1
|
Murray GGR, Hossain ASMM, Miller EL, Bruchmann S, Balmer AJ, Matuszewska M, Herbert J, Hadjirin NF, Mugabi R, Li G, Ferrando ML, Fernandes de Oliveira IM, Nguyen T, Yen PLK, Phuc HD, Zaw Moe A, Su Wai T, Gottschalk M, Aragon V, Valentin-Weigand P, Heegaard PMH, Vrieling M, Thein Maw M, Thidar Myint H, Tun Win Y, Thi Hoa N, Bentley SD, Clavijo MJ, Wells JM, Tucker AW, Weinert LA. The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs. Proc Natl Acad Sci U S A 2023; 120:e2307773120. [PMID: 37963246 PMCID: PMC10666105 DOI: 10.1073/pnas.2307773120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.
Collapse
Affiliation(s)
- Gemma G. R. Murray
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | | | - Eric L. Miller
- Department of Biology, Haverford College, Haverford, PA19041
| | - Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Andrew J. Balmer
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 2QQ, United Kingdom
| | - Josephine Herbert
- Centre for Enzyme Innovation, University of Portsmouth, PortsmouthPO1 2DD, United Kingdom
| | - Nazreen F. Hadjirin
- Nuffield Department of Population Health, University of Oxford, OxfordOX3 7LF, United Kingdom
| | - Robert Mugabi
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Ganwu Li
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Maria Laura Ferrando
- Animal Sciences Department, Wageningen University, 6700 AHWageningen, The Netherlands
| | | | - Thanh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phung L. K. Yen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ho D. Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Aung Zaw Moe
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Thiri Su Wai
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, QuébecJ2S 2M2, Canada
| | - Virginia Aragon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Barcelona08193, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona08193, Spain
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover30559, Germany
| | - Peter M. H. Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Manouk Vrieling
- Wageningen Bioveterinary Research, 8221 RALelystad, The Netherlands
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | | | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7LG, United Kingdom
- Microbiology Department and Center for Tropical Medicine Research, Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Maria J. Clavijo
- College of Veterinary Medicine, Iowa State University, Ames, IA50011
| | - Jerry M. Wells
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Animal Sciences Department, Wageningen University, 6700 AHWageningen, The Netherlands
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| |
Collapse
|
2
|
Liedel C, Rieckmann K, Baums CG. A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies. BMC Vet Res 2023; 19:188. [PMID: 37798634 PMCID: PMC10552360 DOI: 10.1186/s12917-023-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Streptococcus suis (S. suis) is a major pig pathogen worldwide with zoonotic potential. Though different research groups have contributed to a better understanding of the pathogenesis of S. suis infections in recent years, there are still numerous neglected research topics requiring animal infection trials. Of note, animal experiments are crucial to develop a cross-protective vaccine which is highly needed in the field. Due to the severe clinical signs associated with S. suis pathologies such as meningitis and arthritis, implementation of refinement is very important to reduce pain and distress of experimentally infected pigs. This review highlights the great diversity of clinical signs and courses of disease after experimental S. suis pig infections. We review clinical read out parameters and refinement strategies in experimental S. suis pig infections published between 2000 and 2021. Currently, substantial differences exist in describing clinical monitoring and humane endpoints. Most of the reviewed studies set the body temperature threshold of fever as high as 40.5°C. Monitoring intervals vary mainly between daily, twice a day and three times a day. Only a few studies apply scoring systems. Published scoring systems are inconsistent in their inclusion of parameters such as body temperature, feeding behavior, and respiratory signs. Locomotion and central nervous system signs are more common clinical scoring parameters in different studies by various research groups. As the heterogenicity in clinical monitoring limits the comparability between studies we hope to initiate a discussion with this review leading to an agreement on clinical read out parameters and monitoring intervals among S. suis research groups.
Collapse
Affiliation(s)
- Carolin Liedel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany.
| |
Collapse
|
3
|
Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023; 12:pathogens12040541. [PMID: 37111427 PMCID: PMC10144218 DOI: 10.3390/pathogens12040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | |
Collapse
|
4
|
Fredriksen S, Guan X, Boekhorst J, Molist F, van Baarlen P, Wells JM. Environmental and maternal factors shaping tonsillar microbiota development in piglets. BMC Microbiol 2022; 22:224. [PMID: 36163011 PMCID: PMC9513891 DOI: 10.1186/s12866-022-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background The palatine tonsils are part of the mucosal immune system and stimulate immune responses through M cell uptake sampling of antigens and bacteria in the tonsillar crypts. Little is known about the development of the tonsillar microbiota and the factors determining the establishment and proliferation of disease-associated bacteria such as Streptococcus suis. In this study, we assessed tonsillar microbiota development in piglets during the first 5 weeks of life and identified the relative importance of maternal and environmental farm parameters influencing the tonsillar microbiota at different ages. Additionally, we studied the effect sow vaccination with a bacterin against S. suis on microbiota development and S. suis colonisation in their offspring. Results Amplicon sequencing of the 16S rRNA gene V3-V4 region revealed that a diverse tonsillar microbiota is established shortly after birth, which then gradually changes during the first 5 weeks of life without a large impact of weaning on composition or diversity. We found a strong litter effect, with siblings sharing a more similar microbiota compared to non-sibling piglets. Co-housing in rooms, within which litters were housed in separate pens, also had a large impact on microbiota composition. Sow parity and prepartum S. suis bacterin vaccination of sows had weaker but significant associations with microbiota composition, impacting on the abundance of Streptococcus species before and after weaning. Sex and birthweight had limited impact on the tonsillar microbiota, and none of the measured factors had consistent associations with microbiota diversity. Conclusions The piglet tonsillar microbiota is established shortly after birth. While microbiota development is associated with both environmental and maternal parameters, weaning has limited impact on microbiota composition. Intramuscular vaccination of sows pre-partum had a significant effect on the tonsillar microbiota composition of their piglets. These findings provide new insights into the mechanisms shaping the tonsillar microbiota.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02625-8.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.
| | - Xiaonan Guan
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.,Schothorst Feed Research B.V, Lelystad, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | | | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K..
| |
Collapse
|
5
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
6
|
Rodrigues da Costa M, García Manzanilla E, Diana A, van Staaveren N, Torres-Pitarch A, Boyle LA, Calderón Díaz JA. Identifying challenges to manage body weight variation in pig farms implementing all-in-all-out management practices and their possible implications for animal health: a case study. Porcine Health Manag 2021; 7:10. [PMID: 33431068 PMCID: PMC7798213 DOI: 10.1186/s40813-021-00190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Managing body weight (BW) variation is a challenge in farrow-to-finish farms implementing all-in/all-out (AIAO) production systems due to the lack of “off-site” facilities to segregate slow growing pigs (SGP). This case study investigated different approaches to managing BW variation in a farrow-to-finish commercial pig farm with a self-declared AIAO management and the possible implications for animal health. Case presentation A total of 1096 pigs (1047 pigs born within 1 week plus 49 pigs born 1 week later) were tracked until slaughter as they moved through the production stages. Piglets were individually tagged at birth and their location on the farm was recorded on a weekly basis. In total, 10.3% of pigs died during lactation. Four main cohorts of pigs were created at weaning and retrospectively identified: cohort 1 = pigs weaned at 21 days (4.5%); cohort 2 = pigs weaned at 28 days (81.0%), which was sub-divided at the end of the first nursery stage into sub-cohort 2a = pigs split at 3 weeks post-weaning (29.7%); sub-cohort 2b = pigs split at 3 weeks post-weaning from cohort 2a and split again 5 weeks post-weaning (35.5%) and sub-cohort 2c = remaining smaller size pigs from cohort 2b (10.9%); cohort 3 = pigs weaned at 35 days (2.7%) and cohort 4 = pigs weaned at 49 days (1.5%) that were later mixed with SPG, delayed pigs from other cohorts and sick/injured pigs that recovered. Four strategies to manage BW variation were identified: i) earlier weaning (cohort 1); ii) delayed weaning of SGP (cohort 3 and 4); iii) re-grading pens by BW (sub-cohorts 2a, 2b and 2c) and, iv) delayed movement of SGP to the next production stage (several pigs from all cohorts). A higher percentage of delayed pigs presented pericarditis, pleurisy and enzootic pneumonia like lesions at slaughter compared with pigs under other strategies. Conclusion A variety of management practices were implemented to minimise BW variation during the production cycle. However, several cohorts of pigs were created disrupting AIAO management. Earlier weaning should only be practiced under specific circumstances where optimal animal health and welfare are guaranteed. Delayed weaning of SGP and delaying pigs to move to the next production stage could negatively affect animal health and should be avoided.
Collapse
Affiliation(s)
- Maria Rodrigues da Costa
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.,Present Address: Epidemiology research unit, Scotland's rural College (SRUC), IV2 5NA Inverness, Scotland, UK
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alessia Diana
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.,Present Address: Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Nienke van Staaveren
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.,Present Address: Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Alberto Torres-Pitarch
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Present Address: Trouw Nutrition España, Tres Cantos, Madrid, Spain
| | - Laura Ann Boyle
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Julia Adriana Calderón Díaz
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
7
|
Dame-Korevaar A, Kers JG, van der Goot J, Velkers FC, Ceccarelli D, Mevius DJ, Stegeman A, Fischer EAJ. Competitive Exclusion Prevents Colonization and Compartmentalization Reduces Transmission of ESBL-Producing Escherichia coli in Broilers. Front Microbiol 2020; 11:566619. [PMID: 33304325 PMCID: PMC7693455 DOI: 10.3389/fmicb.2020.566619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Extended spectrum beta-lactamase (ESBL)-producing bacteria are resistant to extended-spectrum cephalosporins and are common in broilers. Interventions are needed to reduce the prevalence of ESBL-producing bacteria in the broiler production pyramid. This study investigated two different interventions. The effect of a prolonged supply of competitive exclusion (CE) product and compartmentalization on colonization and transmission, after challenge with a low dose of ESBL-producing Escherichia coli, in broilers kept under semi-field conditions, were examined. One-day-old broilers (Ross 308) (n = 400) were housed in four experimental rooms, subdivided in one seeder (S/C1)-pen and eight contact (C2)-pens. In two rooms, CE product was supplied from day 0 to 7. At day 5, seeder-broilers were inoculated with E. coli strain carrying bla CTX-M- 1 on plasmid IncI1 (CTX-M-1-E. coli). Presence of CTX-M-1-E. coli was determined using cloacal swabs (day 5-21 daily) and cecal samples (day 21). Time until colonization and cecal excretion (log10 CFU/g) were analyzed using survival analysis and linear regression. Transmission coefficients within and between pens were estimated using maximum likelihood. The microbiota composition was assessed by 16S ribosomal RNA gene amplicon sequencing in cecal content of broilers on days 5 and 21. None of the CE broilers was CTX-M-1-E. coli positive. In contrast, in the untreated rooms 187/200 of the broilers were CTX-M-1-E. coli positive at day 21. Broilers in C2-pens were colonized later than seeder-broilers (Time to event Ratio 3.53, 95% CI 3.14 to 3.93). The transmission coefficient between pens was lower than within pens (3.28 × 10-4 day-2, 95% CI 2.41 × 10-4 to 4.32 × 10-4 vs. 6.12 × 10-2 day-2, 95% CI 4.78 × 10-2 to 7.64 × 10-2). The alpha diversity of the cecal microbiota content was higher in CE broilers than in control broilers at days 5 and 21. The supply of a CE product from day 0 to 7 prevented colonization of CTX-M-1-E. coli after challenge at day 5, likely as a result of CE induced effects on the microbiota composition. Furthermore, compartmentalization reduced transmission rate between broilers. Therefore, a combination of compartmentalization and supply of a CE product may be a useful intervention to reduce transmission and prevent colonization of ESBL/pAmpC-producing bacteria in the broiler production pyramid.
Collapse
Affiliation(s)
- Anita Dame-Korevaar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Jannigje G. Kers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Francisca C. Velkers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Dik J. Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Egil A. J. Fischer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Ágoston Z, Terhes G, Hannauer P, Gajdács M, Urbán E. Fatal case of bacteremia caused by Streptococcus suis in a splenectomized man and a review of the European literature. Acta Microbiol Immunol Hung 2020; 67:148-155. [PMID: 32223305 DOI: 10.1556/030.2020.01123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Streptococcus suis is an emerging zoonotic human pathogen, which is a causative agent of invasive infections in people who are in close contact with infected pigs or contaminated pork products. It is associated with severe systemic infections, most commonly meningitis and sepsis, which may lead to high rates of morbidity and mortality. Serotype 2 is the most prevalent type in S. suis infections in humans. We have reported a case of a very rapidly proceeding fatal human S. suis infection in a splenectomized, but otherwise immunocompetent patient in Hungary. We would like to highlight the attention for this pathogen for the risk group patients, not only pig breeders, veterinarians, abattoir workers, meat processing and transport workers, butchers and cooks, that those persons who are immunocompromised including those with spleen removed, persons with diabetes mellitus, cancer and alcoholism, are also at greater risk of infection.
Collapse
Affiliation(s)
- Zsuzsanna Ágoston
- 1Department of Anaesthesiology and Intensive Therapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Gabriella Terhes
- 2Department of Clinical Microbiology, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter Hannauer
- 1Department of Anaesthesiology and Intensive Therapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Márió Gajdács
- 3Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720, Eötvös utca 6, Szeged, Hungary
| | - Edit Urbán
- 4Department of Public Health, Faculty of Medicine, University of Szeged, 6720, Dóm tér 10, Szeged, Hungary
- 5Institute of Translational Medicine, University of Pécs, Medical School, 7624, Szigeti utca 12, Pécs, Hungary
| |
Collapse
|
9
|
Werinder A, Aspán A, Backhans A, Sjölund M, Guss B, Jacobson M. Streptococcus suis in Swedish grower pigs: occurrence, serotypes, and antimicrobial susceptibility. Acta Vet Scand 2020; 62:36. [PMID: 32580735 PMCID: PMC7315512 DOI: 10.1186/s13028-020-00533-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus suis is a major cause of meningitis, arthritis, and pneumonia in pigs worldwide, and an emerging pathogen in humans. In Sweden, S. suis has previously received little attention but has in recent years become increasingly recognized as affecting the pig production. The aim of the present study was to investigate the occurrence, serotypes and antimicrobial susceptibility of S. suis in Swedish grower pigs from herds with and without reported S. suis associated disease, as well as possible associations between S. suis associated disease and selected environmental and production factors. Swab samples were taken from the tonsils of clinically healthy 8-13-week-old grower pigs from ten case herds and ten control herds. Isolates were cultured, identified using MALDI-TOF MS, and serotyped using latex agglutination. The antimicrobial susceptibility of 188 isolates was tested using broth microdilution. Production data was gathered and environmental parameters were measured on the farms. RESULTS Streptococcus suis was isolated from 95% of the sampled pigs in both the case and the control herds. Serotypes 3, 4, 5, 7, 9, 10, 11, 15, 16, and 17-34 were detected, although a majority of the isolates (81.5%) were non-typeable. There was less diversity among the serotypes isolated from the case herds than among those from the control herds; four and nine different serotypes, respectively. Isolates resistant to penicillin (3.8%) were reported for the first time in Sweden. Tetracycline resistance was common (88.4%). No association was noted between the production and the environmental factors investigated, and the carriership of S. suis. CONCLUSIONS The carriership of S. suis was found to be higher in clinically healthy Swedish pigs than previously estimated, and for the first time, the presence of Swedish isolates resistant to penicillin was reported. Many of the most commonly disease-associated serotypes, e.g. serotypes 2, 9, 3, and 7, were detected in healthy grower pigs although further studies are needed to investigate the virulence of these isolates.
Collapse
Affiliation(s)
- Anna Werinder
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Annette Backhans
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Marie Sjölund
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Bengt Guss
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7036, 750 07 Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| |
Collapse
|
10
|
Dame-Korevaar A, Fischer EAJ, van der Goot J, Velkers F, Ceccarelli D, Mevius D, Stegeman A. Early life supply of competitive exclusion products reduces colonization of extended spectrum beta-lactamase-producing Escherichia coli in broilers. Poult Sci 2020; 99:4052-4064. [PMID: 32731993 PMCID: PMC7597911 DOI: 10.1016/j.psj.2020.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Broilers are an important reservoir of extended spectrum beta-lactamase and AmpC beta-lactamase (ESBL/pAmpC)-producing bacteria. In previous studies, a single supply of a competitive exclusion (CE) product before challenge with a high dose of ESBL/pAmpC-producing Escherichia coli led to reduced colonization, excretion, and transmission, but could not prevent colonization. The hypothesized mechanism is competition; therefore, in this study the effect of a prolonged supply of CE products on colonization, excretion, and transmission of ESBL-producing E. coli after challenge with a low dose at day 0 or day 5 was investigated. Day-old broilers (Ross 308) (n = 220) were housed in isolators. Two CE products, containing unselected fermented intestinal bacteria (CEP) or a selection of pre- and probiotics (SYN), were supplied in drinking water from day 0 to 14. At day 0 or 5, broilers were challenged with 0.5 mL with 101 or 102 cfu/mL E. coli encoding the beta-lactamase gene blaCTX-M-1 on an IncI plasmid (CTX-M-1-E. coli). Presence and concentration of CTX-M-1-E. coli were determined using cloacal swabs (days 0–14, 16, 19, and 21) and cecal content (day 21). Cox proportional hazard model and a mixed linear regression model were used to determine the effect of the intervention on colonization and excretion (log10 cfu/g). When challenged on the day of hatch, no effect of CEP was observed. When challenged at day 5, both CEP and SYN led to a prevention of colonization with CTX-M-1-E. coli in some isolators. In the remaining isolators, we observed reduced time until colonization (hazard ratio between 3.71 × 10−3 and 3.11), excretion (up to −1.60 log10 cfu/g), and cecal content (up to −2.80 log10 cfu/g), and a 1.5 to 3-fold reduction in transmission rate. Colonization after a low-dose challenge with ESBL-producing E. coli can be prevented by CE products. However, if at least 1 bird is colonized it spreads through the whole flock. Prolonged supply of CE products, provided shortly after hatch, may be applicable as an intervention to reduce the prevalence of ESBL/pAmpC-producing bacteria in the broiler production chain.
Collapse
Affiliation(s)
- Anita Dame-Korevaar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Egil A J Fischer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Francisca Velkers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Xing X, Bi S, Fan X, Jin M, Liu W, Wang B. Intranasal Vaccination With Multiple Virulence Factors Promotes Mucosal Clearance of Streptococcus suis Across Serotypes and Protects Against Meningitis in Mice. J Infect Dis 2020; 220:1679-1687. [PMID: 31287878 DOI: 10.1093/infdis/jiz352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is an emerging zoonotic agent. Its natural habitat is the tonsils, which are the main portals of S. suis entry into the bloodstream of pigs. The remarkable variability of the bacteria and complex pathogenic mechanisms make the development of a vaccine a difficult task. METHOD Five conserved virulence factors involved in critical events of S. suis pathogenesis were combined and used as an intranasal vaccine (V5). The effect of V5 was investigated with intranasal and systemic challenge models. RESULTS V5 induced antibody and T-cell responses at the mucosal site and systemically. The immunity promoted clearance of S. suis from the nasopharynx independent of S. suis serotypes and reduced lethality after systemic challenge with S. suis serotype 2. Moreover, mice that survived sepsis from intravenous infection developed meningitis, whereas none of these mice showed neuropathological symptoms after V5 receipt. CONCLUSION Intranasal immunization with multiple conserved virulence factors decreases S. suis colonization at the nasopharynx across serotypes and inhibits the dissemination of the bacteria in the host. The protective mucosal immunity effects would potentially reduce the S. suis reservoir and prevent S. suis disease in pigs.
Collapse
Affiliation(s)
- Xinxin Xing
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing
| | - Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| |
Collapse
|
12
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
13
|
Giang E, Hetman BM, Sargeant JM, Poljak Z, Greer AL. Examining the Effect of Host Recruitment Rates on the Transmission of Streptococcus suis in Nursery Swine Populations. Pathogens 2020; 9:pathogens9030174. [PMID: 32121513 PMCID: PMC7157574 DOI: 10.3390/pathogens9030174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/08/2020] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen that is capable of causing severe outbreaks of disease in the nursery. Demographic parameters such as host recruitment rates can have profound effects on the transmission dynamics of infectious diseases and, thus, are critically important in high-turnover populations such as farmed swine. However, knowledge concerning the implications that such parameters have on S. suis disease control remains unknown. A stochastic mathematical model incorporating sub-clinically infected pigs was developed to capture the effects of changes in host recruitment rate on disease incidence. Compared to our base model scenario, our results show that monthly introduction of pigs into the nursery (instead of weekly introduction) reduced cumulative cases of S. suis by up to 59%, while increasing disease-removal rates alone averted up to 64% of cases. Sensitivity analysis demonstrated that the course of infection in sub-clinically infected pigs was highly influential and generated significant variability in the model outcomes. Our model findings suggest that modifications to host recruitment rates could be leveraged as a tool for S. suis disease control, however improving our understanding of additional factors that influence the risk of transmission would improve the precision of the model estimates.
Collapse
Affiliation(s)
- Elissa Giang
- Department of Population Medicine, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (B.M.H.); (J.M.S.); (Z.P.)
- Correspondence: (E.G.); (A.L.G.)
| | - Benjamin M. Hetman
- Department of Population Medicine, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (B.M.H.); (J.M.S.); (Z.P.)
| | - Jan M. Sargeant
- Department of Population Medicine, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (B.M.H.); (J.M.S.); (Z.P.)
- Center for Public Health and Zoonoses, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (B.M.H.); (J.M.S.); (Z.P.)
- Center for Public Health and Zoonoses, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (B.M.H.); (J.M.S.); (Z.P.)
- Center for Public Health and Zoonoses, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
- Correspondence: (E.G.); (A.L.G.)
| |
Collapse
|
14
|
Colomer MÀ, Margalida A, Fraile L. Improving the management procedures in farms infected with the Porcine Reproductive and Respiratory Syndrome virus using PDP models. Sci Rep 2019; 9:9959. [PMID: 31292473 PMCID: PMC6620323 DOI: 10.1038/s41598-019-46339-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023] Open
Abstract
Pig meat production need to be built up in the future due to the increase of the human population worldwide. To address this challenge, there is plenty of room for improvement in terms of pig production efficiency that could be severely hampered by the presence of diseases. In this sense, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is one of the most costly disease present in industrial pork production in Europe and North America. We have developed a model to analyze the effect of different management procedures to control this important virus in different epidemiological scenarios. Our results clearly suggest that no cross-fostering during lactation and the maintaining of litter integrity significantly decrease the number of sick and dead animals during the rearing period compared to scenarios where cross-fostering and no litter integrity are practiced. These results highlight the relevance of different management strategies to control PRRSV and quantify the effect of limiting cross-fostering and avoiding mixing animals from different litters in PRRSV positive farms to optimize animal production. Our findings will allow pig farmers to apply these management procedures to control this disease under field conditions in a very cost-effective way.
Collapse
Affiliation(s)
- Ma Àngels Colomer
- Department of Mathematics ETSEA, University of Lleida, 25198, Lleida, Spain
| | - Antoni Margalida
- Department of Mathematics ETSEA, University of Lleida, 25198, Lleida, Spain. .,Department of Animal Science, ETSEA, University of Lleida, 25198, Lleida, Spain. .,Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain.
| | - Lorenzo Fraile
- Department of Animal Science, ETSEA, University of Lleida, 25198, Lleida, Spain.,Agrotecnio, University of Lleida, 25198, Lleida, Spain
| |
Collapse
|
15
|
Auger JP, Boa AC, Segura M, Gottschalk M. Antigen I/II Participates in the Interactions of Streptococcus suis Serotype 9 With Phagocytes and the Development of Systemic Disease. Front Cell Infect Microbiol 2019; 9:124. [PMID: 31069179 PMCID: PMC6491464 DOI: 10.3389/fcimb.2019.00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and a zoonotic agent causing a variety of pathologies including sudden death, septic shock, and meningitis. Though serotype 2 is the most studied serotype due to its presence worldwide, serotype 9 is responsible for the greatest number of porcine cases in Spain, the Netherlands, and Germany. Regardless of its increasing importance, very few studies have investigated S. suis serotype 9 virulence factors and pathogenesis. Antigens I/II (AgI/II) are multimodal adhesion proteins implicated in host respiratory tract and oral cavity persistence of various pathogenic human streptococci. It was recently demonstrated that AgI/II is involved in various bacterial functions for serotype 9, participating in the initial steps of the pathogenesis of the infection. However, its contribution to the systemic infection remains unknown. As such, we evaluated herein the role of the S. suis serotype 9 AgI/II in the interactions with phagocytes and the development of systemic disease in a mouse model of infection. Results demonstrated that the presence of AgI/II is important for the development of clinical systemic disease by promoting bacterial survival in blood possibly due to its effect on S. suis phagocytosis, as shown with macrophages and dendritic cells. Furthermore, AgI/II directly participates in dendritic cell activation and pro-inflammatory mediator production following recognition by the Toll-like receptor pathway, which may contribute to the exacerbated systemic inflammation responsible for host death. Taken together, this study demonstrates that the S. suis serotype 9 AgI/II is important for virulence during systemic infection and development of disease. In fact, this is the first study to describe a role of an AgI/II family member in systemic bacterial disease.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Anaïs-Christelle Boa
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
Hopkins D, Poljak Z, Farzan A, Friendship R. Factors contributing to mortality during a Streptoccocus suis outbreak in nursery pigs. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2018; 59:623-630. [PMID: 29910476 PMCID: PMC5949957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate the association between sow- and litter-level factors with mortality in a swine nursery barn experiencing a severe Streptococcus suis disease outbreak. All-cause mortality data from a 300-sow farrow-to-finish herd was analyzed using a Cox's regression model. The data were recorded over 6 months and included 24 cohorts, 297 sows, 295 litters, and 2779 piglets with an average of 14.4% post-weaning mortality. If the sows had 2 litters within the study period and pigs from their first litter experienced mortality, then pigs from their subsequent litter had a decreased risk of mortality [hazard ratio (HR) = 0.34, P < 0.05]. Pigs were more likely to experience mortality if at least 1 additional littermate experienced mortality (HR = 9.22, P = 0.001). Under conditions of this study, the results suggest mechanisms related to sow immunity and within-litter spread that could have contributed to the risk of mortality during the S. suis outbreak.
Collapse
Affiliation(s)
- Danielle Hopkins
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Abdolvahab Farzan
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Robert Friendship
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| |
Collapse
|
17
|
Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018; 9:480. [PMID: 29599763 PMCID: PMC5862822 DOI: 10.3389/fmicb.2018.00480] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yenehiwot B Weldearegay
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
18
|
Effect of Simultaneous Exposure of Pigs to Streptococcus suis Serotypes 2 and 9 on Their Colonization and Transmission, and on Mortality. Pathogens 2017; 6:pathogens6040046. [PMID: 28953248 PMCID: PMC5750570 DOI: 10.3390/pathogens6040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
The distribution of Streptococcus suis serotypes isolated from clinically infected pigs differs between geographical areas, and varies over time. In several European countries, predomination of serotype 2 has changed to serotype 9. We hypothesize a relation, with one serotype affecting the other in colonization and invasion. The aim of this study was to evaluate whether simultaneous exposure of pigs to serotypes 2 and 9 affects colonization and transmission of each type, and mortality. Thirty-six caesarean-derived/colostrum-deprived piglets were randomly assigned to three groups, and there housed pair-wise. At six weeks old, one pig per pair was inoculated with either one (serotype 2 or 9; mono-group) or two serotypes simultaneously (dual-group); the other pig was contact-exposed. Tonsillar and nasal samples were collected within three weeks post inoculation. Bacterial loads in samples were quantified using multiplex real-time polymerase chain reaction (PCR). Transmission rates of the serotypes among pigs were estimated using a mathematical Susceptible-Infectious (SI) model. Bacterial loads and transmission rates did not differ significantly between serotypes. Compared to the mono-group, in the dual-group the average serotype 2 load in tonsillar samples from contact pigs was reduced on days 1 to 4 and on day 6. Simultaneous exposure to the serotypes reduced the mortality hazard 6.3 times (95% C.I.: 2.0–19.8) compared to exposure to serotype 2 only, and increased it 6.6 times (95% C.I.: 1.4–30.9) compared to exposure to serotype 9 only. This study indicates that serotype 2 load and mortality were affected in pigs exposed to these two serotypes.
Collapse
|
19
|
Chuzeville S, Auger JP, Dumesnil A, Roy D, Lacouture S, Fittipaldi N, Grenier D, Gottschalk M. Serotype-specific role of antigen I/II in the initial steps of the pathogenesis of the infection caused by Streptococcus suis. Vet Res 2017; 48:39. [PMID: 28705175 PMCID: PMC5513104 DOI: 10.1186/s13567-017-0443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is one of the most important post-weaning porcine bacterial pathogens worldwide. The serotypes 2 and 9 are often considered the most virulent and prevalent serotypes involved in swine infections, especially in Europe. However, knowledge of the bacterial factors involved in the first steps of the pathogenesis of the infection remains scarce. In several pathogenic streptococci, expression of multimodal adhesion proteins known as antigen I/II (AgI/II) have been linked with persistence in the upper respiratory tract and the oral cavity, as well as with bacterial dissemination. Herein, we report expression of these immunostimulatory factors by S. suis serotype 2 and 9 strains and that AgI/II-encoding genes are carried by integrative and conjugative elements. Using mutagenesis and different in vitro assays, we demonstrate that the contribution of AgI/II to the virulence of the serotype 2 strain used herein appears to be modest. In contrast, data demonstrate that the serotype 9 AgI/II participates in self-aggregation, induces salivary glycoprotein 340-related aggregation, contributes to biofilm formation and increased strain resistance to low pH, as well as in bacterial adhesion to extracellular matrix proteins and epithelial cells. Moreover, the use of a porcine infection model revealed that AgI/II contributes to colonization of the upper respiratory tract of pigs. Taken together, these findings suggest that surface exposed AgI/II likely play a key role in the first steps of the pathogenesis of the S. suis serotype 9 infection.
Collapse
Affiliation(s)
- Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
20
|
Feberwee A, Dijkman R, Klinkenberg D, Landman WJM. Quantification of the horizontal transmission of Mycoplasma synoviae in non-vaccinated and MS-H-vaccinated layers. Avian Pathol 2017; 46:346-358. [PMID: 28116916 DOI: 10.1080/03079457.2017.1282602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The number of newly infected birds attributable to one infectious bird per day (= transmission rate β) was assessed in non-vaccinated and MS-H-vaccinated experimental specified pathogen-free White Leghorns after Mycoplasma synoviae challenge. Furthermore, the effect of vaccination on the shedding of the challenge strain was determined. The following groups were made: a negative control group (n = 5), a vaccinated (MS-H vaccine by eye drop (>105.7 colour changing units/bird)) non-challenged group (n = 5), two non-vaccinated challenged groups (n = 18 each) and two vaccinated challenged groups (n = 18 each). In the challenged groups, six seeder birds were intratracheally inoculated with 105.4 colony forming units (CFUs)/bird. Trachea swabs were taken at day (D)2, D3, D4, D5, D7, D9, D11, D14, D17, D21, D25, D28, D32, D35, D42 and D46 after contact with seeders and analyzed with a quantitative PCR able to detect the vaccine and field strain separately. The transmission rate and shedding were estimated using the susceptible exposed infectious transmission model and a linear mixed model, respectively. The mean shedding of the challenge strain was 106.4 CFU equivalents M. synoviae/g trachea mucus in vaccinates shedding MS-H, while in the birds not shedding the vaccine (non-vaccinates and vaccinates not shedding MS-H) it was 106.9 CFU equivalents M. synoviae/g trachea mucus. In vaccinates shedding MS-H, β was 0.0012 (95% C.I.: 0.00048 - 0.0024), while in birds not shedding vaccine (non-vaccinates and vaccinates not shedding MS-H) a significantly higher β of 0.022 (95% C.I.: 0.015 - 0.031) was found.
Collapse
Affiliation(s)
- A Feberwee
- a GD - Animal Health , Deventer , The Netherlands
| | - R Dijkman
- a GD - Animal Health , Deventer , The Netherlands
| | - D Klinkenberg
- b National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sports , Bilthoven , The Netherlands
| | | |
Collapse
|
21
|
Gilmer DB, Schmitz JE, Thandar M, Euler CW, Fischetti VA. The Phage Lysin PlySs2 Decolonizes Streptococcus suis from Murine Intranasal Mucosa. PLoS One 2017; 12:e0169180. [PMID: 28046082 PMCID: PMC5207509 DOI: 10.1371/journal.pone.0169180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/13/2016] [Indexed: 01/21/2023] Open
Abstract
Streptococcus suis infects pigs worldwide and may be zoonotically transmitted to humans with a mortality rate of up to 20%. S. suis has been shown to develop in vitro resistance to the two leading drugs of choice, penicillin and gentamicin. Because of this, we have pursued an alternative therapy to treat these pathogens using bacteriophage lysins. The bacteriophage lysin PlySs2 is derived from an S. suis phage and displays potent lytic activity against most strains of that species including serotypes 2 and 9. At 64 μg/ml, PlySs2 reduced multiple serotypes of S. suis by 5 to 6-logs within 1 hour in vitro and exhibited a minimum inhibitory concentration (MIC) of 32 μg/ml for a S. suis serotype 2 strain and 64 μg/ml for a serotype 9 strain. Using a single 0.1-mg dose, the colonizing S. suis serotype 9 strain was reduced from the murine intranasal mucosa by >4 logs; a 0.1-mg dose of gentamicin reduced S. suis by <3-logs. A combination of 0.05 mg PlySs2 + 0.05 mg gentamicin reduced S. suis by >5-logs. While resistance to gentamicin was induced after systematically increasing levels of gentamicin in an S. suis culture, the same protocol resulted in no observable resistance to PlySs2. Thus, PlySs2 has both broad and high killing activity against multiple serotypes and strains of S. suis, making it a possible tool in the control and prevention of S. suis infections in pigs and humans.
Collapse
Affiliation(s)
- Daniel B. Gilmer
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York, United States of America
| | - Jonathan E. Schmitz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York, United States of America
| | - Mya Thandar
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York, United States of America
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
23
|
Verstappen KM, Tulinski P, Duim B, Fluit AC, Carney J, van Nes A, Wagenaar JA. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs. PLoS One 2016; 11:e0160242. [PMID: 27487020 PMCID: PMC4972443 DOI: 10.1371/journal.pone.0160242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/15/2016] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the—often occupational—exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. In conclusion: i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo model matched that of the in vivo system.
Collapse
Affiliation(s)
- Koen M Verstappen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Pawel Tulinski
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Arie van Nes
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Central Veterinary Institute of Wageningen UR, Lelystad, the Netherlands
| |
Collapse
|
24
|
Gauthier-Levesque L, Bonifait L, Turgeon N, Veillette M, Perrott P, Grenier D, Duchaine C. Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Res Notes 2016; 9:273. [PMID: 27180230 PMCID: PMC4868011 DOI: 10.1186/s13104-016-2073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/02/2016] [Indexed: 01/24/2023] Open
Abstract
Background Streptococcus suis is a swine pathogen that causes pneumonia, septicemia and meningitis. It is also an important zoonotic agent responsible of several outbreaks in China. S. suis strains are classified into 35 serotypes based on the composition of their polysaccharide capsule. S. suis serotype 2 causes the majority of severe infections in pigs and in human, and can be further subdivided into sequence types (STs) based on multilocus sequence typing. The ST1 is associated with highly virulent strains. In North America, the strains most commonly isolated belong to ST25 and ST28, which are respectively moderately and weakly virulent in a mouse model. The presence of S. suis bioaerosols in the air of swine confinement buildings has been previously demonstrated. The aim of this study was to better understand the aerosolization behaviour of S. suis by investigating the preferential aerosolization of various strains of S. suis, belonging to different serotypes or STs, using in-house developed environmental chamber and bubble-burst nebulizer. qPCR technology was used to analyze the ratio of S. suis strains. Results The results suggest that the highly virulent serotype 2 ST1 strains are preferentially aerosolized and that the S. suis preferential aerosolization is a strain-dependent process. Conclusion These observations will need to be confirmed using a larger number of strains. This study is a proof of concept and increases our knowledge on the potential aerosol transmission of S. suis.
Collapse
Affiliation(s)
- Léa Gauthier-Levesque
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada
| | - Laetitia Bonifait
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada
| | - Nathalie Turgeon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Phillipa Perrott
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Daniel Grenier
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada. .,Département de Biochimie, Microbiologie et Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
25
|
Verstappen KM, Duim B, van Nes A, Snijders S, van Wamel WJB, Wagenaar JA. Experimental nasal colonization of piglets with methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Vet Microbiol 2014; 174:483-488. [PMID: 25448448 DOI: 10.1016/j.vetmic.2014.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus sequence type (ST)398 is widely spread among livestock. People in contact with livestock have a higher risk of testing positive for MRSA. Several experimental settings have been described to study in vivo colonization of MRSA in pigs, each having its own limitations. The aim of this study was to develop a nose-colonization model in pigs to quantitatively study the colonization of MRSA and the co-colonization of MSSA and MRSA. Two experiments were performed: in the first experiment piglets received an intranasal inoculation with MRSA ST398, spa-type t011, and in the second experiment piglets received an intranasal inoculation with two MSSA strains (ST398, spa-type t011 and t034) and two MRSA strains (also ST398, spa-type t011 and t034) to investigate co-colonization. Colonization was quantitatively monitored for 2 weeks in both experiments. Nasal colonization was successfully established in all piglets with stable numbers of S. aureus between 10(4) and 10(6) CFU. MSSA and MRSA were able to co-colonize.
Collapse
Affiliation(s)
- Koen M Verstappen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | - Arie van Nes
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - Susan Snijders
- Department for Medical Microbiology, Erasmus Medical Centre, P.O. box 2040, 3000 CA Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department for Medical Microbiology, Erasmus Medical Centre, P.O. box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands; Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands.
| |
Collapse
|
26
|
Eight challenges in modelling infectious livestock diseases. Epidemics 2014; 10:1-5. [PMID: 25843373 DOI: 10.1016/j.epidem.2014.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 02/02/2023] Open
Abstract
The transmission of infectious diseases of livestock does not differ in principle from disease transmission in any other animals, apart from that the aim of control is ultimately economic, with the influence of social, political and welfare constraints often poorly defined. Modelling of livestock diseases suffers simultaneously from a wealth and a lack of data. On the one hand, the ability to conduct transmission experiments, detailed within-host studies and track individual animals between geocoded locations make livestock diseases a particularly rich potential source of realistic data for illuminating biological mechanisms of transmission and conducting explicit analyses of contact networks. On the other hand, scarcity of funding, as compared to human diseases, often results in incomplete and partial data for many livestock diseases and regions of the world. In this overview of challenges in livestock disease modelling, we highlight eight areas unique to livestock that, if addressed, would mark major progress in the area.
Collapse
|
27
|
Tobias TJ, Bouma A, van den Broek J, van Nes A, Daemen AJJM, Wagenaar JA, Stegeman JA, Klinkenberg D. Transmission of Actinobacillus pleuropneumoniae among weaned piglets on endemically infected farms. Prev Vet Med 2014; 117:207-14. [PMID: 25156946 DOI: 10.1016/j.prevetmed.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Clinical outbreaks due to Actinobacillus pleuropneumoniae occur recurrently, despite the wide-scale use of antimicrobials or vaccination. Therefore, new approaches for the prevention and control of these outbreaks are necessary. For the development of alternative measures, more insight into the transmission of the bacterium on farms is necessary. The aim of this cohort study was to quantify transmission of A. pleuropneumoniae amongst weaned piglets on farms. We investigated three possible transmission routes: (i) indirect transmission by infected piglets within the same compartment, (ii) transmission by infected pigs in adjacent pens and (iii) transmission by direct contact within pens. Additionally, we evaluated the effect of independent litter characteristics on the probability of infection. Two farms participated in our study. Serum and tonsil brush samples were collected from sows pre-farrowing. Serum was analysed for antibodies against Apx toxins and Omp. Subsequently, tonsil brush samples were collected from all piglets from these dams (N=542) in three cohorts, 3 days before weaning and 6 weeks later. Tonsil samples were analysed by qPCR for the presence of the apxIVA gene of A. pleuropneumoniae. Before weaning, 25% of the piglets tested positive; 6 weeks later 47% tested positive. Regression and stochastic transmission models were used to assess the contribution of each of the three transmission routes and to estimate transmission rates. Transmission between piglets in adjacent pens did not differ significantly from that between non-adjacent pens. The transmission rate across pens was estimated to be 0.0058 day(-1) (95% CI: 0.0030-0.010), whereas the transmission rate within pens was ten times higher 0.059 day(-1) (95% CI: 0.048-0.072). Subsequently, the effects of parity and serological response of the dam and litter age at weaning on the probability of infection of pigs were evaluated by including these into the regression model. A higher dam ApxII antibody level was associated with a lower probability of infection of the pig after weaning; age at weaning was associated with a higher probability of infection of the pig after weaning. Finally, transmission rate estimates were used in a scenario study in which the litters within a compartment were mixed across pens at weaning instead of raising litter mates together in a pen. The results showed that the proportion of infected piglets increased to 69% if litters were mixed at weaning, indicating that farm management measures may affect spread of A. pleuropneumoniae.
Collapse
Affiliation(s)
- T J Tobias
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| | - A Bouma
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - J van den Broek
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - A van Nes
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - A J J M Daemen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - J A Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - D Klinkenberg
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
28
|
Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Appl Environ Microbiol 2014; 80:3296-304. [PMID: 24632262 DOI: 10.1128/aem.04167-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important swine pathogen that can cause septicemia, meningitis, and pneumonia. Also recognized as an emerging zoonotic agent, it is responsible for outbreaks of human infections in Asian countries. Serotype 2 is the predominant isolate from diseased animals and humans. The aerosolization of S. suis in the air of swine confinement buildings (SCB) was studied. The presence of S. suis in bioaerosols was monitored in SCB where cases of infection had been reported and in healthy SCB without reported infections. Using a quantitative-PCR (qPCR) method, we determined the total number of bacteria (1 × 10(8) to 2 × 10(8) airborne/m(3)), total number of S. suis bacteria (4 × 10(5) to 10 × 10(5) airborne/m(3)), and number of S. suis serotype 2 and 1/2 bacteria (1 × 10(3) to 30 × 10(3) airborne/m(3)) present in the air. S. suis serotypes 2 and 1/2 were detected in the air of all growing/finishing SCB that had documented cases of S. suis infection and in 50% of healthy SCB. The total number of bacteria and total numbers of S. suis and S. suis serotype 2 and 1/2 bacteria were monitored in one positive SCB during a 5-week period, and it was shown that the aerosolized S. suis serotypes 2 and 1/2 remain airborne for a prolonged period. When the effect of aerosolization on S. suis was observed, the percentage of intact S. suis bacteria (showing cell membrane integrity) in the air might have been up to 13%. Finally S. suis was found in nasal swabs from 14 out of 21 healthy finishing-SCB workers, suggesting significant exposure to the pathogen. This report provides a better understanding of the aerosolization, prevalence, and persistence of S. suis in SCB.
Collapse
|
29
|
van Bunnik BAD, Ssematimba A, Hagenaars TJ, Nodelijk G, Haverkate MR, Bonten MJM, Hayden MK, Weinstein RA, Bootsma MCJ, De Jong MCM. Small distances can keep bacteria at bay for days. Proc Natl Acad Sci U S A 2014; 111:3556-60. [PMID: 24550476 PMCID: PMC3948290 DOI: 10.1073/pnas.1310043111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmission of pathogens between spatially separated hosts, i.e., indirect transmission, is a commonly encountered phenomenon important for epidemic pathogen spread. The routes of indirect transmission often remain untraced, making it difficult to develop control strategies. Here we used a tailor-made design to study indirect transmission experimentally, using two different zoonotic bacteria in broilers. Previous experiments using a single bacterial species yielded a delay in the onset of transmission, which we hypothesized to result from the interplay between diffusive motion of infectious material and decay of infectivity in the environment. Indeed, a mathematical model of diffusive pathogen transfer predicts a delay in transmission that depends both on the distance between hosts and on the magnitude of the pathogen decay rate. Our experiments, carried out with two bacterial species with very different decay rates in the environment, confirm the difference in transmission delay predicted by the model. These results imply that for control of an infectious agent, the time between the distant exposure and the infection event is important. To illustrate how this can work we analyzed data observed on the spread of vancomycin-resistant Enterococcus in an intensive care unit. Indeed, a delayed vancomycin-resistant Enterococcus transmission component was identified in these data, and this component disappeared in a study period in which the environment was thoroughly cleaned. Therefore, we suggest that the impact of control strategies against indirect transmission can be assessed using our model by estimating the control measures' effects on the diffusion coefficient and the pathogen decay rate.
Collapse
Affiliation(s)
- Bram A. D. van Bunnik
- Department of Quantitative Veterinary Epidemiology, Wageningen University, 6700 AH, Wageningen, The Netherlands
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute of Wageningen UR, 8200 AB, Lelystad, The Netherlands
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Amos Ssematimba
- Department of Quantitative Veterinary Epidemiology, Wageningen University, 6700 AH, Wageningen, The Netherlands
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute of Wageningen UR, 8200 AB, Lelystad, The Netherlands
| | - Thomas J. Hagenaars
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute of Wageningen UR, 8200 AB, Lelystad, The Netherlands
| | - Gonnie Nodelijk
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute of Wageningen UR, 8200 AB, Lelystad, The Netherlands
| | - Manon R. Haverkate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Mary K. Hayden
- Section of Infectious Diseases and Department of Pathology, Rush University Medical Center, Chicago, IL 60612
| | - Robert A. Weinstein
- Section of Infectious Diseases and Department of Pathology, Rush University Medical Center, Chicago, IL 60612
- Division of Infectious Diseases, John Stroger Hospital of Cook County, Chicago, IL 60612; and
| | - Martin C. J. Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Faculty of Science, Department of Mathematics, Utrecht University, 3584 CD, Utrecht, The Netherlands
| | - Mart C. M. De Jong
- Department of Quantitative Veterinary Epidemiology, Wageningen University, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|