1
|
Ghose S, Roy S, Ghosh V, Sharawat SK, Pramanik R, Biswas S, Biswas A. The plasma EBV DNA load with IL-6 and VEGF levels as predictive and prognostic biomarker in nasopharyngeal carcinoma. Virol J 2024; 21:224. [PMID: 39304953 DOI: 10.1186/s12985-024-02473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is often diagnosed at a very advanced stage due to its location and non-specific initial symptoms. Moreover, no clinically useful serological marker has been established so far for early detection of NPC. In this study, we have investigated the clinical significance of plasma Epstein-Barr virus DNA load along with interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) levels to evaluate if these three all together can be useful as a strong serological marker for early detection and prediction of treatment response in patients with NPC. Plasma EBV DNA load, IL-6 level, VEGF expressions were measured in 24 patients with NPC at presentation and various time points during and after treatment. There was a positive correlation between high plasma EBV DNA load with higher IL-6 and VEGF expression, which was closely associated with therapeutic response as well. Persistent or recurrent plasma EBV load with higher IL-6 and VEGF levels can potentially predict disease progression and may be useful to select patients for additional therapy and longer follow-up.
Collapse
Affiliation(s)
- Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swarnaditya Roy
- Department of Radiotherapy and Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Ghosh
- Department of Radiotherapy and Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K Sharawat
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Raja Pramanik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
| | - Ahitagni Biswas
- Department of Radiotherapy and Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
3
|
Yang J, Gu Z. Ferroptosis in head and neck squamous cell carcinoma: from pathogenesis to treatment. Front Pharmacol 2024; 15:1283465. [PMID: 38313306 PMCID: PMC10834699 DOI: 10.3389/fphar.2024.1283465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide, with high morbidity and mortality. Surgery and postoperative chemoradiotherapy have largely reduced the recurrence and fatality rates for most HNSCCs. Nonetheless, these therapeutic approaches result in poor prognoses owing to severe adverse reactions and the development of drug resistance. Ferroptosis is a kind of programmed cell death which is non-apoptotic. Ferroptosis of tumor cells can inhibit tumor development. Ferroptosis involves various biomolecules and signaling pathways, whose expressions can be adjusted to modulate the sensitivity of cells to ferroptosis. As a tool in the fight against cancer, the activation of ferroptosis is a treatment that has received much attention in recent years. Therefore, understanding the molecular mechanism of ferroptosis in HNSCC is an essential strategy with therapeutic potential. The most important thing to treat HNSCC is to choose the appropriate treatment method. In this review, we discuss the molecular and defense mechanisms of ferroptosis, analyze the role and mechanism of ferroptosis in the inhibition and immunity against HNSCC, and explore the therapeutic strategy for inducing ferroptosis in HNSCC including drug therapy, radiation therapy, immunotherapy, nanotherapy and comprehensive treatment. We find ferroptosis provides a new target for HNSCC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
6
|
Holubekova V, Loderer D, Grendar M, Mikolajcik P, Kolkova Z, Turyova E, Kudelova E, Kalman M, Marcinek J, Miklusica J, Laca L, Lasabova Z. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. Front Oncol 2023; 13:1206482. [PMID: 37869102 PMCID: PMC10586664 DOI: 10.3389/fonc.2023.1206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a heterogeneous disease caused by molecular changes, as driver mutations, gene methylations, etc., and influenced by tumor microenvironment (TME) pervaded with immune cells with both pro- and anti-tumor effects. The studying of interactions between the immune system (IS) and the TME is important for developing effective immunotherapeutic strategies for CRC. In our study, we focused on the analysis of expression profiles of inflammatory and immune-relevant genes to identify aberrant signaling pathways included in carcinogenesis, metastatic potential of tumors, and association of Kirsten rat sarcoma virus (KRAS) gene mutation. Methods A total of 91 patients were enrolled in the study. Using NGS, differential gene expression analysis of 11 tumor samples and 11 matching non-tumor controls was carried out by applying a targeted RNA panel for inflammation and immunity genes containing 475 target genes. The obtained data were evaluated by the CLC Genomics Workbench and R library. The significantly differentially expressed genes (DEGs) were analyzed in Reactome GSA software, and some selected DEGs were used for real-time PCR validation. Results After prioritization, the most significant differences in gene expression were shown by the genes TNFRSF4, IRF7, IL6R, NR3CI, EIF2AK2, MIF, CCL5, TNFSF10, CCL20, CXCL11, RIPK2, and BLNK. Validation analyses on 91 samples showed a correlation between RNA-seq data and qPCR for TNFSF10, RIPK2, and BLNK gene expression. The top differently regulated signaling pathways between the studied groups (cancer vs. control, metastatic vs. primary CRC and KRAS positive and negative CRC) belong to immune system, signal transduction, disease, gene expression, DNA repair, and programmed cell death. Conclusion Analyzed data suggest the changes at more levels of CRC carcinogenesis, including surface receptors of epithelial or immune cells, its signal transduction pathways, programmed cell death modifications, alterations in DNA repair machinery, and cell cycle control leading to uncontrolled proliferation. This study indicates only basic molecular pathways that enabled the formation of metastatic cancer stem cells and may contribute to clarifying the function of the IS in the TME of CRC. A precise identification of signaling pathways responsible for CRC may help in the selection of personalized pharmacological treatment.
Collapse
Affiliation(s)
- Veronika Holubekova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Loderer
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Kolkova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, Ghazali L, Awang NMSH, Haron A, Chan YY. Aberrant frequency of TNFR2-expressing CD4+ FoxP3+ regulatory T cells in nasopharyngeal carcinoma patients. Cytokine 2023; 170:156341. [PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p < 0.0001), akin to healthy controls. Expression of TNFR2 (1.06 ± 0.99%) was correlated better than CD25+ (0.40 ± 0.46%) and CD127-/low (1.00 ± 0.83% ) with FoxP3 expression in NPC PB (p = 0.0005). Though there was no significant association between TNFR2 expression with the functional capacity (proliferation, migration and survival) of Tregs (p > 0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p < 0.0001) than those from healthy controls. Most significantly, TNFR2 expression in maximally suppressive Tregs population were linked to WHO Type III histological type, distant metastasis, progressive disease status, and poor prognosis for NPC patients. Hence, our research implies that TNFR2 expression by PB and TME Tregs may be a useful predictive indicator in NPC patients.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macau
| | - Liyana Ghazali
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nik Mohd Syahrul Hafizzi Awang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ali Haron
- Department of Otorhinolaryngology, Hospital Raja Perempuan Zainab II, Jalan Hospital, 15200 Kota Bharu, Kelantan, Malaysia
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Sun Y, Liu W, Luo B. Virus infection participates in the occurrence and development of human diseases through monoamine oxidase. Rev Med Virol 2023; 33:e2465. [PMID: 37294534 DOI: 10.1002/rmv.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Monoamine oxidase (MAO) is a membrane-bound mitochondrial enzyme that maintains the steady state of neurotransmitters and other biogenic amines in biological systems through catalytic oxidation and deamination. MAO dysfunction is closely related to human neurological and psychiatric diseases and cancers. However, little is known about the relationship between MAO and viral infections in humans. This review summarises current research on how viral infections participate in the occurrence and development of human diseases through MAO. The viruses discussed in this review include hepatitis C virus, dengue virus, severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, Japanese encephalitis virus, Epstein-Barr virus, and human papillomavirus. This review also describes the effects of MAO inhibitors such as phenelzine, clorgyline, selegiline, M-30, and isatin on viral infectious diseases. This information will not only help us to better understand the role of MAO in the pathogenesis of viruses but will also provide new insights into the treatment and diagnosis of these viral diseases.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Dorothea M, Xie J, Yiu SPT, Chiang AKS. Contribution of Epstein–Barr Virus Lytic Proteins to Cancer Hallmarks and Implications from Other Oncoviruses. Cancers (Basel) 2023; 15:cancers15072120. [PMID: 37046781 PMCID: PMC10093119 DOI: 10.3390/cancers15072120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is a prevalent human gamma-herpesvirus that infects the majority of the adult population worldwide and is associated with several lymphoid and epithelial malignancies. EBV displays a biphasic life cycle, namely, latent and lytic replication cycles, expressing a diversity of viral proteins. Among the EBV proteins being expressed during both latent and lytic cycles, the oncogenic roles of EBV lytic proteins are largely uncharacterized. In this review, the established contributions of EBV lytic proteins in tumorigenesis are summarized according to the cancer hallmarks displayed. We further postulate the oncogenic properties of several EBV lytic proteins by comparing the evolutionary conserved oncogenic mechanisms in other herpesviruses and oncoviruses.
Collapse
Affiliation(s)
- Mike Dorothea
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia Xie
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Jhang JF, Liu CD, Hsu YH, Chen CC, Chen HC, Jiang YH, Wu WC, Peng CW, Kuo HC. EBV infection mediated BDNF expression is associated with bladder inflammation in interstitial cystitis/bladder pain syndrome with Hunner's lesion. J Pathol 2023; 259:276-290. [PMID: 36441149 DOI: 10.1002/path.6040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both Epstein-Barr virus (EBV) latency infection genes EBNA-1 and LMP-1 and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating the coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and upregulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF to be EBV-infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. A chromatin immunoprecipitation study revealed BDNF transcription could be promoted by cooperation between EBV nuclear antigens, chromatin modifiers, and B-cell-specific transcription. Knockdown of BDNF in EBV-infected B cells resulted in the inhibition of cell proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV-infected B cells into rat bladder walls resulted in a higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV-infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV-infected B cells in HIC pathogenesis. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Der Liu
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiang-Chin Chen
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wan-Chen Wu
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Donghwa University, Shoufeng, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Liu W, Zhang Q, Zhang Y, Sun L, Xiao H, Luo B. Epstein-Barr Virus Regulates Endothelin-1 Expression through the ERK/FOXO1 Pathway in EBV-Associated Gastric Cancer. Microbiol Spectr 2023; 11:e0089822. [PMID: 36475746 PMCID: PMC9927292 DOI: 10.1128/spectrum.00898-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is one of the four subtypes of gastric carcinoma and its unique clinicopathological mechanism is unclear. Herein, the expression of endothelin-1 (ET-1) in EBVaGC was lower than of Epstein-Barr virus-negative gastric carcinoma (EBVnGC) and associated with a low frequency of lymph node metastasis of EBVaGC. Functional studies showed that the activation of ET-1/endothelin receptor type A (ETAR) axis could promote cell growth, migration, and antiapoptosis. The expression of the ET-1 gene was unrelated to methylation of its promoter region and miRNAs (-1, -125a, -125b). After being treated with MEK1/2 inhibitor (PD0325901), the inactivation of ERK1/2 pathway resulted in downregulation of ET-1 and forkhead box O1 (FOXO1) expression. Further, FOXO1 knockdown decreased the ET-1 expression. These findings indicated that ET-1 could be involved in development of gastric cancer and EBV could suppress the expression of ET-1 via the regulation of the transcription factor FOXO1 through the MAPK/ERK pathway. IMPORTANCE The relationship between Epstein-Barr virus and gastric cancer has been relatively clear. However, there are still many unresolved mechanisms of the virus in tumorigenesis. In recent years, activation of the endothelin-1 signaling axis has been found to play an important role in tumorigenesis, which is involved in tumor angiogenesis and epithelial-mesenchymal transition. EBV genes. In our study, we found that ET-1 was low-expressed in EBV-positive gastric cancer cells, which was due to the inhibition of ERK signaling by EBNA1 through the repression of FOXO1 expression. The low expression of ET-1 limits the proliferation, migration, and anti-apoptotic ability of tumor cells. These findings contribute to further understanding of the role of EBV in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Central Hospital of Zibo, Zibo, China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Zhang L. A common mechanism links Epstein-Barr virus infections and autoimmune diseases. J Med Virol 2023; 95:e28363. [PMID: 36451313 DOI: 10.1002/jmv.28363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of the autoimmune diseases. There is apparently no unified model for the role of EBV in autoimmune diseases. In this article, the development of autoimmune diseases is proposed as a simple two-step process: specific autoimmune initiators may cause irreversible changes to genetic materials that increase autoimmune risks, and autoimmune promoters promote autoimmune disease formation once cells are susceptible to autoimmunity. EBV has several types of latencies including type III latency with higher proliferation potential. EBV could serve as autoimmune initiators for some autoimmune diseases. At the same time, EBV may play a promotional role in majority of the autoimmune diseases by repeated replenishment of EBV type III latency cells and inflammatory cytokine productions in persistent stage. The type III latency cells have enhanced capacity as antigen-presenting cells that would facilitate the development of both B and T cell-mediated autoimmunity. The repeated cytokine productions are achieved by the repeated infection of naive B-lymphocytes and proliferation of type III latency cells that produce inflammatory cytokines. Presentation of viral or self-antigens by EBV type III latency B lymphocytes may promote autoreactive B cell and T cell proliferation, which can be amplified by type III latency cells-mediated cytokines productions. Different autoimmune diseases may require different kinds of pathogenic immune cells and/or specific cytokines. Frequency of the replenishment of EBV type III latency cells may determine the specific effect of the promoter functions. A specific initiator plus EBV-mediated common promoter function may lead to development of a specific autoimmune disease and link EBV-infection to a variety of autoimmunity.
Collapse
Affiliation(s)
- Luwen Zhang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
13
|
Lin WC, Kuo YH, Hsu CJ, Wu HP, Hsu YJ. Worsening Rhinosinusitis as a Prognostic Factor for Patients with Nasopharyngeal Carcinoma: A Retrospective Study. Biomedicines 2022; 10:3235. [PMID: 36551991 PMCID: PMC9775390 DOI: 10.3390/biomedicines10123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Rhinosinusitis is common in patients with nasopharyngeal carcinoma (NPC). Our study aimed to explore the role of rhinosinusitis severity in NPC prognosis. Medical records and radiologic examinations of 90 patients with NPC at a single medical center from 2009−2016 were retrospectively analyzed. The Lund−Mackay (L−M) score was obtained for each patient before and after 6 months of treatment. Rhinosinusitis diagnosis was based on L−M scores of ≥4. L−M score differences were calculated as pre-treatment rhinosinusitis (PRRS) minus post-treatment rhinosinusitis (PSRS). L−M score difference was sub-grouped into “L−M scores > 0”, “L−M scores = 0”, and “L−M scores < 0”. Clinical staging of our patients based on the American Joint Committee on Cancer 7th edition were: stage I in nine, stage II in seventeen, stage III in twenty-two, and stage IV in forty-two patients; twenty-seven (30%) patients had died. PRRS incidence was 34.4%, and PSRS was 36.7%. Median of L−M scores difference was 0 (−2.2). L−M score difference was an independent prognostic factor for the overall survival of patients with NPC (p < 0.05). Therefore, worsening rhinosinusitis was a prognostic factor for patients with NPC. Clinicians should consider NPC as a warning sign of poor prognosis during routine follow-ups.
Collapse
Affiliation(s)
- Wei-Chieh Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Yu-Hung Kuo
- Department of Research, Taichung Tzu Chi Hospital, Taichung 427, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yuan-Jhen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
14
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement From the American Association for Cancer Research and the American Society of Clinical Oncology. J Clin Oncol 2022; 40:4144-4155. [PMID: 36287017 DOI: 10.1200/jco.22.01749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15%-42% of adults who use ENDS have never used another tobacco product, and another 36%-54% dual use both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT
| | | | - Dana Acton
- American Association for Cancer Research, Washington, DC
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | | | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
15
|
Iizasa H, Kartika AV, Fekadu S, Okada S, Onomura D, Wadi AFAA, Khatun MM, Moe TM, Nishikawa J, Yoshiyama H. Development of Epstein-Barr virus-associated gastric cancer: Infection, inflammation, and oncogenesis. World J Gastroenterol 2022; 28:6249-6257. [PMID: 36504553 PMCID: PMC9730441 DOI: 10.3748/wjg.v28.i44.6249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) cells originate from a single-cell clone infected with EBV. However, more than 95% of patients with gastric cancer have a history of Helicobacter pylori (H. pylori) infection, and H. pylori is a major causative agent of gastric cancer. Therefore, it has long been argued that H. pylori infection may affect the development of EBVaGC, a subtype of gastric cancer. Atrophic gastrointestinal inflammation, a symptom of H. pylori infection, is observed in the gastric mucosa of EBVaGC. Therefore, it remains unclear whether H. pylori infection is a cofactor for gastric carcinogenesis caused by EBV infection or whether H. pylori and EBV infections act independently on gastric cancer formation. It has been reported that EBV infection assists in the onco-genesis of gastric cancer caused by H. pylori infection. In contrast, several studies have reported that H. pylori infection accelerates tumorigenesis initiated by EBV infection. By reviewing both clinical epidemiological and experimental data, we reorganized the role of H. pylori and EBV infections in gastric cancer formation.
Collapse
Affiliation(s)
- Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Andy Visi Kartika
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Faculty of Medicine, Muslim University of Indonesia, Makassar 90231, Indonesia
| | - Sintayehu Fekadu
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Department of Medical Microbiology and Parasitology, Hawassa University, College of Medicine and Health Science, Hawassa 1560, Ethiopia
| | - Shunpei Okada
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Daichi Onomura
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | | | - Mosammat Mahmuda Khatun
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Thin Myat Moe
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Jun Nishikawa
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| |
Collapse
|
16
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement from the American Association for Cancer Research and the American Society of Clinical Oncology. Clin Cancer Res 2022; 28:4861-4870. [PMID: 36287033 DOI: 10.1158/1078-0432.ccr-22-2429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15% to 42% of adults who use ENDS have never used another tobacco product, and another 36% to 54% "dual use" both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | - Dana Acton
- American Association for Cancer Research, Washington, D.C
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, Virginia
| | | | | | - Benjamin A Toll
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Graham W Warren
- Medical University of South Carolina, Charleston, South Carolina
| | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
17
|
Epstein-Barr virus-induced ectopic CD137 expression helps nasopharyngeal carcinoma to escape immune surveillance and enables targeting by chimeric antigen receptors. Cancer Immunol Immunother 2022; 71:2583-2596. [DOI: 10.1007/s00262-022-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|
18
|
Souissi S, Ghedira R, Macherki Y, Ben‐Haj‐Ayed A, Gabbouj S, Remadi Y, Sfar I, Chadli Z, Aouam K, Hassine M, Bouaouina N, Zakhama A, Hassen E. Indoleamine 2,3-dioxygenase gene expression and kynurenine to tryptophan ratio correlation with nasopharyngeal carcinoma progression and survival. Immun Inflamm Dis 2022; 10:e690. [PMID: 36039641 PMCID: PMC9425015 DOI: 10.1002/iid3.690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive tryptophan-depleting enzyme expressed in nasopharyngeal carcinoma (NPC) tissue. However, IDO has not been reported in the peripheral blood of NPC patients. The aim of this study was to analyze, IDO1 and IDO2 messenger RNA (mRNA) expression, the kynurenine (Kyn) and tryptophan (Trp) plasma levels, their clinical values and their relationship with cytokine levels in NPC. METHODS We evaluated IDO1 and IDO2 mRNA expression in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR, plasma Trp and Kyn levels by HPLC, and cytokine levels by ELISA in 75 NPC patients and 51 healthy controls. RESULTS Compared to controls, IDO1 mRNA expression was significantly upregulated and IDO2 mRNA expression was significantly downregulated in PBMC of patients. Also compared to controls, plasma Kyn levels and Kyn/Trp ratio were significantly higher in patients. At the time of diagnosis, the plasma Kyn/Trp ratio was associated with advanced cancer status and was an independent prognostic factor for worse disease-specific survival. According to cancer stages, IDO1 mRNA expression was positively correlated with plasma Kyn/Trp ratio in patients with earlier stages (I-II-III) but negatively correlated in patients with the late-stage cancer (IV). Tumor necrosis factor-α, interleukin (IL)-6 and IL-10 levels were significantly higher in patients compared to controls. Moreover, and despite treatment, patients simultaneously carrying high plasma Kyn/Trp ratio and high plasma IL-6 and IL-10 levels at diagnosis died approximately 1 year after first diagnosis. CONCLUSION Measuring blood IDO mRNA expression and Kyn/Trp ratio at diagnosis could be a potential marker to evaluate NPC progression and predict survival outcome.
Collapse
Affiliation(s)
- Sameh Souissi
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Randa Ghedira
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Yosra Macherki
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Ahlem Ben‐Haj‐Ayed
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Sallouha Gabbouj
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Yasmine Remadi
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Imen Sfar
- Research Laboratory in Immunology of Renal Transplantation and ImmunopathologyTunis El Manar UniversityTunisTunisia
| | - Zohra Chadli
- Department of PharmacologyUniversity of MonastirMonastirTunisia
| | - Karim Aouam
- Department of PharmacologyUniversity of MonastirMonastirTunisia
| | - Mohsen Hassine
- Department of HematologyFattouma Bourguiba University HospitalMonastirTunisia
| | - Noureddine Bouaouina
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Department of Cancerology and RadiotherapyFarhat Hached University HospitalSousseTunisia
| | - Abdelfattah Zakhama
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Elham Hassen
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| |
Collapse
|
19
|
Zhou X, Matskova L, Zheng S, Wang X, Wang Y, Xiao X, Mo Y, Wölke M, Li L, Zheng Q, Huang G, Zhang Z, Ernberg I. Mechanisms of Anergic Inflammatory Response in Nasopharyngeal Carcinoma Cells Despite Ubiquitous Constitutive NF-κB Activation. Front Cell Dev Biol 2022; 10:861916. [PMID: 35938161 PMCID: PMC9353648 DOI: 10.3389/fcell.2022.861916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Commensal microbes cross talk with their colonized mucosa. We show that microbes and their cell wall components induce an inflammatory response in cultured human mucosal cells derived from the nonmalignant nasopharyngeal epithelium (NNE) cells in vitro. NNE cells show significant induction of NF-κB with nuclear shuttling and inflammatory gene response when exposed to Gram-positive bacteria (streptococci) or peptidoglycan (PGN), a component of the Gram-positive bacterial cell wall. This response is abrogated in nasopharyngeal carcinoma (NPC)–derived cell lines. The inflammatory response induced by NF-κB signaling was blocked at two levels in the tumor-derived cells. We found that NF-κB was largely trapped in lipid droplets (LDs) in the cytoplasm of the NPC-derived cells, while the increased expression of lysine-specific histone demethylase 1 (LSD1, a repressive nuclear factor) reduces the response mediated by remaining NF-κB at the promoters responding to inflammatory stimuli. This refractory response in NPC cells might be a consequence of long-term exposure to microbes in vivo during carcinogenic progression. It may contribute to the decreased antitumor immune responses in NPC, among others despite heavy T-helper cell infiltration, and thus facilitate tumor progression.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Marleen Wölke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Limei Li
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guangwu Huang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- *Correspondence: Ingemar Ernberg,
| |
Collapse
|
20
|
The IL6-174G/C Polymorphism Associated with High Levels of IL-6 Contributes to HCV Infection, but Is Not Related to HBV Infection, in the Amazon Region of Brazil. Viruses 2022; 14:v14030507. [PMID: 35336914 PMCID: PMC8950165 DOI: 10.3390/v14030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The dysregulation of cytokine production can lead to an inefficient immune response, promoting viral persistence that induces the progression of chronic viral hepatitis. The study investigated the association of the IL6-174G/C polymorphism with changes in cytokine levels and its influence on the persistence and progression of chronic hepatitis caused by HBV and HCV in 72 patients with chronic hepatitis B (HBV), 100 patients with hepatitis C (HCV), and a control group of 300 individuals. The genotyping of the IL6-174G/C polymorphism was performed by real-time PCR, and cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA). HCV patients with the wild-type genotype (GG) had a higher viral load (p = 0.0230). The plasma levels of IL-6 were higher among patients infected with HBV and HCV than among the control group (p < 0.0001). Patients with HCV were associated with increased inflammatory activity (A2−A3; p < 0.0001). In hepatitis C, carriers of the GG genotype had higher levels of IL-6 (p = 0.0286), which were associated with A2−A3 inflammatory activity (p = 0.0097). Patients with A2−A3 inflammatory activity and GG genotype had higher levels of IL-6 than those with the GC/CC genotype (p = 0.0127). In conclusion, the wild-type genotype for the IL6-174G/C polymorphism was associated with high levels of IL-6 and HCV viral load and inflammatory activity, suggesting that this genotype may be a contributing factor to virus-induced chronic infection.
Collapse
|
21
|
Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr Virus-Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers (Basel) 2021; 13:cancers13205189. [PMID: 34680337 PMCID: PMC8533749 DOI: 10.3390/cancers13205189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The Epstein–Barr virus, also termed human herpes virus 4, is a human pathogenic double-stranded DNA virus. It is highly prevalent and has been linked to the development of 1–2% of cancers worldwide. EBV-associated malignancies encompass various structural and epigenetic alterations. In addition, EBV-encoded gene products and microRNAs interfere with innate and adaptive immunity and modulate the tumor microenvironment. This review provides an overview of the characteristic features of EBV with a focus on the intrinsic and extrinsic immune evasion strategies, which contribute to EBV-associated malignancies. Abstract The detailed mechanisms of Epstein–Barr virus (EBV) infection in the initiation and progression of EBV-associated malignancies are not yet completely understood. During the last years, new insights into the mechanisms of malignant transformation of EBV-infected cells including somatic mutations and epigenetic modifications, their impact on the microenvironment and resulting unique immune signatures related to immune system functional status and immune escape strategies have been reported. In this context, there exists increasing evidence that EBV-infected tumor cells can influence the tumor microenvironment to their own benefit by establishing an immune-suppressive surrounding. The identified mechanisms include EBV gene integration and latent expression of EBV-infection-triggered cytokines by tumor and/or bystander cells, e.g., cancer-associated fibroblasts with effects on the composition and spatial distribution of the immune cell subpopulations next to the infected cells, stroma constituents and extracellular vesicles. This review summarizes (i) the typical stages of the viral life cycle and EBV-associated transformation, (ii) strategies to detect EBV genome and activity and to differentiate various latency types, (iii) the role of the tumor microenvironment in EBV-associated malignancies, (iv) the different immune escape mechanisms and (v) their clinical relevance. This gained information will enhance the development of therapies against EBV-mediated diseases to improve patient outcome.
Collapse
Affiliation(s)
- Marcus Bauer
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Simon Jasinski-Bergner
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem 91120, Israel;
| | - Claudia Wickenhauser
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-(345)-557-1357
| |
Collapse
|
22
|
Mardhiyah I, Ardiyan YN, Aliyah SH, Sitepu EC, Herdini C, Dwianingsih EK, Asfarina F, Sumartiningsih S, Fachiroh J, Paramita DK. Necrosis Factor-α (TNF-α) and the Presence of Macrophage M2 and T Regulatory Cells in Nasopharyngeal Carcinoma. Asian Pac J Cancer Prev 2021; 22:2363-2370. [PMID: 34452547 PMCID: PMC8629461 DOI: 10.31557/apjcp.2021.22.8.2363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate the correlation between TLR3 and pro-inflammatory cytokines (TNFα, IL6) expression with the distribution of macrophage M2 and Treg on Epstein Barr virus-encoded RNAs (EBER+) nasopharyngeal carcinoma (NPC) tissues. METHODS A total of 23 FFPE NPC tissue samples were obtained from patients in Dr. Sardjito General Hospital, Yogyakarta, Indonesia in 2008-2010, which expressed EBER was collected. The expressions of TLR3, TNFα, and IL6 were examined using immunofluorescence assay. The distribution of macrophage M2 and Treg were examined by immunohistochemistry with anti-CD163 and -FOXP3 antibodies, respectively. The quantification of fluorescence intensity was analyzed by the RGB space method using ImageJ software. The M2 interpretation was done by the eyeballing method and the M2 scores were divided into 0 (negative), 1 (scant), 2 (focal), 3 (abundant). The average number of Treg FOXP3+ cells in five high power fields was counted. The relationship between variables were tested by the Spearman correlation test, and the coefficient correlation was used to see the correlation between variables. RESULTS All EBER+ NPC specimens showed TLR3 expression intracellularly. The expression of TNFα could be observed in the cell membranes and secreted extracellularly, while IL6 was secreted to the extracellular area. The expression of TNFα was two times higher than IL6. Most specimens showed low M2 score (56.52%) and high Treg (52.17%). A positive correlation was found between TLR3 and IL6 (12.9%). TNFα was positively correlated with the M2 distribution of 13.7% and Treg distribution of 12.9%, while the rest were explained by other factors. CONCLUSION TNFα has a positive correlation with M2 and Treg distribution,but mostly through a different mechanism other than EBER-TLR3 interaction. Possibly, other pro-inflammatory and anti-inflammatory cytokines are involved in the formation of the NPC microenvironment, especially related to the presence of M2 and Treg, which provide immunosuppressive effects in NPC tumors. .
Collapse
Affiliation(s)
- Iffah Mardhiyah
- Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Yustina Nuke Ardiyan
- Department of Histology, Faculty of Medicine, Duta Wacana Christian University, Yogyakarta.
| | - Siti Hamidatul Aliyah
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Pharmacy Program, Sekolah Tinggi Ilmu Kesehatan Harapan Ibu, Jambi, Indonesia.
| | - Enda Cindylosa Sitepu
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Camelia Herdini
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Ery Kus Dwianingsih
- Department of Pathological Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Fatin Asfarina
- Molecular Biology Laboratory (Integrated Research Laboratory), Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Sumartiningsih Sumartiningsih
- Molecular Biology Laboratory (Integrated Research Laboratory), Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Jajah Fachiroh
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Molecular Biology Laboratory (Integrated Research Laboratory), Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
23
|
Yang L, Liu G, Li Y, Pan Y. The emergence of tumor-infiltrating lymphocytes in nasopharyngeal carcinoma: Predictive value and immunotherapy implications. Genes Dis 2021; 9:1208-1219. [PMID: 35873027 PMCID: PMC9293699 DOI: 10.1016/j.gendis.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
The clinical study of nasopharyngeal carcinoma (NPC) often reveals a large number of lymphocytes infiltrating the primary tumor site. As an important part of the tumor microenvironment, tumor-infiltrating lymphocytes (TILs) do not exist alone but as a complex multicellular population with high heterogeneity. TILs play an extremely significant role in the occurrence, development, invasion and metastasis of NPC. The latest research shows that they participate in tumorigenesis and treatment, and the composition, quantity, functional status and distribution of TILs subsets have good predictive value for the prognosis of NPC patients. TILs are an independent prognostic factor for TNM stage and significantly correlated with better prognosis. Additionally, adoptive immunotherapy using anti-tumor TILs has achieved good results in a variety of solid tumors including NPC. This review evaluates recent clinical and preclinical studies of NPC, summarizes the role of TILs in promoting and inhibiting tumor growth, evaluates the predictive value of TILs, and explores the potential benefits of TILs-based immunotherapy in the treatment of NPC.
Collapse
|
24
|
Zhuang M, Ding X, Song W, Chen H, Guan H, Yu Y, Zhang Z, Dong X. Correlation of IL-6 and JAK2/STAT3 signaling pathway with prognosis of nasopharyngeal carcinoma patients. Aging (Albany NY) 2021; 13:16667-16683. [PMID: 34165442 PMCID: PMC8266356 DOI: 10.18632/aging.203186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 01/17/2023]
Abstract
IL-6 is reported to be the main upstream activator, instead of the downstream target of JAK2/STAT3. This study is intended to explore the correlation of IL-6 and JAK2/STAT3 signaling pathway with clinicopathological features and prognosis in nasopharyngeal carcinoma (NPC). First, NPC tissues and normal nasopharyngeal epithelial tissues were obtained from 117 NPC patients. Next, we detected expression levels of IL-6 in serum and those of STAT3, p-STAT3, JAK2, p-JAK2 and CyclinD1 in tissues. A follow-up was conducted in all the patients and the survival was analyzed. To verify the correlation of IL-6 and JAK2/STAT3 pathway, CNE-1 and SUNE1 NPC cells were interpreted with IL-6 and JAK2/STAT3 signaling pathway inhibitor AG490 to detect cell viability, migration and invasion. We observed thatIL-6 increased in serum of NPC patients. The expressions of IL-6, STAT3, p-STAT3, JAK2, p-JAK2 and CyclinD1 in NPC tissues were higher and correlated with TNM stage and lymph node metastasis (LNM). Survival rates were reduced in patients with positive expressions of IL-6, STAT3, p-STAT3, JAK2, p-JAK2 and CyclinD1. LNM and positive expressions of IL-6 and p-STAT3 were risk factors for poor prognosis of NPC. Besides, recombinant human IL-6 promoted cell proliferation, invasion and migration while AG490 inhibited cell proliferation, invasion and migration in CNE-1 and SUNE1 NPC cells. The results demonstrated that increased IL-6 expression and the activated JAK2/STAT3 signaling pathway had effects on prognosis and reduced the survival time in NPC patients, which provide a potential target for the treatment of NPC.
Collapse
Affiliation(s)
- Mengqi Zhuang
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Xiaotong Ding
- Department of Oncology, Jinan Fuda Cancer Hospital, Jinan 250033, PR China
| | - Wenli Song
- Department of Clinical Laboratory, The Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Huimin Chen
- Department of Radiation Neurology, The Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Yang Yu
- School of Graduate Studies, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 271099, PR China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Xinzhe Dong
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
25
|
Schweitzer C, Garrido M, Paredes R, Stoore C, Reyes M, Bologna-Molina R, Fernández A, Hernández Rios M. Localization of interleukin-6 signaling complex in epithelialized apical lesions of endodontic origin. Clin Oral Investig 2021; 25:4075-4083. [PMID: 33411000 DOI: 10.1007/s00784-020-03738-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We aimed to determine the immunolocalization patterns of the interleukin (IL)-6 signaling complex in epithelialized and non-epithelialized apical lesions of endodontic origin (ALEOs). MATERIALS AND METHODS Epithelialized (n = 8) and non-epithelialized (n = 7) ALEOs were obtained from teeth with indication of extraction in patients with clinical diagnosis of apical periodontitis. All tissues were subjected to routine processing for histopathologic examination and primary antibodies for IL-6, IL-6 receptor (R), and glycoprotein (gp)-130 were used for immunohistochemistry and double immunofluorescence co-localization. RESULTS IL-6, IL-6R, and gp-130 were immunolocalized in endothelial cells and mononuclear leukocytes in a diffuse pattern within the connective tissue of epithelialized and non-epithelialized ALEOs. In the epithelialized lesions, two different patterns were identified: IL-6 signaling complex was localized within the proliferating epithelium in a diffuse intracellular pattern and in a cell membrane localization pattern within the mature epithelial lining, showing a decreased intensity towards the surface layers. CONCLUSIONS IL-6, IL-6R, and gp-130 localized to mononuclear inflammatory cells, vascular endothelial cells, and immature proliferating epithelia in a diffuse pattern and in mature lining epithelia in a localized cell membrane pattern, supporting a role for epithelial proliferation during cyst formation. Additional cell membrane co-localization of IL-6 receptor complex suggests classic signaling involvement in addition to trans-signaling.
Collapse
Affiliation(s)
- C Schweitzer
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile
| | - M Garrido
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile
| | - R Paredes
- Faculty of Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Av. República 440, 8320000, Santiago, Chile
| | - C Stoore
- Faculty of Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Av. República 440, 8320000, Santiago, Chile
| | - M Reyes
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile
| | - R Bologna-Molina
- Faculty of Dentistry, Universidad de la República, General las Heras 1925, 11600, Montevideo, Uruguay
| | - A Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile
- Faculty of Dentistry, Universidad Andrés Bello, Av. República 440, 8320000, Santiago, Chile
| | - Marcela Hernández Rios
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile.
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia, 8380000, Santiago, Chile.
| |
Collapse
|
26
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
27
|
Chan LS, Lung HL, Ngan RKC, Lee AWM, Tsao SW, Lo KW, Kahn M, Lung ML, Wieser R, Mak NK. Role of miR-96/EVI1/miR-449a Axis in the Nasopharyngeal Carcinoma Cell Migration and Tumor Sphere Formation. Int J Mol Sci 2020; 21:ijms21155495. [PMID: 32752071 PMCID: PMC7432346 DOI: 10.3390/ijms21155495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway is one of the major signaling pathways used by cancer stem cells (CSC). Ecotropic Viral Integration Site 1 (EVI1) has recently been shown to regulate oncogenic development of tumor cells by interacting with multiple signaling pathways, including the Wnt signaling. In the present study, we found that the Wnt modulator ICG-001 could inhibit the expression of EVI1 in nasopharyngeal carcinoma (NPC) cells. Results from loss-of-function and gain-of-function studies revealed that EVI1 expression positively regulated both NPC cell migration and growth of CSC-enriched tumor spheres. Subsequent studies indicated ICG-001 inhibited EVI1 expression via upregulated expression of miR-96. Results from EVI1 3′UTR luciferase reporter assay confirmed that EVI1 is a direct target of miR-96. Further mechanistic studies revealed that ICG-001, overexpression of miR-96, or knockdown of EVI1 expression could restore the expression of miR-449a. The suppressive effect of miR-449a on the cell migration and tumor sphere formation was confirmed in NPC cells. Taken together, the miR-96/EVI1/miR-449a axis is a novel pathway involved in ICG-001-mediated inhibition of NPC cell migration and growth of the tumor spheres.
Collapse
Affiliation(s)
- Lai-Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Hong-Lok Lung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
| | - Roger Kai-Cheong Ngan
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Sai Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Anatomy, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong, China;
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010-3000, USA;
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong, China; (R.K.-C.N.); ; (A.W.-M.L.); (M.L.L.)
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Nai-Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China;
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence: ; Tel.: +852-3411-7059
| |
Collapse
|
28
|
Wang X, Wang C, Xu H, Xie H. Long Non-Coding RNA SLC25A21-AS1 Promotes Multidrug Resistance in Nasopharyngeal Carcinoma by Regulating miR-324-3p/IL-6 Axis. Cancer Manag Res 2020; 12:3949-3957. [PMID: 32547230 PMCID: PMC7264158 DOI: 10.2147/cmar.s251820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), one of the most common types of head and neck tumor, occurred in the epithelial lining of the nasopharynx and is mainly prevalent in Southeast Asia and Southern China. However, the molecular mechanisms of NPC multidrug resistance still remained largely unclear. Methods The qRT-PCR assay was performed to examine SLC25A21-AS1, miR-324-3p and IL-6 expression in NPC tissues and cell. The CCK8 assay and colony formation assay were used to detect cell growth. In addition, CCK8 assay was performed to detect IC50 values of different drugs in NPC cell. Results In this study, we found that SLC25A21-AS1 expression was increased in NPC tissues and cell line, and knockdown of SLC25A21-AS1 inhibited cell growth and MDR in NPC cell. Moreover, SLC25A21-AS1 acted as a ceRNA for miR-324-3p and facilitates NPC cell growth and MDR by regulating the miR-324-3p/IL-6 axis. Conclusion Our findings demonstrated the role of SLC25A21-AS1/miR-324-3p/IL-6 axis in cell growth and MDR in NPC, which might be a potential prognostic and diagnostic marker in NPC patients and provide new insight into the molecular mechanism of MDR in NPC chemotherapy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Chunhui Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xu
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| |
Collapse
|
29
|
Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 2020; 10:6115. [PMID: 32273550 PMCID: PMC7145851 DOI: 10.1038/s41598-020-63150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice Pei Eal Sia
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Melissa Sue Ann Chan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Pokfulam, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong
| | - Paul G Murray
- Health Research Institute, University of Limerick, Limerick, Ireland.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Exosomes derived from nasopharyngeal carcinoma cells induce IL-6 production from macrophages to promote tumorigenesis. Cell Mol Immunol 2020; 18:501-503. [PMID: 32238916 DOI: 10.1038/s41423-020-0420-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 01/14/2023] Open
|
31
|
Zeng J, Chen S, Li C, Ye Z, Lin B, Liang Y, Wang B, Ma Y, Chai X, Zhang X, Zhou K, Zhang Q, Zhang H. Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. J Cancer 2020; 11:2068-2079. [PMID: 32127934 PMCID: PMC7052921 DOI: 10.7150/jca.37932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Shasha Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Caihong Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, The Fifth People's Hospital of Dongguan, Dongguan 523905, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Xingxing Chai
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023 China
| | - Keyuan Zhou
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Haitao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
32
|
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci 2019; 20:ijms20236008. [PMID: 31795299 PMCID: PMC6929211 DOI: 10.3390/ijms20236008] [Citation(s) in RCA: 946] [Impact Index Per Article: 189.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role is not always clearly defined. Thus, in this review, we focus on the existing literature dealing with the biology of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus on the correlations and role of these inflammatory mediators in the genesis of inflammatory impacts (e.g., shock, trauma, immune dysregulation, osteoporosis, and/or critical illness).
Collapse
Affiliation(s)
- Shinwan Kany
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Department of Cardiology with Emphasis on Electrophysiology, University Heart Centre, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, 60590 Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721395
| |
Collapse
|
33
|
Simondurairaj C, Krishnakumar R, Sundaram S, Venkatraman G. Interleukin-6 Receptor (IL-6R) Expression in Human Gastric Carcinoma and its Clinical Significance. Cancer Invest 2019; 37:293-298. [PMID: 31328584 DOI: 10.1080/07357907.2019.1638395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the study is to analyse the expression of Interleukin-6 receptor in different human gastric tissue and to correlate with the clinicopathological features of the patients. Immunohistochemistry was done against the IL-6R antibody and the Q-score was calculated from the staining pattern. Higher Q-scores were observed in tumour cells than the adjacent normal cells which were statistically significant. We also observed a significant correlation between the expressions of IL-6R and the clinicopathological features These findings suggest that IL-6R may represent as a therapeutic target for gastric carcinoma and serve as a prognostic indicator, as well.
Collapse
Affiliation(s)
- C Simondurairaj
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University) , Chennai , India
| | - R Krishnakumar
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University) , Chennai , India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University) , Chennai , India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University) , Chennai , India
| |
Collapse
|
34
|
Early Pattern of Epstein-Barr Virus Infection in Gastric Epithelial Cells by "Cell-in-cell". Virol Sin 2019; 34:253-261. [PMID: 30911896 DOI: 10.1007/s12250-019-00097-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is an important human dsDNA virus, which has been shown to be associated with several malignancies including about 10% of gastric carcinomas. How EBV enters an epithelial cell has been an interesting project for investigation. "Cell-in-cell" infection was recently reported an efficient way for the entry of EBV into nasopharynx epithelial cells. The present approach was to explore the feasibility of this mode for EBV infection in gastric epithelial cells and the dynamic change of host inflammatory reaction. The EBV-positive lymphoblastic cells of Akata containing a GFP tag in the viral genome were co-cultured with the gastric epithelial cells (GES-1). The infection situation was observed under fluorescence and electron microscopies. Real-time quantitative PCR and Western-blotting assay were employed to detect the expression of a few specific cytokines and inflammatory factors. The results demonstrated that EBV could get into gastric epithelial cells by "cell-in-cell" infection but not fully successful due to the host fighting. IL-1β, IL-6 and IL-8 played prominent roles in the cellular response to the infection. The activation of NF-κB and HSP70 was also required for the host antiviral response. The results imply that the gastric epithelial cells could powerfully resist the virus invader via cell-in-cell at the early stage through inflammatory and innate immune responses.
Collapse
|
35
|
Frisan T, Nagy N, Chioureas D, Terol M, Grasso F, Masucci MG. A bacterial genotoxin causes virus reactivation and genomic instability in Epstein-Barr virus infected epithelial cells pointing to a role of co-infection in viral oncogenesis. Int J Cancer 2018; 144:98-109. [PMID: 29978480 PMCID: PMC6587852 DOI: 10.1002/ijc.31652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
We have addressed the role of bacterial co‐infection in viral oncogenesis using as model Epstein–Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram‐negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV‐negative epithelial cells to the virus in the presence of sub‐lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co‐infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV‐induced malignant transformation of epithelial cells. What's new? Little is known about the influence of coinfections, especially of bacteria, on viral oncogenesis. Here, the authors examined the effect of the cytolethal distending toxin (CDT) of Aggregatibacter actinomycetemcomitans, a common oral pathogen, on epithelial cells infected with Epstein–Barr virus (EBV). Exposure of EBV+ cells to CDT induced viral reactivation, while exposure of EBV‐ cells to low amounts of CDT led to the accumulation of latently infected cells upon infection, pointing to a multi‐layered role of bacterial co‐infection in viral oncogenesis.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Chioureas
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Marie Terol
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Francesca Grasso
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Liu S, Lian M, Fang J, Zhai J, Shen X, Wang R. c-Jun and Camk2a contribute to the drug resistance of induction docetaxel/cisplatin/5-fluorouracil in hypopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4605-4613. [PMID: 31949859 PMCID: PMC6962968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
Hypopharyngeal carcinoma (HPC) is a subtype of head and neck squamous cell carcinoma, and prognosis has improved significantly over the past three decades. Induction docetaxel/cisplatin/5 fluorouracil (TPF) chemotherapy is regarded as the standard of treatment for locoregionally advanced HPC. However, patients who do not respond to cisplatin suffer, rather than benefit, from chemotherapy treatment. The goal of this study was to identify molecules involved in TPF resistance and to clarify their molecular mechanisms. Using the FaDu cell line as the cell model, the TPF IC50 was identified, and c-Jun, IL6, Camk2a, c-fos knockdown using siRNAs resulted in a significant declined TPF IC50. Retrospective analysis of the expression status of c-Jun, IL6, Camk2a, and c-fos by immunohistochemistry staining in sectioned HPC tissues from TPF-sensitive and TPF-insensitive patients shows that Camk2a and c-Jun were associated with the clinical pathogenesic features in HPC. The in vitro experiments also indicate that both Camk2a and c-Jun were responsive to TPF treatment. This study identified Camk2a and c-Jun as candidate genes that confer induction TPF resistance, which would help in the discovery of potential therapeutic markers and in developing a personalized and precise treatment approach for HPC patients.
Collapse
Affiliation(s)
- Shuzhou Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General HospitalChina
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Institute of OtorhinolaryngologyChina
| | - Jie Zhai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
37
|
Zhang Y, Wang X, Jiang Q, Hao H, Ju Z, Yang C, Sun Y, Wang C, Zhong J, Huang J, Zhu H. DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones 2018; 23:617-628. [PMID: 29353404 PMCID: PMC6045551 DOI: 10.1007/s12192-017-0871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Interleukin-6 receptor-alpha (IL6R) interacts with IL6 and forms a ligand-receptor complex, which can stimulate various cellular responses, such as cell proliferation, cell differentiation, and activation of inflammatory processes. Both genetic mutation and epigenetic modification regulate gene transcription. We identified a novel splice variant of bovine IL6R, designated as IL6R-TV, which is characterized by the skipping of exon 2 of the NCBI-referenced IL6R gene (IL6R-reference). The expression levels of IL6R-TV and IL6R-reference transcripts were lower in normal mammary gland tissues. These transcripts play a potential role during inflammatory infection. We also detected two putative functional SNPs (g.19711 T > C and g.19731 G > C) located within the upstream 100 bp of exon 2. These SNPs formed two haplotypes (T-G and C-C). Two mutant pSPL3 exon-trapping plasmids (pSPL3-T-G and pSPL3-C-C) were transferred into the bovine mammary epithelial cells (MAC-T) and human embryonic kidney 293 T cells (HEK293T) to investigate the relationship between the two SNPs and the aberrant splicing of IL6R. DNA methylation levels of the alternatively spliced exon in normal and mastitis-infected mammary gland tissues were quantified through nested bisulfate sequencing PCR (BSP) and cloning sequencing. We found that DNA methylation regulated IL6R transcription. The DNA methylation level was high in mastitis-infected mammary gland tissues and stimulated IL6R expression, thereby promoting the inclusion of the alternatively spliced exon. The upregulated expression of the two transcripts was due to DNA methylation modification rather than genetic mutations.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jinming Huang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, People's Republic of China.
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
| |
Collapse
|
38
|
The Microenvironment in Epstein-Barr Virus-Associated Malignancies. Pathogens 2018; 7:pathogens7020040. [PMID: 29652813 PMCID: PMC6027429 DOI: 10.3390/pathogens7020040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
Collapse
|
39
|
Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0270. [PMID: 28893937 DOI: 10.1098/rstb.2016.0270] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
40
|
Pretreatment prognostic factors of survival and late toxicities for patients with nasopharyngeal carcinoma treated by simultaneous integrated boost intensity-modulated radiotherapy. Radiat Oncol 2018; 13:45. [PMID: 29554940 PMCID: PMC5859644 DOI: 10.1186/s13014-018-0990-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022] Open
Abstract
Background To scrutinize the pretreatment prognosticators on survival and late toxicities in a homogenous cohort of nasopharyngeal carcinoma (NPC) patients treated by simultaneous integrated boost intensity-modulated radiation therapy (SIB-IMRT). Methods A total of 219 non-distant metastatic NPC patients consecutively treated by SIB-IMRT at a single institute were collected. The pretreatment factors including the socio-demographic variables, TNM stages, gross tumor volume (GTV), Epstein-Barr virus (EBV)-DNA, and hematologic inflammatory markers were analyzed. Cox model was used to screen the prognostic factors of late toxicities and four survival outcomes including locoregional relapse-free survival (LRRFS), distant metastasis-free survival (DMFS), failure-free survival (FFS), and overall survival (OS). Results Statistically significant inter-correlations were observed between the values of EBV-DNA, some hematologic inflammatory markers, GTV, and N classification. The 5-year LRRFS, DMFS, FFS, and OS rates were 87.9%, 89.4%, 79.4%, and 81.3%, respectively. Multivariate analysis revealed that advanced N classification (N2–3 vs. N0–1) remained the only significant negative prognosticator for all the four survival outcomes. An increased monocyte percentage and a decreased lymphocyte-to-monocyte ratio were significantly associated with poorer FFS and OS, respectively. Larger GTV was observed to be predictive of poorer LRRFS. Patients with T3–4 (HR: 3.5, 95% CI: 1.0–12.1, p = 0.048) or higher GTV (HR: 1.006, 95% CI: 1.001–1.011, p = 0.027) were associated with higher incidence of radiation neuropathy. Conclusion N classification remains the most significant survival predictor for NPC patients treated by SIB-IMRT after adjusting these biomarkers. GTV impacts not only on locoregional control but also radiation neuropathy.
Collapse
|
41
|
Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, Ishikawa K, Wakisaka N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci 2018; 109:272-278. [PMID: 29247573 PMCID: PMC5797826 DOI: 10.1111/cas.13473] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein‐Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre‐invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1‐expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development.
Collapse
Affiliation(s)
- Tomokazu Yoshizaki
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Mitsuharu Aga
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Miyako Hatano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takayoshi Ueno
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuya Ishikawa
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Naohiro Wakisaka
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
42
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
43
|
Li L, Xu J, Qiu G, Ying J, Du Z, Xiang T, Wong KY, Srivastava G, Zhu XF, Mok TS, Chan ATC, Chan FKL, Ambinder RF, Tao Q. Epigenomic characterization of a p53-regulated 3p22.2 tumor suppressor that inhibits STAT3 phosphorylation via protein docking and is frequently methylated in esophageal and other carcinomas. Am J Cancer Res 2018; 8:61-77. [PMID: 29290793 PMCID: PMC5743460 DOI: 10.7150/thno.20893] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Rationale: Oncogenic STAT3 signaling activation and 3p22-21.3 locus alteration are common in multiple tumors, especially carcinomas of the nasopharynx, esophagus and lung. Whether these two events are linked remains unclear. Our CpG methylome analysis identified a 3p22.2 gene, DLEC1, as a methylated target in esophageal squamous cell (ESCC), nasopharyngeal (NPC) and lung carcinomas. Thus, we further characterized its epigenetic abnormalities and functions. Methods: CpG methylomes were established by methylated DNA immunoprecipitation. Promoter methylation was analyzed by methylation-specific PCR and bisulfite genomic sequencing. DLEC1 expression and clinical significance were analyzed using TCGA database. DLEC1 functions were analyzed by transfections followed by various cell biology assays. Protein-protein interaction was assessed by docking, Western blot and immunoprecipitation analyses. Results: We defined the DLEC1 promoter within a CpG island and p53-regulated. DLEC1 was frequently downregulated in ESCC, lung and NPC cell lines and primary tumors, but was readily expressed in normal tissues and immortalized normal epithelial cells, with mutations rarely detected. DLEC1 methylation was frequently detected in ESCC tumors and correlated with lymph node metastasis, tumor recurrence and progression, with DLEC1 as the most frequently methylated among the established 3p22.2 tumor suppressors (RASSF1A, PLCD1 and ZMYND10/BLU). DLEC1 inhibits carcinoma cell growth through inducing cell cycle arrest and apoptosis, and also suppresses cell metastasis by reversing epithelial-mesenchymal transition (EMT) and cell stemness. Moreover, DLEC1 represses oncogenic signaling including JAK/STAT3, MAPK/ERK, Wnt/β-catenin and AKT pathways in multiple carcinoma types. Particularly, DLEC1 inhibits IL-6-induced STAT3 phosphorylation in a dose-dependent manner. DLEC1 contains three YXXQ motifs and forms a protein complex with STAT3 via protein docking, which blocks STAT3-JAK2 interaction and STAT3 phosphorylation. IL-6 stimulation enhances the binding of DLEC1 with STAT3, which diminishes their interaction with JAK2 and further leads to decreased STAT3 phosphorylation. The YXXQ motifs of DLEC1 are crucial for its inhibition of STAT3 phosphorylation, and disruption of these motifs restores STAT3 phosphorylation through abolishing DLEC1 binding to STAT3. Conclusions: Our study demonstrates, for the first time, predominant epigenetic silencing of DLEC1 in ESCC, and a novel mechanistic link of epigenetic DLEC1 disruption with oncogenic STAT3 signaling in multiple carcinomas.
Collapse
|
44
|
Xie X, Zeng X, Cao S, Hu X, Shi Q, Li D, Zhou S, Gu P, Zhang Z. Elevated pretreatment platelet distribution width and platelet count predict poor prognosis in nasopharyngeal carcinoma. Oncotarget 2017; 8:106089-106097. [PMID: 29285316 PMCID: PMC5739703 DOI: 10.18632/oncotarget.22528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies have demonstrated that platelets play a multifaceted role in cancer progression and metastasis. However, the value of platelet indices for predicting survival in nasopharyngeal carcinoma (NPC) patients remains unknown. The aim of this study was to evaluate the predictive significance of platelet indices in NPC cases. Materials and Methods A total of 168 patients who were diagnosed with NPC between January 2011 and June 2012 were recruited. The optimal cut-off values for the platelet indices were determined using a receiver operating characteristic curve. The Kaplan-Meier method and Cox regression were used to evaluate the prognostic impact of the potential predictors. Results Of the 168 patients, high platelet distribution width (PDW) and platelet count (PLT) levels were observed in 81 (48.21%) and 68 (40.48%) of the patients, respectively. An increased PDW was associated with the depth of invasion (T stage, P = 0.019), lymph node metastasis (N stage, P = 0.026), and clinical stage (P < 0.001). Moreover, the survival analysis showed that the overall survival of the patients with a PDW > 16.3 fL or platelet count > 266 × 109/L was associated with a poorer prognosis (both P < 0.001). In the multivariate Cox regression model, the PDW (P < 0.001), PLT (P = 0.001), T stage (P < 0.001), N stage (P = 0.006), clinical stage (P = 0.005), and Epstein-Barr virus DNA (P = 0.039) were independent prognostic factors for the overall survival. Conclusions The PDW and PLT are easily available via a routine blood test, and our study showed that the PDW and PLT could be prognostic predictors in NPC patients. However, further studies are required to confirm this conclusion.
Collapse
Affiliation(s)
- XueCheng Xie
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - XiaoChun Zeng
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - SuJuan Cao
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - XiaoMao Hu
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - QiaoJing Shi
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - Dan Li
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - ShiYuan Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of XiangNan University, Chenzhou, China
| | - Ping Gu
- Department of Child Healthcare, Chenzhou First People's Hospital, Chenzhou, China
| | - ZhongShan Zhang
- Department of Oncology, The Affiliated Hospital of XiangNan University, Chenzhou, China
| |
Collapse
|
45
|
Svobodova M, Raudenska M, Gumulec J, Balvan J, Fojtu M, Kratochvilova M, Polanska H, Horakova Z, Kostrica R, Babula P, Heger Z, Masarik M. Establishment of oral squamous cell carcinoma cell line and magnetic bead-based isolation and characterization of its CD90/CD44 subpopulations. Oncotarget 2017; 8:66254-66269. [PMID: 29029509 PMCID: PMC5630409 DOI: 10.18632/oncotarget.19914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, we describe the establishment of the human papillomavirus 18-positive, stage II, grade 1, T2N0M0 head and neck tumor primary cell line derived from oral squamous cell carcinoma of a non-smoking patient by using two different protocols. Furthermore, a preparation of subpopulations derived from this primary cell line according to the cluster of differentiation molecules CD44/CD90 status using magnetic bead-based separation and their characterization was performed. Impedance-based real-time cell analysis, enzyme-linked immunsorbant assay (ELISA), wound-healing assay, flow-cytometry, gene expression analysis, and MTT assay were used to characterize these four subpopulations (CD44+/CD90-, CD44-/CD90-, CD44+/CD90+, CD44-/CD90-). We optimised methodics for establishement of primary cell lines derived from oral squamous cell carcinoma tissue samples and subsequent separation of mesenchymal (CD90+) and epithelial (CD90-) types of tumorous cells. Primary cell line prepared by using trypsin proteolysis was more viable than the one prepared by using collagenase. According to our results, CD90 separation is a necessary step in preparation of permanent tumor-tissue derived cell lines. Based on the wound-healing assay, CD44+ cells exhibited stronger migratory capacity than CD44- subpopulations. CD44+ subpopulations had also significantly higher expression of BIRC5 and SOX2, lower expression of FLT1 and IL6, and higher levels of basal autophagy compared to CD44- subpopulations. Furthermore, co-cultivation experiments revealed that CD44-/CD90+ cells supported growth of epithelial tumor cells (CD44+/CD90-). On the contrary, factors released by CD44+/CD90+ type of cells seem to have rather inhibiting effect. The most cisplatin-resistant subpopulation with the shortest doubling time was CD44-/CD90+, but this subpopulation had a low migratory capacity.
Collapse
Affiliation(s)
- Marketa Svobodova
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Hana Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne’s Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne’s Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| |
Collapse
|
46
|
Lin YH, Chang KP, Lin YS, Chang TS. Pretreatment combination of platelet counts and neutrophil-lymphocyte ratio predicts survival of nasopharyngeal cancer patients receiving intensity-modulated radiotherapy. Onco Targets Ther 2017; 10:2751-2760. [PMID: 28603425 PMCID: PMC5457124 DOI: 10.2147/ott.s137000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Increased cancer-related inflammation has been associated with unfavorable clinical outcomes. The combination of platelet count and neutrophil–lymphocyte ratio (COP-NLR) has related outcomes in several cancers, except for nasopharyngeal carcinoma (NPC). This study evaluated the prognostic value of COP-NLR in predicting outcome in NPC patients treated with intensity-modulated radiotherapy (IMRT). Materials and methods We analyzed the data collected from 232 NPC patients. Pretreatment total platelet counts, neutrophil–lymphocyte ratio (NLR), and COP-NLR score were evaluated as potential predictors. Optimal cutoff values for NLR and platelets were determined using receiver operating curve. Patients with both elevated NLR (>3) and platelet counts (>300×109/L) were assigned a COP-NLR score of 2; those with one elevated or no elevated value were assigned a COP-NLR a score of 1 or 0. Cox proportional hazards model was used to test the association of these factors and relevant 3-year survivals. Results Patients (COP-NLR scores 1 and 2=85; score 0=147) were followed up for 55.19 months. Univariate analysis showed no association between pretreatment NLR >2.23 and platelet counts >290.5×109/L and worse outcomes. Multivariate analysis revealed that those with COP-NLR scores of 0 had better 3-year disease-specific survival (P=0.02), overall survival (P=0.024), locoregional relapse-free survival (P=0.004), and distant metastasis-free survival (P=0.046). Further subgrouping by tumor stage also revealed COP-NLR to be an unfavorable prognostic indicator of 3-year failure-free survival (P=0.001) for locally advanced NPC. Conclusion COP-NLR score, but not NLR alone or total platelet count alone, predicted survival in NPC patients treated with IMRT-based therapy, especially those with stage III/IVA, B malignancies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Otolaryngology, Head and Neck Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Kuo-Ping Chang
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Yaoh-Shiang Lin
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Otolaryngology, Head and Neck Surgery, National Defense Medical Center, Taipei
| | - Ting-Shou Chang
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Otolaryngology, Head and Neck Surgery, National Defense Medical Center, Taipei.,Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
47
|
Wu EL, Riley CA, Hsieh MC, Marino MJ, Wu XC, McCoul ED. Chronic sinonasal tract inflammation as a precursor to nasopharyngeal carcinoma and sinonasal malignancy in the United States. Int Forum Allergy Rhinol 2017; 7:786-793. [PMID: 28549211 DOI: 10.1002/alr.21956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Chronic inflammatory states have been linked to the development of malignancy. Chronic rhinosinusitis (CRS) and allergic rhinitis (AR) have been associated with nasopharyngeal carcinoma (NPC) in population-based studies in Asia. A similar association with NPC and paranasal sinus malignancy (PSM) has not been defined in a North American population. Our purpose was to investigate the impact of CRS and AR on the risk of NPC and PSM. METHODS The Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database was queried as a case-control study of adults ≥65 years of age. The study cohort included 2009 patients diagnosed with NPC and/or PSM diagnosed between 2003 and 2011, and 2009 propensity-score-matched controls selected from a 5% random sample of Medicare beneficiaries without cancer. CRS and AR were examined as exposures. Multivariable unconditional logistic regression was employed. RESULTS Overall, NPC and PSM patients were more likely to have previous CRS diagnosis than the controls (9.2% vs 3.0% and 11.1% vs 2.7%, respectively). CRS was associated with greater odds of developing NPC (odds ratio [OR], 3.51; 95% confidence interval [CI], 2.12-5.79) and PSM (OR, 5.30; 95% CI, 3.55-7.92). AR was associated with greater odds of developing NPC (OR, 4.23; 95% CI, 2.96 to 6.06) and PSM (OR, 3.35; 95% CI, 2.49-4.49). The number needed to harm in the exposed population was 311. CONCLUSIONS CRS and AR are associated with the presence of NPC and PSM in the elderly population of United States. This epidemiologic association will need to be examined for causative pathophysiologic mechanisms and utility in clinical diagnosis.
Collapse
Affiliation(s)
- Eric L Wu
- Department of Otolaryngology-Head and Neck Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Charles A Riley
- Department of Otolaryngology-Head and Neck Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Mei-Chin Hsieh
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Michael J Marino
- Department of Otolaryngology-Head and Neck Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Xiao-Cheng Wu
- Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Edward D McCoul
- Department of Otolaryngology-Head and Neck Surgery, Tulane University School of Medicine, New Orleans, LA.,Department of Otorhinolaryngology, Ochsner Clinic Foundation, New Orleans, LA.,Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, LA
| |
Collapse
|
48
|
Al-Kholy AF, Abdullah OA, Abadier MZ, Hassaan MM, Shindy MF, Nor El-Dien DM, Hasaneen A. Pre-treatment serum inflammatory cytokines as survival predictors of patients with nasopharyngeal carcinoma receiving chemoradiotherapy. Mol Clin Oncol 2017; 5:811-816. [PMID: 28105362 DOI: 10.3892/mco.2016.1041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to examine the predictability of pre-treatment serum levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α for determining the outcome of patients with nasopharyngeal carcinoma (NPC) assigned for chemoradiotherapy. A total of 35 patients with NPC were subjected to clinical examination and evaluation of performance status using Karnofsky scoring. Nasopharyngoscopy was performed for evaluation and to obtain a biopsy. Blood samples were obtained pre- and post-treatment for polymerase chain reaction quantitative estimation of Epstein-Barr virus (EBV) DNA plasma load and enzyme-linked immunosorbent assay for estimation of serum cytokines. All patients received chemoradiotherapy and were followed-up for 2 years. Cervical lymphadenopathy and recurrent attacks of epistaxis are the most common presenting symptoms. Treatment significantly decreased pre-treatment plasma EBV DNA load and serum levels of IL-6 and TNF-α, and increased serum IL-1β levels. Clinical staging and EBV DNA plasma load revealed positively significant correlation with pre-treatment serum levels of both IL-6 and TNF-α, while revealed negative significant correlation with serum IL-1β levels. The 2-year survival rate was negatively significantly correlated with pre-treatment levels of IL-6 and TNF-α, and EBV DNA viral load, while it was positively significantly correlated with pre-treatment performance scores and serum IL-1β levels. Statistical analyses defined high pre-treatment serum IL-6 levels as a significant specific predictor for high mortality rate. It was demonstrated that NPC was associated with high pre-treatment plasma EBV DNA load and serum cytokines, and chemoradiotherapy significantly reduced these high levels. High pre-treatment serum IL-6 level was a significant specific predictor for high mortality rate. Increased post-treatment serum levels of IL-1β indicated good therapeutic response and most probably a high survival rate.
Collapse
Affiliation(s)
- Adel F Al-Kholy
- Department of Medical Biochemistry, Faculty of Medicine, Benda University, Benha 13511, Egypt
| | - Omminea A Abdullah
- Department of Medical Biochemistry, Faculty of Medicine, Benda University, Benha 13511, Egypt
| | - Mamdouh Z Abadier
- Department of Medical Biochemistry, Faculty of Medicine, Benda University, Benha 13511, Egypt
| | - Manal M Hassaan
- Department of Medical Biochemistry, Faculty of Applied Medical Sciences, Cairo 11811, Egypt
| | - Mohamed F Shindy
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Dalia M Nor El-Dien
- Department of Clinical Pathology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Ali Hasaneen
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
49
|
Borthwick CR, Young LJ, McAllan BM, Old JM. Identification of the mRNA encoding interleukin-6 and its receptor, interleukin-6 receptor α, in five marsupial species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:211-217. [PMID: 27431929 DOI: 10.1016/j.dci.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Expressed coding sequences for interleukin-6 (IL-6) and interleukin-6 receptor α (IL-6R) were examined in five marsupial species. Full length expressed coding sequences for IL-6 and IL-6R were identified and characterized in the gray short-tailed opossum (Monodelphis domestica). For IL-6, ∼225 bp fragments of the mRNA sequence were identified in the red-tailed phascogale (Phascogale calura), kultarr (Antechinomys laniger), and stripe-faced dunnart (Sminthopsis macroura), while ∼563 bp fragments of mRNA encoding IL-6R were identified in the red-tailed phascogale, kultarr, stripe-face dunnart and fat-tailed dunnart (Sminthopsis crassicaudata). Relative expression levels of IL-6 and IL-6R were examined in the heart, muscle, lung, liver, spleen and kidney of adult red-tailed phascogales, and IL-6 gene expression was found to be significantly higher in the lung and spleen than the other tissues examined, while the expression of IL-6R was significantly higher in the liver, lung and spleen. These results now serve as a reference point for examining the role and levels of IL-6 and IL-6R in the health and disease of these marsupial species. The pro-tumorigenic nature of IL-6 is of particular interest, and the identification of these IL-6 and IL-6R coding sequences provides a platform for further work to evaluate the potential role of IL-6 in marsupial cancers.
Collapse
Affiliation(s)
- Casey R Borthwick
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Lauren J Young
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Bronwyn M McAllan
- School of Medical Sciences and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney, NSW 2006, Australia
| | - Julie M Old
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
50
|
Li X, Bhaduri-McIntosh S. A Central Role for STAT3 in Gammaherpesvirus-Life Cycle and -Diseases. Front Microbiol 2016; 7:1052. [PMID: 27458446 PMCID: PMC4937026 DOI: 10.3389/fmicb.2016.01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Having co-evolved with humans, herpesviruses have adapted to exploit the host molecular machinery to ensure viral persistence. The cellular protein Signal Transducer and Activator of Transcription 3 (STAT3) is a leading example. STAT3 is a prominent transcription factor that functions in a variety of physiologic processes including embryonic development, inflammation, immunity, and wound healing. Generally activated via growth factor and cytokine signaling, STAT3 can transcriptionally drive oncoproteins, pro-survival and pro-proliferative proteins as well as angiogenic factors, thereby contributing to cancer. As in most non-viral cancers, STAT3 is constitutively active in EBV-related B and epithelial cell cancers and in animal models of KSHV-cancers. Again, similar to non-viral cancers, STAT3 contributes to gammaherpesvirus (EBV and KSHV)-mediated cancers by driving cell proliferation, invasion and angiogenesis. Being herpesviruses, EBV and KSHV establish latency in humans with episodic lytic activation. Importantly, both viruses activate STAT3 almost immediately upon infection of primary cells. In the setting of infection of primary B cells by EBV, this rapidly activated STAT3 plays a key role in suppressing the DNA damage response (DDR) to EBV-oncogene triggered replication stress, thereby facilitating B cell proliferation and ultimately establishment of latency. STAT3 also contributes to maintenance of latency by curbing lytic activation of EBV and KSHV in latent cells that express high levels of STAT3. In this way, gammaherpesviruses exploit STAT3 to overcome cellular anti-proliferative and anti-lytic barriers to promote viral persistence. These investigations into gammaherpesviruses and STAT3 have simultaneously revealed a novel function for STAT3 in suppression of the DDR, a process fundamental to physiologic cell proliferation as well as development of cancer.
Collapse
Affiliation(s)
- Xiaofan Li
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine Stony Brook, NY, USA
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of MedicineStony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University School of MedicineStony Brook, NY, USA
| |
Collapse
|