparative structural analysis of S. aureus ackA with ackA structures of Mycobacterium avium (3P4I) and Salmonella typhimurium (3SLC) exhibited variations as indicated by the RMSD values 1.877 Å and 2.141 Å respectively, explaining why ackA functions are differently placed in bacteria, concurring its involvement in S. aureus pathogenesis. CONCLUSIONS Overall findings of this study highlight the correlation of ackA expression profoundly increases survival capacity through biofilm formation, which is a pathogenic factor in MRSA and plays a pivotal role in infection spreading.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | - A Mounika
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | | |
Collapse
|
8
|
Ishiai T, Subsomwong P, Narita K, Kawai N, Teng W, Suzuki S, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles of Pseudomonas aeruginosa downregulate pyruvate fermentation enzymes and inhibit the initial growth of Staphylococcus aureus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100190. [PMID: 37131486 PMCID: PMC10149184 DOI: 10.1016/j.crmicr.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are well-known opportunistic pathogens that frequently coexist in chronic wounds and cystic fibrosis. The exoproducts of P. aeruginosa have been shown to affect the growth and pathogenicity of S. aureus, but the detailed mechanisms are not well understood. In this study, we investigated the effect of extracellular vesicles from P. aeruginosa (PaEVs) on the growth of S. aureus. We found that PaEVs inhibited the S. aureus growth independently of iron chelation and showed no bactericidal activity. This growth inhibitory effect was also observed with methicillin-resistant S. aureus but not with Acinetobacter baumannii, Enterococcus faecalis, S. Typhimurium, E. coli, Listeria monocytogenes, or Candida albicans, suggesting that the growth inhibitory effect of PaEVs is highly specific for S. aureus. To better understand the detailed mechanism, the difference in protein production of S. aureus between PaEV-treated and non-treated groups was further analyzed. The results revealed that lactate dehydrogenase 2 and formate acetyltransferase enzymes in the pyruvate fermentation pathway were significantly reduced after PaEV treatment. Likewise, the expression of ldh2 gene for lactate dehydrogenase 2 and pflB gene for formate acetyltransferase in S. aureus was reduced by PaEV treatment. In addition, this inhibitory effect of PaEVs was abolished by supplementation with pyruvate or oxygen. These results suggest that PaEVs inhibit the growth of S. aureus by suppressing the pyruvate fermentation pathway. This study reported a mechanism of PaEVs in inhibiting S. aureus growth which may be important for better management of S. aureus and P. aeruginosa co-infections.
Collapse
Affiliation(s)
- Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kouj Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Noriaki Kawai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sachio Suzuki
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
- Corresponding author at: Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
9
|
Tomaselli S, Pasini M, Kozma E, Giovanella U, Scavia G, Pagano K, Molinari H, Iannace S, Ragona L. Bacteria as sensors: Real-time NMR analysis of extracellular metabolites detects sub-lethal amounts of bactericidal molecules released from functionalized materials. Biochim Biophys Acta Gen Subj 2023; 1867:130253. [PMID: 36228877 DOI: 10.1016/j.bbagen.2022.130253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cells exposed to stress factors experience time-dependent variations of metabolite concentration, acting as reliable sensors of the effective concentration of drugs in solution. NMR can detect and quantify changes in metabolite concentration, thus providing an indirect estimate of drug concentration. The quantification of bactericidal molecules released from antimicrobial-treated biomedical materials is crucial to determine their biocompatibility and the potential onset of drug resistance. METHODS Real-time NMR measurements of extracellular metabolites produced by bacteria grown in the presence of known concentrations of an antibacterial molecule (irgasan) are employed to quantify the bactericidal molecule released from antimicrobial-treated biomedical devices. Viability tests assess their activity against E. coli and S. aureus planktonic and sessile cells. AFM and contact angle measurements assisted in the determination of the mechanism of antibacterial action. RESULTS NMR-derived concentration kinetics of metabolites produced by bacteria grown in contact with functionalized materials allows for indirectly evaluating the effective concentration of toxic substances released from the device, lowering the detection limit to the nanomolar range. NMR, AFM and contact angle measurements support a surface-killing mechanism of action against bacteria. CONCLUSIONS The NMR based approach provides a reliable tool to estimate bactericidal molecule release from antimicrobial materials. GENERAL SIGNIFICANCE The novelty of the proposed NMR-based strategy is that it i) exploits bacteria as sensors of the presence of bactericidal molecules in solution; ii) is independent of the chemo-physical properties of the analyte; iii) establishes the detection limit to nanomolar concentrations.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy.
| | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Erika Kozma
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Guido Scavia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Salvatore Iannace
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
10
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
12
|
Choueiry F, Xu R, Zhu J. Adaptive Metabolism of Staphylococcus aureus Revealed by Untargeted Metabolomics. J Proteome Res 2022; 21:470-481. [PMID: 35043624 PMCID: PMC9199441 DOI: 10.1021/acs.jproteome.1c00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus (SA) is an opportunistic pathogen that can cause a wide spectrum of infections, from superficial skin inflammation to severe and potentially fatal and invasive diseases. Due to the many potential routes of infection, host-derived environmental signals (oxygen availability, nutrients, etc.) are vital for host colonization and thus contribute to SA's pathogenesis. To uncover the direct effects of environmental factors on SA metabolism, we performed a series of experiments in diverse culture environments and correlated our findings of SA's metabolic adaptation to some of the pathogen's known virulence factors. Untargeted metabolomics was conducted on a Thermo Q-Exactive high-resolution mass spectrometer. We detected 260 intracellular polar metabolites from our bacteria cultured under both aerobic and anaerobic conditions and in glucose- and dextrin-supplemented cultures. These metabolites were mapped to relevant metabolic pathways to elucidate the adaptive metabolic processes of both methicillin-sensitive SA (MSSA) and methicillin-resistant SA (MRSA). We also detected an increased expression of virulence genes agr-I and sea of MRSA supplemented with both glucose and dextrin by qPCR. With the metabolic data collected that may be associated with the adaptive growth and virulence of SA, our study could set up the foundations for future work to identify metabolic inhibitors/modulators to mitigate SA infections in different growth environments.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210,James Comprehensive Cancer Center, The Ohio State University, 400 W 12 th Ave, Columbus, OH, 43210,Corresponding author: Jiangjiang Zhu, Ph.D., , Tel: 614-685-2226
| |
Collapse
|
13
|
Fustaino V, Gimmelli R, Guidi A, Lentini S, Saccoccia F, Petrella G, Cicero DO, Ruberti G. Comparative metabolic profiling by 1H-NMR spectroscopy analysis reveals the adaptation of S. mansoni from its host to in vitro culture conditions: a pilot study with ex vivo and GSH-supplemented medium-cultured parasites. Parasitol Res 2022; 121:1191-1198. [PMID: 35024953 DOI: 10.1007/s00436-022-07426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms (blood fluke) of the genus Schistosoma. Parasites acquire most nutrients for their development and sustainment within the definitive host either by ingestion into the gut or across the body surface. Over the years, the best conditions for long-term maintenance of parasites in vitro have been thoroughly established. In our hands, 1H-NMR spectroscopy represents a powerful tool to characterize the metabolic changes in S. mansoni in response to culturing condition perturbations. In order to compare the metabolic fingerprint of ex vivo and parasites cultured in vitro with or without the supplement of reduced glutathione, we conducted a pilot study applying the 1H-NMR spectroscopy-based metabolomics. We obtained new insight into specific metabolic pathways modulated under these different experimental conditions.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Sara Lentini
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy.
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| |
Collapse
|
14
|
Yuan Z, Wang J, Che R, God’spower BO, Zhou Y, Dong C, Li L, Chen M, Eliphaz N, Liu X, Li Y. Relationship between L-lactate dehydrogenase and multidrug resistance in Staphylococcus xylosus. Arch Microbiol 2021; 204:91. [DOI: 10.1007/s00203-021-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
15
|
Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami ( Ventricina). Foods 2021; 10:foods10092138. [PMID: 34574248 PMCID: PMC8467601 DOI: 10.3390/foods10092138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The work reports a case study describing how the competition wild microflora vs. starter cultures affects the final product characteristics. This study regards an industrial lot of Ventricina, an Italian long-ripened traditional fermented sausages, produced using starter cultures. After ripening, some relevant organoleptic defects (off-odour, crust formation) were observed. Therefore, analyses were carried out in the inner and outer sausage section to explain this phenomenon. Microbiological analyses indicated a high meat batter contamination and metagenomic analyses evidenced the inability of LAB starter cultures to lead the fermentation process. The results of this not controlled fermentation were the accumulation of high levels of biogenic amines (including histamine) and the formation of a volatile profile different if compared with similar products. Indeed, the volatilome analysis revealed unusually high amounts of molecules such as isovaleric acid, propanoic acid, 1-propanol, which can be responsible for off-odours. This study demonstrated that starter culture use needs to be modulated in relation to production parameters to avoid safety and organoleptic concerns.
Collapse
|
16
|
Carbon Source-Dependent Reprogramming of Anaerobic Metabolism in Staphylococcus aureus. J Bacteriol 2021; 203:JB.00639-20. [PMID: 33526614 DOI: 10.1128/jb.00639-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
To be a successful pathogen, Staphylococcus aureus has to adapt its metabolism to the typically oxygen- and glucose-limited environment of the host. Under fermenting conditions and in the presence of glucose, S. aureus uses glycolysis to generate ATP via substrate-level phosphorylation and mainly lactic acid fermentation to maintain the redox balance by reoxidation of NADH equivalents. However, it is less clear how S. aureus proceeds under anoxic conditions and glucose limitation, likely representing the bona fide situation in the host. Using a combination of proteomic, transcriptional, and metabolomic analyses, we show that in the absence of an abundant glycolysis substrate, the available carbon source pyruvate is converted to acetyl coenzyme A (AcCoA) in a pyruvate formate-lyase (PflB)-dependent reaction to produce ATP and acetate. This process critically depends on derepression of the catabolite control protein A (CcpA), leading to upregulation of pflB transcription. Under these conditions, ethanol production is repressed to prevent wasteful consumption of AcCoA. In addition, our global and quantitative characterization of the metabolic switch prioritizing acetate over lactate fermentation when glucose is absent illustrates examples of carbon source-dependent control of colonization and pathogenicity factors.IMPORTANCE Under infection conditions, S. aureus needs to ensure survival when energy production via oxidative phosphorylation is not possible, e.g., either due to the lack of terminal electron acceptors or by the inactivation of components of the respiratory chain. Under these conditions, S. aureus can switch to mixed-acid fermentation to sustain ATP production by substrate level phosphorylation. The drop in the cellular NAD+/NADH ratio is sensed by the repressor Rex, resulting in derepression of fermentation genes. Here, we show that expression of fermentation pathways is further controlled by CcpA in response to the availability of glucose to ensure optimal resource utilization under growth-limiting conditions. We provide evidence for carbon source-dependent control of colonization and virulence factors. These findings add another level to the regulatory network controlling mixed-acid fermentation in S. aureus and provide additional evidence for the lifestyle-modulating effect of carbon sources available to S. aureus.
Collapse
|
17
|
Nitrite reduction in fermented meat products and its impact on aroma. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:131-181. [PMID: 33745511 DOI: 10.1016/bs.afnr.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fermented meat products are important not only for their sensory characteristics, nutrient content and cultural heritage, but also for their stability and convenience. The aroma of fermented meat products is unique and its formation mechanisms are not completely understood; however, the presence of nitrite and nitrate is essential for the development of cured aroma. The use of nitrite and nitrate as curing agents in meat products is based on its preservation activity. Even though their presence has been associated with several risks due to the formation of nitrosamines, their use is guarantee due to their antimicrobial action against Clostridium botulinum. Recent trends and recommendations by international associations are directed to use nitrite but at the minimum concentration necessary to provide the antimicrobial activity against Clostridium botulinum. This chapter discuss the actual limits of nitrite and nitrite content and their role as curing agents in meat products with special impact on dry fermented products. Regulatory considerations, antimicrobial mechanisms and actual trends regarding nitrite reduction and its effect on sensory and aroma properties are also considered.
Collapse
|
18
|
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11:1598-1624. [PMID: 33675007 DOI: 10.1007/s13346-021-00921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an "all-rounder" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Ben J Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.
| |
Collapse
|
19
|
Pätzold L, Brausch AC, Bielefeld EL, Zimmer L, Somerville GA, Bischoff M, Gaupp R. Impact of the Histidine-Containing Phosphocarrier Protein HPr on Carbon Metabolism and Virulence in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9030466. [PMID: 33668335 PMCID: PMC7996215 DOI: 10.3390/microorganisms9030466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common mechanism pathogenic bacteria use to link central metabolism with virulence factor synthesis. In gram-positive bacteria, catabolite control protein A (CcpA) and the histidine-containing phosphocarrier protein HPr (encoded by ptsH) are the predominant mediators of CCR. In addition to modulating CcpA activity, HPr is essential for glucose import via the phosphotransferase system. While the regulatory functions of CcpA in Staphylococcus aureus are largely known, little is known about the function of HPr in CCR and infectivity. To address this knowledge gap, ptsH mutants were created in S. aureus that either lack the open reading frame or harbor a ptsH variant carrying a thymidine to guanosine mutation at position 136, and the effects of these mutations on growth and metabolism were assessed. Inactivation of ptsH altered bacterial physiology and decreased the ability of S. aureus to form a biofilm and cause infections in mice. These data demonstrate that HPr affects central metabolism and virulence in S. aureus independent of its influence on CcpA regulation.
Collapse
Affiliation(s)
- Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Anne-Christine Brausch
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Evelyn-Laura Bielefeld
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Lisa Zimmer
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68588, USA;
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
- Correspondence: ; Tel.: +49-6841-162-39-63
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| |
Collapse
|
20
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
21
|
Panchal VV, Griffiths C, Mosaei H, Bilyk B, Sutton JAF, Carnell OT, Hornby DP, Green J, Hobbs JK, Kelley WL, Zenkin N, Foster SJ. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog 2020; 16:e1008672. [PMID: 32706832 PMCID: PMC7380596 DOI: 10.1371/journal.ppat.1008672] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level β-lactam resistance (oxacillin MIC 2-4 μg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 μg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit β) or rpoC (RNA polymerase subunit β') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.
Collapse
Affiliation(s)
- Viralkumar V. Panchal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin Griffiths
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bohdan Bilyk
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - David P. Hornby
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva, Switzerland
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Jayathilake NM, Koley D. Glucose Microsensor with Covalently Immobilized Glucose Oxidase for Probing Bacterial Glucose Uptake by Scanning Electrochemical Microscopy. Anal Chem 2020; 92:3589-3597. [PMID: 32000487 DOI: 10.1021/acs.analchem.9b04284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have developed a new dual-tip glucose sensing scanning electrochemical microcopy (SECM) probe by covalently immobilizing the glucose oxidase (GOD) enzyme onto an ultramicro electrode (UME) to measure the local glucose consumption of Streptococcus mutans (S. mutans) biofilms. GOD was immobilized on a novel enzyme immobilization matrix of functionalized multiwalled carbon nanotubes (f-MWCNTs) and 1-butyl-4-methylpyridinium hexafluorophosphate (ionic liquid/IL) packed into the etched Pt UME. The highly selective GOD-based SECM tip showed a high current density of 94.44 (±18.55) μA·mM-1·cm-2 from 0.10 to 1.0 mM at 37 °C as a result of the synergetic effects of f-MWCNTs and ionic liquid. The detection limit of the new 25 μm diameter glucose sensor is 10.0 μM with a linear range up to 4.0 mM. The sensor was successfully used to quantify the rate of glucose consumption of S. mutans biofilms in the presence of sucrose. S. mutans catabolizes both glucose and sucrose, producing lactic acid, reducing the local pH, and causing dental caries. With sucrose, S. mutans produces exopolysaccharides to enhance bacterial adhesion on the tooth surface; subsequent lactic acid production reduces the local pH, resulting in dental caries. Because of the high selectivity of the sensor, we were able to quantify glucose consumption in the presence of sucrose. S. mutans preferentially consumed sucrose in a mixed diet of both sucrose and glucose. Furthermore, using this unique fast-response (∼2 s) glucose sensor, we were for the first time able to map the distribution of the glucose consumption profile in the local environment of S. mutans biofilm. These findings provide insight into how the fast-growing S. mutans creates nutrient-depleted regions that affect the survival and metabolic behavior of other bacterial species within oral biofilm.
Collapse
Affiliation(s)
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
23
|
Pedroza-Dávila U, Uribe-Alvarez C, Morales-García L, Espinoza-Simón E, Méndez-Romero O, Muhlia-Almazán A, Chiquete-Félix N, Uribe-Carvajal S. Metabolism, ATP production and biofilm generation by Staphylococcus epidermidis in either respiratory or fermentative conditions. AMB Express 2020; 10:31. [PMID: 32048056 PMCID: PMC7013028 DOI: 10.1186/s13568-020-00966-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus epidermidis is a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin that becomes a health hazard when it is carried across the skin through punctures or wounds. Pathogenicity is enhanced by the ability of S. epidermidis to associate into biofilms, where it avoids attacks by the host and antibiotics. To test the effect of oxygen on metabolism and biofilm generation, cells were cultured at different oxygen concentrations ([O2]). As [O2] decreased, S. epidermidis metabolism went from respiratory to fermentative. Remarkably, the rate of growth decreased at low [O2] while a high concentration of ATP ([ATP]) was kept. Under hypoxic conditions bacteria associated into biofilms. Aerobic activity sensitized the cell to hydrogen peroxide-mediated damage. In the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that at low [O2] S. epidermidis limits its growth and develops the ability to form biofilms.
Collapse
|
24
|
Yuan Z, Ouyang P, Gu K, Rehman T, Zhang T, Yin Z, Fu H, Lin J, He C, Shu G, Liang X, Yuan Z, Song X, Li L, Zou Y, Yin L. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA). PHARMACEUTICAL BIOLOGY 2019; 57:710-716. [PMID: 31622118 PMCID: PMC8871620 DOI: 10.1080/13880209.2019.1674342] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 05/29/2023]
Abstract
Context: Methicillin-resistant Staphylococcus aureus (MRSA) is a very harmful bacterium. Oridonin, a component in Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), is widely used against bacterial infections in China. Objective: We evaluated oridonin effects on MRSA cell membrane and wall, protein metabolism, lactate dehydrogenase (LDH), DNA and microscopic structure. Materials and methods: Broth microdilution and flat colony counting methods were used to measure oridonin minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against USA300 strain. Electrical conductivity and DNA exosmosis were analysed to study oridonin effects (128 μg/mL) on cell membrane and wall for 0, 1, 2, 4 and 6 h. Sodium dodecyl sulphate polyacrylamide gel electrophoresis was used to detect effects on soluble protein synthesis after 6, 10 and 16 h. LDH activity was examined with an enzyme-linked immunosorbent assay. Effects of oridonin on USA300 DNA were investigated with DAPI staining. Morphological changes in MRSA following oridonin treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: Oridonin MIC and MBC values against USA300 were 64 and 512 μg/mL, respectively. The conductivity and DNA exosmosis level of oridonin-treated USA300 improved by 3.20±0.84% and increased by 58.63 ± 1.78 μg/mL, respectively. LDH and soluble protein levels decreased by 30.85±7.69% and 27.51 ± 1.39%, respectively. A decrease in fluorescence intensity was reported with time. Oridonin affected the morphology of USA300. Conclusions: Oridonin antibacterial mechanism was related to changes in cell membrane and cell wall permeability, disturbance in protein and DNA metabolism, and influence on bacterial morphology. Thus, oridonin may help in treating MRSA infection.
Collapse
Affiliation(s)
- Zhongwei Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Kexin Gu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tayyab Rehman
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhixiang Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
25
|
Direct Microscopic Observation of Human Neutrophil-Staphylococcus aureus Interaction In Vitro Suggests a Potential Mechanism for Initiation of Biofilm Infection on an Implanted Medical Device. Infect Immun 2019; 87:IAI.00745-19. [PMID: 31548325 DOI: 10.1128/iai.00745-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
The ability of human neutrophils to clear newly attached Staphylococcus aureus bacteria from a serum-coated glass surface was examined in vitro using time-lapse confocal scanning laser microscopy. Quantitative image analysis was used to measure the temporal change in bacterial biomass, neutrophil motility, and fraction of the surface area policed by neutrophils. In control experiments in which the surface was inoculated with bacteria but no neutrophils were added, prolific bacterial growth was observed. Neutrophils were able to control bacterial growth but only consistently when the neutrophil/bacterium number ratio exceeded approximately 1. When preattached bacteria were given a head start and allowed to grow for 3 h prior to neutrophil addition, neutrophils were unable to maintain control of the nascent biofilm. In these head-start experiments, aggregates of bacterial biofilm with areas of 50 μm2 or larger formed, and the growth of such aggregates continued even when multiple neutrophils attacked a cluster. These results suggest a model for the initiation of a biofilm infection in which a delay in neutrophil recruitment to an abiotic surface allows surface-attached bacteria time to grow and form aggregates that become protected from neutrophil clearance. Results from a computational model of the neutrophil-biofilm surface contest supported this conceptual model and highlighted the stochastic nature of the interaction. Additionally, we observed that both neutrophil motility and clearance of bacteria were impaired when oxygen tension was reduced to 0% or 2% O2.
Collapse
|
26
|
Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S47-S53. [PMID: 31685398 DOI: 10.1016/j.jcf.2019.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
The respiratory tract of individuals with cystic fibrosis is host to polymicrobial infections that persist for decades and lead to significant morbidity and mortality. Improving our understanding of CF respiratory infections requires coordinated efforts from researchers in the fields of microbial physiology, genomics, and ecology, as well as epithelial biology and immunology. Here, we have highlighted examples from recent CF microbial pathogenesis literature of how the host nutritional environment, immune response, and microbe-microbe interactions can feedback onto each other, leading to diverse effects on lung disease pathogenesis in CF.
Collapse
|
27
|
Phalak P, Henson MA. Metabolic modelling of chronic wound microbiota predicts mutualistic interactions that drive community composition. J Appl Microbiol 2019; 127:1576-1593. [PMID: 31436369 PMCID: PMC6790277 DOI: 10.1111/jam.14421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS To identify putative mutualistic interactions driving community composition in polymicrobial chronic wound infections using metabolic modelling. METHODS AND RESULTS We developed a 12 species metabolic model that covered 74% of 16S rDNA pyrosequencing reads of dominant genera from 2963 chronic wound patients. The community model was used to predict species abundances averaged across this large patient population. We found that substantially improved predictions were obtained when the model was constrained with genera prevalence data and predicted abundances were averaged over 5000 ensemble simulations with community participants randomly determined according to the experimentally determined prevalences. Staphylococcus and Pseudomonas were predicted to exhibit a strong mutualistic relationship that resulted in community growth rate and diversity simultaneously increasing, suggesting that these two common chronic wound pathogens establish dominance by cooperating with less harmful commensal species. In communities lacking one or both dominant pathogens, other mutualistic relationship including Staphylococcus/Acinetobacter, Pseudomonas/Serratia and Streptococcus/Enterococcus were predicted consistent with published experimental data. CONCLUSIONS Mutualistic interactions were predicted to be driven by crossfeeding of organic acids, alcohols and amino acids that could potentially be disrupted to slow chronic wound disease progression. SIGNIFICANCE AND IMPACT OF THE STUDY Approximately 2% of the US population suffers from nonhealing chronic wounds infected by a combination of commensal and pathogenic bacteria. These polymicrobial infections are often resilient to antibiotic treatment due to the nutrient-rich wound environment and species interactions that promote community stability and robustness. The simulation results from this study were used to identify putative mutualistic interactions between bacteria that could be targeted to enhance treatment efficacy.
Collapse
Affiliation(s)
- Poonam Phalak
- Department of Chemical Engineering and Institute for Applied Life Science, University of Massachusetts, Amherst MA 01003, USA
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Science, University of Massachusetts, Amherst MA 01003, USA
| |
Collapse
|
28
|
Abstract
Staphylococcus aureus is clearly the most pathogenic member of the Staphylococcaceae. This is in large part due to the acquisition of an impressive arsenal of virulence factors that are coordinately regulated by a series of dedicated transcription factors. What is becoming more and more appreciated in the field is the influence of the metabolic state of S. aureus on the activity of these virulence regulators and their roles in modulating metabolic gene expression. Here I highlight recent advances in S. aureus metabolism as it pertains to virulence. Specifically, mechanisms of nutrient acquisition are outlined including carbohydrate and non-carbohydrate carbon/energy sources as well as micronutrient (Fe, Mn, Zn and S) acquisition. Additionally, energy producing strategies (respiration versus fermentation) are discussed and put in the context of pathogenesis. Finally, transcriptional regulators that coordinate metabolic gene expression are outlined, particularly those that affect the activities of major virulence factor regulators. This chapter essentially connects many recent observations that link the metabolism of S. aureus to its overall pathogenesis and hints that the mere presence of a plethora of virulence factors may not entirely explain the extraordinary pathogenic potential of S. aureus.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
29
|
Fraiha RO, Pereira APR, Brito EDCA, Borges CL, Parente AFA, Perdomo RT, Macedo MLR, Weber SS. Stress conditions in the host induce persister cells and influence biofilm formation by Staphylococcus epidermidis RP62A. Rev Soc Bras Med Trop 2019; 52:e20180001. [PMID: 30785531 DOI: 10.1590/0037-8682-0001-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Studies have demonstrated that pathogens react to the harsh conditions in human tissues by inducing mechanisms that promote survival. METHODS Persistence and biofilm-forming ability were evaluated during stress conditions that mimic those in the host. RESULTS Carbon-source availability had a positive effect on Staphylococcus epidermidis RP62A adhesion during hypoxia, accompanied by a decrease in pH. In contrast, iron limitation led to decreased surface-adherent biomass, accompanied by an increase medium acidification and lactate levels. Interestingly, iron starvation and hypoxia induced persister cells in planktonic culture. CONCLUSIONS These findings highlight the role of host stress in the virulence of S. epidermidis.
Collapse
Affiliation(s)
- Rafael Ovando Fraiha
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Ana Paula Ramos Pereira
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Eliana da Costa Alvarenga Brito
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | - Renata Trentin Perdomo
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Simone Schneider Weber
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.,Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, AM, Brasil
| |
Collapse
|
30
|
Visca P, Pisa F, Imperi F. The antimetabolite 3-bromopyruvate selectively inhibits Staphylococcus aureus. Int J Antimicrob Agents 2018; 53:449-455. [PMID: 30472291 DOI: 10.1016/j.ijantimicag.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
Increased antibacterial resistance jeopardizes current therapeutic strategies to control infections, soliciting the development of novel antibacterial drugs with new mechanisms of action. This study reports the discovery of potent and selective antistaphylococcal activity of 3-bromopyruvate (3BP), an antimetabolite in preclinical development as an anticancer drug. 3BP showed bactericidal activity against Staphylococcus aureus, with active concentrations comparable with those reported to be effective against cancer cells. In contrast, no relevant activity was observed against other ESKAPE bacteria (Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.). The antistaphylococcal activity of 3BP was confirmed using a panel of human and veterinary strains, including multi-drug-resistant isolates. 3BP showed highest antibacterial activity under conditions that increase its stability (acidic pH) or promote S. aureus fermentative metabolism (anaerobiosis), although 3BP was also able to kill metabolically inactive cells. 3BP showed synergism with gentamicin, and also disrupted preformed S. aureus biofilms at concentrations only slightly higher than those inhibiting planktonic cells. This study unravels novel antibacterial and antibiofilm activities for the anticancer drug 3BP, paving the way for further preclinical studies.
Collapse
Affiliation(s)
- Paolo Visca
- Department of Sciences, University 'Roma Tre', Rome, Italy
| | - Federica Pisa
- Department of Sciences, University 'Roma Tre', Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
31
|
Quintieri L, Giribaldi M, Giuffrida MG, Creanza TM, Ancona N, Cavallarin L, De Angelis M, Caputo L. Proteome Response of Staphylococcus xylosus DSM 20266T to Anaerobiosis and Nitrite Exposure. Front Microbiol 2018; 9:2275. [PMID: 30319582 PMCID: PMC6167427 DOI: 10.3389/fmicb.2018.02275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The viability and competitiveness of Staphylococcus xylosus in meat mostly depend on the ability to adapt itself to rapid oxygen and nutrients depletion during meat fermentation. The utilization of nitrite instead of oxygen becomes a successful strategy for this strain to improve its performance in anaerobiosis; however, metabolic pathways of this strain underlying this adaptation, are partially known. The aim of this study was to provide an overview on proteomic changes of S. xylosus DSM 20266T cultured under anaerobiosis and nitrite exposure. Thus, two different cultures of this strain, supplemented or not with nitrite, were in vitro incubated in aerobiosis and anaerobiosis monitoring cell viability, pH, oxidation reduction potential and nitrite content. Protein extracts, obtained from cells, collected as nitrite content was depleted, were analyzed by 2DE/MALDI-TOF/TOF-MS. Results showed that DSM 20266T growth was significantly sustained by nitrite in anaerobiosis, whereas no differences were found in aerobiosis. Accordingly, nitrite content was depleted after 13 h only in anaerobiosis. At this time of sampling, a comparative proteomic analysis showed 45 differentially expressed proteins. Most differences were found between aerobic and anaerobic cultures without nitrite; the induction of glycolytic enzymes and glyoxylate cycle, the reduction of TCA enzymes, and acetate fermentation were found in anaerobiosis to produce ATP and maintain the cell redox balance. In anaerobic cultures the nitrite supplementation partially restored TCA cycle, and reduced the amount of glycolytic enzymes. These results were confirmed by phenotypic microarray that, for the first time, was carried out on cell previously adapted at the different growth conditions. Overall, metabolic changes were similar between aerobiosis and anaerobiosis NO2-adapted cells, whilst cells grown under anaerobiosis showed different assimilation profiles by confirming proteomic data; indeed, these latter extensively assimilated substrates addressed at both supplying glucose for glycolysis or fueling alternative pathways to TCA cycle. In conclusion, metabolic pathways underlying the ability of S. xylosus to adapt itself to oxygen starvation were revealed; the addition of nitrite allowed S. xylosus to take advantage of nitrite to this condition, restoring some metabolic pathway underlying aerobic behavior of the strain.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | | | - Teresa Maria Creanza
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Nicola Ancona
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
32
|
Weaver AJ, Peters TR, Tripet B, Van Vuren A, Rakesh, Lee RE, Copié V, Teintze M. Exposure of Methicillin-Resistant Staphylococcus aureus to Low Levels of the Antibacterial THAM-3ΦG Generates a Small Colony Drug-Resistant Phenotype. Sci Rep 2018; 8:9850. [PMID: 29959441 PMCID: PMC6026174 DOI: 10.1038/s41598-018-28283-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated resistance against trishexylaminomelamine trisphenylguanide (THAM-3ΦG), a novel antibacterial compound with selective microbicidal activity against Staphylococcus aureus. Resistance development was examined by culturing methicillin resistant S. aureus (MRSA) with sub-lethal doses of THAM-3ΦG. This quickly resulted in the formation of normal (WT) and small colonies (SC) of S. aureus exhibiting minimal inhibitory concentrations (MICs) 2× and 4× greater than the original MIC. Continuous cell passaging with increasing concentrations of THAM-3ΦG resulted in an exclusively SC phenotype with MIC >64 mg/L. Nuclear magnetic resonance (NMR)-based metabolomics and multivariate statistical analysis revealed three distinct metabolic profiles for THAM-3ΦG treated WT, untreated WT, and SC (both treated and untreated). The metabolome patterns of the SC sample groups match those reported for other small colony variants (SCV) of S. aureus. Supplementation of the SCV with menadione resulted in almost complete recovery of growth rate. This auxotrophism was corroborated by NMR analysis revealing the absence of menaquinone production in the SCV. In conclusion, MRSA rapidly acquires resistance to THAM-3ΦG through selection of a slow-growing menaquinone auxotroph. This study highlights the importance of evaluating and monitoring resistance to novel antibacterials during development.
Collapse
Affiliation(s)
- Alan J Weaver
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Tami R Peters
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Brian Tripet
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Abigail Van Vuren
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Valérie Copié
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Martin Teintze
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| |
Collapse
|
33
|
Kiamco MM, Mohamed A, Reardon PN, Marean-Reardon CL, Aframehr WM, Call DR, Beyenal H, Renslow RS. Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress. Biotechnol Bioeng 2018; 115:1594-1603. [PMID: 29460278 PMCID: PMC5959008 DOI: 10.1002/bit.26572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023]
Abstract
Biofilms alter their metabolism in response to environmental stress. This study explores the effect of a hyperosmotic agent-antibiotic treatment on the metabolism of Staphylococcus aureus biofilms through the use of nuclear magnetic resonance (NMR) techniques. To determine the metabolic activity of S. aureus, we quantified the concentrations of metabolites in spent medium using high-resolution NMR spectroscopy. Biofilm porosity, thickness, biovolume, and relative diffusion coefficient depth profiles were obtained using NMR microimaging. Dissolved oxygen concentration was measured to determine the availability of oxygen within the biofilm. Under vancomycin-only treatment, the biofilm communities switched to fermentation under anaerobic condition, as evidenced by high concentrations of formate (7.4 ± 2.7 mM), acetate (13.1 ± 0.9 mM), and lactate (3.0 ± 0.8 mM), and there was no detectable dissolved oxygen in the biofilm. In addition, we observed the highest consumption of pyruvate (0.19 mM remaining from an initial 40 mM concentration), the sole carbon source, under the vancomycin-only treatment. On the other hand, relative effective diffusion coefficients increased from 0.73 ± 0.08 to 0.88 ± 0.08 under vancomycin-only treatment but decreased from 0.71 ± 0.04 to 0.60 ± 0.07 under maltodextrin-only and from 0.73 ± 0.06 to 0.56 ± 0.08 under combined treatments. There was an increase in biovolume, from 2.5 ± 1 mm3 to 7 ± 1 mm3 , under the vancomycin-only treatment, while the maltodextrin-only and combined treatments showed no significant change in biovolume over time. This indicated that physical biofilm growth was halted during maltodextrin-only and combined treatments.
Collapse
Affiliation(s)
- Mia M Kiamco
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Patrick N Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Carrie L Marean-Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Wrya M Aframehr
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Ryan S Renslow
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
34
|
Benoit JB, Frank DN, Bessesen MT. Genomic evolution of Staphylococcus aureus isolates colonizing the nares and progressing to bacteremia. PLoS One 2018; 13:e0195860. [PMID: 29723202 PMCID: PMC5933776 DOI: 10.1371/journal.pone.0195860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Nasal colonization by Staphylococcus aureus is a key risk factor for bacteremia. The objective of this study is to identify genomic modifications occurring in nasal carriage strains of S. aureus as they progress to bacteremia in a cohort of hospitalized patients. Methods Eight patients with S. aureus bacteremia were identified. Genomic sequences of the bloodstream isolates were compared with 57 nasal isolates collected longitudinally prior to the occurrence of bacteremia, which covered a timespan of up to 326 days before bacteremia. Results Within each subject, nasal colonizing strains were closely related to bacteremia strains. Within a subject, the number of single nucleotide polymorphisms (SNPs) observed between time points was greater than within a single time point. Co-colonization and strain replacement were observed in one case. In all cases colonization progressed to bacteremia without addition of new virulence genes. In one case, a mutation in the accessory gene regulator gene caused abrogation of agr function. Conclusion S. aureus evolves in the human nares at a variable rate. Progression of S. aureus nasal colonization to nosocomial infection is seldom associated with acquisition of new virulence determinants. Mutation in the agr gene with abrogation of function was associated with progression to bacteremia in one case.
Collapse
Affiliation(s)
- Jeanne B. Benoit
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
| | - Mary T. Bessesen
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Comparative metabolomic analysis of Crypthecodinium cohnii in response to different dissolved oxygen levels during docosahexaenoic acid fermentation. Biochem Biophys Res Commun 2018; 499:941-947. [DOI: 10.1016/j.bbrc.2018.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
|
36
|
Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J Biol Chem 2018; 293:3180-3200. [PMID: 29326168 PMCID: PMC5836111 DOI: 10.1074/jbc.m117.818716] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/03/2018] [Indexed: 01/15/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA, the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus.
Collapse
Affiliation(s)
- Merve S Zeden
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Christopher F Schuster
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Qiyun Zhong
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Huw D Williams
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| |
Collapse
|
37
|
Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products. Microorganisms 2017; 5:microorganisms5030052. [PMID: 28850086 PMCID: PMC5620643 DOI: 10.3390/microorganisms5030052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing. Analysis of the S. xylosus genome together with expression in situ in a meat model revealed that this bacterium is well adapted to meat substrates, being able to use diverse substrates as sources of carbon and energy and different sources of nitrogen. It is well-equipped with genes involved in osmotic, oxidative/nitrosative, and acidic stress responses. It is responsible for the development of the typical colour of cured meat products via its nitrate reductase activity. It contributes to sensorial properties, mainly by the the catabolism of pyruvate and amino acids resulting in odorous compounds and by the limiting of the oxidation of fatty acids, thereby avoiding rancidity.
Collapse
|
38
|
Quantitative Expression Analysis of SpA, FnbA and Rsp Genes in Staphylococcus aureus: Actively Associated in the Formation of Biofilms. Curr Microbiol 2017; 74:1394-1403. [DOI: 10.1007/s00284-017-1331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
39
|
Pseudomonas aeruginosa Alters Staphylococcus aureus Sensitivity to Vancomycin in a Biofilm Model of Cystic Fibrosis Infection. mBio 2017; 8:mBio.00873-17. [PMID: 28720732 PMCID: PMC5516255 DOI: 10.1128/mbio.00873-17] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The airways of cystic fibrosis (CF) patients have thick mucus, which fosters chronic, polymicrobial infections. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in CF patients. In this study, we tested whether P. aeruginosa influences the susceptibility of S. aureus to frontline antibiotics used to treat CF lung infections. Using our in vitro coculture model, we observed that addition of P. aeruginosa supernatants to S. aureus biofilms grown either on epithelial cells or on plastic significantly decreased the susceptibility of S. aureus to vancomycin. Mutant analyses showed that 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), a component of the P. aeruginosa Pseudomonas quinolone signal (PQS) system, protects S. aureus from the antimicrobial activity of vancomycin. Similarly, the siderophores pyoverdine and pyochelin also contribute to the ability of P. aeruginosa to protect S. aureus from vancomycin, as did growth under anoxia. Under our experimental conditions, HQNO, P. aeruginosa supernatant, and growth under anoxia decreased S. aureus growth, likely explaining why this cell wall-targeting antibiotic is less effective. P. aeruginosa supernatant did not confer additional protection to slow-growing S. aureus small colony variants. Importantly, P. aeruginosa supernatant protects S. aureus from other inhibitors of cell wall synthesis as well as protein synthesis-targeting antibiotics in an HQNO- and siderophore-dependent manner. We propose a model whereby P. aeruginosa causes S. aureus to shift to fermentative growth when these organisms are grown in coculture, leading to reduction in S. aureus growth and decreased susceptibility to antibiotics targeting cell wall and protein synthesis. Cystic fibrosis (CF) lung infections are chronic and difficult to eradicate. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in CF patients and are associated with poor patient outcomes. Both organisms adopt a biofilm mode of growth, which contributes to high tolerance to antibiotic treatment and the recalcitrant nature of these infections. Here, we show that P. aeruginosa exoproducts decrease the sensitivity of S. aureus biofilm and planktonic populations to vancomycin, a frontline antibiotic used to treat methicillin-resistant S. aureus in CF patients. P. aeruginosa also protects S. aureus from other cell wall-active antibiotics as well as various classes of protein synthesis inhibitors. Thus, interspecies interactions can have dramatic and unexpected consequences on antibiotic sensitivity. This study underscores the potential impact of interspecies interactions on antibiotic efficacy in the context of complex, polymicrobial infections.
Collapse
|
40
|
Carvalho SM, de Jong A, Kloosterman TG, Kuipers OP, Saraiva LM. The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress. Front Microbiol 2017; 8:1273. [PMID: 28744267 PMCID: PMC5504149 DOI: 10.3389/fmicb.2017.01273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and 1H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
41
|
GC-MS based metabolomics analysis reveals the effects of different agitation speeds on the level of proteinogenic amino acids in Lactococcus lactis subsp. cremoris MG1363. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
42
|
Sánchez Mainar M, Matheuse F, De Vuyst L, Leroy F. Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci. Food Microbiol 2017; 65:170-178. [PMID: 28399999 DOI: 10.1016/j.fm.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/01/2022]
Abstract
Coagulase-negative staphylococci (CNS) are not only part of the desirable microbiota of fermented meat products but also commonly inhabit skin and flesh wounds. Their proliferation depends on the versatility to use energy sources and the adaptation to fluctuating environmental parameters. In this study, the conversion of the amino acid arginine by two strains with arginine deiminase (ADI) activity (Staphylococcus carnosus 833 and S. pasteuri αs3-13) and a strain with nitric oxide synthase (NOS) activity (S. haemolyticus G110) was modelled as a function of glucose and oxygen availability. Both factors moderately inhibited the ADI-based conversion kinetics, never leading to full repression. However, for NOS-driven conversion of arginine by S. haemolyticus G110, oxygen was an absolute requirement. When changing from microaerobic conditions to aerobiosis, a switch from homolactic fermentation to a combined formation of lactic acid, acetic acid, and acetoin was found in all cases, after which lactic acid and acetic acid were used as substrates. The kinetic model proposed provided a suitable description of the data of glucose and arginine co-metabolism as a function of oxygen levels and may serve as a tool to further analyse the behaviour of staphylococci in different ecosystems or when applying specific food processing conditions.
Collapse
Affiliation(s)
- María Sánchez Mainar
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Fréderick Matheuse
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
43
|
Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. Int J Food Microbiol 2017; 247:24-37. [DOI: 10.1016/j.ijfoodmicro.2016.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/15/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022]
|
44
|
Vasu D, Kumar PS, Prasad UV, Swarupa V, Yeswanth S, Srikanth L, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation. IRANIAN BIOMEDICAL JOURNAL 2016; 21:94-105. [PMID: 27695030 PMCID: PMC5274716 DOI: 10.18869/acadpub.ibj.21.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureusglkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.
Collapse
Affiliation(s)
- Dudipeta Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Manne Mudhu Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Abhijith Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | | |
Collapse
|
45
|
Marshall DD, Sadykov MR, Thomas VC, Bayles KW, Powers R. Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus. J Proteome Res 2016; 15:1205-12. [PMID: 26975873 DOI: 10.1021/acs.jproteome.5b01089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.
Collapse
Affiliation(s)
- Darrell D Marshall
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Marat R Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Vinai C Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
46
|
Vermassen A, Dordet-Frisoni E, de La Foye A, Micheau P, Laroute V, Leroy S, Talon R. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model. Front Microbiol 2016; 7:87. [PMID: 26903967 PMCID: PMC4742526 DOI: 10.3389/fmicb.2016.00087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion.
Collapse
Affiliation(s)
| | | | - Anne de La Foye
- INRA, Plateforme d'Exploration du MétabolismeSaint-Genès Champanelle, France
| | - Pierre Micheau
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| | - Valérie Laroute
- Université de Toulouse, INSA, UPS, INP, LISBPToulouse, France
| | - Sabine Leroy
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| | - Régine Talon
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| |
Collapse
|
47
|
Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model. J Bacteriol 2015; 197:2252-64. [PMID: 25917910 DOI: 10.1128/jb.00059-15] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/23/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED The airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during pediatric years and early adulthood. Staphylococcus aureus is the most prevalent pathogen during early childhood, but during late teens and early adulthood, a shift in microbial composition occurs leading to Pseudomonas aeruginosa community predominance in ∼50% of adults. We developed a robust dual-bacterial in vitro coculture system of P. aeruginosa and S. aureus on monolayers of human bronchial epithelial cells homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutation to better model the mechanisms of this interaction. We show that P. aeruginosa drives the S. aureus expression profile from that of aerobic respiration to fermentation. This shift is dependent on the production of both 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) and siderophores by P. aeruginosa. Furthermore, S. aureus-produced lactate is a carbon source that P. aeruginosa preferentially consumes over medium-supplied glucose. We find that initially S. aureus and P. aeruginosa coexist; however, over extended coculture P. aeruginosa reduces S. aureus viability, also in an HQNO- and P. aeruginosa siderophore-dependent manner. Interestingly, S. aureus small-colony-variant (SCV) genetic mutant strains, which have defects in their electron transport chain, experience reduced killing by P. aeruginosa compared to their wild-type parent strains; thus, SCVs may provide a mechanism for persistence of S. aureus in the presence of P. aeruginosa. We propose that the mechanism of P. aeruginosa-mediated killing of S. aureus is multifactorial, requiring HQNO and P. aeruginosa siderophores as well as additional genetic, environmental, and nutritional factors. IMPORTANCE In individuals with cystic fibrosis, Staphylococcus aureus is the primary respiratory pathogen during childhood. During adulthood, Pseudomonas aeruginosa predominates and correlates with worse patient outcome. The mechanism(s) by which P. aeruginosa outcompetes or kills S. aureus is not well understood. We describe an in vitro dual-bacterial species coculture system on cystic fibrosis-derived airway cells, which models interactions relevant to patients with cystic fibrosis. Further, we show that molecules produced by P. aeruginosa additively induce a transition of S. aureus metabolism from aerobic respiration to fermentation and eventually lead to loss of S. aureus viability. Elucidating the molecular mechanisms of P. aeruginosa community predominance can provide new therapeutic targets and approaches to impede this microbial community transition and subsequent patient worsening.
Collapse
|
48
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
49
|
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589-99. [PMID: 24950803 DOI: 10.1016/j.tim.2014.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
50
|
Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 2014; 196:2178-89. [PMID: 24706736 DOI: 10.1128/jb.01475-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a prominent nosocomial pathogen and a major cause of biomaterial-associated infections. The success of S. aureus as a pathogen is due in part to its ability to adapt to stressful environments. As an example, the transition from residing in the nares to residing in the blood or deeper tissues is accompanied by changes in the availability of nutrients and elements such as oxygen and iron. As such, nutrients, oxygen, and iron are important determinants of virulence factor synthesis in S. aureus. In addition to influencing virulence factor synthesis, oxygen and iron are critical cofactors in enzymatic and electron transfer reactions; thus, a change in iron or oxygen availability alters the bacterial metabolome. Changes in metabolism create intracellular signals that alter the activity of metabolite-responsive regulators such as CodY, RpiRc, and CcpA. To assess the extent of metabolomic changes associated with oxygen and iron limitation, S. aureus cells were cultivated in iron-limited medium and/or with decreasing aeration, and the metabolomes were examined by nuclear magnetic resonance (NMR) spectroscopy. As expected, oxygen and iron limitation dramatically decreased tricarboxylic acid (TCA) cycle activity, creating a metabolic block and significantly altering the metabolome. These changes were most prominent during post-exponential-phase growth, when TCA cycle activity was maximal. Importantly, many of the effects of iron limitation were obscured by aeration limitation. Aeration limitation not only obscured the metabolic effects of iron limitation but also overrode the transcription of iron-regulated genes. Finally, in contrast to previous speculation, we confirmed that acidification of the culture medium occurs independent of the availability of iron.
Collapse
|