1
|
Zhu X, Zhou G, Gu X, Jiang X, Huang H, You S, Zhang G. Comparing bariatric surgery and medical therapy for obese adolescents with type 2 diabetes. Asian J Surg 2023; 46:4337-4343. [PMID: 36369137 DOI: 10.1016/j.asjsur.2022.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mounting evidence in recent years has demonstrated that the number of obese adolescents has continued to rise. Obese adolescents are more likely to be diagnosed with type 2 diabetes, which causes additional harm. This study aimed to compare the clinical outcomes of bariatric surgery and medical treatment. METHODS We conducted a multicenter, nonrandomized, retrospective study on 202 obese adolescents with type 2 diabetes who received surgery or medical treatment in three hospitals from 2017 to 2019. We analyzed the effects of surgery and medical treatment in terms of weight loss, glycemic control and the remission of type 2 diabetes. Propensity score matching was conducted to balance the confounding factors. RESULTS Among the 202 adolescents, 109 adolescents underwent surgery, and the remaining 93 adolescents received nonsurgical treatment. Both in the entire cohort and in the propensity-score matching cohort, the mean body mass index (BMI) and total weight in the surgery group notably decreased. Similarly, the effect of surgery on glycemic control (with respect to HBG, HbA1c, HOMA-IR) was superior to that of medical treatment. In the surgery group, the remission rate of diabetes was 76.1% in the entire cohort and 80.5% in the matched group, which was significantly higher than that in the control group (6.5% and 5.7%, respectively). In addition, LRYGB had better effects on weight loss and glycemic control than LSG. CONCLUSION Bariatric surgery is more effective in the control of weight loss and type 2 diabetes than medical treatment. The effects between different types of bariatric surgeries remain to be further investigated, and longer follow-up times are needed.
Collapse
Affiliation(s)
- Xinqiang Zhu
- Department of General Surgery, Suining People's Hospital, No.2 Bayi West Road, Xuzhou, 221200, China
| | - Gang Zhou
- Department of Gastrointestinal Pancreatic Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, NO.169 Hushan Road, Nanjing, 211100, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu Province, China
| | - Xuetong Jiang
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No.138 Huanghe South Road, Suqian, 223800, China
| | - Hailong Huang
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No.138 Huanghe South Road, Suqian, 223800, China
| | - Sainan You
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No.138 Huanghe South Road, Suqian, 223800, China
| | - Gong Zhang
- Department of Gastrointestinal Pancreatic Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, NO.169 Hushan Road, Nanjing, 211100, China.
| |
Collapse
|
2
|
Huang S, Zou Y, Tang H, Zhuang J, Ye Z, Wei T, Lin J, Zheng Q. Cordyceps militaris polysaccharides modulate gut microbiota and improve metabolic disorders in mice with diet-induced obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1885-1894. [PMID: 36571152 DOI: 10.1002/jsfa.12409] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cordyceps militaris is an edible and medicinal fungus, and its polysaccharides are among its main pharmacological components. They can display immunomodulation, anti-oxidation, anti-inflammation, anti-hypolipidemic, and other functions. The anti-obesity effect of C. militaris polysaccharides (CMP) is not yet fully understood, however. RESULTS In this study, a CMP diet intervention was applied over a 4 week period to mice with obesity induced by a high-fat diet (HFD), followed by profiling of obesity-induced dyslipidemia, low-grade inflammation, and gut dysbiosis. The results suggested that CMP could significantly reduce HFD-induced obesity, alleviate obesity-induced hyperlipidemia and insulin resistance, and ameliorate systemic inflammation, showing a promising ability to protect mice from obesity. Further analyses revealed that CMP could regulate obesity-induced gut dysbiosis by restoring the phylogenetic diversity of gut microbiota. It could also increase the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, while down-regulating the level of bacteria that were positively related to the development of obesity. A correlation analysis showed that Helicobacter, Allobaculum, Clostridium XVIII, Parabacteroides, Ligilactobacillus, Faecalibaculum, Adlercreutzia, and Mediterraneibacter were positively related to obese phenotypes. CONCLUSION This study highlights the potential of CMP as a prebiotic agent to protect obese individuals from metabolic disorders and gut dysbiosis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shishi Huang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Yuan Zou
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hongbiao Tang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jingyu Zhuang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhiwei Ye
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qianwang Zheng
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology 2019; 160:1247-1261. [PMID: 30874792 PMCID: PMC6482034 DOI: 10.1210/en.2019-00074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
Much effort has been directed at studying the orexigenic actions of administered ghrelin and the potential effects of the endogenous ghrelin system on food intake, food reward, body weight, adiposity, and energy expenditure. Although endogenous ghrelin's actions on some of these processes remain ambiguous, its glucoregulatory actions have emerged as well-recognized features during extreme metabolic conditions. The blood glucose-raising actions of ghrelin are beneficial during starvation-like conditions, defending against life-threatening falls in blood glucose, but they are seemingly detrimental in obese states and in certain monogenic forms of diabetes, contributing to hyperglycemia. Also of interest, blood glucose negatively regulates ghrelin secretion. This article reviews the literature suggesting the existence of a blood glucose-ghrelin axis and highlights the factors that mediate the glucoregulatory actions of ghrelin, especially during metabolic extremes such as starvation and diabetes.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Jeffrey M. Zigman, MD, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
5
|
Anti-Obesity Effects of Medicinal and Edible Mushrooms. Molecules 2018; 23:molecules23112880. [PMID: 30400600 PMCID: PMC6278646 DOI: 10.3390/molecules23112880] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/01/2023] Open
Abstract
Obesity is a group of metabolic disorders caused by multiple factors, including heredity, diet, lifestyle, societal determinants, environment, and infectious agents, which can all lead to the enhancement of storage body fat. Excess visceral fat mass in adipose tissue generate several metabolic disorders, including cardiovascular diseases with chronic inflammation based pathophysiology. The objective of the current review is to summarize the cellular mechanisms of obesity that attenuate by antioxidant potentials of medicinal and edible mushrooms. Studies have showed that mushrooms potentially have antioxidant capacities, which increase the antioxidant defense systems in cells. They boost anti-inflammatory actions and thereby protect against obesity-related hypertension and dyslipidemia. The practice of regular consumption of mushrooms is effective in the treatment of metabolic syndrome, including obesity, and thus could be a good candidate for use in future pharmaceutical or nutraceutical applications.
Collapse
|
6
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
7
|
Mahbod P, Smith EP, Fitzgerald ME, Morano RL, Packard BA, Ghosal S, Scheimann JR, Perez-Tilve D, Herman JP, Tong J. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice. Endocrinology 2018; 159:388-399. [PMID: 29155981 PMCID: PMC5761608 DOI: 10.1210/en.2017-00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent.
Collapse
Affiliation(s)
- Parinaz Mahbod
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Eric P. Smith
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - Maureen E. Fitzgerald
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Rachel L. Morano
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Benjamin A. Packard
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jessie R. Scheimann
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Diego Perez-Tilve
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jenny Tong
- Division of Endocrinology, Metabolism and Nutrition,
Department of Medicine, Duke University, Durham, North Carolina 27708
| |
Collapse
|
8
|
Kalinowski P, Paluszkiewicz R, Wróblewski T, Remiszewski P, Grodzicki M, Bartoszewicz Z, Krawczyk M. Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass—results of a randomized clinical trial. Surg Obes Relat Dis 2017; 13:181-188. [PMID: 27692906 DOI: 10.1016/j.soard.2016.08.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/22/2016] [Accepted: 08/13/2016] [Indexed: 12/23/2022]
|
9
|
Glucose tolerance female-specific QTL mapped in collaborative cross mice. Mamm Genome 2016; 28:20-30. [PMID: 27807798 DOI: 10.1007/s00335-016-9667-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Type-2 diabetes (T2D) is a complex metabolic disease characterized by impaired glucose tolerance. Despite environmental high risk factors, host genetic background is a strong component of T2D development. Herein, novel highly genetically diverse strains of collaborative cross (CC) lines from mice were assessed to map quantitative trait loci (QTL) associated with variations of glucose-tolerance response. In total, 501 mice of 58 CC lines were maintained on high-fat (42 % fat) diet for 12 weeks. Thereafter, an intraperitoneal glucose tolerance test (IPGTT) was performed for 180 min. Subsequently, the values of Area under curve for the glucose at zero and 180 min (AUC0-180), were measured, and used for QTL mapping. Heritability and coefficient of variations in glucose tolerance (CVg) were calculated. One-way analysis of variation was significant (P < 0.001) for AUC0-180 between the CC lines as well between both sexes. Despite Significant variations for both sexes, QTL analysis was significant, only for females, reporting a significant female-sex-dependent QTL (~2.5 Mbp) associated with IPGTT AUC0-180 trait, located on Chromosome 8 (32-34.5 Mbp, containing 51 genes). Gene browse revealed QTL for body weight/size, genes involved in immune system, and two main protein-coding genes involved in the Glucose homeostasis, Mboat4 and Leprotl1. Heritability and coefficient of genetic variance (CVg) were 0.49 and 0.31 for females, while for males, these values 0.34 and 0.22, respectively. Our findings demonstrate the roles of genetic factors controlling glucose tolerance, which significantly differ between sexes requiring independent studies for females and males toward T2D prevention and therapy.
Collapse
|
10
|
Li Z, Mulholland M, Zhang W. Ghrelin O-acyltransferase (GOAT) and energy metabolism. SCIENCE CHINA-LIFE SCIENCES 2016; 59:281-91. [PMID: 26732975 DOI: 10.1007/s11427-015-4973-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin O-acyltransferase (GOAT), a member of MBOATs family, is essential for octanoylation of ghrelin, which is required for active ghrelin to bind with and activate its receptor. GOAT is expressed mainly in the stomach, pancreas and hypothalamus. Levels of GOAT are altered by energy status. GOAT contains 11 transmembrane helices and one reentrant loop. Its invariant residue His-338 and conserved Asn-307 are located in the endoplasmic reticulum lumen and cytosol respectively. GOAT contributes to the regulation of food intake and energy expenditure, as well as glucose and lipids homeostasis. Deletion of GOAT blocks the acylation of ghrelin leading to subsequent impairment in energy homeostasis and survival when mice are challenged with high energy diet or severe caloric restriction. GO-CoA-Tat, a peptide GOAT inhibitor, attenuates acyl-ghrelin production and prevents weight gain induced by a medium-chain triglycerides-rich high fat diet. Further, GO-CoA-Tat increases glucose- induced insulin secretion. Overall, inhibition of GOAT is a novel strategy for treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA.
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA. .,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
11
|
Xie TY, Ngo ST, Veldhuis JD, Jeffery PL, Chopin LK, Tschöp M, Waters MJ, Tolle V, Epelbaum J, Chen C, Steyn FJ. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice. J Neuroendocrinol 2015; 27:872-86. [PMID: 26442444 DOI: 10.1111/jne.12327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat(-/-) mice.
Collapse
Affiliation(s)
- T Y Xie
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - S T Ngo
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- The Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - J D Veldhuis
- Endocrine Research Unit, Department of Medicine, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - P L Jeffery
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - L K Chopin
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - M Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - V Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Epelbaum
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
12
|
Al Massadi O, López M, Fernø J, Diéguez C, Nogueiras R. What is the real relevance of endogenous ghrelin? Peptides 2015; 70:1-6. [PMID: 26003396 DOI: 10.1016/j.peptides.2015.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
Abstract
Ghrelin is a pleiotropic and ubiquitous gastric hormone implicated in body physiology. Ghrelin exhibits potent orexigenic actions and increases body weight and adiposity. Ghrelin is also involved in other metabolic functions among which we can highlight the GH releasing activity and the regulation of glucose homeostasis. Ghrelin needs the enzyme GOAT to be acylated, a step essential for binding to the GHSR1a receptor to exert its functions. Genetic animal models emerge as important tools to delineate the physiological relevance of ghrelin on energy balance. Despite the numerous reports using different genetically engineered mouse models targeting the ghrelin system, its endogenous relevance in metabolism seems to be less important than its pharmaceutical options.
Collapse
Affiliation(s)
- Omar Al Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain.
| | - Miguel López
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen N-5020, Norway
| | - Carlos Diéguez
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain.
| |
Collapse
|
13
|
Folgueira C, Sanchez-Rebordelo E, Barja-Fernandez S, Leis R, Tovar S, Casanueva FF, Dieguez C, Nogueiras R, Seoane LM. Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin-dependent manner. Eur J Nutr 2015; 55:529-536. [DOI: 10.1007/s00394-015-0869-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
|
14
|
Khatib MN, Gaidhane S, Gaidhane AM, Simkhada P, Zahiruddin QS. Ghrelin O Acyl Transferase (GOAT) as a Novel Metabolic Regulatory Enzyme. J Clin Diagn Res 2015; 9:LE01-5. [PMID: 25859472 PMCID: PMC4378754 DOI: 10.7860/jcdr/2015/9787.5514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 12/06/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Obesity and Type 2 Diabetes Mellitus (T2DM) presents a growing threat to the global health. Evidences highlight an important role of ghrelin as a key regulator of glucose metabolism. The physiological functions of ghrelin are mediated by enzyme ghrelin-O-acyltransferase (GOAT) which is capable of generating the active form of this metabolic hormone. However, its exact mechanism of action and influence on energy balance and glucose metabolism is yet to be explored. OBJECTIVES To review the physiological role of GOAT in the regulation of energy balance and glucose metabolism and explore the potential therapeutic avenues of modulators of GOAT to counter the progression of obesity and T2DM. METHODS Publications were sought through electronic searches. The bibliographies of all papers, book, chapters and editorials were scanned and hand searches were also conducted for journals, and conference proceedings. CONCLUSION GOAT peptide modulates the insulin secretion as well as insulin sensitivity. Modulators of GOAT signaling like inhibitors of GOAT increases insulin secretion, enhance peripheral insulin sensitivity and thus counters obesity and T2DM. Modulators of GOAT can be a probable therapy for modifying food intake and for countering obesity and T2DM.
Collapse
Affiliation(s)
- Mahalaqua Nazli Khatib
- Professor, Department of Physiology, JN Medical College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Shilpa Gaidhane
- Associate Professor, Department of Medicine, JN Medical College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Abhay M. Gaidhane
- Professor, Department of Community Medicine, JN Medical College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Padam Simkhada
- Senior Lecturer in International Health ScHARR, University of Sheffield, UK and Centre for public Health Liverpool Johns Moores University, Liverpool, UK
| | - Quazi Syed Zahiruddin
- Professor, Department of Community Medicine, JN Medical College, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| |
Collapse
|
15
|
Abstract
INTRODUCTION Over the past 3 years, several patents appeared dealing with the discovery of compounds able to modulate ghrelin actions: agonists for the treatment of cachexia, as diagnostic agents for GH deficiency or for the increase in gastrointestinal motility, antagonists and inverse agonists as anorexigenic agents for the treatment of obesity and type 2 diabetes. This research has been conducted by several pharmaceutical companies and some compounds have entered clinical trials, but, to date, compounds acting on the ghrelin receptor do not represent clinical options yet. AREAS COVERED A comprehensive description and categorization of patents related to each type of compounds is provided, together with data related to these compounds that appeared in the scientific literature. EXPERT OPINION Ghrelin appears to mediate a myriad of actions, and some of these appear to be due to unknown mechanisms (a second putative ghrelin receptor, putative receptors for unacylated ghrelin); several agonists, antagonists and inverse agonists at ghrelin receptor have been developed but their mechanism of action into CNS is poorly understood. The therapeutic potential of compounds acting on ghrelin receptor is still to be fully assessed, but the results obtained to date are encouraging for the successful clinical translation of compounds able to treat several pathologies.
Collapse
Affiliation(s)
- Luca Costantino
- University of Modena and Reggio Emilia, Dipartimento di Scienze della Vita , Via Campi 183, 41100 Modena , Italy +39 059 2055749 ; +39 059 2055131 ;
| | | |
Collapse
|
16
|
Heppner KM, Tong J. Mechanisms in endocrinology: regulation of glucose metabolism by the ghrelin system: multiple players and multiple actions. Eur J Endocrinol 2014; 171:R21-32. [PMID: 24714083 DOI: 10.1530/eje-14-0183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ghrelin is a 28-amino acid peptide secreted mainly from the X/A-like cells of the stomach. Ghrelin is found in circulation in both des-acyl (dAG) and acyl forms (AG). Acylation is catalyzed by the enzyme ghrelin O-acyltransferase (GOAT). AG acts on the GH secretagogue receptor (GHSR) in the CNS to promote feeding and adiposity and also acts on GHSR in the pancreas to inhibit glucose-stimulated insulin secretion. These well-described actions of AG have made it a popular target for obesity and type 2 diabetes mellitus pharmacotherapies. However, despite the lack of a cognate receptor, dAG appears to have gluco-regulatory action, which adds an additional layer of complexity to ghrelin's regulation of glucose metabolism. This review discusses the current literature on the gluco-regulatory action of the ghrelin system (dAG, AG, GHSR, and GOAT) with specific emphasis aimed toward distinguishing AG vs dAG action.
Collapse
Affiliation(s)
- Kristy M Heppner
- Division of DiabetesObesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA andDivision of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, 260 Stetson Street, Suite 4200, Cincinnati, Ohio 45219-0547, USA
| | - Jenny Tong
- Division of DiabetesObesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA andDivision of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, 260 Stetson Street, Suite 4200, Cincinnati, Ohio 45219-0547, USA
| |
Collapse
|
17
|
Abstract
The initial discovery of ghrelin as a potent orexigenic hormone raised excitement about a new direction for possibly treating eating disorders. McFarlane et al. (2014) show that with deletion of ghrelin-producing cells from an adult animal, there is little effect on appetitive behaviors but significant implications for glucose homeostasis.
Collapse
Affiliation(s)
- Mark W Sleeman
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - David C Spanswick
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Özcan B, Neggers SJCMM, Miller AR, Yang HC, Lucaites V, Abribat T, Allas S, Huisman M, Visser JA, Themmen APN, Sijbrands EJG, Delhanty PJD, van der Lely AJ. Does des-acyl ghrelin improve glycemic control in obese diabetic subjects by decreasing acylated ghrelin levels? Eur J Endocrinol 2014; 170:799-807. [PMID: 23864339 DOI: 10.1530/eje-13-0347] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The objective of this study was to assess the effects of a continuous overnight infusion of des-acyl ghrelin (DAG) on acylated ghrelin (AG) levels and glucose and insulin responses to a standard breakfast meal (SBM) in eight overweight patients with type 2 diabetes. Furthermore, in the same patients and two additional subjects, the effects of DAG infusion on AG concentrations and insulin sensitivity during a hyperinsulinemic-euglycemic clamp (HEC) were assessed. RESEARCH DESIGN AND METHODS A double-blind, placebo-controlled cross-over study design was implemented, using overnight continuous infusions of 3 and 10 μg DAG/kg per h and placebo to study the effects on a SBM. During a HEC, we studied the insulin sensitivity. RESULTS We observed that, compared with placebo, overnight DAG administration significantly decreased postprandial glucose levels, both during continuous glucose monitoring and at peak serum glucose levels. The degree of improvement in glycemia was correlated with baseline plasma AG concentrations. Concurrently, DAG infusion significantly decreased fasting and postprandial AG levels. During the HEC, 2.5 h of DAG infusion markedly decreased AG levels, and the M-index, a measure of insulin sensitivity, was significantly improved in the six subjects in whom we were able to attain steady-state euglycemia. DAG administration was not accompanied by many side effects when compared with placebo. CONCLUSIONS DAG administration improves glycemic control in obese subjects with type 2 diabetes through the suppression of AG levels. DAG is a good candidate for the development of compounds in the treatment of metabolic disorders or other conditions with a disturbed AG:DAG ratio, such as type 2 diabetes mellitus or Prader-Willi syndrome.
Collapse
Affiliation(s)
- Behiye Özcan
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Sebastian J C M M Neggers
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Anne Reifel Miller
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Hsiu-Chiung Yang
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Virginia Lucaites
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Thierry Abribat
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Soraya Allas
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Martin Huisman
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Jenny A Visser
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Axel P N Themmen
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Eric J G Sijbrands
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Patric J D Delhanty
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| | - Aart Jan van der Lely
- Department of Internal MedicineErasmus University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The NetherlandsLilly Research LaboratoriesLilly Corporate Center, Indianapolis, Indiana 46285, USAAlizé Pharma69 130 Ecully, France
| |
Collapse
|
19
|
Saeed S, Bech PR, Hafeez T, Alam R, Falchi M, Ghatei MA, Bloom SR, Arslan M, Froguel P. Changes in levels of peripheral hormones controlling appetite are inconsistent with hyperphagia in leptin-deficient subjects. Endocrine 2014; 45:401-8. [PMID: 23824601 DOI: 10.1007/s12020-013-0009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/22/2013] [Indexed: 01/05/2023]
Abstract
Congenital leptin deficiency, a rare genetic disorder due to a homozygous mutation in the leptin gene (LEP), is accompanied by extreme obesity and hyperphagia. A number of gastrointestinal hormones have been shown to critically regulate food intake but their physiological role in hyperphagic response in congenital leptin deficiency has not been elucidated. This study is the first to evaluate the fasting and postprandial profiles of gut-derived hormones in homozygous and heterozygous carriers of LEP mutation. The study subjects from two consanguineous families consisted of five homozygous and eight heterozygous carriers of LEP mutation, c.398delG. Ten wild-type normal-weight subjects served as controls. Fasting and 1-h postprandial plasma ghrelin, glucagon-like peptide (GLP) 1, peptide YY (PYY), leptin and insulin levels were measured by immunoassays. Fasting plasma ghrelin levels in homozygotes remained remarkably unchanged following food consumption (P = 0.33) in contrast to a significant decline in heterozygous (P < 0.03) and normal (P < 0.02) subjects. A significant postprandial increase in PYY was observed in heterozygous (P < 0.02) and control subjects (P < 0.01), but not in the homozygous group (P = 0.22). A postprandial rise in GLP-1 levels was significant (P < 0.02) in all groups. Interestingly, fasting leptin levels in heterozygotes were not significantly different from controls and did not change significantly following meal. Our results demonstrate that gut hormones play little or no physiological role in driving the hyperphagic response of leptin-deficient subjects. In contrast, fasting and postprandial levels of gut hormones in heterozygous mutation carriers were comparable to those of normal-weight controls.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Genomics of Common Disease, Hammersmith Hospital, Imperial College London, Burlington-Danes Building, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Conroy R, Febres G, McMahon DJ, Thorner MO, Gaylinn BD, Conwell I, Aronne L, Korner J. Recombinant human leptin does not alter gut hormone levels after gastric bypass but may attenuate sweet cravings. Int J Endocrinol 2014; 2014:120286. [PMID: 24987413 PMCID: PMC3980779 DOI: 10.1155/2014/120286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/19/2014] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgery improves glucose homeostasis and alters gut hormones partly independent of weight loss. Leptin plays a role in these processes; levels are decreased following bariatric surgery, creating a relative leptin insufficiency. We previously showed that leptin administration in a weight-reduced state after Roux-en-Y gastric bypass (RYGB) caused no further weight loss. Here, we discuss the impact of leptin administration on gut hormones, glucostasis, and appetite. Weight stable women after RYGB were randomized to receive placebo or recombinant human metreleptin (0.05 mg/kg twice daily). At weeks 0 and 16, a liquid meal challenge was performed. Glucose, insulin, C-peptide, GLP-1, PYY, glucagon, and ghrelin (total, acyl, and desacyl) were measured fasting and postprandially. Appetite was assessed using a visual analog scale. Mean post-op period was 53 ± 2.3 months; mean BMI was 34.6 ± 0.2 kg/m(2). At 16 weeks, there was no significant change in weight within or between groups. Fasting PYY was significantly different between groups and the leptin group had lower sweets craving at week 16 than the placebo group (P < 0.05). No other differences were observed. Leptin replacement does not alter gut hormones or glucostasis but may diminish sweet cravings compared to placebo in this population of post-RYGB women.
Collapse
Affiliation(s)
- Rushika Conroy
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York, NY 10032, USA
- Division of Pediatric Endocrinology, Baystate Medical Center, Springfield, MA 01199, USA
| | - Gerardo Febres
- Division of Endocrinology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donald J. McMahon
- Division of Endocrinology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael O. Thorner
- Division of Medicine, University of Virginia Medical Center, Charlottesville, VA 22902, USA
| | - Bruce D. Gaylinn
- Division of Medicine, University of Virginia Medical Center, Charlottesville, VA 22902, USA
| | - Irene Conwell
- Division of Endocrinology, Columbia University Medical Center, New York, NY 10032, USA
| | - Louis Aronne
- Division of Medicine, Cornell University Medical Center, New York, NY 10021, USA
| | - Judith Korner
- Division of Endocrinology, Columbia University Medical Center, New York, NY 10032, USA
- *Judith Korner:
| |
Collapse
|
21
|
Delporte C. Structure and physiological actions of ghrelin. SCIENTIFICA 2013; 2013:518909. [PMID: 24381790 PMCID: PMC3863518 DOI: 10.1155/2013/518909] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/10/2013] [Indexed: 05/30/2023]
Abstract
Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, Bat G/E-CP611, 1070 Brussels, Belgium
| |
Collapse
|