1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Xu W, Liu X, Han W, Wu K, Zhao M, Mei T, Shang B, Wu J, Luo J, Lai Y, Yang B, Zhuo Y, Lu L, Liu Y, Tian XL, Zhao L. Inhibiting HIF-1 signaling alleviates HTRA1-induced RPE senescence in retinal degeneration. Cell Commun Signal 2023; 21:134. [PMID: 37316948 DOI: 10.1186/s12964-023-01138-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), characterized by the degeneration of retinal pigment epithelium (RPE) and photoreceptors, is the leading cause of irreversible vision impairment among the elderly. RPE senescence is an important contributor to AMD and has become a potential target for AMD therapy. HTRA1 is one of the most significant susceptibility genes in AMD, however, the correlation between HTRA1 and RPE senescence hasn't been investigated in the pathogenesis of AMD. METHODS Western blotting and immunohistochemistry were used to detect HTRA1 expression in WT and transgenic mice overexpressing human HTRA1 (hHTRA1-Tg mice). RT-qPCR was used to detect the SASP in hHTRA1-Tg mice and ARPE-19 cells infected with HTRA1. TEM, SA-β-gal was used to detect the mitochondria and senescence in RPE. Retinal degeneration of mice was investigated by fundus photography, FFA, SD-OCT and ERG. The RNA-Seq dataset of ARPE-19 cells treated with adv-HTRA1 versus adv-NC were analyzed. Mitochondrial respiration and glycolytic capacity in ARPE-19 cells were measured using OCR and ECAR. Hypoxia of ARPE-19 cells was detected using EF5 Hypoxia Detection Kit. KC7F2 was used to reduce the HIF1α expression both in vitro and in vivo. RESULTS In our study, we found that RPE senescence was facilitated in hHTRA1-Tg mice. And hHTRA1-Tg mice became more susceptible to NaIO3 in the development of oxidative stress-induced retinal degeneration. Similarly, overexpression of HTRA1 in ARPE-19 cells accelerated cellular senescence. Our RNA-seq revealed an overlap between HTRA1-induced differentially expressed genes associated with aging and those involved in mitochondrial function and hypoxia response in ARPE-19 cells. HTRA1 overexpression in ARPE-19 cells impaired mitochondrial function and augmented glycolytic capacity. Importantly, upregulation of HTRA1 remarkably activated HIF-1 signaling, shown as promoting HIF1α expression which mainly located in the nucleus. HIF1α translation inhibitor KC7F2 significantly prevented HTRA1-induced cellular senescence in ARPE-19 cells, as well as improved the visual function in hHTRA1-Tg mice treated with NaIO3. CONCLUSIONS Our study showed elevated HTRA1 contributes to the pathogenesis of AMD by promoting cellular senescence in RPE through damaging mitochondrial function and activating HIF-1 signaling. It also pointed out that inhibition of HIF-1 signaling might serve as a potential therapeutic strategy for AMD. Video Abstract.
Collapse
Affiliation(s)
- Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenjuan Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy. Sci Rep 2023; 13:4194. [PMID: 36918701 PMCID: PMC10014848 DOI: 10.1038/s41598-023-31392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
There are no disease-modifying treatments available for geographic atrophy (GA), the advanced form of dry age-related macular degeneration. Current murine models fail to fully recapitulate the features of GA and thus hinder drug discovery. Here we describe a novel mouse model of retinal degeneration with hallmark features of GA. We used an 810 nm laser to create a retinal lesion with central sparing (RLCS), simulating parafoveal atrophy observed in patients with progressive GA. Laser-induced RLCS resulted in progressive GA-like pathology with the development of a confluent atrophic lesion. We demonstrate significant changes to the retinal structure and thickness in the central unaffected retina over a 24-week post-laser period, confirmed by longitudinal optical coherence tomography scans. We further show characteristic features of progressive GA, including a gradual reduction in the thickness of the central, unaffected retina and of total retinal thickness. Histological changes observed in the RLCS correspond to GA pathology, which includes the collapse of the outer nuclear layer, increased numbers of GFAP + , CD11b + and FcγRI + cells, and damage to cone and rod photoreceptors. We demonstrate a laser-induced mouse model of parafoveal GA progression, starting at 2 weeks post-laser and reaching confluence at 24 weeks post-laser. This 24-week time-frame in which GA pathology develops, provides an extended window of opportunity for proof-of-concept evaluation of drugs targeting GA. This time period is an added advantage compared to several existing models of geographic atrophy.
Collapse
|
4
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
5
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Viviani VR, Pelentir GF, Bevilaqua VR. Bioluminescence Color-Tuning Firefly Luciferases: Engineering and Prospects for Real-Time Intracellular pH Imaging and Heavy Metal Biosensing. BIOSENSORS 2022; 12:400. [PMID: 35735548 PMCID: PMC9221268 DOI: 10.3390/bios12060400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Firefly luciferases catalyze the efficient production of yellow-green light under normal physiological conditions, having been extensively used for bioanalytical purposes for over 5 decades. Under acidic conditions, high temperatures and the presence of heavy metals, they produce red light, a property that is called pH-sensitivity or pH-dependency. Despite the demand for physiological intracellular biosensors for pH and heavy metals, firefly luciferase pH and metal sensitivities were considered drawbacks in analytical assays. We first demonstrated that firefly luciferases and their pH and metal sensitivities can be harnessed to estimate intracellular pH variations and toxic metal concentrations through ratiometric analysis. Using Macrolampis sp2 firefly luciferase, the intracellular pH could be ratiometrically estimated in bacteria and then in mammalian cells. The luciferases of Macrolampis sp2 and Cratomorphus distinctus fireflies were also harnessed to ratiometrically estimate zinc, mercury and other toxic metal concentrations in the micromolar range. The temperature was also ratiometrically estimated using firefly luciferases. The identification and engineering of metal-binding sites have allowed the development of novel luciferases that are more specific to certain metals. The luciferase of the Amydetes viviani firefly was selected for its special sensitivity to cadmium and mercury, and for its stability at higher temperatures. These color-tuning luciferases can potentially be used with smartphones for hands-on field analysis of water contamination and biochemistry teaching assays. Thus, firefly luciferases are novel color-tuning sensors for intracellular pH and toxic metals. Furthermore, a single luciferase gene is potentially useful as a dual bioluminescent reporter to simultaneously report intracellular ATP and/or luciferase concentrations luminometrically, and pH or metal concentrations ratiometrically, providing a useful tool for real-time imaging of intracellular dynamics and stress.
Collapse
Affiliation(s)
- Vadim R. Viviani
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil;
| | - Gabriel F. Pelentir
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil;
| | - Vanessa R. Bevilaqua
- Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC), Sorocaba 05014-901, Brazil;
| |
Collapse
|
7
|
Shimizu J, Suzuki T, Hirotsu C, Ueno H, Takada E, Arimitsu N, Ueda Y, Wakisaka S, Suzuki N. Interaction between SDF1 and CXCR4 Promotes Photoreceptor Differentiation via Upregulation of NFκB Pathway Signaling Activity in Pax6 Gene-Transfected Photoreceptor Precursors. Ophthalmic Res 2020; 63:392-403. [PMID: 31935734 DOI: 10.1159/000503929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND CCL2 (also known as monocyte chemoattractant protein 1) and CX3CR1 (also known as Fractalkine receptor)-deficient mice have damaged photoreceptors. OBJECTIVES We examined the interaction of SDF1 and CXCR4 on the differentiation of retinal progenitors into rhodopsin-positive photoreceptors. METHODS Cloned retinal progenitors were obtained by Pax6 gene transfection of mouse iPS cells followed by serial dilution. Clones were selected by expression of nestin, Musashi1, Six3, and Chx10 mRNA. Cell surface protein expression was analyzed by flow cytometry. The levels of mRNA and intracellular protein were examined by real-time PCR and immunochemistry, respectively. Transient transfection experiments of retinal progenitors were conducted using a human rhodopsin promoter luciferase plasmid. RESULTS We selected 10 clones that expressed Six3, Chx10, Crx, Rx1, Nrl, CD73, and rhodopsin mRNA, which, except for rhodopsin, are photoreceptor precursor markers. Clones expressed both CD73 and CXCR4 on the cell surface and differentiated into rhodopsin-positive photoreceptors, which was reinforced by the addition of exogenous SDF1. A CXCR4 inhibitor AMD3100 blocked SDF1-mediated differentiation of progenitors into photoreceptors. SDF1 enhanced human rhodopsin promoter transcription activity, possibly via the NFκB pathway. Addition of SDF1 to the cell culture induced nuclear translocation of NFκB on retinal progenitor cell clones. Neonatal and newborn mouse retinas expressed SDF1 and CXCR4. Cells in the outer nuclear layer where photoreceptors are located expressed CXCR4 at P14 and P56. Cells in the inner nuclear layer expressed SDF1. CONCLUSIONS These findings suggest that retinal progenitor cell differentiation was at least partly regulated by SDF1 and CXCR4 via upregulation of NFκB activity.
Collapse
Affiliation(s)
- Jun Shimizu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Tomoko Suzuki
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Chieko Hirotsu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroki Ueno
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Erika Takada
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nagisa Arimitsu
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Yuji Ueda
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Sueshige Wakisaka
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Noboru Suzuki
- Departments of Immunology and Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan, .,Department of Regenerative Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan,
| |
Collapse
|
8
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
9
|
Yang L, Meng H, Luo D, Deng T, Miao L, Zou B, Ge X, Hu X, Liu Y, Li X, Deng X, Guo S, Liang J, Chen T, Wen X, Li JJ, Wei L, Jin M. Inhibition of Experimental Age-Related Macular Degeneration by ZQMT in Mice. Curr Mol Med 2019; 19:434-442. [PMID: 31288713 DOI: 10.2174/1566524019666190425195706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a progressive and irreversible eye disease. The anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of neovascular AMD. However, the expense for such treatment is quite high. METHODS We used a traditional Chinese medicine ZQMT as an alternative therapeutic regimen for AMD. We employed two in vivo animal models mimicking dry and wet AMD respectively to assess the therapeutic efficacy of ZQMT on treating AMD-related retinopathy. AMD-related retinopathy in Crb1rd8 mice was evaluated from week 1 to 8 by fundus photography. Laser-induced choroidal neovascularization (CNV) was evaluated by fluorescein angiography and histopathology. RESULTS ZQMT increased CX3CR1 expression in murine CD4+ T cells either cultured in vitro or directly isolated from animals treated with ZQMT. We also performed both in vitro and in vivo studies to confirm that ZQMT has no apparent toxic effects. ZQMT alleviated AMD-related retinopathy in both Crb1rd8 and CNV models. Depletion of CCL2 and CX3CR1 in Crb1rd8 mice abolished the efficacy of ZQMT, suggesting that CCL2 and/or CX3CR1 may underlie the mechanisms of ZQMT in treating AMD-related retinopathy in mice. CONCLUSION In summary, our study supports the protective roles of a traditional Chinese medicine ZQMT in AMD.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Meng
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dan Luo
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tingting Deng
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Li Miao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaofei Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiao Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xifang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiuli Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
10
|
Chen M, Obasanmi G, Armstrong D, Lavery NJ, Kissenpfennig A, Lois N, Xu H. STAT3 activation in circulating myeloid-derived cells contributes to retinal microvascular dysfunction in diabetes. J Neuroinflammation 2019; 16:138. [PMID: 31286987 PMCID: PMC6615157 DOI: 10.1186/s12974-019-1533-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Background Leukostasis is a key patho-physiological event responsible for capillary occlusion in diabetic retinopathy. Circulating monocytes are the main cell type entrapped in retinal vessels in diabetes. In this study, we investigated the role of the signal transducer and activator of transcription 3 (STAT3) pathway in diabetes-induced immune cell activation and its contribution to retinal microvascular degeneration. Methods Forty-one patients with type 1 diabetes (T1D) [mild non-proliferative diabetic retinopathy (mNPDR) (n = 13), active proliferative DR (aPDR) (n = 14), inactive PDR (iPDR) (n = 14)] and 13 age- and gender-matched healthy controls were recruited to the study. C57BL/6 J WT mice, SOCS3fl/fl and LysMCre/+SOCS3fl/fl mice were rendered diabetic by Streptozotocin injection. The expression of the phosphorylated human and mouse STAT3 (pSTAT3), mouse LFA-1, CD62L, CD11b and MHC-II in circulating immune cells was evaluated by flow cytometry. The expression of suppressor of cytokine signalling 3 (SOCS3) was examined by real-time RT-PCR. Mouse plasma levels of cytokines were measured by Cytometric Beads Array assay. Retinal leukostasis was examined following FITC-Concanavalin A perfusion and acellular capillary was examined following Isolectin B4 and Collagen IV staining. Results Compared to healthy controls, the expression of pSTAT3 in circulating leukocytes was statistically significantly higher in mNPDR but not aPDR and was negatively correlated with diabetes duration. The expression of pSTAT3 and its inhibitor SOCS3 was also significantly increased in leukocytes from diabetic mice. Diabetic mice had higher plasma levels of IL6 and CCL2 compared with control mice. LysMCre/+SOCS3fl/fl mice and SOCS3fl/fl mice developed comparative levels of diabetes, but leukocyte activation, retinal leukostasis and number of acellular capillaries were statistically significantly increased in LysMCre/+SOCS3fl/fl diabetic mice. Conclusion STAT3 activation in circulating immune cells appears to contribute to retinal microvascular degeneration and may be involved in DR initiation in T1D. Electronic supplementary material The online version of this article (10.1186/s12974-019-1533-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Gideon Obasanmi
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Current address: Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - David Armstrong
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Nuala-Jane Lavery
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Adrien Kissenpfennig
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
11
|
Cao L, Liu J, Pu J, Milne G, Chen M, Xu H, Shipley A, Forrester JV, McCaig CD, Lois N. Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology. J Cell Mol Med 2018; 22:5552-5564. [PMID: 30160348 PMCID: PMC6201363 DOI: 10.1111/jcmm.13829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
The transepithelial potential difference (TEP) across the retinal pigment epithelial (RPE) is dependent on ionic pumps and tight junction "seals" between epithelial cells. RPE cells release neurotrophic growth factors such as pigment epithelial derived factor (PEDF), which is reduced in age-related macular degeneration (AMD). The mechanisms that control the secretion of PEDF from RPE cells are not well understood. Using the CCL2/CX3CR1 double knockout mouse model (DKO), which demonstrates RPE damage and retinal degeneration, we uncovered an interaction between PEDF and the TEP which is likely to play an important role in retinal ageing and in the pathogenesis of AMD. We found that: (a) the expression of ATP1B1 (the Na+ /K+ -ATPase β1 subunit) was reduced significantly in RPE from aged mice, in patients with CNV (Choroidal Neovascularization) and in DKO mice; (b) the expression of PEDF also was decreased in aged persons and in DKO mice; (c) the TEP across RPE was reduced markedly in RPE cells from DKO mice and (d) an applied electric field (EF) of 50-100 mV/mm, used to mimic the natural TEP, increased the expression and secretion of PEDF in primary RPE cells. In conclusion, the TEP across the RPE depends on the expression of ATP1B1 and this regulates the secretion of PEDF by RPE cells and so may regulate the onset of retinal disease. Increasing the expression of PEDF using an applied EF to replenish a disease or age-reduced TEP may offer a new way of preventing or reversing retinal dysfunction.
Collapse
Affiliation(s)
- Lin Cao
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
- Yizhou International Proton Medical Centre and Cancer HospitalHe BeiChina
| | - Jie Liu
- Department of OphthalmologyFrist Hospital Affiliated to the Chinese PLA General HospitalBeijingChina
| | - Jin Pu
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gillian Milne
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Mei Chen
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Heping Xu
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Alan Shipley
- Biological Research & DevelopmentUniversity of New EnglandBiddefordMaine
| | - John V Forrester
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Colin D McCaig
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Noemi Lois
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| |
Collapse
|
12
|
Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res 2018; 69:159-172. [PMID: 30352305 DOI: 10.1016/j.preteyeres.2018.10.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The retina is an immune privileged tissue, which is protected from external and internal insults by its blood-retina barriers and immune suppressive microenvironment. Apart from the avoidance and tolerance strategies, the retina is also protected by its own defense system, i.e., microglia and the complement system. The immune privilege and defense mechanisms work together to maintain retinal homeostasis. During aging, the retina is at an increased risk of developing various degenerative diseases such as age-related macular degeneration, diabetic retinopathy, and glaucomatous retinopathy. Previously, we have shown that aging induces a para-inflammatory response in the retina. In this review, we explore the impact of aging on retinal immune regulation and the connection between homeostatic control of retinal immune privilege and para-inflammation under aging conditions and present a view that may explain why aging puts the retina at risk of developing degenerative diseases.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | - Chang Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China
| | - Jiawu Zhao
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | | | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China.
| |
Collapse
|
13
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Pavlou S, Wang L, Xu H, Chen M. Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. JOURNAL OF INFLAMMATION-LONDON 2017; 14:4. [PMID: 28203119 PMCID: PMC5301433 DOI: 10.1186/s12950-017-0151-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/07/2017] [Indexed: 11/26/2022]
Abstract
Background Peritoneal macrophages are widely used in immunological studies. The cells can be collected under non-elicited (resident) or elicited (e.g., with Brewer thioglycollate broth injection) conditions, and their phenotype and functions differ. Recent studies have shown that macrophage phenotype and function are related to their metabolic states, and metabolic reprogramming has been an emerging concept for controlling macrophage function. In this study, we examined the metabolic state of resident and elicited macrophages and investigated how their metabolic state may affect cell function, including phagocytosis. Findings Flow cytometry showed that elicited macrophages expressed higher levels of MHC-II, LFA-1 and CD64 but lower levels of F4/80 compared to naïve resident peritoneal macrophages, suggesting a more mature and active phenotype. Elicited macrophages had significantly higher levels of phagocytic activity compared to that of resident macrophages. Metabolic studies showed that the Extracellular Acidification Rates (ECAR) and Oxygen Consumption Rates (OCR) were both significantly higher in elicited macrophages than those in resident macrophages. The treatment of macrophages with 2-Deoxy-D-glucose suppressed glycolysis and reduced phagocytosis, whereas treatment with oligomycin enhanced glycolysis and increased phagocytosis in elicited macrophages. Conclusion Naïve resident peritoneal macrophages are less metabolically active compared to elicited macrophages. Elicited macrophages had higher levels of glycolysis and oxidative phosphorylation, which may be related to their increased phagocytic capacity and higher levels of maturation and activation. Further understanding of the molecular links between metabolic pathways and cell function would be crucial to develop strategies to control macrophage function through metabolic reprogramming.
Collapse
Affiliation(s)
- Sofia Pavlou
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, Northern Ireland UK
| | - Luxi Wang
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, Northern Ireland UK
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, Northern Ireland UK
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, Northern Ireland UK
| |
Collapse
|
15
|
Chen M, Rajapakse D, Fraczek M, Luo C, Forrester JV, Xu H. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis. Aging Cell 2016; 15:436-45. [PMID: 26875723 PMCID: PMC4854907 DOI: 10.1111/acel.12447] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 11/29/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine; School of Medicine, Dentistry & Biomedical Sciences; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7 BL UK
| | - Dinusha Rajapakse
- Centre for Experimental Medicine; School of Medicine, Dentistry & Biomedical Sciences; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7 BL UK
| | - Monika Fraczek
- Section of Immunology and Infection; Division of Applied Medicine; School of Medicine and Dentistry; Institute of Medical Science; University of Aberdeen; Foresterhill Aberdeen AB25 2ZD UK
| | - Chang Luo
- Centre for Experimental Medicine; School of Medicine, Dentistry & Biomedical Sciences; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7 BL UK
| | - John V. Forrester
- Section of Immunology and Infection; Division of Applied Medicine; School of Medicine and Dentistry; Institute of Medical Science; University of Aberdeen; Foresterhill Aberdeen AB25 2ZD UK
- Ocular Immunology Program; Centre for Ophthalmology and Visual Science; The University of Western Australia; Perth WA 6009 Australia
- Centre for Experimental Immunology; Lions Eye Institute; Nedlands WA 6009 Australia
| | - Heping Xu
- Centre for Experimental Medicine; School of Medicine, Dentistry & Biomedical Sciences; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7 BL UK
| |
Collapse
|
16
|
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73:1765-86. [PMID: 26852158 PMCID: PMC4819943 DOI: 10.1007/s00018-016-2147-8] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Jussi J Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Wang Y, Hanus JW, Abu-Asab MS, Shen D, Ogilvy A, Ou J, Chu XK, Shi G, Li W, Wang S, Chan CC. NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration. Int J Mol Sci 2016; 17:E73. [PMID: 26760997 PMCID: PMC4730317 DOI: 10.3390/ijms17010073] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023] Open
Abstract
Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jakub W Hanus
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Mones S Abu-Asab
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexander Ogilvy
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jingxing Ou
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xi K Chu
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Guangpu Shi
- Experimental Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Sustained intraocular VEGF neutralization results in retinal neurodegeneration in the Ins2(Akita) diabetic mouse. Sci Rep 2015; 5:18316. [PMID: 26671074 PMCID: PMC4680939 DOI: 10.1038/srep18316] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023] Open
Abstract
Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.
Collapse
|
19
|
Hagbi-Levi S, Grunin M, Elbaz-Hayoun S, Tal D, Obolensky A, Hanhart J, Banin E, Burstyn-Cohen T, Chowers I. Retinal Phenotype following Combined Deletion of the Chemokine Receptor CCR2 and the Chemokine CX3CL1 in Mice. Ophthalmic Res 2015; 55:126-34. [PMID: 26670885 DOI: 10.1159/000441794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE Conflicting data were reported with respect to the retinal phenotype of mice with dual perturbation of the CCL2 and CX3CR1 genes. We report the generation and retinal phenotype of mice with a reverse CCR2/CX3CL1 gene deficiency as a suggested model for age-related macular degeneration (AMD). METHODS Crossing of single-deficient mice generated CCR2/CX3CL1 DKO mice. DKO mice were compared with age-matched C57BL6J mice. Evaluation included color fundus photographs, electroretinography (ERG), histology and morphometric analysis. Immunohistochemistry for CD11b in retinal cross-sections and retinal pigment epithelium (RPE)-choroid flat mounts was performed to assess microglia and macrophage recruitment. RESULTS A minority of DKO mice showed yellowish subretinal deposits at 10 months. ERG recordings showed reduced cone sensitivity in young, but not older DKO mice. Compared to wild-type mice, DKO mice exhibited 11% reduction in the number of outer nuclear layer nuclei. Old DKO mice had an increased number of CD11b-positive cells across the retina, and on RPE-choroid flat mounts. CONCLUSIONS In the absence of the rd8 allele, deficiency of CCR2 and CX3CL1 in mice leads to a mild form of retinal degeneration which is associated with the recruitment of macrophages, particularly to the subretinal space. This model enables to assess consequences of perturbed chemokine signaling, but it does not recapitulate cardinal AMD features.
Collapse
Affiliation(s)
- Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol 2015; 98:713-25. [PMID: 26292978 PMCID: PMC4733662 DOI: 10.1189/jlb.3ri0615-239r] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| |
Collapse
|
21
|
Tuo J, Wang Y, Cheng R, Li Y, Chen M, Qiu F, Qian H, Shen D, Penalva R, Xu H, Ma JX, Chan CC. Wnt signaling in age-related macular degeneration: human macular tissue and mouse model. J Transl Med 2015; 13:330. [PMID: 26476672 PMCID: PMC4609061 DOI: 10.1186/s12967-015-0683-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023] Open
Abstract
Background The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly. Methods We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2−/−/Cx3cr1−/−/rd8 and Ccl2−/−/Cx3cr1gfp/gfp mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD. Results We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2−/−/Cx3cr1−/−/rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2−/−/Cx3cr1−/−/rd8 and Ccl2−/−/Cx3cr1gfp/gfp mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2−/−/Cx3cr1−/−/rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2−/−/Cx3cr1−/−/rd8 retinas. Conclusions Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0683-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Yujuan Wang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Defen Shen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Rosana Penalva
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| |
Collapse
|
22
|
Ach T, Tolstik E, Messinger JD, Zarubina AV, Heintzmann R, Curcio CA. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56:3242-52. [PMID: 25758814 DOI: 10.1167/iovs.14-16274] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus-AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. METHODS Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. RESULTS Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. CONCLUSIONS We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus-AF and provide a basis for future quantitative studies.
Collapse
Affiliation(s)
- Thomas Ach
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States 2University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Elen Tolstik
- Leibniz Institute of Photonic Technology, Jena, Germany 5King's College London, Randall Division of Cell & Molecular Biophysics, London, United Kingdom
| | - Jeffrey D Messinger
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| | - Anna V Zarubina
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany 5King's College London, Randall Division of Cell & Molecular Biophysics, London, United Kingdom
| | - Christine A Curcio
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| |
Collapse
|
23
|
Ma B, Dang G, Yang S, Duan L, Zhang Y. CX3CR1 polymorphisms and the risk of age-related macular degeneration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9592-9596. [PMID: 26464724 PMCID: PMC4583956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD), a most common eye disease, can lead to irreversible visual impairment. Age, genetic and environmental factors have been implicated in AMD. Chemokine (C-X3-C motif) receptor 1 (CX3CR1) gene polymorphisms could influence the susceptibility of AMD. METHODS We tested the association between AMD and single nocleotide polymorphisms (SNPs) of CX3CR1 gene (rs3732378 and rs3732379) in 102 cases and 115 controls from China. Genotypes were determined by MassArray genotyping assay method. Association between CX3CR1 gene polymorphisms and AMD were examined by χ(2) test and logistic regression. RESULTS Genotype distribution of CX3CR1 gene polymorphisms were in accordance with HWE examination. No obvious differences were observed in the genotypes of rs3732378 polymorphism between case and control groups (P>0.05), but A allele of it could increase the risk of AMD (P=0.025, OR=2.391, 95% CI=1.092-5.237). Both TT genotype and T allele of rs3732379 were significantly associated with the susceptibility of AMD (P=8.663, OR=8.663, 95% CI=1.044-71.874; P=0.021, OR=2.076, 95% CI=1.104-3.903). Age, gender and smoking status were used as common confounders to adjust the association between CX3CR1 gene polymorphism and AMD risk. Then we found that rs3732378 had no obvious association with AMD susceptibility. TT genotype of rs3732379 related to the occurrence of AMD, but the association was not significant (P=0.050, OR=8.274, 95% CI=1.002-69.963). T allele of rs3732379 might increase the susceptibility of AMD (P=0.029, OR=2.033, 95% CI=1.077-3.838). CONCLUSION T allele of rs3732379 might have a positive association with the susceptibility of AMD.
Collapse
Affiliation(s)
- Baofeng Ma
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan 250014, Shandong, China
| | - Guangfu Dang
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan 250014, Shandong, China
| | - Shaoyuan Yang
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan 250014, Shandong, China
| | - Lian Duan
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan 250014, Shandong, China
| | - Yanwei Zhang
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan 250014, Shandong, China
| |
Collapse
|
24
|
Fletcher EL, Jobling AI, Greferath U, Mills SA, Waugh M, Ho T, de Iongh RU, Phipps JA, Vessey KA. Studying age-related macular degeneration using animal models. Optom Vis Sci 2014; 91:878-86. [PMID: 24978866 PMCID: PMC4186726 DOI: 10.1097/opx.0000000000000322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Over the recent years, there have been tremendous advances in our understanding of the genetic and environmental factors associated with the development of age-related macular degeneration (AMD). Examination of retinal changes in various animals has aided our understanding of the pathogenesis of the disease. Notably, mouse strains, carrying genetic anomalies similar to those affecting humans, have provided a foundation for understanding how various genetic risk factors affect retinal integrity. However, to date, no single mouse strain that develops all the features of AMD in a progressive age-related manner has been identified. In addition, a mutation present in some background strains has clouded the interpretation of retinal phenotypes in many mouse strains. The aim of this perspective was to describe how animals can be used to understand the significance of each sign of AMD, as well as key genetic risk factors.
Collapse
Affiliation(s)
- Erica L Fletcher
- *MScOptom, PhD †PhD ‡BSc(Hons) §MOptom, PhD Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia (all authors)
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nussenblatt RB, Lee RW, Chew E, Wei L, Liu B, Sen HN, Dick AD, Ferris FL. Immune responses in age-related macular degeneration and a possible long-term therapeutic strategy for prevention. Am J Ophthalmol 2014; 158:5-11.e2. [PMID: 24709810 DOI: 10.1016/j.ajo.2014.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE To describe the immune alterations associated with age-related macular degeneration (AMD); and, based on these findings, to offer an approach to possibly prevent the expression of late disease. DESIGN Perspective. METHODS Review of the existing literature dealing with epidemiology, models, and immunologic findings in patients. RESULTS Significant genetic associations have been identified and reported, but environmentally induced (including epigenetic) changes are also an important consideration. Immune alterations include a strong interleukin 17 family signature as well as marked expression of these molecules in the eye. Oxidative stress as well as other homeostatic altering mechanisms occur throughout life. With this immune dysregulation there is a rationale for considering immunotherapy. Indeed, immunotherapy has been shown to affect the late stages of AMD. CONCLUSION Immune dysregulation appears to be an underlying alteration in AMD, as in other diseases thought to be degenerative and attributable to aging. Para-inflammation and immunosenescence may importantly contribute to the development of disease. The role of complement factor H still needs to be better defined, but in light of its association with ocular inflammatory conditions such as sarcoidosis, it does not appear to be unique to AMD but rather may be a marker for retinal pigment epithelium function. With the strong interleukin 17 family signature and the need to treat early on in the disease process, oral tolerance may be considered to prevent disease progression.
Collapse
|
26
|
Wang Y, Abu-Asab MS, Yu CR, Tang Z, Shen D, Tuo J, Li X, Chan CC. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration. J Transl Med 2014; 94:674-82. [PMID: 24709779 PMCID: PMC4039574 DOI: 10.1038/labinvest.2014.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Mones S. Abu-Asab
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA,Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Hombrebueno JR, Chen M, Penalva RG, Xu H. Loss of synaptic connectivity, particularly in second order neurons is a key feature of diabetic retinal neuropathy in the Ins2Akita mouse. PLoS One 2014; 9:e97970. [PMID: 24848689 PMCID: PMC4029784 DOI: 10.1371/journal.pone.0097970] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/26/2014] [Indexed: 11/19/2022] Open
Abstract
Retinal neurodegeneration is a key component of diabetic retinopathy (DR), although the detailed neuronal damage remains ill-defined. Recent evidence suggests that in addition to amacrine and ganglion cell, diabetes may also impact on other retinal neurons. In this study, we examined retinal degenerative changes in Ins2Akita diabetic mice. In scotopic electroretinograms (ERG), b-wave and oscillatory potentials were severely impaired in 9-month old Ins2Akita mice. Despite no obvious pathology in fundoscopic examination, optical coherence tomography (OCT) revealed a progressive thinning of the retina from 3 months onwards. Cone but not rod photoreceptor loss was observed in 3-month-old diabetic mice. Severe impairment of synaptic connectivity at the outer plexiform layer (OPL) was detected in 9-month old Ins2Akita mice. Specifically, photoreceptor presynaptic ribbons were reduced by 25% and postsynaptic boutons by 70%, although the density of horizontal, rod- and cone-bipolar cells remained similar to non-diabetic controls. Significant reductions in GABAergic and glycinergic amacrine cells and Brn3a+ retinal ganglion cells were also observed in 9-month old Ins2Akita mice. In conclusion, the Ins2Akita mouse develops cone photoreceptor degeneration and the impairment of synaptic connectivity at the OPL, predominately resulting from the loss of postsynaptic terminal boutons. Our findings suggest that the Ins2Akita mouse is a good model to study diabetic retinal neuropathy.
Collapse
Affiliation(s)
- Jose R. Hombrebueno
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Rosana G. Penalva
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res 2014; 124:1-10. [PMID: 24792588 DOI: 10.1016/j.exer.2014.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/23/2022]
Abstract
Insulin receptor substrate-2 (Irs2) mediates peripheral insulin action and is essential for retinal health. Previous investigations have reported severe photoreceptor degeneration and abnormal visual function in Irs2-deficient mice. However, molecular changes in the Irs2(-)(/)(-) mouse retina have not been described. In this study, we examined retinal degenerative changes in neuronal and glial cells of adult (9- and 12-week old) Irs2(-)(/)(-) mice by immunohistochemistry. 9-week old Irs2(-)(/)(-) mice showed significant thinning of outer retinal layers, concomitant to Müller and microglial cell activation. Photoreceptor cells displayed different signs of degeneration, such as outer/inner segment atrophy, redistribution of rod- and cone-opsins and spatial disorganization of cone cells. This was accompanied by synaptic changes at the outer plexiform layer, including the retraction of rod-spherules, reduction of photoreceptor synaptic ribbons and synaptic remodeling in second order neurons (i.e. loss and sprouting of dendritic processes in rod bipolar and horizontal cells). By 12 weeks of age, the thickness of inner retinal layers was severely affected. Although inner plexiform layer stratification remained unchanged at this stage, rod bipolar cell axon terminals were significantly depleted. Significant loss of Brn3a(+) retinal ganglion cells occurred in 12-week old Irs2(-)(/)(-) mice, in contrast to younger ages. Adult Irs2(-)(/)(-) mice showed clear hallmarks of neurodegeneration and disruption of the inner retina with increasing age. Pharmacological stimulation of Irs2 signaling pathway may provide additional neuroprotection in certain degenerative retinopathies.
Collapse
|
29
|
Ardeljan D, Wang Y, Park S, Shen D, Chu XK, Yu CR, Abu-Asab M, Tuo J, Eberhart CG, Olsen TW, Mullins RF, White G, Wadsworth S, Scaria A, Chan CC. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration. PLoS One 2014; 9:e95900. [PMID: 24780906 PMCID: PMC4004582 DOI: 10.1371/journal.pone.0095900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/31/2014] [Indexed: 01/11/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yujuan Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Stanley Park
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Kathy Chu
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mones Abu-Asab
- Histology Core, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Timothy W. Olsen
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States of America
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Gary White
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Sam Wadsworth
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Abraham Scaria
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro 2013; 5:e00126. [PMID: 24160756 PMCID: PMC3840469 DOI: 10.1042/an20130028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2−/−/Cx3cr1−/− on C57BL/6N [Crb1rd8]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment. Apoptosis and inflammation play important roles in age-related macular degeneration. As a potent neurotrophic and anti-inflammatory glycoprotein, PEDF potently stabilizes photoreceptor degeneration via suppression of apoptotic and inflammatory pathways in a mouse model of progressive, focal rd.
Collapse
|
31
|
Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8:2197-211. [DOI: 10.1038/nprot.2013.135] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Popp N, Chu XK, Shen D, Tuo J, Chan CC. Evaluating Potential Therapies in a Mouse Model of Focal Retinal Degeneration with Age-related Macular Degeneration (AMD)-Like Lesions. ACTA ACUST UNITED AC 2013; 4:1000296. [PMID: 24432192 PMCID: PMC3890246 DOI: 10.4172/2155-9570.1000296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the mouse has no macula leutea, its neuroretina and retinal pigment epithelium (RPE) can develop lesions mimicking certain features of age-related macular degeneration (AMD). Differences between the Ccl2 and Cx3cr1 double deficient mouse on Crb1rd8(rd8) background (DKOrd8) and the Crb1rd8 mouse in photoreceptor and RPE pathology, as well as ocularA2E contents and immune responses, show that DKOrd8 recapitulates some human AMD-like features in addition to rd8 retinal dystrophy/degeneration. Different therapeutic interventions have been demonstrated to be effective on the AMD-like features of DKOrd8 mice. The use of the DKOrd8 model and C57BL/6N (wild type, WT) mice as group controls (4 groups) to test treatments such as high omega-3 polyunsaturated fatty acid (n-3) diet has, for example, shown the beneficial effect of n-3 on AMD-like lesions by anti-inflammatory action of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The use of self-control in the DKOrd8 mouse by treating one eye and using the contralateral eye as the control for the same mouse allows for appropriate interventional experiments and evaluates various novel therapeutic agents. Three examples will be briefly presented and discussed: (1) tumor necrosis factor-inducible gene 6 recombinant protein (TSG-6) arrests the AMD-like lesions via modulation of ocular immunological gene expression, e.g., Il-17a; (2) adeno-associated virus encoding sIL-17R (AAV2.sIL17R) stabilizes the AMD-like lesions; and (3) pigment epithelium-derived factor (PEDF) ameliorates the AMD-lesions by its anti-inflammatory, anti-apoptotic and neuroprotective roles. Therefore, the DKOrd8 mouse model can be useful and appropriate for therapeutic compound screening in the management of human AMD.
Collapse
Affiliation(s)
- Nicholas Popp
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
| | - Xi K Chu
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
| | - Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
| |
Collapse
|