1
|
Vanderhoeven EA, Mosmann JP, Díaz A, Cuffini CG. Chlamydia in farms located in the Argentine-Brazilian-Paraguay tri-border. Braz J Microbiol 2025:10.1007/s42770-024-01586-6. [PMID: 39786642 DOI: 10.1007/s42770-024-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Chlamydias are zoonotic pathogens, broadly present in several bird species and responsible for economic losses in animal production. Our study focused on assessing the prevalence of Chlamydial species posing zoonotic risks in farm animals within the highly biodiverse Argentine, Brazil, and Paraguay tri-border area, characterized by significant human interaction. We surveyed nine farms in an area and nasally swabbed a total of 62 animals, that included cattle, horses and pigs. DNA was extracted and specific PCR was performed to identify and sequenced chlamydial species. We detected Chlamydia spp. in 6.5% (4/62) of the tested animals, with all positive cases found in cattle. None of the cattle showed symptoms of respiratory disease or had been diagnosed with reproductive disorders. Specific nested PCR confirmed two samples belonged to Chlamydia pecorum and two to Chlamydia psittaci. We report for the first time Chlamydia circulation with zoonotic risk in the region. We propose that surveys in birds and wild mammals could give a better understanding to know what Chlamydial species are circulating in the wild interface. The zoonotic potential should be taking into account as farm workers and the surrounding population could be silent carriers or have respiratory diseases being underdiagnosed, and therefore should be considered in the differential diagnoses.
Collapse
Affiliation(s)
- Ezequiel A Vanderhoeven
- Instituto de Biología Subtropical, CONICET-Universidad Nacional de Misiones (UNaM), Puerto Iguazú, Misiones, Argentina.
- Asociación Civil Centro de Investigaciones del Bosque Atlántico, Misiones, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Jessica P Mosmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G Cuffini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Wu XJ, Gao J, Zhang Q, Li CX, Zheng WB, Liu Q, Zhu XQ, Lei YP, Gao WW. Seroprevalence and Risk Factors of Chlamydia Infection in Cattle in Shanxi Province, North China. Animals (Basel) 2023; 13:ani13020252. [PMID: 36670792 PMCID: PMC9854887 DOI: 10.3390/ani13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The information on Chlamydia infection in cattle is limited in Shanxi Province, north China. This study aimed to investigate the seroprevalence and risk factors of Chlamydia and Chlamydia abortus infection in cattle in Shanxi Province. In November 2020, a large-scale investigation of Chlamydia seroprevalence was conducted on 981 cattle serum samples collected from 40 cattle farms in 11 cities of Shanxi Province. The seroprevalence of Chlamydia and C. abortus was examined by indirect hemagglutination assay (IHA) and enzyme-linked immunosorbent assay (ELISA), respectively. The seroprevalence of Chlamydia and C. abortus was 52.29% (513/981) and 2.96% (29/981), respectively, in cattle in Shanxi Province. Location was identified as a risk factor for Chlamydia and C. abortus infection (p < 0.05). Under different management patterns, the seroprevalence of Chlamydia and C. abortus in large-scale animal farming companies was higher than that in household animal farms and animal farming cooperatives, and only the seroprevalence of Chlamydia was significantly different in different management patterns (p < 0.01). The results showed that there was higher seroprevalence of Chlamydia in cattle in Shanxi Province, while C. abortus was not the dominant species. This study provided baseline information on Chlamydia infection in cattle in Shanxi Province, which constitutes valuable data for monitoring livestock health and preventing potential zoonoses.
Collapse
Affiliation(s)
- Xiao-Jing Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jin Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qian Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen-Xu Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ping Lei
- Veterinary Laboratory, Shanxi Provincial Animal Disease Prevention and Control Center, Taiyuan 030008, China
- Correspondence: (Y.-P.L.); (W.-W.G.)
| | - Wen-Wei Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (Y.-P.L.); (W.-W.G.)
| |
Collapse
|
3
|
Wheelhouse N, Hearn J, Livingstone M, Flockhart A, Dagleish M, Longbottom D. Identification of Parachlamydiaceae DNA in nasal and rectal passages of healthy dairy cattle. J Appl Microbiol 2021; 132:2642-2648. [PMID: 34932865 DOI: 10.1111/jam.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
Abstract
AIMS The order Chlamydiales comprises a broad range of bacterial pathogens and endosymbionts, which infect a wide variety of host species. Within this order, members of the family Parachlamydiaceae, which includes Parachlamydia and Neochlamydia species, have been particularly associated with infections in both humans and cattle, including having a potential pathogenic role in cases of bovine abortion. While the route of transmission has yet to be defined, it has been hypothesised that asymptomatic carriage and contamination of the immediate environment may be a route of inter-animal transmission. We investigated the asymptomatic carriage of Chlamydia-related organisms in healthy cattle. METHODS & RESULTS DNA was isolated from nasal and rectal swabs obtained from 38 healthy dairy heifers. A Chlamydiales sp. 16S rRNA qPCR was performed on each sample. A total of 18/38 nasal samples and all 38/38 rectal samples were identified as positive for Chlamydiales sp. Each positive sample was sequenced confirming the presence of DNA belonging to the Parachlamydiaceae. CONCLUSIONS The presence of Parachlamydiaceae DNA in nasal and rectal swab samples of healthy cattle provides evidence for the asymptomatic carriage of parachlamydial organisms within cattle. SIGNIFICANCE & IMPACT OF THE STUDY The study provides evidence of potential routes of environmental contamination that could provide a route for inter-animal and animal transmission of Parachlamydiaceae.
Collapse
Affiliation(s)
- Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Allen Flockhart
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | | | | |
Collapse
|
4
|
Favaroni A, Trinks A, Weber M, Hegemann JH, Schnee C. Pmp Repertoires Influence the Different Infectious Potential of Avian and Mammalian Chlamydia psittaci Strains. Front Microbiol 2021; 12:656209. [PMID: 33854490 PMCID: PMC8039305 DOI: 10.3389/fmicb.2021.656209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Chlamydia psittaci is the etiological agent of chlamydiosis in birds and can be transmitted to humans, causing severe systemic disease. C. psittaci infects a broad range of hosts; strains are isolated not only from birds but also from mammals, where they seem to have a reduced infectious and zoonotic potential. Comparative analysis of chlamydial genomes revealed the coding sequences of polymorphic membrane proteins (Pmps) to be highly variable regions. Pmps are characterized as adhesins in C. trachomatis and C. pneumoniae and are immunoreactive proteins in several Chlamydia species. Thus, Pmps are considered to be associated with tissue tropism and pathogenicity. C. psittaci harbors 21 Pmps. We hypothesize that the different infectious potential and host tropism of avian and mammalian C. psittaci strains is dependent on differences in their Pmp repertoires. In this study, we experimentally confirmed the different virulence of avian and mammalian strains, by testing the survival rate of infected embryonated eggs and chlamydiae dissemination in the embryos. Further, we investigated the possible involvement of Pmps in host tropism. Analysis of pmp sequences from 10 C. psittaci strains confirmed a high degree of variation, but no correlation with host tropism was identified. However, comparison of Pmp expression profiles from different strains showed that Pmps of the G group are the most variably expressed, also among avian and mammalian strains. To investigate their functions, selected Pmps were recombinantly produced from one avian and one mammalian representative strain and their adhesion abilities and relevance for the infection of C. psittaci strains in avian and mammalian cells were tested. For the first time, we identified Pmp22D, Pmp8G, and OmcB as relevant adhesins, essential during infection of C. psittaci strains in general. Moreover, we propose Pmp17G as a possible key player for host adaptation, as it could only bind to and influence the infection in avian cells, but it had no relevant impact towards infection in mammalian cells. These data support the hypothesis that distinct Pmp repertoires in combination with specific host factors may contribute to host tropism of C. psittaci strains.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Alexander Trinks
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
5
|
Sanderson H, Vasquez M, Killion H, Vance M, Sondgeroth K, Fox J. Fatal Chlamydia psittaci infection in a domestic kitten. J Vet Diagn Invest 2020; 33:101-103. [PMID: 33112195 DOI: 10.1177/1040638720966960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chlamydia psittaci has not been reported to cause disease in domestic cats, to our knowledge. In contrast, C. felis infection is common in domestic cats and typically results in conjunctivitis, upper respiratory tract infection, and less frequently pneumonia. Herein, we report the pathologic findings and diagnostic features of a fatal case of psittacosis in a 7-wk-old domestic kitten. The animal was 1 of a litter of 5 that, together with the queen, were yielded to a pet rescue center in Wyoming. Over a period of ~3 wk, the kittens and queen became sick, thin, and icteric prior to death, despite antimicrobial treatments. Postmortem evaluation of a kitten revealed necrosuppurative hepatitis with Gimenez stain-positive intracellular bacteria, nonsuppurative pneumonia, and mild leptomeningitis. The diagnosis of psittacosis was made by 16S rRNA PCR using multiple primer sets and sequencing from liver. Psittacosis should be considered a differential diagnosis in domestic cats with intracellular bacterial hepatitis and interstitial pneumonia.
Collapse
Affiliation(s)
- Hailey Sanderson
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Marce Vasquez
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Hally Killion
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Madison Vance
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Kerry Sondgeroth
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Jonathan Fox
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| |
Collapse
|
6
|
Shima K, Weber MM, Schnee C, Sachse K, Käding N, Klinger M, Rupp J. Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia psittaci. mSphere 2020; 5:e00787-20. [PMID: 32848009 PMCID: PMC7449628 DOI: 10.1128/msphere.00787-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia psittaci is a known avian pathogen causing psittacosis in birds and is capable of zoonotic transmission. In human pulmonary infections, C. psittaci can cause pneumonia associated with significant mortality if inadequately diagnosed and treated. Although intracellular C. psittaci manipulates host cell organelles for its replication and survival, it has been difficult to demonstrate host-pathogen interactions in C. psittaci infection due to the lack of easy-to-handle genetic manipulation tools. Here, we show the genetic transformation of C. psittaci using a plasmid shuttle vector that contains a controllable gene induction system. The 7,553-bp plasmid p01DC12 was prepared from the nonavian C. psittaci strain 01DC12. We constructed the shuttle vector pCps-Tet-mCherry using the full sequence of p01DC12 and the 4,449-bp fragment of Chlamydia trachomatis shuttle vector pBOMB4-Tet-mCherry. pCps-Tet-mCherry includes genes encoding the green fluorescent protein (GFP), mCherry, and ampicillin resistance (AmpR). Target genes can be inserted at a multiple cloning site (MCS). Importantly, these genes can be regulated by a tetracycline-inducible (tet) promoter. Using the pCps-Tet-mCherry plasmid shuttle vector, we show the expression of GFP, as well as the induction of mCherry expression, in C. psittaci strain 02DC15, which belongs to the avian C. psittaci 6BC clade. Furthermore, we demonstrated that pCps-Tet-mCherry was stably retained in C. psittaci transformants. Thus, our C. psittaci plasmid shuttle vector system represents a novel targeted approach that enables the elucidation of host-pathogen interactions.IMPORTANCE Psittacosis, caused by avian C. psittaci, has a major economic impact in the poultry industry worldwide and represents a significant risk for zoonotic transmission to humans. In the past decade, the tools of genetic manipulation have been improved for chlamydial molecular studies. While several genetic tools have been mainly developed in Chlamydia trachomatis, a stable gene-inducible shuttle vector system has not to date been available for C. psittaci In this study, we adapted a C. trachomatis plasmid shuttle vector system to C. psittaci We constructed a C. psittaci plasmid backbone shuttle vector called pCps-Tet-mCherry. The construct expresses GFP in C. psittaci Importantly, exogeneous genes can be inserted at an MCS and are regulated by a tet promoter. The application of the pCps-Tet-mCherry shuttle vector system enables a promising new approach to investigate unknown gene functions of this pathogen.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-lnstitut (Federal Research Institute for Animal Health), Jena, Germany
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | | | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, Germany
| |
Collapse
|
7
|
Pardon B, Buczinski S. Bovine Respiratory Disease Diagnosis: What Progress Has Been Made in Infectious Diagnosis? Vet Clin North Am Food Anim Pract 2020; 36:425-444. [PMID: 32451034 PMCID: PMC7244442 DOI: 10.1016/j.cvfa.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Sébastien Buczinski
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
8
|
Liebler-Tenorio EM, Lambertz J, Ostermann C, Sachse K, Reinhold P. Regeneration of Pulmonary Tissue in a Calf Model of Fibrinonecrotic Bronchopneumonia Induced by Experimental Infection with Chlamydia Psittaci. Int J Mol Sci 2020; 21:ijms21082817. [PMID: 32316620 PMCID: PMC7215337 DOI: 10.3390/ijms21082817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Pneumonia is a cause of high morbidity and mortality in humans. Animal models are indispensable to investigate the complex cellular interactions during lung injury and repair in vivo. The time sequence of lesion development and regeneration is described after endobronchial inoculation of calves with Chlamydia psittaci. Calves were necropsied 2-37 days after inoculation (dpi). Lesions and presence of Chlamydia psittaci were investigated using histology and immunohistochemistry. Calves developed bronchopneumonia at the sites of inoculation. Initially, Chlamydia psittaci replicated in type 1 alveolar epithelial cells followed by an influx of neutrophils, vascular leakage, fibrinous exudation, thrombosis and lobular pulmonary necrosis. Lesions were most extensive at 4 dpi. Beginning at 7 dpi, the number of chlamydial inclusions declined and proliferation of cuboidal alveolar epithelial cells and sprouting of capillaries were seen at the periphery of necrotic tissue. At 14 dpi, most of the necrosis had been replaced with alveoli lined with cuboidal epithelial cells resembling type 2 alveolar epithelial cells and mild fibrosis, and hyperplasia of organized lymphoid tissue were observed. At 37 dpi, regeneration of pulmonary tissue was nearly complete and only small foci of remodeling remained. The well-defined time course of development and regeneration of necrotizing pneumonia allows correlation of morphological findings with clinical data or treatment regimen.
Collapse
Affiliation(s)
- Elisabeth M. Liebler-Tenorio
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Correspondence: ; Tel.: +49-3641-804-2411
| | - Jacqueline Lambertz
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Chemisches und Veterinäruntersuchungsamt Rhein-Ruhr-Wupper (CVUA-RRW), Deutscher Ring 100, 47798 Krefeld, Germany
| | - Carola Ostermann
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
| | - Konrad Sachse
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Institute of Bioinformatics, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany
| | - Petra Reinhold
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
| |
Collapse
|
9
|
Hogerwerf L, Roof I, de Jong MJK, Dijkstra F, van der Hoek W. Animal sources for zoonotic transmission of psittacosis: a systematic review. BMC Infect Dis 2020; 20:192. [PMID: 32131753 PMCID: PMC7057575 DOI: 10.1186/s12879-020-4918-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Background Human psittacosis, caused by Chlamydia (C.) psittaci, is likely underdiagnosed and underreported, since tests for C. psittaci are often not included in routine microbiological diagnostics. Source tracing traditionally focuses on psittacine pet birds, but recently other animal species have been gaining more attention as possible sources for human psittacosis. This review aims to provide an overview of all suspected animal sources of human psittacosis cases reported in the international literature. In addition, for each animal species the strength of evidence for zoonotic transmission was estimated. Methods A systematic literature search was conducted using four databases (Pubmed, Embase, Scopus and Proquest). Articles were included when there was mention of at least one human case of psittacosis and a possible animal source. Investigators independently extracted data from the included articles and estimated strength of evidence for zoonotic transmission, based on a self-developed scoring system taking into account number of human cases, epidemiological evidence and laboratory test results in human, animals, and the environment. Results Eighty articles were included, which provided information on 136 different situations of possible zoonotic transmission. The maximum score for zoonotic transmission was highest for turkeys, followed by ducks, owls, and the category ‘other poultry’. Articles reporting about zoonotic transmission from unspecified birds, psittaciformes and columbiformes provided a relatively low strength of evidence. A genotypical match between human and animal samples was reported twenty-eight times, including transmission from chickens, turkeys, guinea fowl, peafowl, pigeons, ducks, geese, songbirds, parrot-like birds and owls. Conclusions Strong evidence exists for zoonotic transmission from turkeys, chickens and ducks, in addition to the more traditionally reported parrot-like animal sources. Based on our scoring system, the evidence was generally stronger for poultry than for parrot-like birds. Psittaciformes should not be disregarded as an important source of human psittacosis, still clinicians and public health officials should include poultry and birds species other than parrots in medical history and source tracing.
Collapse
Affiliation(s)
- Lenny Hogerwerf
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Inge Roof
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Marianne J K de Jong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frederika Dijkstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wim van der Hoek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
10
|
Gough SL, Carrick J, Raidal SL, Keane S, Collins N, Cudmore L, Russell CM, Raidal S, Hughes KJ. Chlamydia psittaci infection as a cause of respiratory disease in neonatal foals. Equine Vet J 2019; 52:244-249. [PMID: 31436332 DOI: 10.1111/evj.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND During 2016-2018, 15 critically ill neonatal foals with acute respiratory distress associated with Chlamydia psittaci infection were presented to three referral hospitals in New South Wales. Chlamydia psittaci has not previously been associated with the development of neonatal respiratory disease. OBJECTIVES To investigate and describe the clinical features and outcome of C. psittaci infection in neonatal foals. STUDY DESIGN Multicentre retrospective case series. METHODS The clinical, clinicopathological, necropsy and histological features of 15 foals with confirmed C. psittaci infection were reviewed and reported. RESULTS Thirteen foals with C. psittaci infection died or were subjected to euthanasia within 36 h of hospitalisation and two foals survived to discharge. Findings during post-mortem examination of nonsurviving foals included bronchopneumonia, pulmonary congestion, hepatic congestion and hepatic inflammation. Detection of C. psittaci was achieved using polymerase chain reaction (PCR) testing of swabs of nasal secretions (4/6) and rectal mucosa (5/7) from live foals, lung tissues of foals at necropsy (11/14) and foetal membranes (4/5). MAIN LIMITATIONS Small numbers of confirmed cases of neonatal C. psittaci infection and inconsistent sampling methods. CONCLUSIONS Chlamydia psittaci should be considered a differential diagnosis for neonatal foals with signs of severe systemic disease, including equine neonatal acute respiratory distress syndrome (EqNARDS). Chlamydia psittaci is a zoonotic pathogen and a personal protective equipment (PPE) should be worn for the management of foals with suspected or confirmed infection.
Collapse
Affiliation(s)
- S L Gough
- Veterinary Clinical Centre, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - J Carrick
- Equine Specialist Consulting, Scone, New South Wales, Australia
| | - S L Raidal
- Veterinary Clinical Centre, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - S Keane
- Dartbrook Equine Clinic, Scone, New South Wales, Australia
| | - N Collins
- Clovelly Intensive Care Unit, Scone Equine Hospital, Scone, New South Wales, Australia
| | - L Cudmore
- Clovelly Intensive Care Unit, Scone Equine Hospital, Scone, New South Wales, Australia
| | - C M Russell
- Clovelly Intensive Care Unit, Scone Equine Hospital, Scone, New South Wales, Australia
| | - S Raidal
- Veterinary Diagnostic Laboratory, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - K J Hughes
- Veterinary Clinical Centre, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
11
|
Jelocnik M, Taylor-Brown A, O'Dea C, Anstey S, Bommana S, Masters N, Katouli M, Jenkins C, Polkinghorne A. Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transbound Emerg Dis 2019; 66:1132-1137. [PMID: 30873753 DOI: 10.1111/tbed.13171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Chlamydiae are globally widespread obligate intracellular bacteria, which several species are a well-recognized threat to human and animal health. In Australia, the most successful chlamydial species are the infamous koala pathogen C. pecorum, and C. psittaci, an emerging pathogen associated with zoonotic events. Little is known about infections caused by other chlamydial organisms in Australian livestock or wildlife. Considering that these hosts can be encountered by humans at the animal/human interface, in this study, we investigated genetic diversity of chlamydial organisms infecting Australian domesticated and wild ungulates. A total of 185 samples from 129 domesticated (cattle, horses, sheep, and pigs) and 29 wild (deer) ungulate hosts were screened with C. pecorum and C. psittaci species-specific assays, followed by a screen with pan-Chlamydiales assay. Overall, chlamydial DNA was detected in 120/185 (65%) samples, including all ungulate hosts. Species-specific assays further revealed that C. pecorum and C. psittaci DNA were detected in 27% (50/185) and 6% (11/185) of the samples, respectively, however from domesticated hosts only. A total of 46 "signature" 16S rRNA sequences were successfully resolved by sequencing and were used for phylogenetic analyses. Sequence analyses revealed that genetically diverse novel as well as traditional chlamydial organisms infect an expanded range of ungulate hosts in Australia. Detection of the C. psittaci and C. pecorum in livestock, and novel taxa infecting horses and deer raises questions about the genetic make-up and pathogenic potential of these organisms, but also concerns about risks of spill-over between livestock, humans, and native wildlife.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyce Taylor-Brown
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Christian O'Dea
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Susan Anstey
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Sankhya Bommana
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mohamad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
12
|
In vitro analysis of genetically distinct Chlamydia pecorum isolates reveals key growth differences in mammalian epithelial and immune cells. Vet Microbiol 2019; 232:22-29. [PMID: 31030841 DOI: 10.1016/j.vetmic.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
Abstract
Chlamydia (C.) pecorum is an obligate intracellular bacterium that infects and causes disease in a broad range of animal hosts. Molecular studies have revealed that this pathogen is genetically diverse with certain isolates linked to different disease outcomes. Limited in vitro or in vivo data exist to support these observations, further hampering efforts to improve our understanding of C. pecorum pathogenesis. In this study, we evaluated whether genetically distinct C. pecorum isolates (IPA, E58, 1710S, W73, JP-1-751) display different in vitro growth phenotypes in different mammalian epithelial and immune cells. In McCoy cells, shorter lag phases were observed for W73 and JP-1-751 isolates. Significantly smaller inclusions were observed for the naturally plasmid-free E58 isolate. C. pecorum isolates of bovine (E58) and ovine origin (IPA, W73, JP-1-751) grew faster in bovine cells compared to a porcine isolate (1710S). C. pecorum isolates could infect but appear not able to complete their developmental cycle in bovine peripheral neutrophil granulocytes. All isolates, except 1710S, could multiply in bovine monocyte-derived macrophages. These results reveal potentially important phenotypic differences that will help to understand the pathogenesis of C. pecorum in vivo and to identify C. pecorum virulence factors.
Collapse
|
13
|
An epizootic of Chlamydia psittaci equine reproductive loss associated with suspected spillover from native Australian parrots. Emerg Microbes Infect 2018; 7:88. [PMID: 29765033 PMCID: PMC5953950 DOI: 10.1038/s41426-018-0089-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 01/29/2023]
Abstract
Chlamydia psittaci is an avian pathogen capable of spill-over infections to humans. A parrot C. psittaci strain was recently detected in an equine reproductive loss case associated with a subsequent cluster of human C. psittaci infections. In this study, we screened for C. psittaci in cases of equine reproductive loss reported in regional New South Wales, Australia during the 2016 foaling season. C. psittaci specific-PCR screening of foetal and placental tissue samples from cases of equine abortion (n = 161) and foals with compromised health status (n = 38) revealed C. psittaci positivity of 21.1% and 23.7%, respectively. There was a statistically significant geographical clustering of cases ~170 km inland from the mid-coast of NSW (P < 0.001). Genomic analysis and molecular typing of C. psittaci positive samples from this study and the previous Australian equine index case revealed that the equine strains from different studs in regional NSW were clonal, while the phylogenetic analysis revealed that the C. psittaci strains from both Australian equine disease clusters belong to the parrot-associated 6BC clade, again indicative of spill-over of C. psittaci infections from native Australian parrots. The results of this work suggest that C. psittaci may be a more significant agent of equine reproductive loss than thought. A range of studies are now required to evaluate (a) the exact role that C. psittaci plays in equine reproductive loss; (b) the range of potential avian reservoirs and factors influencing infection spill-over; and (c) the risk that these equine infections pose to human health.
Collapse
|
14
|
Circulating and broncho-alveolar interleukin-6 in relation to body temperature in an experimental model of bovine Chlamydia psittaci infection. PLoS One 2017; 12:e0189321. [PMID: 29281663 PMCID: PMC5744922 DOI: 10.1371/journal.pone.0189321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
In rodent models of experimentally induced fever, the important role of interleukin-6 (IL-6) as a circulating endogenous pyrogen is well established. Studies employing larger animal species and real infections are scarce. Therefore, we assessed bioactive IL-6 in peripheral blood and in broncho-alveolar lavage fluid (BALF) of calves after intra-bronchial inoculation with vital Chlamydia psittaci (Cp), with inactivated Cp, or with BGM cells. Only calves inoculated with vital Cp developed fever (peak at 2-3 days after challenge) and significantly increased IL-6 activity. Controls inoculated with either inactivated Cp or BGM cells also expressed increased bioactive IL-6, but no fever developed. Activity of IL-6 in BALF was significantly higher compared to blood serum. This experimental model of Cp infection revealed no apparent relation between IL-6 in blood and body temperature, but did reveal a relation between IL-6 and other markers of inflammation in BALF. We conclude that a local inflammatory response in the lungs of infected calves caused fever, which developed by mechanisms including other mediators besides IL-6.
Collapse
|
15
|
Barkallah M, Jribi H, Ben Slima A, Gharbi Y, Mallek Z, Gautier M, Fendri I, Gdoura R. Molecular prevalence of Chlamydia and Chlamydia-like bacteria in Tunisian domestic ruminant farms and their influencing risk factors. Transbound Emerg Dis 2017; 65:e329-e338. [PMID: 29120114 DOI: 10.1111/tbed.12757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 02/04/2023]
Abstract
Chlamydia and Chlamydia-like bacteria are well known to infect several organisms and may cause a wide range of diseases, particularly in ruminants. To gain insight into the prevalence and diversity of these intracellular bacteria, we applied a pan-Chlamydiales real-time PCR to 1,134 veterinary samples taken from 130 Tunisian ruminant herds. The true adjusted animal population-level prevalence was 12.9% in cattle, against 8.7% in sheep. In addition, the true adjusted herd-level prevalence of Chlamydiae was 80% in cattle and 25.5% in sheep. Chlamydiales from three family-level lineages were detected indicating a high biodiversity of Chlamydiales in ruminant herds. Our results showed that Parachlamydia acanthamoebae could be responsible for bovine and ovine chlamydiosis in central-eastern Tunisia. Multivariable logistic regression analysis at the animal population level indicated that strata and digestive disorders variables were the important risk factors of bovine and ovine chlamydiosis. However, origin and age variables were found to be associated with bovine and ovine chlamydiosis, respectively. At the herd level, risk factors for Chlamydia positivity were as follows: abortion and herd size for cattle against breeding system, cleaning frequency, quarantine, use of disinfectant and floor type for sheep. Paying attention to these risk factors will help improvement of control programs against this harmful zoonotic disease.
Collapse
Affiliation(s)
- M Barkallah
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| | - H Jribi
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| | - A Ben Slima
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| | - Y Gharbi
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| | - Z Mallek
- Veterinary Research Center of Sfax, Sfax, Tunisia
| | - M Gautier
- Equipe Microbiologie de l'œuf et des Ovoproduits (MICOV), Agrocampus Ouest, INRA, (UMR1253) Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - I Fendri
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| | - R Gdoura
- Faculty of Sciences of Sfax, Toxicology-Microbiology and Environmental Health Laboratory (LR17ES06), University of Sfax, Sfax, Tunisia
| |
Collapse
|
16
|
Taylor KA, Durrheim D, Heller J, O'Rourke B, Hope K, Merritt T, Freeman P, Chicken C, Carrick J, Branley J, Massey P. Equine chlamydiosis-An emerging infectious disease requiring a one health surveillance approach. Zoonoses Public Health 2017; 65:218-221. [PMID: 28984040 DOI: 10.1111/zph.12391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Psittacosis is a rare but potentially fatal zoonosis caused by Chlamydia psittaci, an organism that is typically associated with bird contact. However C. psittaci is capable of infecting other non-avian hosts, such as horses, sheep, cattle and goats. Stud staff and veterinarians have significant exposure to parturient animals and reproductive materials in their routine work. To investigate the zoonotic potential associated with the emergence of C. psittaci as an abortifacient agent in horses, we established a programme of joint human and animal surveillance in a sentinel horse-breeding region in Australia. This programme comprised cross-notification of equine cases to public health agencies, and active follow-up of known human contacts, including stud workers, foaling staff, veterinarians and laboratory staff. We identified no confirmed cases of acute psittacosis despite intensive surveillance and testing of heavily exposed contacts; however, further work in the area is needed.
Collapse
Affiliation(s)
- K A Taylor
- Population Health Unit, Hunter New England Local Health, Wallsend, NSW, Australia
| | - D Durrheim
- Population Health Unit, Hunter New England Local Health, Wallsend, NSW, Australia.,School of Public Health and Medical Practice, University of Newcastle, Newcastle, NSW, Australia
| | - J Heller
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - B O'Rourke
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - K Hope
- Health Protection, New South Wales Ministry of Health, North Sydney, NSW, Australia
| | - T Merritt
- Population Health Unit, Hunter New England Local Health, Wallsend, NSW, Australia
| | - P Freeman
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - C Chicken
- Scone Equine Hospital, Scone, NSW, Australia
| | - J Carrick
- Equine Specialist Consulting, Scone, NSW, Australia
| | - J Branley
- Westmead Clinical School, Nepean Hospital, Nepean, NSW, Australia
| | - P Massey
- Population Health Unit, Hunter New England Local Health, Wallsend, NSW, Australia
| |
Collapse
|
17
|
Greives TJ, Dochtermann NA, Stewart EC. Estimating heritable genetic contributions to innate immune and endocrine phenotypic correlations: A need to explore repeatability. Horm Behav 2017; 88:106-111. [PMID: 27913139 DOI: 10.1016/j.yhbeh.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023]
Abstract
The immune system plays an important role in enhancing an individual's ability to survive in a world inhabited by pathogens and parasites. The innate immune system is regulated by processes encoded in an individual's genome, providing an avenue for selection to act on this system, as well as the phenotypic relationships generated between this system and other traits of interest. While relationships between innate immunity and endocrine traits (e.g. testosterone) have been reported often in the literature, these relationships are complex and may differ under varying environmental conditions. To better understand the relative contribution of innate immunity (or an endocrine or behavioral trait) to a phenotypic correlation with another trait, an estimation of the underlying heritable genetic variation of the trait of interest is needed. An upper level estimate of the heritability of such traits can be obtained from calculating its repeatability. We conducted a literature review to determine how often repeated samples of measures of innate immune function were conducted and repeatability estimates obtained. This review revealed a very limited number of repeatability estimates, with a large range (0.0-0.9); estimates were exclusively from livestock that have undergone strong artificial selection. This observation of the present literature suggests more work is needed in non-domesticated and free-living animals to begin to understand the underlying genetic contribution of innate immune function to phenotypic correlations of interest (e.g. testosterone and immunity) to behavioral ecologists, evolutionary physiologists and ecoimmunologists.
Collapse
Affiliation(s)
- Timothy J Greives
- Department of Biological Sciences and Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, United States.
| | - Ned A Dochtermann
- Department of Biological Sciences and Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, United States
| | - Emily C Stewart
- Department of Biological Sciences and Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
18
|
Opota O, Brouillet R, Greub G, Jaton K. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform. Methods Mol Biol 2017; 1616:171-181. [PMID: 28600769 DOI: 10.1007/978-1-4939-7037-7_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.
Collapse
Affiliation(s)
- Onya Opota
- Institute of Microbiology, University Hospital Center, University of Lausanne, Rue du Bugnon 48, 1011, Lausanne, Switzerland
| | - René Brouillet
- Institute of Microbiology, University Hospital Center, University of Lausanne, Rue du Bugnon 48, 1011, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Rue du Bugnon 48, 1011, Lausanne, Switzerland.
| | - Katia Jaton
- Institute of Microbiology, University Hospital Center, University of Lausanne, Rue du Bugnon 48, 1011, Lausanne, Switzerland
| |
Collapse
|
19
|
Radomski N, Einenkel R, Müller A, Knittler MR. Chlamydia-host cell interaction not only from a bird's eye view: some lessons fromChlamydia psittaci. FEBS Lett 2016; 590:3920-3940. [DOI: 10.1002/1873-3468.12295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nadine Radomski
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Rebekka Einenkel
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Anne Müller
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| |
Collapse
|
20
|
Schrödl W, Büchler R, Wendler S, Reinhold P, Muckova P, Reindl J, Rhode H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clin Appl 2016; 10:1077-1092. [PMID: 27274000 DOI: 10.1002/prca.201600028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022]
Abstract
Acute phase proteins (APPs) are highly conserved plasma proteins that are increasingly secreted by the liver in response to a variety of injuries, independently of their location and cause. APPs favor the systemic regulation of defense, coagulation, proteolysis, and tissue repair. Various APPs have been applied as general diagnostic parameters for a long time. Through proteomic techniques, more and more APPs have been discovered to be differentially altered. Since they are not consistently explainable by a stereotypic hepatic expression of sets of APPs, most of these results have unfortunately been neglected or attributed to the nonspecificity of the acute phase reaction. Moreover, it appears that various extrahepatic tissues are also able to express APPs. These extrahepatic APPs show focally specific roles in tissue homeostasis and repair and are released primarily into interstitial and distal fluids. Since these focal proteins might leak into the circulatory system, mixtures of hepatic and extrahepatic APP species can be expected in blood. Hence, a selective alteration of parts of APPs might be expected. There are several hints on multiple molecular forms and fragments of tissue-derived APPs. These differences offer the chance for multiple selective determinations. Thus, specific proteoforms might indeed serve as tissue-specific disease indicators.
Collapse
Affiliation(s)
- Wieland Schrödl
- Institute of Bacteriology and Mycology, Veterinary Faculty, University Leipzig, Germany
| | - Rita Büchler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich Loeffler Institut', Federal Research Institute for Animal Health, Jena, Germany
| | - Petra Muckova
- Institute of Biochemistry I, University Hospital Jena, Germany.,Clinic of Neurology, University Hospital Jena, Germany
| | - Johanna Reindl
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Heidrun Rhode
- Institute of Biochemistry I, University Hospital Jena, Germany
| |
Collapse
|
21
|
Walker E, Lee EJ, Timms P, Polkinghorne A. Chlamydia pecorum infections in sheep and cattle: A common and under-recognised infectious disease with significant impact on animal health. Vet J 2015; 206:252-60. [PMID: 26586214 DOI: 10.1016/j.tvjl.2015.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
There is a growing recognition that infections of livestock by the obligate intracellular bacterium, Chlamydia pecorum, are more widespread than was previously thought. A range of diseases have been associated with this pathogen, with the most important manifestations including infectious arthritis, infertility, enteritis, reduced growth rates, mastitis, and pneumonia. C. pecorum infections have also been associated with sub-clinical disease, highlighting our lack of knowledge about its true economic impact on livestock producers. Diagnosis of C. pecorum infection is based on clinical findings, serology and histopathology, which are not necessarily implemented in subclinical or early stages of infection, thus potentially contributing to under-diagnosis and under-reporting of infections associated with this bacterium. Recent molecular epidemiology studies have revealed that C. pecorum is genetically diverse and that there may be an association between certain strains and disease in sheep and cattle. Antimicrobial treatment of affected animals has questionable efficacy, justifying development of chlamydia vaccines for livestock. This review summarises current knowledge of the prevalence and impact of C. pecorum infections in sheep and cattle and provides an update on attempts to improve detection, management and treatment of infections by this important obligate intracellular pathogen.
Collapse
Affiliation(s)
- Evelyn Walker
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Central West Local Land Services, Dubbo, NSW, Australia
| | - Effie J Lee
- State Veterinary Diagnostic Laboratory, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Peter Timms
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
22
|
Prohl A, Wolf K, Weber C, Müller KE, Menge C, Sachse K, Rödel J, Reinhold P, Berndt A. Kinetics of Local and Systemic Leucocyte and Cytokine Reaction of Calves to Intrabronchial Infection with Chlamydia psittaci. PLoS One 2015; 10:e0135161. [PMID: 26252769 PMCID: PMC4529195 DOI: 10.1371/journal.pone.0135161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/18/2015] [Indexed: 11/19/2022] Open
Abstract
Infection of cattle with chlamydiae is ubiquitous and, even in the absence of clinical sequeleae, has a quantifiable negative impact on livestock productivity. Despite recent progress, our knowledge about immune response mechanisms capable of counteracting the infection and preventing its detrimental effects is still limited. A well-established model of bovine acute respiratory Chlamydia (C.) psittaci infection was used here to characterize the kinetics of the local and systemic immune reactions in calves. In the course of two weeks following inoculation, leukocyte surface marker expression was monitored by flow cytometry in blood and bronchoalveolar lavage fluid (BALF). Immune-related protein and receptor transcription were determined by quantitative real-time reverse transcription PCR in blood, BALF and lung tissue. An early increase of IL2RA, IL10 and HSPA1A mRNA expressions was followed by a rise of lymphocytes, monocytes, and granulocytes exhibiting activated phenotypes in blood. Monocytes showed elevated expression rates of CD11b, CD14 and MHC class II. The rates of CD62L expression on CD8hi T cells in blood and on CD4+ T cells in BALF were also augmented and peaked between 2 and 4 dpi. Notably, CD25 antigen expression was significantly elevated, not only on CD8dim/CD62L+ and CD8-/CD62L+ cells in blood, but also on granulocytes in blood and BALF between 2–3 dpi. From 4 dpi onwards, changes declined and the calves recovered from the infection until 10 dpi. The findings highlight the effectiveness of rapid local and systemic immune reaction and indicate activated T cells, monocytes and granulocytes being essential for rapid eradication of the C. psittaci infection.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Katharina Wolf
- Institute of Medical Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Corinna Weber
- Ruminant and Swine Clinic at Freie Universität Berlin, Berlin, Germany
| | - Kerstin E. Müller
- Ruminant and Swine Clinic at Freie Universität Berlin, Berlin, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
- * E-mail:
| | - Angela Berndt
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
23
|
Abstract
Background Cumulating reports suggest that acute phase proteins (APPs) do not only play a role as systemic inflammatory mediators, but are also expressed in different tissues as local reaction to inflammatory stimuli. The present study aimed to evaluate presence and changes in luminal lung concentrations of the APPs haptoglobin (Hp), lipopolysaccharide binding protein (LBP), C-reactive protein (CRP), and lactoferrin (Lf) in calves with an acute respiratory disease experimentally induced by Chlamydia (C.) psittaci. Results Intra-bronchial inoculation of the pathogen resulted in a consistent respiratory illness. In venous blood of the infected calves (n = 13), concentrations of plasma proteins and serum LBP were assessed (i) before exposure and (ii) 8 times within 14 days after inoculation (dpi). Increasing clinical illness correlated significantly with increasing LBP—and decreasing albumin concentrations in blood, both verifying a systemic acute phase response. Broncho-alveolar lavage fluid (BALF) was obtained from all 13 calves experimentally infected with C. psittaci at 4, 9 and 14 dpi, and from 6 uninfected healthy calves. Concentrations of bovine serum albumin (BSA), Hp, LBP, CRP and Lf in BALF were determined by ELISA. In infected animals, absolute concentrations of LBP and Hp in BALF correlated significantly with the respiratory score. The quotient [LBP]/[BSA] in BALF peaked significantly in acutely infected animals (4 dpi), showed a time-dependent decrease during the recovery phase (9-14 dpi), and was significantly higher compared to healthy controls. Concentrations of Hp and Lf in BALF as well as [Hp]/[BSA]—and [Lf]/[BSA]-quotients decreased during the study in infected animals, but were never higher than in healthy controls. CRP concentrations and [CRP]/[BSA]-quotient did not express significant differences between infected and healthy animals or during the course of infection. Conclusion In conclusion, absolute concentrations of LBP in blood and BALF as well as the quotient [LBP]/[BSA] in BALF perfectly paralleled the clinical course of respiratory illness after infection. Beside LBP, the suitability of Hp and Lf as local biomarkers of respiratory infections in cattle and their role in the local response to pathogens is worth further investigation, while CRP does not seem to play a role in local defense mechanisms of the bovine lung.
Collapse
|
24
|
Opota O, Jaton K, Branley J, Vanrompay D, Erard V, Borel N, Longbottom D, Greub G. Improving the molecular diagnosis of Chlamydia psittaci and Chlamydia abortus infection with a species-specific duplex real-time PCR. J Med Microbiol 2015; 64:1174-1185. [PMID: 26297212 DOI: 10.1099/jmm.0.000139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml(- 1)). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.
Collapse
Affiliation(s)
- Onya Opota
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Katia Jaton
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - James Branley
- Department of Microbiology, Nepean Hospital, Penrith, Sydney, Australia
| | - Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Veronique Erard
- Clinic of Internal Medicine, Division of Infectious Diseases, HFR-Fribourg, Fribourg, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, UK
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.,Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Laroucau K, Aaziz R, Meurice L, Servas V, Chossat I, Royer H, de Barbeyrac B, Vaillant V, Moyen JL, Meziani F, Sachse K, Rolland P. Outbreak of psittacosis in a group of women exposed to Chlamydia psittaci-infected chickens. ACTA ACUST UNITED AC 2015; 20. [PMID: 26111240 DOI: 10.2807/1560-7917.es2015.20.24.21155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eight cases of psittacosis due to Chlamydia psittaci were identified in May 2013 among 15 individuals involved in chicken gutting activities on a mixed poultry farm in France. All cases were women between 42 and 67 years-old. Cases were diagnosed by serology and PCR of respiratory samples. Appropriate treatment was immediately administered to the eight hospitalised individuals after exposure to birds had been discovered. In the chicken flocks, mainly C. gallinacea was detected, a new member of the family Chlamydiaceae, whereas the ducks were found to harbour predominantly C. psittaci, the classical agent of psittacosis. In addition, C. psittaci was found in the same flock as the chickens that the patients had slaughtered. Both human and C. psittaci-positive avian samples carried the same ompA genotype E/B of C. psittaci, which is widespread among French duck flocks. Repeated grassland rotations between duck and chicken flocks on the farm may explain the presence of C. psittaci in the chickens. Inspection by the veterinary service led to temporary closure of the farm. All birds had to be euthanised on site as no slaughterhouses accepted processing them. Farm buildings and grasslands were cleaned and/or disinfected before the introduction of new poultry birds.
Collapse
Affiliation(s)
- K Laroucau
- Anses, Laboratoire de Sante Animale, Unite Zoonoses Bacteriennes, Laboratoire National de Reference pour la Chlamydiose Aviaire, Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Álvarez D, Salinas J, Buendía AJ, Ortega N, del Río L, Sánchez J, Navarro JA, Gallego MC, Murcia-Belmonte A, Cuello F, Caro MR. Intratracheal infection as an efficient route for testing vaccines against Chlamydia abortus in sheep. Vet J 2015; 205:393-8. [PMID: 26095034 DOI: 10.1016/j.tvjl.2015.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Pregnant ewes have been widely used to test vaccines against Chlamydia abortus. However, this model entails many disadvantages such as high economic costs and long periods of pregnancy. The murine model is very useful for specific studies but cannot replace the natural host for the later stages of vaccine evaluation. Therefore, a non-pregnant model of the natural host might be useful for a vaccine trial to select the best vaccine candidates prior to use of the pregnant model. With this aim, two routes of infection were assessed in young non-pregnant sheep, namely, intranasal (IN) and intratracheal (IT). In addition, groups of non-vaccinated sheep and sheep immunised with an inactivated vaccine were established to investigate the suitability of the model for testing vaccines. After the experimental infection, isolation of the microorganism in several organs, with pathological and immunohistochemical analyses, antibody production assessment and investigation by PCR of the presence of chlamydia in the vagina or rectum were carried out. Experimental IT inoculation of C. abortus induced pneumonia in sheep during the first few days post-infection, confirming the suitability of the IT route for testing vaccines in the natural host. The course of infection and the resulting pathological signs were less severe in vaccinated sheep compared with non-vaccinated animals, demonstrating the success of vaccination. IN infection did not produce evident lesions or demonstrate the presence of chlamydial antigen in the lungs and cannot be considered an appropriate model for testing vaccines.
Collapse
Affiliation(s)
- D Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - A J Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - N Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - L del Río
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J Sánchez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J A Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - M C Gallego
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - A Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - F Cuello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - M R Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain.
| |
Collapse
|
27
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
28
|
Enrofloxacin and macrolides alone or in combination with rifampicin as antimicrobial treatment in a bovine model of acute Chlamydia psittaci infection. PLoS One 2015; 10:e0119736. [PMID: 25768665 PMCID: PMC4358964 DOI: 10.1371/journal.pone.0119736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Chlamydia psittaci is a zoonotic bacterium with a wide host range that can cause respiratory disease in humans and cattle. In the present study, effects of treatment with macrolides and quinolones applied alone or in combination with rifampicin were tested in a previously established bovine model of respiratory C. psittaci infection. Fifty animals were inoculated intrabronchially at the age of 6-8 weeks. Seven served as untreated controls, the others were assigned to seven treatment groups: (i) rifampicin, (ii) enrofloxacin, (iii) enrofloxacin + rifampicin, (iv) azithromycin, (v) azithromycin + rifampicin, (vi) erythromycin, and (vii) erythromycin + rifampicin. Treatment started 30 hours after inoculation and continued until 14 days after inoculation (dpi), when all animals were necropsied. The infection was successful in all animals and sufficient antibiotic levels were detected in blood plasma and tissue of the treated animals. Reisolation of the pathogen was achieved more often from untreated animals than from other groups. Nevertheless, pathogen detection by PCR was possible to the same extent in all animals and there were no significant differences between treated and untreated animals in terms of local (i.e., cell count and differentiation of BALF-cells) and systemic inflammation (i.e. white blood cells and concentration of acute phase protein LBP), clinical signs, and pathological findings at necropsy. Regardless of the reduced reisolation rate in treated animals, the treatment of experimentally induced respiratory C. psittaci infection with enrofloxacin, azithromycin or erythromycin alone or in combination with rifampicin was without obvious benefit for the host, since no significant differences in clinical and pathological findings or inflammatory parameters were detected and all animals recovered clinically within two weeks.
Collapse
|
29
|
Lohr M, Prohl A, Ostermann C, Liebler-Tenorio E, Schroedl W, Aeby S, Greub G, Reinhold P. A bovine model of a respiratory Parachlamydia acanthamoebae infection. Pathog Dis 2015; 73:1-14. [PMID: 24989139 DOI: 10.1111/2049-632x.12201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Collapse
Affiliation(s)
- Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sébastien Aeby
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
30
|
Prohl A, Lohr M, Ostermann C, Liebler-Tenorio E, Berndt A, Schroedl W, Rothe M, Schubert E, Sachse K, Reinhold P. Evaluation of antimicrobial treatment in a bovine model of acute Chlamydia psittaci infection: tetracycline versus tetracycline plus rifampicin. Pathog Dis 2015; 73:1-12. [PMID: 25113145 DOI: 10.1111/2049-632x.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial treatment of chlamydial infections is known to be of limited efficacy. In this study, effects of doxycycline (D), usually the drug of choice, were compared with the combined therapy of doxycycline and rifampicin (R) in a bovine model of respiratory Chlamydia psittaci infection. After intrabronchial inoculation of the pathogen, 30 animals were assigned to five groups (n = 6 per group): untreated controls, monotherapy with D (5 mg kg(-1)day(-1) or 10 mg kg(-1)day(-1)), and combination therapy of D and R (600 mg day(-1)). Treatment continued until day 14 post inoculation (d.p.i.). Clinical signs, inflammatory markers, and pathological findings confirmed successful infection in all animals. Reisolation of the pathogen was possible in 4/6 untreated animals and in 4/12 animals treated with D alone until 4 d.p.i., but in none of the calves of the two D + R groups. Pathogen detection was possible in all animals without significant differences among groups. Severity of disease and time course of its resolution, assessed by clinical and pathological findings as well as inflammatory parameters, were not significantly different between untreated controls and calves receiving D alone or in combination with R. Regardless of the treatment regimen, all groups recovered clinically and cleared the infection within 2 weeks.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Veterinary Faculty at The University of Leipzig, Leipzig, Jena, Germany
| | | | - Evelyn Schubert
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany OIE Reference Laboratory for Chlamydiosis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany OIE Reference Laboratory for Chlamydiosis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
31
|
|
32
|
Van Loo H, Pardon B, De Schutter P, De Bleecker K, Vanrompay D, Deprez P, Maris J. Detection of Chlamydia psittaci in Belgian cattle with signs of respiratory disease and milk drop syndrome. Vet Rec 2014; 175:562. [PMID: 25351231 DOI: 10.1136/vr.102527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- H Van Loo
- Animal Health Center Flanders (DGZ Vlaanderen), Industrielaan 29, Torhout 8820, Belgium
| | - B Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - P De Schutter
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - K De Bleecker
- Animal Health Center Flanders (DGZ Vlaanderen), Industrielaan 29, Torhout 8820, Belgium
| | - D Vanrompay
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - P Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - J Maris
- Animal Health Center Flanders (DGZ Vlaanderen), Industrielaan 29, Torhout 8820, Belgium
| |
Collapse
|
33
|
Knittler MR, Berndt A, Böcker S, Dutow P, Hänel F, Heuer D, Kägebein D, Klos A, Koch S, Liebler-Tenorio E, Ostermann C, Reinhold P, Saluz HP, Schöfl G, Sehnert P, Sachse K. Chlamydia psittaci: New insights into genomic diversity, clinical pathology, host–pathogen interaction and anti-bacterial immunity. Int J Med Microbiol 2014; 304:877-93. [DOI: 10.1016/j.ijmm.2014.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Prohl A, Ostermann C, Lohr M, Reinhold P. The bovine lung in biomedical research: visually guided bronchoscopy, intrabronchial inoculation and in vivo sampling techniques. J Vis Exp 2014. [PMID: 25046445 PMCID: PMC4211593 DOI: 10.3791/51557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Carola Ostermann
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Markus Lohr
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut;
| |
Collapse
|
35
|
Ostermann C, Linde S, Siegling-Vlitakis C, Reinhold P. Evaluation of pulmonary dysfunctions and acid-base imbalances induced by Chlamydia psittaci in a bovine model of respiratory infection. Multidiscip Respir Med 2014; 9:10. [PMID: 24517577 PMCID: PMC4021058 DOI: 10.1186/2049-6958-9-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background Chlamydia psittaci (Cp) is a respiratory pathogen capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection. To elucidate the pathogenesis of this infection, a translational large animal model was recently introduced by our group. This study aims at quantifying and differentiating pulmonary dysfunction and acid–base imbalances induced by Cp. Methods Forty-two calves were grouped in (i) animals inoculated with Cp (n = 21) and (ii) controls sham-inoculated with uninfected cell culture (n = 21). For pulmonary function testing, impulse oscillometry, capnography, and FRC (functional residual capacity) measurement were applied to spontaneously breathing animals. Variables of acid–base status were assessed in venous blood using both (i) traditional Henderson-Hasselbalch and (ii) strong ion approach. Results Both obstructive and restrictive pulmonary disorders were induced in calves experimentally inoculated with Cp. Although disorders in respiratory mechanics lasted for 8–11 days, the pattern of spontaneous breathing was mainly altered in the period of acute illness (until 4 days post inoculation, dpi). Expiration was more impaired than inspiration, resulting in elevated FRC. Ventilation was characterised by a reduction in tidal volume (−25%) combined with an increased percentage of dead space volume and a significant reduction of alveolar volume by 10%. Minute ventilation increased significantly (+50%) due to a compensatory doubling of respiratory rate. Hyperventilatory hypocapnia at 2–3 dpi resulted in slightly increased blood pH at 2 dpi. However, the acid–base equilibrium was additionally influenced by metabolic components, i.e. the systemic inflammatory response, all of which were detected with help of the strong ion theory. Decreased concentrations of albumin (2–10 dpi), a negative acute-phase marker, resulted in a decrease in the sum of non-volatile weak acids (Atot), revealing an alkalotic effect. This was counterbalanced by acidic effects of decreased strong ion difference (SID), mediated by the interplay between hypochloraemia (alkalotic effect) and hyponatraemia (acidic effect). Conclusions This bovine model was found to be suitable for studying pathophysiology of respiratory Cp infection and may help elucidating functional host-pathogen interactions in the mammalian lung.
Collapse
Affiliation(s)
- Carola Ostermann
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Susanna Linde
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | | | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|