1
|
Pellowe AS, Wu MJ, Kang TY, Chung TD, Ledesma-Mendoza A, Herzog E, Levchenko A, Odell I, Varga J, Gonzalez AL. TGF-β1 Drives Integrin-Dependent Pericyte Migration and Microvascular Destabilization in Fibrotic Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1171-1184. [PMID: 38548268 PMCID: PMC11220919 DOI: 10.1016/j.ajpath.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor β1 (TGF-β1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-β1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-β1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-β1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tracy D Chung
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Erica Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ian Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Joulia R, Guerrero-Fonseca IM, Girbl T, Coates JA, Stein M, Vázquez-Martínez L, Lynam E, Whiteford J, Schnoor M, Voehringer D, Roers A, Nourshargh S, Voisin MB. Neutrophil breaching of the blood vessel pericyte layer during diapedesis requires mast cell-derived IL-17A. Nat Commun 2022; 13:7029. [PMID: 36396641 PMCID: PMC9672103 DOI: 10.1038/s41467-022-34695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Neutrophil diapedesis is an immediate step following infections and injury and is driven by complex interactions between leukocytes and various components of the blood vessel wall. Here, we show that perivascular mast cells (MC) are key regulators of neutrophil behaviour within the sub-endothelial space of inflamed venules. Using confocal intravital microscopy, we observe directed abluminal neutrophil motility along pericyte processes towards perivascular MCs, a response that created neutrophil extravasation hotspots. Conversely, MC-deficiency and pharmacological or genetic blockade of IL-17A leads to impaired neutrophil sub-endothelial migration and breaching of the pericyte layer. Mechanistically, identifying MCs as a significant cellular source of IL-17A, we establish that MC-derived IL-17A regulates the enrichment of key effector molecules ICAM-1 and CXCL1 in nearby pericytes. Collectively, we identify a novel MC-IL-17A-pericyte axis as modulator of the final steps of neutrophil diapedesis, with potential translational implications for inflammatory disorders driven by increased neutrophil diapedesis.
Collapse
Affiliation(s)
- Régis Joulia
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- NHLI, Imperial College London, London, UK
| | - Idaira María Guerrero-Fonseca
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - Tamara Girbl
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jonathon A Coates
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Monja Stein
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Laura Vázquez-Martínez
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Lynam
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - James Whiteford
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
CNS Pericytes Modulate Local T Cell Infiltration in EAE. Int J Mol Sci 2022; 23:ijms232113081. [PMID: 36361868 PMCID: PMC9658756 DOI: 10.3390/ijms232113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Pericytes at the blood–brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.
Collapse
|
5
|
Riddle RB, Jennbacken K, Hansson KM, Harper MT. Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model. Sci Rep 2022; 12:6855. [PMID: 35477984 PMCID: PMC9046410 DOI: 10.1038/s41598-022-10849-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often characterised by excessive neutrophil infiltration from the blood stream to the site of inflammation, which damages healthy tissue and prevents resolution of inflammation. Development of anti-inflammatory drugs is hindered by lack of in vitro and in vivo models which accurately represent the disease microenvironment. In this study, we used the OrganoPlate to develop a humanized 3D in vitro inflammation-on-a-chip model to recapitulate neutrophil transmigration across the endothelium and subsequent migration through the extracellular matrix (ECM). Human umbilical vein endothelial cells formed confluent vessels against collagen I and geltrex mix, a mix of basement membrane extract and collagen I. TNF-α-stimulation of vessels upregulated inflammatory cytokine expression and promoted neutrophil transmigration. Intriguingly, major differences were found depending on the composition of the ECM. Neutrophils transmigrated in higher number and further in geltrex mix than collagen I, and did not require an N-formyl-methionyl-leucyl-phenylalanine (fMLP) gradient for transmigration. Inhibition of neutrophil proteases inhibited neutrophil transmigration on geltrex mix, but not collagen I. These findings highlight the important role of the ECM in determining cell phenotype and response to inhibitors. Future work could adapt the ECM composition for individual diseases, producing accurate models for drug development.
Collapse
Affiliation(s)
- Rebecca B Riddle
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Ambrosino P, Calcaterra IL, Mosella M, Formisano R, D’Anna SE, Bachetti T, Marcuccio G, Galloway B, Mancini FP, Papa A, Motta A, Di Minno MND, Maniscalco M. Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target. Biomedicines 2022; 10:biomedicines10040812. [PMID: 35453563 PMCID: PMC9029464 DOI: 10.3390/biomedicines10040812] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Correspondence: (P.A.); (M.M.)
| | | | - Marco Mosella
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Giuseppina Marcuccio
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Brurya Galloway
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Francesco Paolo Mancini
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | | | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
- Correspondence: (P.A.); (M.M.)
| |
Collapse
|
7
|
Walker CJ, Schroeder ME, Aguado BA, Anseth KS, Leinwand LA. Matters of the heart: Cellular sex differences. J Mol Cell Cardiol 2021; 160:42-55. [PMID: 34166708 PMCID: PMC8571046 DOI: 10.1016/j.yjmcc.2021.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80303, United States of America; Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Megan E Schroeder
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Brian A Aguado
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America; Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States of America.
| |
Collapse
|
8
|
Jerome JA, Wenzel SE, Trejo Bittar HE. Digital Imaging Analysis Reveals Reduced Alveolar α-Smooth Muscle Actin Expression in Severe Asthma. Appl Immunohistochem Mol Morphol 2021; 29:506-512. [PMID: 33710120 PMCID: PMC8373652 DOI: 10.1097/pai.0000000000000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/27/2021] [Indexed: 10/21/2022]
Abstract
Expansion of α-smooth muscle actin (α-SMA)-expressing airway smooth muscle of the large airways in asthma is well-studied. However, the contribution of α-SMA-expressing cells in the more distal alveolated parenchyma, including pericytes and myofibroblasts within the alveolar septum, to asthma pathophysiology remains relatively unexplored. The objective of this study was to evaluate α-SMA expression in the alveolated parenchyma of individuals with severe asthma (SA), compared with healthy controls or individuals with chronic obstructive pulmonary disease. Using quantitative digital image analysis and video-assisted thoracoscopic surgery lung biopsies, we show that alveolated parenchyma α-SMA expression is markedly reduced in SA in comparison to healthy controls (mean %positive pixels: 12% vs. 23%, P=0.005). Chronic obstructive pulmonary disease cases showed a similar, but trending, decrease in α-SMA positivity compared with controls (mean %positivity: 17% vs. 23%, P=0.107), which may suggest loss of α-SMA expression is a commonality of obstructive lung diseases. The SA group had similar staining for ETS-related gene protein, a specific endothelial marker, comparatively to controls (mean %positive nuclei: 34% vs. 42%, P=0.218), which suggests intact capillary endothelium and likely intact capillary-associated, α-SMA-positive pericytes. These findings suggest that the loss of α-SMA expression in SA may be because of changes in myofibroblast α-SMA expression or cell number. Further study is necessary to fully evaluate possible mechanisms and consequences of this phenomenon.
Collapse
Affiliation(s)
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh
| | | |
Collapse
|
9
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
Klouda T, Yuan K. Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:351-372. [PMID: 33788202 DOI: 10.1007/978-3-030-63046-1_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery hypertension (PAH) is a devastating cardiopulmonary disease characterized by vascular remodeling and obliteration of the precapillary pulmonary arterioles. Alterations in the structure and function of pulmonary vessels result in the resistance of blood flow and can progress to right-sided heart failure, causing significant morbidity and mortality. There are several types of PAH, and the disease can be familial or secondary to an underlying medical condition such as a connective tissue disorder or infection. Regardless of the cause, the exact pathophysiology and cellular interactions responsible for disease development and progression are largely unknown.There is significant evidence to suggest altered immune and vascular cells directly participate in disease progression. Inflammation has long been hypothesized to play a vital role in the development of PAH, as an altered or skewed immune response favoring a proinflammatory environment that can lead to the infiltration of cells such as lymphocytes, macrophages, and neutrophils. Current treatment strategies focus on the dilation of partially occluded vessels; however, such techniques have not resulted in an effective strategy to reverse or prevent vascular remodeling. Therefore, current studies in human and animal models have attempted to understand the underlying pathophysiology of pulmonary hypertension (PH), specifically focusing on the inflammatory cascade predisposing patients to disease so that better therapeutic targets can be developed to potentially reverse or prevent disease progression.The purpose of this chapter is to provide a comprehensive review of the expanding literature on the inflammatory process that participates in PH development while highlighting important and current studies in both animal and human models. While our primary focus will be on cells found in the adaptive and innate immune system, we will review all potential causes of PAH, including cells of the endothelium, pulmonary lymphatics, and genetic mutations predisposing patients. In addition, we will discuss current therapeutic options while highlighting potential future treatments and the questions that still remain unanswered.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Valle IB, Schuch LF, da Silva JM, Gala-García A, Diniz IMA, Birbrair A, Abreu LG, Silva TA. Pericyte in Oral Squamous Cell Carcinoma: A Systematic Review. Head Neck Pathol 2020; 14:1080-1091. [PMID: 32506378 PMCID: PMC7669928 DOI: 10.1007/s12105-020-01188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The microenvironment of oral cancer is highly dynamic and has been proved to affect tumor progression. Pericytes are blood vessels surrounding cells that have recently gained attention for their roles in vascular and cancer biology. The objective of the present study was to survey the scientific literature for conclusive evidence about whether pericytes are part of blood vessels in oral squamous cell carcinoma (OSCC) and their roles in the tumor microenvironment and clinical outcomes. A systematic electronic search was undertaken in Medline Ovid, PubMed, Web of Science, and Scopus. Eligibility criteria were: publications adopting in vivo models of OSCC that included pericyte detection and assessment by pericyte markers (e.g., α-smooth muscle actin, neuron-glial antigen 2 and platelet-derived growth factor receptor-β). The search yielded seven eligible studies (from 2008 to 2018). The markers most commonly used for pericyte detection were α-smooth muscle actin and neuron-glial antigen 2. The studies reviewed showed the presence of immature vessels exhibiting a reduction of pericyte coverage in OSCC and indicated that anti-cancer therapies could contribute to vessel normalization and pericyte regain. The pericyte population is significantly affected during OSCC development and cancer therapy. While these findings might suggest a role for pericytes in OSCC progression, the limited data available do not allow us to conclude whether they modify the tumor microenvironment and clinical outcome.
Collapse
Affiliation(s)
- Isabella Bittencourt Valle
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lauren Frenzel Schuch
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfonso Gala-García
- Department of Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Guimarães Abreu
- Department of Child's and Adolescent's Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Room 3105. Pampulha, Belo Horizonte, MG, CEP: 31.270-901, Brazil.
| |
Collapse
|
12
|
van Dijk CGM, Brandt MM, Poulis N, Anten J, van der Moolen M, Kramer L, Homburg EFGA, Louzao-Martinez L, Pei J, Krebber MM, van Balkom BWM, de Graaf P, Duncker DJ, Verhaar MC, Luttge R, Cheng C. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix. LAB ON A CHIP 2020; 20:1827-1844. [PMID: 32330215 DOI: 10.1039/d0lc00059k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic organ-on-a-chip designs are used to mimic human tissues, including the vasculature. Here we present a novel microfluidic device that allows the interaction of endothelial cells (ECs) with pericytes and the extracellular matrix (ECM) in full bio-matrix encased 3D vessel structures (neovessels) that can be subjected to continuous, unidirectional flow and perfusion with circulating immune cells. We designed a polydimethylsiloxane (PDMS) device with a reservoir for a 3D fibrinogen gel with pericytes. Open channels were created for ECs to form a monolayer. Controlled, continuous, and unidirectional flow was introduced via a pump system while the design facilitated 3D confocal imaging. In this vessel-on-a-chip system, ECs interact with pericytes to create a human cell derived blood vessel which maintains a perfusable lumen for up to 7 days. Dextran diffusion verified endothelial barrier function while demonstrating the beneficial role of supporting pericytes. Increased permeability after thrombin stimulation showed the capacity of the neovessels to show natural vascular response. Perfusion of neovessels with circulating THP-1 cells demonstrated this system as a valuable platform for assessing interaction between the endothelium and immune cells in response to TNFα. In conclusion: we created a novel vascular microfluidic device that facilitates the fabrication of an array of parallel soft-channel structures in ECM gel that develop into biologically functional neovessels without hard-scaffold support. This model provides a unique tool to conduct live in vitro imaging of the human vasculature during perfusion with circulating cells to mimic (disease) environments in a highly systematic but freely configurable manner.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, PO Box 85500, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
14
|
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:493-518. [PMID: 31675482 DOI: 10.1146/annurev-pathmechdis-012419-032847] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recognizing the importance of leukocyte trafficking in inflammation led to some therapeutic breakthroughs. However, many inflammatory pathologies remain without specific therapy. This review discusses leukocytes in the context of sterile inflammation, a process caused by sterile (non-microbial) molecules, comprising damage-associated molecular patterns (DAMPs). DAMPs bind specific receptors to activate inflammation and start a highly optimized sequence of immune cell recruitment of neutrophils and monocytes to initiate effective tissue repair. When DAMPs are cleared, the recruited leukocytes change from a proinflammatory to a reparative program, a switch that is locally supervised by invariant natural killer T cells. In addition, neutrophils exit the inflammatory site and reverse transmigrate back to the bloodstream. Inflammation persists when the program switch or reverse transmigration fails, or when the coordinated leukocyte effort cannot clear the immunostimulatory molecules. The latter causes inappropriate leukocyte activation, a driver of many pathologies associated with poor lifestyle choices. We discuss lifestyle-associated inflammatory diseases and their corresponding immunostimulatory lifestyle-associated molecular patterns (LAMPs) and distinguish them from DAMPs.
Collapse
Affiliation(s)
- Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Visceral Surgery and Medicine, Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
15
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Pellowe AS, Sauler M, Hou Y, Merola J, Liu R, Calderon B, Lauridsen HM, Harris MR, Leng L, Zhang Y, Tilstam PV, Pober JS, Bucala R, Lee PJ, Gonzalez AL. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB J 2019; 33:2171-2186. [PMID: 30252532 PMCID: PMC6338650 DOI: 10.1096/fj.201800480r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.
Collapse
Affiliation(s)
- Amanda S. Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Maor Sauler
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yue Hou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Jonathan Merola
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rebecca Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brenda Calderon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Holly M. Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Mariah R. Harris
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yi Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pathricia V. Tilstam
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patty J. Lee
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Lomas-Neira J, Monaghan SF, Huang X, Fallon EA, Chung CS, Ayala A. Novel Role for PD-1:PD-L1 as Mediator of Pulmonary Vascular Endothelial Cell Functions in Pathogenesis of Indirect ARDS in Mice. Front Immunol 2018; 9:3030. [PMID: 30619369 PMCID: PMC6306416 DOI: 10.3389/fimmu.2018.03030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Deficiency of the co-inhibitory receptor, Programmed cell death receptor (PD)-1, provides a survival benefit in our murine shock/sepsis model for the development of indirect acute respiratory distress syndrome (iARDS). Further, of clinical significance, patients that develop ARDS express increased PD-1 on their blood leukocytes. While PD-1 expression and its regulatory role have been associated with mainly T-cell responses, the contribution of its primary ligand, PD-L1, broadly expressed on non-immune cells such as lung endothelial cells (ECs) as well as immune cells, is less well-understood. Here we show that a “priming insult” for iARDS, such as non-lethal hemorrhagic shock alone, produced a marked increase in lung EC PD-L1 as well as blood leukocyte PD-1 expression, and when combined with a subsequent “trigger event” (polymicrobial sepsis), not only induced marked iARDS but significant mortality. These sequelae were both attenuated in the absence of PD-L1. Interestingly, we found that gene deficiency of both PD-1 and PD-L1 improved EC barrier function, as measured by decreased bronchoalveolar lavage fluid protein (i.e., lung leak). However, PD-L1 deficiency, unlike PD-1, significantly decreased EC activation through the Angiopoietin/Tie2 pathway in our iARDS mice. Additionally, while PD-1 gene deficiency was associated with decreased neutrophil influx in our iARDS mice, EC monolayers derived from PD-L1 deficient mice showed increased expression of EC junction proteins in response to ex vivo TNF-α stimulation. Together, these data suggest that ligation of PD-1:PD-L1 may play a novel role(s) in the maintenance of pulmonary EC barrier regulation, beyond that of the classic regulation of the leukocyte tolerogenic immune response, which may account for its pathogenic actions in iARDS.
Collapse
Affiliation(s)
- Joanne Lomas-Neira
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Xin Huang
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Interaction with an endothelial lumen increases neutrophil lifetime and motility in response to P aeruginosa. Blood 2018; 132:1818-1828. [PMID: 30143504 DOI: 10.1182/blood-2018-05-848465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neutrophil infiltration into tissues is essential for host defense and pathogen clearance. Although many of the signaling pathways involved in the transendothelial migration of neutrophils are known, the role of the endothelium in regulating neutrophil behavior in response to infection within interstitial tissues remains unclear. Here we developed a microscale 3-dimensional (3D) model that incorporates an endothelial lumen, a 3D extracellular matrix, and an intact bacterial source to model the host microenvironment. Using this system, we show that an endothelial lumen significantly increased neutrophil migration toward a source of Pseudomonas aeruginosa Surprisingly, we found neutrophils, which were thought to be short-lived cells in vitro, migrate for up to 24 hours in 3D in the presence of an endothelial lumen and bacteria. In addition, we found that endothelial cells secrete inflammatory mediators induced by the presence of P aeruginosa, including granulocyte-macrophage colony-stimulating factor (GM-CSF), a known promoter of neutrophil survival, and interleukin (IL)-6, a proinflammatory cytokine. We found that pretreatment of neutrophils with a blocking antibody against the IL-6 receptor significantly reduced neutrophil migration to P aeruginosa but did not alter neutrophil lifetime, indicating that secreted IL-6 is an important signal between endothelial cells and neutrophils that mediates migration. Taken together, these findings demonstrate an important role for endothelial paracrine signaling in neutrophil migration and survival.
Collapse
|
19
|
Chan EC, Ren C, Xie Z, Jude J, Barker T, Koziol-White CA, Ma M, Panettieri RA, Wu D, Rosenberg HF, Druey KM. Regulator of G protein signaling 5 restricts neutrophil chemotaxis and trafficking. J Biol Chem 2018; 293:12690-12702. [PMID: 29929985 DOI: 10.1074/jbc.ra118.002404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are white blood cells that are mobilized to damaged tissues and to sites of pathogen invasion, providing the first line of host defense. Chemokines displayed on the surface of blood vessels promote migration of neutrophils to these sites, and tissue- and pathogen-derived chemoattractant signals, including N-formylmethionylleucylphenylalanine (fMLP), elicit further migration to sites of infection. Although nearly all chemoattractant receptors use heterotrimeric G proteins to transmit signals, many of the mechanisms lying downstream of chemoattractant receptors that either promote or limit neutrophil motility are incompletely defined. Here, we show that regulator of G protein signaling 5 (RGS5), a protein that modulates G protein activity, is expressed in both human and murine neutrophils. We detected significantly more neutrophils in the airways of Rgs5-/- mice than WT counterparts following acute respiratory virus infection and in the peritoneum in response to injection of thioglycollate, a biochemical proinflammatory stimulus. RGS5-deficient neutrophils responded with increased chemotaxis elicited by the chemokines CXC motif chemokine ligand 1 (CXCL1), CXCL2, and CXCL12 but not fMLP. Moreover, adhesion of these cells was increased in the presence of both CXCL2 and fMLP. In summary, our results indicate that RGS5 deficiency increases chemotaxis and adhesion, leading to more efficient neutrophil mobilization to inflamed tissues in mice. These findings suggest that RGS5 expression and activity in neutrophils determine their migrational patterns in the complex microenvironments characteristic of inflamed tissues.
Collapse
Affiliation(s)
- Eunice C Chan
- Molecular Signal Transduction Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Chunguang Ren
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Zhihui Xie
- Molecular Signal Transduction Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers New Jersey School of Medicine, Rutgers, New Jersey 07103
| | - Tolga Barker
- Molecular Signal Transduction Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Cynthia A Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers New Jersey School of Medicine, Rutgers, New Jersey 07103
| | - Michelle Ma
- Inflammation Immunobiology Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers New Jersey School of Medicine, Rutgers, New Jersey 07103
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Kirk M Druey
- Molecular Signal Transduction Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
20
|
Abstract
The role of pericytes seems to extend beyond their known function in angiogenesis, fibrosis and wound healing, blood-brain barrier maintenance, and blood flow regulation. More and more data are currently accumulating indicating that pericytes, uniquely positioned at the interface between blood and parenchyma, secrete a large plethora of different molecules in response to microenvironmental changes. Their secretome is tissue-specific and stimulus-specific and includes pro- and anti-inflammatory factors, growth factors, and extracellular matrix as well as microvesicles suggesting the important role of pericytes in the regulation of immune response and immune evasion of tumors. However, the angiogenic and trophic secretome of pericytes indicates that their secretome plays a role in physiological homeostasis but possibly also in disease progression or could be exploited for regenerative processes in the future. This book chapter summarizes the current data on the secretory properties of pericytes from different tissues in response to certain pathological stimuli such as inflammatory stimuli, hypoxia, high glucose, and others and thereby aims to provide insights into the possible role of pericytes in these conditions.
Collapse
Affiliation(s)
- Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Sciences and Wallenberg Center for Molecular Medicine, Department of Neurology, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences and Wallenberg Center for Molecular Medicine, Department of Neurology, Lund University, Lund, Sweden. .,Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
21
|
Sava P, Ramanathan A, Dobronyi A, Peng X, Sun H, Ledesma-Mendoza A, Herzog EL, Gonzalez AL. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight 2017; 2:96352. [PMID: 29263297 DOI: 10.1172/jci.insight.96352] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
Collapse
Affiliation(s)
- Parid Sava
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Anand Ramanathan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Amelia Dobronyi
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Xueyan Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Huanxing Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Lauridsen HM, Pellowe AS, Ramanathan A, Liu R, Miller-Jensen K, McNiff JM, Pober JS, Gonzalez AL. Tumor Necrosis Factor-α and IL-17A Activation Induces Pericyte-Mediated Basement Membrane Remodeling in Human Neutrophilic Dermatoses. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1893-1906. [PMID: 28609645 DOI: 10.1016/j.ajpath.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Sweet syndrome (SS) is a prototypical neutrophilic dermatosis, a class of inflammatory diseases marked by elevated levels of tumor necrosis factor (TNF)-α and IL-17A, pathologic neutrophil recruitment, and microvascular remodeling. Histologic analyses of four matrix proteins-collagen I and IV, laminin, and fibronectin-in skin biopsies of patients with SS reveal that the basement membrane of dermal postcapillary venules undergoes changes in structure and composition. Increased neutrophil recruitment in vivo was associated with increases in collagen IV, decreases in laminin, and varied changes in fibronectin. In vitro studies using TNF-α and IL-17A were conducted to dissect basement membrane remodeling. Prolonged dual activation of cultured human pericytes with TNF-α and IL-17A augmented collagen IV production, similar to in vivo remodeling. Co-activation of pericytes with TNF-α and IL-17A also elevated fibronectin levels with little direct effect on laminin. However, the expression of fibronectin- and laminin-specific matrix metalloproteinases (MMPs), particularly MMP-3, was significantly up-regulated. Interactions between pericytes and neutrophils in culture yielded even higher levels of active MMPs, facilitating fibronectin and laminin degradation, and likely contributing to the varied levels of detectable fibronectin and the decreases in laminin observed in vivo. These data indicate that pericyte-neutrophil interactions play a role in mediating microvascular changes in SS and suggest that targeting MMP-3 may be effective in protecting vascular wall integrity.
Collapse
Affiliation(s)
- Holly M Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Anand Ramanathan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Rebecca Liu
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | | | - Jennifer M McNiff
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
23
|
Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain Pericytes As Mediators of Neuroinflammation. Trends Pharmacol Sci 2017; 38:291-304. [DOI: 10.1016/j.tips.2016.12.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/03/2023]
|
24
|
Lauridsen HM, Gonzalez AL. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers. PLoS One 2017; 12:e0171386. [PMID: 28234918 PMCID: PMC5325185 DOI: 10.1371/journal.pone.0171386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/18/2017] [Indexed: 11/18/2022] Open
Abstract
The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.
Collapse
Affiliation(s)
- Holly M. Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
25
|
Xu J, Gong T, Heng BC, Zhang CF. A systematic review: differentiation of stem cells into functional pericytes. FASEB J 2017; 31:1775-1786. [PMID: 28119398 DOI: 10.1096/fj.201600951rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Pericytes are an integral cellular component of vascular structures. Numerous studies have investigated various stem cell types as potential sources of pericytes for application in cell-based therapy. The diverse stem cell types and variable experimental protocols of these studies make it imperative to evaluate the relevant scientific literature on the basis of a unified standard. The purpose of this systematic review is to rigorously evaluate the relevant scientific literature for conclusive evidence that stem cells can differentiate into functional pericytes. An online literature search was conducted up to July 2016. Eligible papers were evaluated on 4 pertinent criteria: 1) appropriate controls, 2) markers to confirm pericyte phenotype, 3) techniques for assessing pericyte functionality, and 4) differentiation efficiency of the protocol. Our search yielded 20 eligible studies (from 2006 to 2016), 12 of which were published in the past 5 yr. Of these 20 articles, only 1 had positive control, and 5 papers evaluated differentiation efficiency. The most commonly used pericyte markers were neuron-glial antigen 2, platelet-derived growth factor receptor-β, and α-smooth muscle actin. Three articles were associated with adipose stem cells, 4 with mesenchymal stem cells, and 7 with pluripotent stem cells, whereas the remaining 6 articles were based on other miscellaneous stem cell types. Stem cells can serve as a potential source of pericytes, but there should be standardized guidelines in future studies for assessing pericyte differentiation.-Xu, J., Gong, T., Heng, B. C., Zhang, C. F. A systematic review: differentiation of stem cells into functional pericytes.
Collapse
Affiliation(s)
- Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Cheng Fei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res 2016; 58:81-94. [PMID: 27974711 DOI: 10.1159/000454919] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. METHODS For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. RESULTS The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. CONCLUSION Although wound healing mechanisms and specific cell functions in wound repair have been delineated in part, many underlying pathophysiological processes are still unknown. The purpose of the following update on skin wound healing is to focus on the different phases and to brief the reader on the current knowledge and new insights. Skin wound healing is a complex process, which is dependent on many cell types and mediators interacting in a highly sophisticated temporal sequence. Although some interactions during the healing process are crucial, redundancy is high and other cells or mediators can adopt functions or signaling without major complications.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
27
|
Navarro R, Compte M, Álvarez-Vallina L, Sanz L. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity. Front Immunol 2016; 7:480. [PMID: 27867386 PMCID: PMC5095456 DOI: 10.3389/fimmu.2016.00480] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Luis Álvarez-Vallina
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| |
Collapse
|
28
|
Liu R, Lauridsen HM, Amezquita RA, Pierce RW, Jane-Wit D, Fang C, Pellowe AS, Kirkiles-Smith NC, Gonzalez AL, Pober JS. IL-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2400-8. [PMID: 27534549 PMCID: PMC5010945 DOI: 10.4049/jimmunol.1600138] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/17/2016] [Indexed: 11/19/2022]
Abstract
A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multistep process that involves sequential cell-cell interactions of circulating leukocytes with IL-1- or TNF-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a proinflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, although neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA sequencing analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and they also stimulate neutrophil production of proinflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs, but not ECs, can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondrial outer membrane permeabilization and caspase-9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by conditioned media from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space.
Collapse
Affiliation(s)
- Rebecca Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Holly M Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Richard W Pierce
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520; and
| | - Dan Jane-Wit
- Division of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Caodi Fang
- Division of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | | | | | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
29
|
Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, Potula R, Mukherjee A, Ramirez SH, Rom S. Dysfunction of brain pericytes in chronic neuroinflammation. J Cereb Blood Flow Metab 2016; 36:794-807. [PMID: 26661157 PMCID: PMC4821019 DOI: 10.1177/0271678x15606149] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/31/2015] [Indexed: 01/09/2023]
Abstract
Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.
Collapse
Affiliation(s)
- Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jeremy Hill
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ming Zhang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Abir Mukherjee
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Bodnar RJ, Satish L, Yates CC, Wells A. Pericytes: A newly recognized player in wound healing. Wound Repair Regen 2016; 24:204-14. [PMID: 26969517 DOI: 10.1111/wrr.12415] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
Pericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing. Pathologically, pericytes can assume a fibrotic phenotype and promote scarring. This perspective will discuss pericyte involvement in wound repair and the relationship pericytes form with the parenchymal cells of the skin. We will further evaluate the role pericytes may have in disease progression in relation to chronic wounds and fibrosis.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Latha Satish
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Health Promotions and Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 2015; 15:125-42. [PMID: 26612664 DOI: 10.1038/nrd.2015.2] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of vascular permeability, recruitment of leukocytes from blood to tissue and angiogenesis are all processes that occur at the level of the microvasculature during both physiological and pathological conditions. The interplay between microvascular cells and leukocytes during inflammation, together with the emerging roles of leukocytes in the modulation of the angiogenic process, make leukocyte-vascular interactions prime targets for therapeutics to potentially treat a wide range of diseases, including pathological and dysfunctional vessel growth, chronic inflammation and fibrosis. In this Review, we discuss how the different cell types that are present in and around microvessels interact, cooperate and instruct each other, and in this context we highlight drug targets as well as emerging druggable processes that can be exploited to restore tissue homeostasis.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| |
Collapse
|
32
|
Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol 2015; 36:547-55. [PMID: 26297103 DOI: 10.1016/j.it.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/09/2023]
Abstract
Neutrophils are first responders of the immune system, rapidly migrating into affected tissues in response to injury or infection. To effectively call in this first line of defense, strategically placed cells within the vasculature and tissue respond to noxious stimuli by sending out coordinated signals that recruit neutrophils. Regulation of organ-specific neutrophil entry occurs at two levels. First, the vasculature supplying the organ provides cues for neutrophil egress out of the bloodstream in a manner dependent upon its unique cellular composition and architectural features. Second, resident immune cells and stromal cells within the organ send coordinated signals that guide neutrophils to their final destination. Here, we review recent findings that highlight the importance of these tissue-specific responses in the regulation of neutrophil recruitment and the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Nancy D Kim
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.
Collapse
|
34
|
|
35
|
An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 2015; 5:12132. [PMID: 26166618 PMCID: PMC4499812 DOI: 10.1038/srep12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/01/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBPδ is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1β (IL-1β). To investigate the function of the induced C/EBPδ in pericytes we used siRNA to knockdown IL-1β-induced C/EBPδ expression. C/EBPδ knockdown enhanced IL-1β-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBPδ expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBPδ following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain.
Collapse
|
36
|
Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci 2015; 128:2221-30. [PMID: 26092932 DOI: 10.1242/jcs.163055] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.
Collapse
Affiliation(s)
- Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
37
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
38
|
Wong SP, Rowley JE, Redpath AN, Tilman JD, Fellous TG, Johnson JR. Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 2015; 151:107-20. [PMID: 25827580 DOI: 10.1016/j.pharmthera.2015.03.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Regenerative medicine using mesenchymal stem cells for the purposes of tissue repair has garnered considerable public attention due to the potential of returning tissues and organs to a normal, healthy state after injury or damage has occurred. To achieve this, progenitor cells such as pericytes and bone marrow-derived mesenchymal stem cells can be delivered exogenously, mobilised and recruited from within the body or transplanted in the form organs and tissues grown in the laboratory from stem cells. In this review, we summarise the recent evidence supporting the use of endogenously mobilised stem cell populations to enhance tissue repair along with the use of mesenchymal stem cells and pericytes in the development of engineered tissues. Finally, we conclude with an overview of currently available therapeutic options to manipulate endogenous stem cells to promote tissue repair.
Collapse
Affiliation(s)
- Suet-Ping Wong
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica E Rowley
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andia N Redpath
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica D Tilman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Tariq G Fellous
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jill R Johnson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
39
|
The role of chemokines in cutaneous immunosurveillance. Immunol Cell Biol 2015; 93:337-46. [PMID: 25776847 DOI: 10.1038/icb.2015.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 12/26/2022]
Abstract
The skin serves as a critical barrier against pathogen entry. This protection is afforded by an array of skin-resident immune cells, which act as first-line responders against barrier breach and infection. The recruitment and positioning of these cells is controlled at multiple levels by endothelial cells, pericytes, perivascular macrophages and mast cells, and by the fibroblasts in the dermis and keratinocytes in the epidermis. Chemokine signalling through chemokine receptors expressed by the various leukocyte subsets is critical for their trafficking into and within the skin. The role of chemokines in the skin is complex, and remains incompletely understood despite three decades of investigation. Here, we review the roles that different chemokine pathways play in the skin, and highlight the recent developments in the field.
Collapse
|
40
|
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2015; 21:345-57. [PMID: 24267154 DOI: 10.1111/micc.12107] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. The strategy of manipulating pericyte recruitment to capillaries could result in anti- or proangiogenic effects. Our current understanding of pericytes, however, is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a "mash-up" that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2, and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Molly R Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
41
|
Sava P, Cook IO, Mahal RS, Gonzalez AL. Human Microvascular Pericyte Basement Membrane Remodeling Regulates Neutrophil Recruitment. Microcirculation 2015; 22:54-67. [DOI: 10.1111/micc.12173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Parid Sava
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Ian O. Cook
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Rajwant S. Mahal
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| |
Collapse
|
42
|
Microbicidal activity of neutrophils is inhibited by isolates from recurrent vaginal candidiasis (RVVC) caused by Candida albicans through fungal thioredoxin reductase. Cell Immunol 2015; 293:22-9. [DOI: 10.1016/j.cellimm.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 02/02/2023]
|
43
|
Hill J, Rom S, Ramirez SH, Persidsky Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J Neuroimmune Pharmacol 2014; 9:591-605. [PMID: 25119834 PMCID: PMC4209199 DOI: 10.1007/s11481-014-9557-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
Pericytes of the central nervous system (CNS) are uniquely positioned within a multicellular structure termed the neurovascular unit (NVU) to provide crucial support to blood brain barrier (BBB) formation, maintenance, and stability. Numerous CNS diseases are associated with some aspect of BBB dysfunction. A dysfunction can manifest as one or multiple disruptions to any of the following barriers: physical, metabolic, immunological and transport barrier. A breach in the BBB can notably result in BBB hyper-permeability, endothelial activation and enhanced immune-endothelial interaction. How the BBB is regulated within this integrated unit remains largely unknown, especially as it relates to pericyte-endothelial interaction. We summarize the latest findings on pericyte origin, possible marker expression, and availability within different organ systems. We highlight pericyte-endothelial cell interactions, concentrating on extra- and intra- cellular signaling mechanisms linked to platelet derived growth factor-B, transforming growth factor -β, angiopoietins, Notch, and gap junctions. We discuss the role of pericytes in the NVU under inflammatory insult, focusing on how pericytes may indirectly affect leukocyte CNS infiltration, the direct role of pericyte-mediated basement membrane modifications, and immune responses. We review new findings of pericyte actions in CNS pathologies including Alzheimer's disease, stroke, multiple sclerosis, diabetic retinopathy, and HIV-1 infection. The uncovering of the regulatory role of pericytes on the BBB will provide key insight into how barrier integrity can be re-established during neuroinflammation.
Collapse
Affiliation(s)
- Jeremy Hill
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Servio H. Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia PA
| |
Collapse
|
44
|
Abstract
Leukocyte migration through activated venular walls is a fundamental immune response that is prerequisite to the entry of effector cells such as neutrophils, monocytes, and effector T cells to sites of infection, injury, and stress within the interstitium. Stimulation of leukocytes is instrumental in this process with enhanced temporally controlled leukocyte adhesiveness and shape-changes promoting leukocyte attachment to the inner wall of blood vessels under hydrodynamic forces. This initiates polarized motility of leukocytes within and through venular walls and transient barrier disruption facilitated sequentially by stimulated vascular cells, i.e., endothelial cells and their associated pericytes. Perivascular cells such as macrophages and mast cells that act as tissue inflammatory sentinels can also directly and indirectly regulate the exit of leukocytes from the vascular lumen. In this review, we discuss current knowledge and open questions regarding the mechanisms involved in the interactions of different effector leukocytes with peripheral vessels in extralymphoid organs.
Collapse
Affiliation(s)
- Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100 Israel.
| |
Collapse
|
45
|
Pober JS, Sessa WC. Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 2014; 7:a016345. [PMID: 25384307 DOI: 10.1101/cshperspect.a016345] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute and chronic inflammation is associated with changes in microvascular form and function. At rest, endothelial cells maintain a nonthrombogenic, nonreactive surface at the interface between blood and tissue. However, on activation by proinflammatory mediators, the endothelium becomes a major participant in the generation of the inflammatory response. These functions of endothelium are modified by the other cell populations of the microvessel wall, namely pericytes, and smooth muscle cells. This article reviews recent advances in understanding the roles played by microvessels in inflammation.
Collapse
Affiliation(s)
- Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8089
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8089
| |
Collapse
|
46
|
Sepsis lethality via exacerbated tissue infiltration and TLR-induced cytokine production by neutrophils is integrin α3β1-dependent. Blood 2014; 124:3515-23. [PMID: 25278585 DOI: 10.1182/blood-2014-01-552943] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integrin-mediated migration of neutrophils to infected tissue sites is vital for pathogen clearance and therefore host survival. Although β2 integrins have been shown to mediate neutrophil transendothelial migration during systemic and local inflammation, relatively little information is available regarding neutrophil migration in sepsis beyond the endothelial cell layer. In this study, we report that integrin α3β1 (VLA-3; CD49c/CD29) is dramatically upregulated on neutrophils isolated from both human septic patients and in mouse models of sepsis. Compared with the α3β1 (low) granulocytes, α3β1 (high) cells from septic animals displayed hyperinflammatory phenotypes. Administration of a α3β1 blocking peptide and conditional deletion of α3 in granulocytes significantly reduced the number of extravasating neutrophils and improved survival in septic mice. In addition, expression of α3β1 on neutrophils was associated with Toll-like receptor-induced inflammatory responses and cytokine productions. Thus, our results show that α3β1 is a novel marker of tissue homing and hyperresponsive neutrophil subtypes in sepsis, and blocking of α3β1 may represent a new therapeutic approach in sepsis treatment.
Collapse
|
47
|
Domev H, Milkov I, Itskovitz-Eldor J, Dar A. Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells. Stem Cells Transl Med 2014; 3:1169-81. [PMID: 25205843 DOI: 10.5966/sctm.2014-0097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Isolated microvessel-residing pericytes and pericytes from human pluripotent stem cells (hPSCs) exhibit mesenchymal stem cell-like characteristics and therapeutic properties. Despite growing interest in pericyte-based stem cell therapy, their immunogenicity and immunomodulatory effects on nonactivated T cells are still poorly defined, in particular those of vasculogenic hPSC pericytes. We found that tissue-embedded and unstimulated cultured hPSC- or tissue-derived pericytes constitutively expressed major histocompatibility complex (MHC) class I and the inhibitory programmed cell death-ligand 1/2 (PD-L1/2) molecules but not MHC class II or CD80/CD86 costimulatory molecules. Pretreatment with inflammatory mediators failed to induce an antigen-presenting cell-like phenotype in stimulated pericytes. CD146+ pericytes from hPSCs did not induce activation and proliferation of allogeneic resting T cells independent of interferon (IFN)-γ prestimulation, similarly to pericytes from human brain or placenta. Instead, pericytes mediated a significant increase in the frequency of allogeneic CD25highFoxP3+ regulatory T cells when cocultured with nonactivated peripheral blood T cells. Furthermore, when peripheral blood CD25high regulatory T cells (Tregs) were depleted from isolated CD3+ T cells, pericytes preferentially induced de novo formation of CD4+CD25highFoxP3+CD127-, suppressive regulatory T cells. Constitutive expression of PD-L1/2 and secretion of transforming growth factor-β by hPSC pericytes directly regulated generation of pericyte-induced Tregs. Pericytes cotransplanted into immunodeficient mice with allogeneic CD25- T cells maintained a nonimmunogenic phenotype and mediated the development of functional regulatory T cells. Together, these findings reveal a novel feature of pericyte-mediated immunomodulation distinguished from immunosuppression, shared by native tissue pericytes and hPSC pericytes, and support the notion that pericytes can be applied for allogeneic cell therapy.
Collapse
Affiliation(s)
- Hagit Domev
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Irina Milkov
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joseph Itskovitz-Eldor
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ayelet Dar
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Rowley JE, Johnson JR. Pericytes in chronic lung disease. Int Arch Allergy Immunol 2014; 164:178-88. [PMID: 25034005 DOI: 10.1159/000365051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pericytes are mesenchymal cells embedded within the abluminal surface of the endothelium of microvessels such as capillaries, pre-capillary arterioles, post-capillary and collecting venules, where they maintain microvascular homeostasis and participate in angiogenesis. In addition to their roles in supporting the vasculature and facilitating leukocyte extravasation, pericytes have been recently investigated as a subpopulation of mesenchymal stem cells (MSCs) due to their capacity to differentiate into numerous cell types including the classic MSC triad, i.e. osteocytes, chondrocytes and adipocytes. Other studies in models of fibrotic inflammatory disease of the lung have demonstrated a vital role of pericytes in myofibroblast activation, collagen deposition and microvascular remodelling, which are hallmark features of chronic lung diseases such as asthma, chronic obstructive pulmonary disorder, pulmonary fibrosis and pulmonary hypertension. Further studies into the mechanisms of the pericyte-to-myofibroblast transition and migration to fibrotic foci will hopefully clarify the role of these cells in chronic lung disease and confirm the importance of pericytes in human fibrotic pulmonary disease.
Collapse
Affiliation(s)
- Jessica E Rowley
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
49
|
Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 2014; 51:163-74. [PMID: 24853910 DOI: 10.1159/000362276] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Therapies aimed at manipulating the microcirculation require the ability to control angiogenesis, defined as the sprouting of new capillaries from existing vessels. Blocking angiogenesis would be beneficial in many pathologies (e.g. cancer, retinopathies and rheumatoid arthritis). In others (e.g. myocardial infarction, stroke and hypertension), promoting angiogenesis would be desirable. We know that vascular pericytes elongate around endothelial cells (ECs) and are functionally associated with regulating vessel stabilization, vessel diameter and EC proliferation. During angiogenesis, bidirectional pericyte-EC signaling is critical for capillary sprout formation. Observations of pericytes leading capillary sprouts also implicate their role in EC guidance. As such, pericytes have recently emerged as a therapeutic target to promote or inhibit angiogenesis. Advancing our basic understanding of pericytes and developing pericyte-related therapies are challenged, like in many other fields, by questions regarding cell identity. This review article discusses what we know about pericyte phenotypes and the opportunity to advance our understanding by defining the specific pericyte cell populations involved in capillary sprouting.
Collapse
Affiliation(s)
- Peter C Stapor
- Department of Biomedical Engineering, Tulane University, Lindy Boggs Center, New Orleans, La., USA
| | | | | | | | | |
Collapse
|
50
|
Pu KMT, Sava P, Gonzalez AL. Microvascular targets for anti-fibrotic therapeutics. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:537-54. [PMID: 24348218 PMCID: PMC3848109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies.
Collapse
Affiliation(s)
- Kai-Ming T. Pu
- Department of Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, Connecticut
| | - Parid Sava
- Department of Biomedical Engineering, Yale University,
New Haven, Connecticut
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University,
New Haven, Connecticut,To whom all correspondence should be
addressed: Anjelica L. Gonzalez, Yale University, PO Box 208103, New Haven, CT
06520-8103; Tele: 203-436-2971; Fax: 203-432-0300;
| |
Collapse
|