1
|
Zhu X, Dong Q, Zhang K, Zou Y, Zhang G, Du Y, Mo X, Wu A, Ouyang K, Chen Y, Wei Z, Qin Y, Pan Y, Huang W. Hunnivirus structural protein VP2 inhibits beta interferon production by targeting the IRF3 essential modulator. Vet Microbiol 2024; 295:110148. [PMID: 38851152 DOI: 10.1016/j.vetmic.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-β and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-β promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-β promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNβ induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.
Collapse
Affiliation(s)
- Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Qinting Dong
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kang Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yanlin Zou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Guangxin Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yiyang Du
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xiaoke Mo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Aoqi Wu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| |
Collapse
|
2
|
Sheng CL, Jiang BD, Zhang CQ, Huang JH, Wang Z, Xu C. USP26 suppresses type I interferon signaling by targeting TRAF3 for deubiquitination. PLoS One 2024; 19:e0307776. [PMID: 39058724 PMCID: PMC11280224 DOI: 10.1371/journal.pone.0307776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) play a pivotal role in regulating the antiviral immune response by targeting members of the RLR signaling pathway. As a pivotal member of the RLR pathway, TRAF3 is essential for activating the MAVS/TBK-1/IRF3 signaling pathway in response to viral infection. Despite its importance, the function of DUBs in the TRAF3-mediated antiviral response is poorly understood. Ubiquitin-specific protease 26 (USP26) regulates the RLR signaling pathway to modulate the antiviral immune response. The results demonstrate that EV71 infection upregulates the expression of USP26. Knockdown of USP26 significantly enhances EV71-induced expression of IFN-β and downstream interferon-stimulated genes (ISGs). Deficiency of USP26 not only inhibits EV71 replication but also weakens the host's resistance to EV71 infection. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. Conversely, knockdown of USP26 leads to an increase in the K63-linked polyubiquitination of TRAF3. These findings unequivocally establish the essential role of USP26 in RLR signaling and significantly contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Cheng-Lan Sheng
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bang-Dong Jiang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chun-Qiu Zhang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jin-Hua Huang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Zi Wang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chao Xu
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
3
|
Wei J, Lv L, Wang T, Gu W, Luo Y, Feng H. Recent Progress in Innate Immune Responses to Enterovirus A71 and Viral Evasion Strategies. Int J Mol Sci 2024; 25:5688. [PMID: 38891876 PMCID: PMC11172324 DOI: 10.3390/ijms25115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Jialong Wei
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Linxi Lv
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Tian Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Yang Luo
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
- Institute of Precision Medicine, Chongqing University, Chongqing 400044, China
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| |
Collapse
|
4
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Grizer CS, Messacar K, Mattapallil JJ. Enterovirus-D68 - A Reemerging Non-Polio Enterovirus that Causes Severe Respiratory and Neurological Disease in Children. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2024; 4:1328457. [PMID: 39246649 PMCID: PMC11378966 DOI: 10.3389/fviro.2024.1328457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The past decade has seen the global reemergence and rapid spread of enterovirus D68 (EV-D68), a respiratory pathogen that causes severe respiratory illness and paralysis in children. EV-D68 was first isolated in 1962 from children with pneumonia. Sporadic cases and small outbreaks have been reported since then with a major respiratory disease outbreak in 2014 associated with an increased number of children diagnosed with polio-like paralysis. From 2014-2018, major outbreaks have been reported every other year in a biennial pattern with > 90% of the cases occurring in children under the age of 16. With the outbreak of SARS-CoV-2 and the subsequent COVID-19 pandemic, there was a significant decrease in the prevalence EV-D68 cases along with other respiratory diseases. However, since the relaxation of pandemic social distancing protocols and masking mandates the number of EV-D68 cases have begun to rise again - culminating in another outbreak in 2022. Here we review the virology, pathogenesis, and the immune response to EV-D68, and discuss the epidemiology of EV-D68 infections and the divergence of contemporary strains from historical strains. Finally, we highlight some of the key challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Cassandra S Grizer
- Department of Microbiology & Immunology, The Henry M. Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kevin Messacar
- The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Gan H, Zhou X, Lei Q, Wu L, Niu J, Zheng Q. RNA-dependent RNA polymerase of SARS-CoV-2 regulate host mRNA translation efficiency by hijacking eEF1A factors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166871. [PMID: 37673357 DOI: 10.1016/j.bbadis.2023.166871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
The RNA-dependent RNA polymerase (NSP12) of COVID-19 plays a significant role in the viral infection process, which promotes viral RNA replication by cooperating with NSP7 and NSP8, but little is known about its regulation on the function of host cells. We firstly found that overexpression of NSP12 had little effect on host mRNAs transcription. Using iCLIP technology, we found that NSP12 can bind a series of host RNAs with the conserved binding motif G(C/A/G)(U/G/A)UAG, especially ribosomal RNA. We found that NSP12 could directly bind to eEF1A factor via the NIRAN domain of NSP12 and N-terminal domain of eEF1A. NSP12 colocalized with eEF1A to inhibit type I interferon expression upon virus infection. In order to prove that NSP12 regulates the translation level of host cells, we found that NSP12 significantly affected the translation efficiency of many host mRNAs (such as ISG15, NF-κB2, ILK and SERPINI2) via ribosome profiling experiment, and the genes with significant upregulation in translation efficiency were mainly enriched in positive regulation of ubiquitin-dependent proteasomal process and NIK/NF-κB signaling pathway (such as NF-κB2, ILK), and negative regulation of type I interferon production, protein level of these genes were further confirmed in HEK293T and Calu3 cells upon NSP12 overexpression. These results indicate that NSP12 of SARS-CoV-2 can hijack the eEF1A factor to regulate translation efficiency of host mRNAs, which provides a new idea for us to evaluate the impact of SARS-CoV2 virus on the host and study the potential drug targets.
Collapse
Affiliation(s)
- Haili Gan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Xiaoguang Zhou
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Qiong Lei
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Linlin Wu
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Jianmin Niu
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, China.
| |
Collapse
|
7
|
Wang SH, Du J, Yu J, Zhao Y, Wang Y, Hua S, Zhao K. Coxsackievirus A6 2C protein antagonizes IFN-β production through MDA5 and RIG-I depletion. J Virol 2023; 97:e0107523. [PMID: 37847581 PMCID: PMC10688345 DOI: 10.1128/jvi.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-β production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jinghua Yu
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
TRAF3 activates STING-mediated suppression of EV-A71 and target of viral evasion. Signal Transduct Target Ther 2023; 8:79. [PMID: 36823147 PMCID: PMC9950063 DOI: 10.1038/s41392-022-01287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023] Open
Abstract
Innate immunity represents one of the main host responses to viral infection.1-3 STING (Stimulator of interferon genes), a crucial immune adapter functioning in host cells, mediates cGAS (Cyclic GMP-AMP Synthase) sensing of exogenous and endogenous DNA fragments and generates innate immune responses.4 Whether STING activation was involved in infection and replication of enterovirus remains largely unknown. In the present study, we discovered that human enterovirus A71 (EV-A71) infection triggered STING activation in a cGAS dependent manner. EV-A71 infection caused mitochondrial damage and the discharge of mitochondrial DNA into the cytosol of infected cells. However, during EV-A71 infection, cGAS-STING activation was attenuated. EV-A71 proteins were screened and the viral protease 2Apro had the greatest capacity to inhibit cGAS-STING activation. We identified TRAF3 as an important factor during STING activation and as a target of 2Apro. Supplement of TRAF3 rescued cGAS-STING activation suppression by 2Apro. TRAF3 supported STING activation mediated TBK1 phosphorylation. Moreover, we found that 2Apro protease activity was essential for inhibiting STING activation. Furthermore, EV-D68 and CV-A16 infection also triggered STING activation. The viral protease 2Apro from EV-D68 and CV-A16 also had the ability to inhibit STING activation. As STING activation prior to EV-A71 infection generated cellular resistance to EV-A71 replication, blocking EV-A71-mediated STING suppression represents a new anti-viral target.
Collapse
|
9
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Dang W, Li T, Xu F, Wang Y, Yang F, Zheng H. Modeling senecavirus a replication in immortalized porcine alveolar macrophages triggers a robust interferon-mediated immune response that conversely constrains viral replication. Virology 2023; 578:141-153. [PMID: 36571990 DOI: 10.1016/j.virol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Senecavirus A (SVA) is a newly emerging causative agent of vesicular diseases in swine characterized with wide genetic diversity and rapid evolution. The lack of immunologically active cell culture model impedes the study of SVA-specific innate immunity. Here, an immortalized porcine alveolar macrophages 3D4/21 strongly and productively supported replication of two SVA strains. To elaborate global and dynamic host immune response, we demonstrated that 3D4/21 intrinsically expressed canonical ISGs which were important for pre-empting viral infection. Moreover, 3D4/21 were constitutively abundant in RIG-I-like receptors (RLRs) RIG-I and MDA5 necessary for sensing RNA virus infection, thereby enabling 3D4/21 cells to establish persistent and efficient antiviral status, in particular the most dramatic and sustained expression of type I/II interferons and inflammatory and innate immune genes critical for constraining SVA replication. Our study reveals a pivotal regulatory connection between virus and host that points to the SVA pathogenesis and potential vaccine development.
Collapse
Affiliation(s)
- Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Tao Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Fan Xu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yannan Wang
- Lanzhou University Second Hospital, The Department of Radiology, Lanzhou, 730030, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
11
|
Sun PP, Li D, Su M, Ren Q, Guo WP, Wang JL, Du LY, Xie GC. Cell membrane-bound toll-like receptor-1/2/4/6 monomers and -2 heterodimer inhibit enterovirus 71 replication by activating the antiviral innate response. Front Immunol 2023; 14:1187035. [PMID: 37207203 PMCID: PMC10189127 DOI: 10.3389/fimmu.2023.1187035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Host immune activation is critical for enterovirus 71 (EV71) clearance and immunopathogenesis. However, the mechanism of innate immune activation, especially of cell membrane-bound toll-like receptors (TLRs), against EV71 remains unknown. We previously demonstrated that TLR2 and its heterodimer inhibit EV71 replication. In this study, we systematically investigated the effects of TLR1/2/4/6 monomers and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) on EV71 replication and innate immune activation. We found that the overexpression of human- or mouse-derived TLR1/2/4/6 monomers and TLR2 heterodimer significantly inhibited EV71 replication and induced the production of interleukin (IL)-8 via activation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways. Furthermore,human-mouse chimeric TLR2 heterodimer inhibited EV71 replication and activated innate immunity. Dominant-negative TIR-less (DN)-TLR1/2/4/6 did not exert any inhibitory effects, whereas DN-TLR2 heterodimer inhibited EV71 replication. Prokaryotic expression of purified recombinant EV71 capsid proteins (VP1, VP2, VP3, and VP4) or overexpression of EV71 capsid proteins induced the production of IL-6 and IL-8 via activation of the PI3K/AKT and MAPK pathways. Notably, two types of EV71 capsid proteins served as pathogen-associated molecular patterns for TLR monomers (TLR2 and TLR4) and TLR2 heterodimer (TLR2/TLR1, TLR2/TLR6, and TLR2/TLR4) and activated innate immunity. Collectively, our results revealed that membrane TLRs inhibited EV71 replication via activation of the antiviral innate response, providing insights into the EV71 innate immune activation mechanism.
Collapse
Affiliation(s)
- Ping-Ping Sun
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Meng Su
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Qing Ren
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jiang-Li Wang
- Department of Microbiology Laboratory, Chengde Center for Disease Control and Prevention, Chengde, Hebei, China
| | - Luan-Ying Du
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Guang-Cheng Xie
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
- Institute of Basic Medicine, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
- *Correspondence: Guang-Cheng Xie,
| |
Collapse
|
12
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Zhang S, Mao S, Yang Q, Tian B, Wu Y, Huang J, Gao Q, Jia R, Chen S, Liu M, Zhao XX, Zhu D, Yu Y, Zhang L. DHAV 3CD targets IRF7 and RIG-I proteins to block the type I interferon upstream signaling pathway. Vet Res 2023; 54:5. [PMID: 36703166 PMCID: PMC9878786 DOI: 10.1186/s13567-023-01134-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 01/27/2023] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. Previous studies have found that the proteolytic enzyme 3 C encoded by DHAV-1 can inhibit the IRF7 protein from blocking the upstream signaling pathway of the type I interferon to promote viral replication. However, there are still few studies on the mechanism of DHAV-1 in immune evasion. Here, we demonstrate that the DHAV-1 3CD protein can interact with IRF7 protein and reduce IRF7 protein expression without directly affecting IRF7 protein nuclear translocation. Further studies showed that the 3CD protein could reduce the expression of RIG-I protein without affecting its transcription level. Furthermore, we found that the 3CD protein interacted with the N-terminal structural domain of RIG-I protein, interfered with the interaction between RIG-I and MAVS, and degraded RIG-I protein through the proteasomal degradation pathway, thereby inhibiting its mediated antiviral innate immunity to promote DHAV-1 replication. These data suggest a novel immune evasion mechanism of DHAV-1 mediated by the 3CD protein, and the results of this experiment are expected to improve the understanding of the biological functions of the viral precursor protein and provide scientific data to elucidate the mechanism of DHAV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Xiaoyan Xia
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Anchun Cheng
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Mingshu Wang
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Xumin Ou
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Di Sun
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Shaqiu Zhang
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Sai Mao
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Qiao Yang
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Bin Tian
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Ying Wu
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Juan Huang
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Qun Gao
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Renyong Jia
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Shun Chen
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Mafeng Liu
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Xin-Xin Zhao
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Dekang Zhu
- grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Yanling Yu
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Ling Zhang
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China ,grid.80510.3c0000 0001 0185 3134Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| |
Collapse
|
13
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
14
|
Guo X, Zeng S, Ji X, Meng X, Lei N, Yang H, Mu X. Type I Interferon-Induced TMEM106A Blocks Attachment of EV-A71 Virus by Interacting With the Membrane Protein SCARB2. Front Immunol 2022; 13:817835. [PMID: 35359978 PMCID: PMC8963425 DOI: 10.3389/fimmu.2022.817835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the main causative agents of hand, foot and mouth disease (HFMD) worldwide. Studies showed that EV-A71 and CV-A16 antagonize the interferon (IFN) signaling pathway; however, how IFN controls this viral infection is largely unknown. Here, we identified an IFN-stimulated gene, Transmembrane Protein 106A (TMEM106A), encoding a protein that blocks EV-A71 and CV-A16 infection. Combined approaches measuring viral infection, gene expression, and protein interactions uncovered that TMEM106A is required for optimal IFN-mediated viral inhibition and interferes with EV-A71 binding to host cells on the receptor scavenger receptor class B member 2 (SCARB2). Our findings reveal a new mechanism contributing to the IFN-mediated defense against EV-A71 and CV-A16 infection and provide a potential strategy for HFMD treatment by using the antiviral role of TMEM106A against enterovirus.
Collapse
Affiliation(s)
- Xuemin Guo
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Shinuan Zeng
- Department of Surgery, HKU-SZH & Faculty of Medicine,The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaobin Meng
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Nanfeng Lei
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Hai Yang
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Kuo CY, Ku CL, Lim HK, Hsia SH, Lin JJ, Lo CC, Ding JY, Kuo RL, Casanova JL, Zhang SY, Chang LY, Lin TY. Life-Threatening Enterovirus 71 Encephalitis in Unrelated Children with Autosomal Dominant TLR3 Deficiency. J Clin Immunol 2022; 42:606-617. [PMID: 35040013 DOI: 10.1007/s10875-021-01170-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Enterovirus A71 (EV71) causes a broad spectrum of childhood diseases, ranging from asymptomatic infection or self-limited hand-foot-and-mouth disease (HFMD) to life-threatening encephalitis. The molecular mechanisms underlying these different clinical presentations remain unknown. We hypothesized that EV71 encephalitis in children might reflect an intrinsic host single-gene defect of antiviral immunity. We searched for mutations in the toll-like receptor 3 (TLR3) gene. Such mutations have already been identified in children with herpes simplex virus encephalitis (HSE). METHODS We sequenced TLR3 and assessed the impact of the mutations identified. We tested dermal fibroblasts from a patient with EV71 encephalitis and a TLR3 mutation and other patients with known genetic defects of TLR3 or related genes, assessing the response of these cells to TLR3 agonist poly(I:C) stimulation and EV71 infection. RESULTS Three children with EV71 encephalitis were heterozygous for rare mutations-TLR3 W769X, E211K, and R867Q-all of which were shown to affect TLR3 function. Furthermore, fibroblasts from the patient heterozygous for the W769X mutation displayed an impaired, but not abolished, response to poly(I:C). We found that TLR3-deficient and TLR3-heterozygous W769X fibroblasts were highly susceptible to EV71 infection. CONCLUSIONS Autosomal dominant TLR3 deficiency may underlie severe EV71 infection with encephalitis. Human TLR3 immunity is essential to protect the central nervous system against HSV-1 and EV71. Children with severe EV71 infections, such as encephalitis in particular, should be tested for inborn errors of TLR3 immunity.
Collapse
Affiliation(s)
- Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fu-Shin St, Kwei-Shan 333, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan.
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hye-Kyung Lim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Immuno-Hematology Unit, Necker Hospital, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Tzou-Yien Lin
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fu-Shin St, Kwei-Shan 333, Taoyuan, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Li YP, Liu CR, Deng HL, Wang MQ, Tian Y, Chen Y, Zhang YF, Dang SS, Zhai S. DNA methylation and single-nucleotide polymorphisms in DDX58 are associated with hand, foot and mouth disease caused by enterovirus 71. PLoS Negl Trop Dis 2022; 16:e0010090. [PMID: 35041675 PMCID: PMC8765647 DOI: 10.1371/journal.pntd.0010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This research aimed to explore the association between the RIG-I-like receptor (RIG-I and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this context, we explored the influence of gene methylation and polymorphism on EV71-HFMD. METHODOLOGY/PRINCIPAL FINDINGS 60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60 severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abundance. DDX58 expression levels were significantly lower in mild patients than in healthy controls and lower in severe patients than in mild patients. Binary logistic regression analysis revealed statistically significant differences in the genotype frequencies of DDX58 rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins displayed correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3 and DDX58. CONCLUSIONS/SIGNIFICANCE DDX58 expression and promoter methylation were associated with EV71 infection progression, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is worth further attention.
Collapse
MESH Headings
- Child
- Child, Preschool
- CpG Islands/genetics
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DNA Methylation/genetics
- Enterovirus A, Human
- Female
- Genetic Predisposition to Disease/genetics
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/virology
- Humans
- Infant
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Male
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Severity of Illness Index
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
- Department of Pediatric, Xi’an Central Hospital, Xi’an, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Yan Tian
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Yuan Chen
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Yu-Feng Zhang
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Song Zhai
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| |
Collapse
|
17
|
Lai Y, Xia X, Cheng A, Wang M, Ou X, Mao S, Sun D, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Tian B, Liu Y, Yu Y, Zhang L, Pan L. DHAV-1 Blocks the Signaling Pathway Upstream of Type I Interferon by Inhibiting the Interferon Regulatory Factor 7 Protein. Front Microbiol 2021; 12:700434. [PMID: 34867836 PMCID: PMC8633874 DOI: 10.3389/fmicb.2021.700434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Duck hepatitis A virus (DHAV), which mainly infects 1- to 4-week-old ducklings, has a fatality rate of 95% and poses a huge economic threat to the duck industry. However, the mechanism by which DHAV-1 regulates the immune response of host cells is rarely reported. This study examined whether DHAV-1 contains a viral protein that can regulate the innate immunity of host cells and its specific regulatory mechanism, further exploring the mechanism by which DHAV-1 resists the host immune response. In the study, the dual-luciferase reporter gene system was used to screen the viral protein that regulates the host innate immunity and the target of this viral protein. The results indicate that the DHAV-1 3C protein inhibits the pathway upstream of interferon (IFN)-β by targeting the interferon regulatory factor 7 (IRF7) protein. In addition, we found that the 3C protein inhibits the nuclear translocation of the IRF7 protein. Further experiments showed that the 3C protein interacts with the IRF7 protein through its N-terminus and that the 3C protein degrades the IRF7 protein in a caspase 3-dependent manner, thereby inhibiting the IFN-β-mediated antiviral response to promote the replication of DHAV-1. The results of this study are expected to serve as a reference for elucidating the mechanisms of DHAV-1 infection and pathogenicity.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Xu P, Tong W, Chen YM. FUSE binding protein FUBP3 is a potent regulator in Japanese encephalitis virus infection. Virol J 2021; 18:224. [PMID: 34794468 PMCID: PMC8600714 DOI: 10.1186/s12985-021-01697-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Background The JEV genome is a positive-sense RNA with a highly structured capped 5′UTR, 3′UTR and a large open reading frame. 3′UTR is the untranslated region of flavivirus and has various important functions during viral replication, such as translation, replication and encapsidation. During viral replication, the 3′UTR interacts with viral proteins and host proteins and is required for viral RNA replication and translocation. Methods The expression level of FUBP3 was knocked down by siRNA and Flag-tagged FUBP3 overexpression plasmid was constructed for overexpression. BHK-21 cells were cultured and infected with JEV to investigate the functional role of FUBP3 in the viral infection cycle. Subcellular localization of FUBP3 and viral replication complexes was observed by dual immunofluorescence staining. Results Four host proteins were specifically associated with the 3′UTR of JEV, and FUBP3 was selected to further investigate its potential functional role in the JEV infection cycle. Knockdown of FUBP3 protein resulted in a significant decrease in JEV viral titer, whereas ectopic overexpression of FUBP3 resulted in increased JE viral infectivity. In cells stably knocked down for FUBP3 and then infected with JEV, we found almost no detectable viral NS5 protein. In contrast, when cells stably knocking-down of FUBP3 overexpressed FUBP3, we found a significant increase in viral RNA production over time compared to controls. We also demonstrated that FUBP3 re-localized in the cytoplasm after infection with JEV and co-localized with viral proteins. Exogenous overexpression of FUBP3 was also shown to be located in the JE replication complex and to assist viral replication after JEV infection. Conclusions The overall results suggest that FUBP3 regulates RNA replication of JEV and promotes subsequent viral translation and viral particle production.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's HospitalHubei University of Medicine, Xiangyang, Hubei Province, China
| | - Wei Tong
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Center of Excellence for the Oceans and Matsu Marine Research Center, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
19
|
Zhang R, Cheng M, Liu B, Yuan M, Chen D, Wang Y, Wu Z. DEAD-Box Helicase DDX6 Facilitated RIG-I-Mediated Type-I Interferon Response to EV71 Infection. Front Cell Infect Microbiol 2021; 11:725392. [PMID: 34485180 PMCID: PMC8414799 DOI: 10.3389/fcimb.2021.725392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that DEAD (Glu-Asp-Ala-Glu)-box RNA helicases play important roles in viral infection, either as cytosolic sensors of pathogenic molecules or as essential host factors against viral infection. In the current study, we found that DDX6, an RNA helicase belonging to the DEAD-box family of helicase, exhibited anti-Enterovirus 71 activity through augmenting RIG-I-mediated type-I IFN response. Moreover, DDX6 binds viral RNA to form an RNA-protein complex to positively regulate the RIG-I-mediated interferon response; however, EV71 has evolved a strategy to antagonize the antiviral effect of DDX6 by proteolytic degradation of the molecule through its non-structural protein 2A, a virus-encoded protease.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
IKKε isoform switching governs the immune response against EV71 infection. Commun Biol 2021; 4:663. [PMID: 34079066 PMCID: PMC8172566 DOI: 10.1038/s42003-021-02187-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
The reciprocal interactions between pathogens and hosts are complicated and profound. A comprehensive understanding of these interactions is essential for developing effective therapies against infectious diseases. Interferon responses induced upon virus infection are critical for establishing host antiviral innate immunity. Here, we provide a molecular mechanism wherein isoform switching of the host IKKε gene, an interferon-associated molecule, leads to alterations in IFN production during EV71 infection. We found that IKKε isoform 2 (IKKε v2) is upregulated while IKKε v1 is downregulated in EV71 infection. IKKε v2 interacts with IRF7 and promotes IRF7 activation through phosphorylation and translocation of IRF7 in the presence of ubiquitin, by which the expression of IFNβ and ISGs is elicited and virus propagation is attenuated. We also identified that IKKε v2 is activated via K63-linked ubiquitination. Our results suggest that host cells induce IKKε isoform switching and result in IFN production against EV71 infection. This finding highlights a gene regulatory mechanism in pathogen-host interactions and provides a potential strategy for establishing host first-line defense against pathogens.
Collapse
|
21
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Gu T, Li G, Tian Y, Chen L, Wu X, Zeng T, Xu Q, Vladyslav S, Chen G, Lu L. Molecular cloning, expression and mimicking antiviral activity analysis of retinoic acid-inducible gene-I in duck (Anas platyrhynchos). J Genet 2020. [DOI: 10.1007/s12041-020-1187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Phanthong S, Densumite J, Seesuay W, Thanongsaksrikul J, Teimoori S, Sookrung N, Poovorawan Y, Onvimala N, Guntapong R, Pattanapanyasat K, Chaicumpa W. Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Front Microbiol 2020; 11:562768. [PMID: 33101238 PMCID: PMC7545151 DOI: 10.3389/fmicb.2020.562768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that usually affects infants and young children (<5 years). HFMD outbreaks occur frequently in the Asia-Pacific region, and these outbreaks are associated with enormous healthcare and socioeconomic burden. There is currently no specific antiviral agent to treat HFMD and/or the severe complications that are frequently associated with the enterovirus of serotype EV71. Therefore, the development of a broadly effective and safe anti-enterovirus agent is an existential necessity. In this study, human single-chain antibodies (HuscFvs) specific to the EV71-internal capsid protein (VP4) were generated using phage display technology. VP4 specific-HuscFvs were linked to cell penetrating peptides to make them cell penetrable HuscFvs (transbodies), and readily accessible to the intracellular target. The transbodies, as well as the original HuscFvs that were tested, entered the enterovirus-infected cells, bound to intracellular VP4, and inhibited replication of EV71 across subgenotypes A, B, and C, and coxsackieviruses CVA16 and CVA6. The antibodies also enhanced the antiviral response of the virus-infected cells. Computerized simulation, indirect and competitive ELISAs, and experiments on cells infected with EV71 particles to which the VP4 and VP1-N-terminus were surface-exposed (i.e., A-particles that don’t require receptor binding for infection) indicated that the VP4 specific-antibodies inhibit virus replication by interfering with the VP4-N-terminus, which is important for membrane pore formation and virus genome release leading to less production of virus proteins, less infectious virions, and restoration of host innate immunity. The antibodies may inhibit polyprotein/intermediate protein processing and cause sterically strained configurations of the capsid pentamers, which impairs virus morphogenesis. These antibodies should be further investigated for application as a safe and broadly effective HFMD therapy.
Collapse
Affiliation(s)
- Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Salma Teimoori
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand.,Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Napa Onvimala
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Ratigorn Guntapong
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Pulido MR, Martínez-Salas E, Sobrino F, Sáiz M. MDA5 cleavage by the Leader protease of foot-and-mouth disease virus reveals its pleiotropic effect against the host antiviral response. Cell Death Dis 2020; 11:718. [PMID: 32879301 PMCID: PMC7468288 DOI: 10.1038/s41419-020-02931-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The RIG-I-like receptor (RLR) melanoma differentiation-associated gene 5 (MDA5) plays a key role in triggering innate antiviral response during infection by RNA viruses. MDA5 activation leads to transcription induction of type-I interferon (IFN) and proinflammatory cytokines. MDA5 has also been associated with autoimmune and autoinflammatory diseases by dysfunctional activation of innate immune response in the absence of infection. Here, we show how foot-and-mouth disease virus (FMDV) counteracts the specific antiviral effect exerted by MDA5 targeting the protein for cleavage by the viral Leader protease (Lpro). MDA5 overexpression had an inhibitory effect on FMDV infection in IFN-competent cells. Remarkably, immunostimulatory viral RNA co-immunoprecipitated with MDA5 in infected cells. Moreover, specific cleavage of MDA5 by Lpro was detected in co-transfected cells, as well as during the course of FMDV infection. A significant reduction in IFN induction associated with MDA5 cleavage was detected by comparison with a non-cleavable MDA5 mutant protein with preserved antiviral activity. The Lpro cleavage site in MDA5 was identified as the RGRAR sequence in the conserved helicase motif VI, coinciding with that recently reported for Lpro in LGP2, another member of the RLRs family involved in antiviral defenses. Interestingly, specific mutations within the MDA5 Lpro target sequence have been associated with immune disease in mice and humans. Our results reveal a pleiotropic strategy for immune evasion based on a viral protease targeting phylogenetically conserved domains of immune sensors. Identification of viral strategies aimed to disrupt MDA5 functionality may also contribute to develop new treatment tools for MDA5-related disorders.
Collapse
Affiliation(s)
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
26
|
Zhang X, Paget M, Wang C, Zhu Z, Zheng H. Innate immune evasion by picornaviruses. Eur J Immunol 2020; 50:1268-1282. [PMID: 32767562 DOI: 10.1002/eji.202048785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The family Picornaviridae comprises a large number of viruses that cause disease in broad spectrum of hosts, which have posed serious public health concerns worldwide and led to significant economic burden. A comprehensive understanding of the virus-host interactions during picornavirus infections will help to prevent and cure these diseases. Upon picornavirus infection, host pathogen recognition receptors (PRRs) sense viral RNA to activate host innate immune responses. The activated PRRs initiate signal transduction through a series of adaptor proteins, which leads to activation of several kinases and transcription factors, and contributes to the consequent expression of interferons (IFNs), IFN-inducible antiviral genes, as well as various inflammatory cytokines and chemokines. In contrast, to maintain viral replication and spread, picornaviruses have evolved several elegant strategies to block innate immune signaling and hinder host antiviral response. In this review, we will summarize the recent progress of how the members of family Picornaviridae counteract host immune response through evasion of PRRs detection, blocking activation of adaptor molecules and kinases, disrupting transcription factors, as well as counteraction of antiviral restriction factors. Such knowledge of immune evasion will help us better understand the pathogenesis of picornaviruses, and provide insights into developing antiviral strategies and improvement of vaccines.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Max Paget
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, U.S.A.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, U.S.A.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, U.S.A
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| |
Collapse
|
27
|
Structures and Functions of Viral 5' Non-Coding Genomic RNA Domain-I in Group-B Enterovirus Infections. Viruses 2020; 12:v12090919. [PMID: 32839386 PMCID: PMC7552046 DOI: 10.3390/v12090919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.
Collapse
|
28
|
Visser LJ, Aloise C, Swatek KN, Medina GN, Olek KM, Rabouw HH, de Groot RJ, Langereis MA, de los Santos T, Komander D, Skern T, van Kuppeveld FJM. Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type I interferon suppression. PLoS Pathog 2020; 16:e1008702. [PMID: 32667958 PMCID: PMC7384677 DOI: 10.1371/journal.ppat.1008702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/27/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023] Open
Abstract
The type I interferon response is an important innate antiviral pathway. Recognition of viral RNA by RIG-I-like receptors (RLRs) activates a signaling cascade that leads to type I interferon (IFN-α/β) gene transcription. Multiple proteins in this signaling pathway (e.g. RIG-I, MDA5, MAVS, TBK1, IRF3) are regulated by (de)ubiquitination events. Most viruses have evolved mechanisms to counter this antiviral response. The leader protease (Lpro) of foot-and-mouth-disease virus (FMDV) has been recognized to reduce IFN-α/β gene transcription; however, the exact mechanism is unknown. The proteolytic activity of Lpro is vital for releasing itself from the viral polyprotein and for cleaving and degrading specific host cell proteins, such as eIF4G and NF-κB. In addition, Lpro has been demonstrated to have deubiquitination/deISGylation activity. Lpro’s deubiquitination/deISGylation activity and the cleavage/degradation of signaling proteins have both been postulated to be important for reduced IFN-α/β gene transcription. Here, we demonstrate that TBK1, the kinase that phosphorylates and activates the transcription factor IRF3, is cleaved by Lpro in FMDV-infected cells as well as in cells infected with a recombinant EMCV expressing Lpro. In vitro cleavage experiments revealed that Lpro cleaves TBK1 at residues 692–694. We also observed cleavage of MAVS in HeLa cells infected with EMCV-Lpro, but only observed decreasing levels of MAVS in FMDV-infected porcine LFPK αVβ6 cells. We set out to dissect Lpro’s ability to cleave RLR signaling proteins from its deubiquitination/deISGylation activity to determine their relative contributions to the reduction of IFN-α/β gene transcription. The introduction of specific mutations, of which several were based on the recently published structure of Lpro in complex with ISG15, allowed us to identify specific amino acid substitutions that separate the different proteolytic activities of Lpro. Characterization of the effects of these mutations revealed that Lpro’s ability to cleave RLR signaling proteins but not its deubiquitination/deISGylation activity correlates with the reduced IFN-β gene transcription. Outbreaks of the picornavirus foot-and-mouth disease virus (FMDV) have significant consequences for animal health and product safety and place a major economic burden on the global livestock industry. Understanding how this notorious animal pathogen suppresses the antiviral type I interferon (IFN-α/β) response may help to develop countermeasures to control FMDV infections. FMDV suppresses the IFN-α/β response through the activity of its Leader protein (Lpro), a protease that can cleave host cell proteins. Lpro was also shown to have deubiquitinase and deISGylase activity, raising the possibility that Lpro suppresses IFN-α/β by removing ubiquitin and/or ISG15, two posttranslational modifications that can regulate the activation, interactions and localization of (signaling) proteins. Here, we show that TBK1 and MAVS, two signaling proteins that are important for activation of IFN-α/β gene transcription, are cleaved by Lpro. By generating Lpro mutants lacking either of these two activities, we demonstrate that Lpro’s ability to cleave signaling proteins, but not its deubiquitination/deISGylase activity, correlates with suppression of IFN-β gene transcription.
Collapse
Affiliation(s)
- Linda J. Visser
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Chiara Aloise
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Kirby N. Swatek
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisselle N. Medina
- United States Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, New York, United States of America
| | - Karin M. Olek
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Huib H. Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Raoul J. de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Teresa de los Santos
- United States Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, New York, United States of America
| | - David Komander
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Ubiquitin Signaling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Tim Skern
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
MDA5 against enteric viruses through induction of interferon-like response partially via the JAK-STAT cascade. Antiviral Res 2020; 176:104743. [DOI: 10.1016/j.antiviral.2020.104743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 01/25/2023]
|
31
|
Lin JY, Kuo RL, Huang HI. Activation of type I interferon antiviral response in human neural stem cells. Stem Cell Res Ther 2019; 10:387. [PMID: 31843025 PMCID: PMC6916114 DOI: 10.1186/s13287-019-1521-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) residing in the central nervous system play an important role in neurogenesis. Several viruses can infect these neural progenitors and cause severe neurological diseases. The innate immune responses against the neurotropic viruses in these tissue-specific stem cells remain unclear. METHODS Human NSCs were transfected with viral RNA mimics or infected with neurotropic virus for detecting the expression of antiviral interferons (IFNs) and downstream IFN-stimulated antiviral genes. RESULTS NSCs are able to produce interferon-β (IFN-β) (type I) and λ1 (type III) after transfection with poly(I:C) and that downstream IFN-stimulated antiviral genes, such as ISG56 and MxA, and the viral RNA sensors RIG-I, MDA5, and TLR3, can be expressed in NSCs under poly(I:C) or IFN-β stimulation. In addition, our results show that the pattern recognition receptors RIG-I and MDA5, as well as the endosomal pathogen recognition receptor TLR3, but not TLR7 and TLR8, are involved in the activation of IFN-β transcription in NSCs. Furthermore, NSCs infected with the neurotropic viruses, Zika and Japanese encephalitis viruses, are able to induce RIG-I-mediated IFN-β expression. CONCLUSION Human NSCs have the ability to activate IFN signals against neurotropic viral pathogens.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
32
|
Huang HI, Lin JY, Chen SH. EV71 Infection Induces IFNβ Expression in Neural Cells. Viruses 2019; 11:v11121121. [PMID: 31817126 PMCID: PMC6950376 DOI: 10.3390/v11121121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV71) can invade the central nervous system (CNS) and cause neurological disease. Accumulating evidence indicates that EV71 can directly infect neurons in the CNS. Innate immune responses in the CNS have been known to play an essential role in limiting pathogen infections. Thus, investigating the effects of EV71 infection of neural cells is important for understanding disease pathogenesis. In this study, human neural cells were infected with EV71, and interferonβ (IFNβ) expression was examined. Our results show that IFNβ expression was upregulated in EV71-infected neural cells via pattern recognition receptors (PRRs) sensing of virus RNA. The PRRs Toll-like receptor 3 (TLR3), Toll-like receptor 8 (TLR8), and melanoma differentiation-associated gene-5 (MDA-5), but not retinoic acid-inducible gene-I (RIG-I) and Toll-like receptor 7 (TLR7), were found to be EV71-mediated IFNβ induction. Although viral proteins exhibited the ability to cleave mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-β (TRIF) in neural cells, levels of viral protein expression were low in these cells. Furthermore, neural cells efficiently produced IFNβ transcripts upon EV71 vRNA stimulation. Treating infected cells with anti-IFNβ antibodies resulted in increased virus replication, indicating that IFNβ release may play a role in limiting viral growth. These results indicate that EV71 infection can induce IFNβ expression in neural cells through PRR pathways.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33303, Taiwan
- Correspondence:
| | - Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| | - Sheng-Hung Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| |
Collapse
|
33
|
Chen KR, Ling P. Interplays between Enterovirus A71 and the innate immune system. J Biomed Sci 2019; 26:95. [PMID: 31787104 PMCID: PMC6886175 DOI: 10.1186/s12929-019-0596-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a growing threat to public health, particularly in the Asia-Pacific region. EV-A71 infection is most prevalent in infants and children and causes a wide spectrum of clinical complications, including hand-foot-and-mouth disease (HFMD), pulmonary and neurological disorders. The pathogenesis of EV-A71 infection is poorly understood at present. It is likely that viral factors and host immunity, and their interplay, affect the pathogenesis and outcome of EV-A71 infection. The mammalian innate immune system forms the first layer of defense against viral infections and triggers activation of adaptive immunity leading to full protection. In this review, we discuss recent advances in our understanding of the interaction between EV-A71 and the innate immune system. We discuss the role of pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and inflammasomes, in the detection of EV-A71 infection and induction of antiviral immunity. As a counteraction, EV-A71 viral proteins target multiple innate immune pathways to facilitate viral replication in host cells. These novel insights at the virus-host interphase may support the future development of vaccines and therapeutics against EV-A71 infection.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung Universiy, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Li Z, Yao F, Xue G, Xu Y, Niu J, Cui M, Wang H, Wu S, Lu A, Zhong J, Meng G. Antiviral effects of simeprevir on multiple viruses. Antiviral Res 2019; 172:104607. [PMID: 31563599 DOI: 10.1016/j.antiviral.2019.104607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Simeprevir was developed as a small molecular drug targeting the NS3/4A protease of hepatitis C virus (HCV). Unexpectedly, our current work discovered that Simeprevir effectively promoted the transcription of IFN-β and ISG15, inhibited the infection of host cells by multiple viruses including Zika virus (ZIKV), Enterovirus A71 (EV-A71), as well as herpes simplex virus type 1 (HSV-1). However, the inhibitory effects of Simeprevir on ZIKV, EV-A71 and HSV-1 were independent from IFN-β and ISG15. This study thus demonstrates that the application of Simeprevir can be extended to other viruses besides HCV.
Collapse
Affiliation(s)
- Zheng Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fujia Yao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Guang Xue
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junling Niu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mengmeng Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hongbin Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shuxian Wu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ailing Lu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China; Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Guangxun Meng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
35
|
Cellular Caspase-3 Contributes to EV-A71 2A pro-Mediated Down-Regulation of IFNAR1 at the Translation Level. Virol Sin 2019; 35:64-72. [PMID: 31512106 DOI: 10.1007/s12250-019-00151-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Enterovirus A71 (EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-α (IFN-α) has been used in antiviral therapy for decades; it has been reported that EV-A71 antagonizes the antiviral activity of IFN-α based on viral 2Apro-mediated reduction of the interferon-alpha receptor 1 (IFNAR1); however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-α in RD cells, whereas EV-A71 infection caused obvious down-regulation of the IFNAR1 protein and blockage of IFN-α signaling. Subsequently, we observed that EV-A71 2Apro inhibited IFNAR1 translation by cleavage of the eukaryotic initiation factor 4GI (eIF4GI), without affecting IFNAR1 mRNA levels induced by IFN-α. The inhibition of IFNAR1 translation also occurred in puromycin-induced apoptotic cells when caspase-3 cleaved eIF4GI. Importantly, we verified that 2Apro could activate cellular caspase-3, which was subsequently involved in eIF4GI cleavage mediated by 2Apro. Furthermore, inhibition of caspase-3 activation resulted in the partial restoration of IFNAR1 in cells transfected with 2A or infected with EV-A71, suggesting the pivotal role of both viral 2Apro and caspase-3 activation in the disturbance of IFN-α signaling. Collectively, we elucidate a novel mechanism by which cellular caspase-3 contributes to viral 2Apro-mediated down-regulation of IFNAR1 at the translation level during EV-A71 infection, indicating that caspase-3 inhibition could be a potential complementary strategy to improve clinical anti-EV-A71 therapy with IFN-α.
Collapse
|
36
|
Majzoub K, Wrensch F, Baumert TF. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses 2019; 11:v11080758. [PMID: 31426357 PMCID: PMC6723221 DOI: 10.3390/v11080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Animal cells have evolved dedicated molecular systems for sensing and delivering a coordinated response to viral threats. Our understanding of these pathways is almost entirely defined by studies in humans or model organisms like mice, fruit flies and worms. However, new genomic and functional data from organisms such as sponges, anemones and mollusks are helping redefine our understanding of these immune systems and their evolution. In this review, we will discuss our current knowledge of the innate immune pathways involved in sensing, signaling and inducing genes to counter viral infections in vertebrate animals. We will then focus on some central conserved players of this response including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and cGAS-STING, attempting to put their evolution into perspective. To conclude, we will reflect on the arms race that exists between viruses and their animal hosts, illustrated by the dynamic evolution and diversification of innate immune pathways. These concepts are not only important to understand virus-host interactions in general but may also be relevant for the development of novel curative approaches against human disease.
Collapse
Affiliation(s)
- Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
- Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
37
|
Mitchell S, Mercado EL, Adelaja A, Ho JQ, Cheng QJ, Ghosh G, Hoffmann A. An NFκB Activity Calculator to Delineate Signaling Crosstalk: Type I and II Interferons Enhance NFκB via Distinct Mechanisms. Front Immunol 2019; 10:1425. [PMID: 31293585 PMCID: PMC6604663 DOI: 10.3389/fimmu.2019.01425] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor kappa B (NFκB) is a transcription factor that controls inflammation and cell survival. In clinical histology, elevated NFκB activity is a hallmark of poor prognosis in inflammatory disease and cancer, and may be the result of a combination of diverse micro-environmental constituents. While previous quantitative studies of NFκB focused on its signaling dynamics in single cells, we address here how multiple stimuli may combine to control tissue level NFκB activity. We present a novel, simplified model of NFκB (SiMoN) that functions as an NFκB activity calculator. We demonstrate its utility by exploring how type I and type II interferons modulate NFκB activity in macrophages. Whereas, type I IFNs potentiate NFκB activity by inhibiting translation of IκBα and by elevating viral RNA sensor (RIG-I) expression, type II IFN amplifies NFκB activity by increasing the degradation of free IκB through transcriptional induction of proteasomal cap components (PA28). Both cross-regulatory mechanisms amplify NFκB activation in response to weaker (viral) inducers, while responses to stronger (bacterial or cytokine) inducers remain largely unaffected. Our work demonstrates how the NFκB calculator can reveal distinct mechanisms of crosstalk on NFκB activity in interferon-containing microenvironments.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Ellen L Mercado
- Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| | - Adewunmi Adelaja
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Jessica Q Ho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Quen J Cheng
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States.,Signaling Systems Laboratory, San Diego Center for Systems Biology, La Jolla, CA, United States
| |
Collapse
|
38
|
Wells AI, Coyne CB. Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses 2019; 11:E460. [PMID: 31117206 PMCID: PMC6563291 DOI: 10.3390/v11050460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses are a major source of human disease, particularly in neonates and young children where infections can range from acute, self-limited febrile illness to meningitis, endocarditis, hepatitis, and acute flaccid myelitis. The enterovirus genus includes poliovirus, coxsackieviruses, echoviruses, enterovirus 71, and enterovirus D68. Enteroviruses primarily infect by the fecal-oral route and target the gastrointestinal epithelium early during their life cycles. In addition, spread via the respiratory tract is possible and some enteroviruses such as enterovirus D68 are preferentially spread via this route. Once internalized, enteroviruses are detected by intracellular proteins that recognize common viral features and trigger antiviral innate immune signaling. However, co-evolution of enteroviruses with humans has allowed them to develop strategies to evade detection or disrupt signaling. In this review, we will discuss how enteroviruses infect the gastrointestinal tract, the mechanisms by which cells detect enterovirus infections, and the strategies enteroviruses use to escape this detection.
Collapse
Affiliation(s)
- Alexandra I Wells
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
- Richard K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
39
|
Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. J Virol 2019; 93:JVI.00222-19. [PMID: 30867299 DOI: 10.1128/jvi.00222-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Most viruses have acquired mechanisms to suppress antiviral alpha/beta interferon (IFN-α/β) and stress responses. Enteroviruses (EVs) actively counteract the induction of IFN-α/β gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated in the suppression of these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/β gene expression in infected cells for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-β induction are suppressed in cells infected with EV-A71, coxsackie B3 virus (CV-B3), CV-A21, and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-β gene transcription and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite protein kinase R (PKR) activation and α subunit of eukaryotic translation initiation factor 2 phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes its disassembly. Finally, we show that the ability to suppress SG formation and IFN-β gene transcription is conserved in the 2Apro of EV-A71, CV-A21, and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.IMPORTANCE Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis, and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-β gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses and thereby is the main enterovirus "security protein." Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses.
Collapse
|
40
|
Role of Enteroviral RNA-Dependent RNA Polymerase in Regulation of MDA5-Mediated Beta Interferon Activation. J Virol 2019; 93:JVI.00132-19. [PMID: 30814289 DOI: 10.1128/jvi.00132-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Infection by enteroviruses can cause severe neurological complications in humans. The interactions between the enteroviral and host proteins may facilitate the virus replication and be involved in the pathogenicity of infected individuals. It has been shown that human enteroviruses possess various mechanisms to suppress host innate immune responses in infected cells. Previous studies showed that infection by enterovirus 71 (EV71) causes the degradation of MDA5, which is a critical cytoplasmic pathogen sensor in the recognition of picornaviruses for initiating transcription of type I interferons. In the present study, we demonstrated that the RNA-dependent RNA polymerase (RdRP; also denoted 3Dpol) encoded by EV71 interacts with the caspase activation and recruitment domains (CARDs) of MDA5 and plays a role in the inhibition of MDA5-mediated beta interferon (IFN-β) promoter activation and mRNA expression. In addition, we found that the 3Dpol protein encoded by coxsackievirus B3 also interacted with MDA5 and downregulated the antiviral signaling initiated by MDA5. These findings indicate that enteroviral RdRP may function as an antagonist against the host antiviral innate immune response.IMPORTANCE Infection by enteroviruses causes severe neurological complications in humans. Human enteroviruses possess various mechanisms to suppress the host type I interferon (IFN) response in infected cells to establish viral replication. In the present study, we found that the enteroviral 3Dpol protein (or RdRP), which is a viral RNA-dependent RNA polymerase for replicating viral RNA, plays a role in the inhibition of MDA5-mediated beta interferon (IFN-β) promoter activation. We further demonstrated that enteroviral 3Dpol protein interacts with the caspase activation and recruitment domains (CARDs) of MDA5. These findings indicate that enteroviral RdRP functions as an antagonist against the host antiviral response.
Collapse
|
41
|
Xiao X, Qi J, Lei X, Wang J. Interactions Between Enteroviruses and the Inflammasome: New Insights Into Viral Pathogenesis. Front Microbiol 2019; 10:321. [PMID: 30858838 PMCID: PMC6398425 DOI: 10.3389/fmicb.2019.00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Enteroviruses (EVs) have emerged a substantial threat to public health. EVs infection range from mild to severe disease, including mild respiratory illness, diarrhea, poliomyelitis, hand, foot, and mouth disease, aseptic meningitis, and encephalitis. In the Asia-Pacific region, for example, one of the best studied enterovirus 71 (EV71) has been associated with pandemics of hand, foot, and mouth disease (HFMD) in children, particularly those under the age of five. Serious HFMD cases are associated with neurological complications, such as aseptic meningitis, acute flaccid paralysis, brainstem encephalitis, and have been associated with as many as 1000s of deaths in children and infants from 2008 to 2017, in China. More than 90% of laboratory confirmed deaths due to HMFD are associated with EV71. However, little is known about the pathogenesis of EVs. Studies have reported that EVs-infected patients with severe complications show elevated serum concentrations of IL-1β. The secretion of IL-1β is mediated by NLRP3 inflammasome during EV71 and CVB3 infection. Enteroviruses 2B and 3D proteins play an important role in activation of NLRP3 inflammasome, while 3C and 2A play important roles in antagonizing the activation of NLRP3 and the secretion of IL-1β. In this review, we summarize current knowledge regarding the molecular mechanisms that underlie the activation and regulation of the NLRP3 inflammasome, particularly how viral proteins regulate NLRP3 inflammasome activation. These insights into the relationship between the NLRP3 inflammasome and the pathogenesis of EVs infection may ultimately inform the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Xia Xiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianli Qi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
42
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
43
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
44
|
Toll-Like Receptor 3 Is Involved in Detection of Enterovirus A71 Infection and Targeted by Viral 2A Protease. Viruses 2018; 10:v10120689. [PMID: 30563052 PMCID: PMC6315976 DOI: 10.3390/v10120689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) has emerged as a major pathogen causing hand, foot, and mouth disease, as well as neurological disorders. The host immune response affects the outcomes of EV-A71 infection, leading to either resolution or disease progression. However, the mechanisms of how the mammalian innate immune system detects EV-A71 infection to elicit antiviral immunity remain elusive. Here, we report that the Toll-like receptor 3 (TLR3) is a key viral RNA sensor for sensing EV-A71 infection to trigger antiviral immunity. Expression of TLR3 in HEK293 cells enabled the cells to sense EV-A71 infection, leading to type I, IFN-mediated antiviral immunity. Viral double-stranded RNA derived from EV-A71 infection was a key ligand for TLR3 detection. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-β upon EV-A71 infection, thus reinforcing the importance of the TLR3 pathway in defending against EV-A71 infection. Our results further demonstrated that TLR3 was a target of EV-A71 infection. EV-A71 protease 2A was implicated in the downregulation of TLR3. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV-A71 infection, but also reveal the involvement of EV-A71 protease 2A in subverting TLR3-mediated antiviral defenses.
Collapse
|
45
|
Jin Y, Zhang R, Wu W, Duan G. Innate Immunity Evasion by Enteroviruses Linked to Epidemic Hand-Foot-Mouth Disease. Front Microbiol 2018; 9:2422. [PMID: 30349526 PMCID: PMC6186807 DOI: 10.3389/fmicb.2018.02422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Enterovirus (EV) infections are a major threat to global public health, and are responsible for mild respiratory illness, hand, foot, and mouth disease (HFMD), acute hemorrhagic conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like disease, and acute flaccid paralysis epidemic. Among them, HFMD is a common pediatric infectious disease caused by EVs of the family Picornaviridae including EV-A71, coxsackieviruses (CV)-A2, CV-A6, CV-A10, and CV-A16. Due to lack of vaccines and specific antiviral therapeutics, millions of children still suffer from HFMD. Innate immune system detects foreign invaders by means of a relatively limited number of sensors, such as pattern recognition receptors (PRRs) [e.g., retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), Toll-like receptors (TLRs), and NOD-like receptors (NLRs)] and even some secreted functional proteins. However, a range of research, highlighted in this review, suggest that EV-associated with HFMD have evolved different strategies to avoid detection by innate immunity via different proteases (e.g., 2A, 3C, 2C, and 3D). Ongoing efforts to better understand virus-host interactions that control innate immunity and then distill how that influences HFMD development promises to have real-world significance. In this review, we address this complex topic in nine sections including multiple proteins associated with PRR and type I interferon (IFN) signaling. Recognizing how EVs linked to HFMD evade host innate immune system, we also describe the interactions between them and, finally, suggest future directions to better inform drug development and public health.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weidong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication. Sci Rep 2018; 8:13418. [PMID: 30194441 PMCID: PMC6128947 DOI: 10.1038/s41598-018-31734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I-like receptor (RLR) is one of the most important pattern recognition receptors of the innate immune system that detects positive and/or negative stranded RNA viruses. Subsequently, it stimulates downstream transcription of interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) inducing the production of interferons (IFNs) and inflammatory cytokines. Tumour necrosis factor receptor associated factor 6 (TRAF6) is a key protein involved in the RLR-mediated antiviral signalling pathway, recruiting additional proteins to form a multiprotein complex capable of activating the NF-κB inflammatory pathway. Despite TRAF6 playing an important role in regulating host immunity and viral infection, the deubiquitination of TRAF6 induced by viral infection remains elusive. In this study, we found that enterovirus 71 (EV71) infection attenuated the expression of Ubiquitin-specific protease 4 (USP4) in vitro and in vivo, while overexpression of USP4 significantly suppressed EV71 replication. Furthermore, it was found that EV71 infection reduced the RLR signalling pathway and enhanced the degradation of TRAF6. USP4 was also found to interact with TRAF6 and positively regulate the RLR-induced NF-κB signalling pathway, inhibiting the replication of EV71. Therefore, as a novel positive regulator of TRAF6, USP4 plays an essential role in EV71 infection by deubiquitinating K48-linked ubiquitin chains.
Collapse
|
47
|
Xie J, Wang M, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Sun K, Chen X. Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Sci Rep 2018; 8:6596. [PMID: 29700351 PMCID: PMC5920089 DOI: 10.1038/s41598-018-24729-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. Visual observation and standard hematoxylin and eosin staining were performed to detect pathological damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by quantitative PCR. The CH strain (108.4 copies/mg) had higher viral titers than the CH60 strain (104.9 copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of ducklings.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| |
Collapse
|
48
|
Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses 2018; 10:v10040155. [PMID: 29597291 PMCID: PMC5923449 DOI: 10.3390/v10040155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Collapse
|
49
|
Fu Y, Zhang L, Zhang F, Tang T, Zhou Q, Feng C, Jin Y, Wu Z. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog 2017; 13:e1006611. [PMID: 28910400 PMCID: PMC5614653 DOI: 10.1371/journal.ppat.1006611] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. Exosomes are small membrane-encapsulated vesicles that secrete into the extracellular environment. Various proteins and RNA molecules have been identified in exosomes whose content reflects the physiological or pathological state of the host cells. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular responses and result in productive infection of the recipient host. Here, we showed that Enterovirus 71 (EV71), a non-enveloped, single-strand positive sense RNA virus that belongs to the family Picornaviridae and is a major etiologic agent of hand-foot and-mouth disease (HFMD), could stimulate exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. We postulate that the preferential packaging of miRNA-146a into exosome is a viral strategy of suppressing host innate immunity upon infection and the exosomal EV 71 RNA may play an important pathogenic role in the infection.
Collapse
Affiliation(s)
- Yuxuan Fu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Ting Tang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Qi Zhou
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
50
|
Huang L, Xiong T, Yu H, Zhang Q, Zhang K, Li C, Hu L, Zhang Y, Zhang L, Liu Q, Wang S, He X, Bu Z, Cai X, Cui S, Li J, Weng C. Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex. Biochem J 2017; 474:2051-2065. [PMID: 28487378 PMCID: PMC5465970 DOI: 10.1042/bcj20161037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Tao Xiong
- College of Life Sciences, Yangtze University, Jingzhou 434100, China
| | - Huibin Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Quan Zhang
- College of Life Sciences, Yangtze University, Jingzhou 434100, China
| | - Kunli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Changyao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Liang Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Yuanfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Lijie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Qinfang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Shengnan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiangnan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| |
Collapse
|