1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci 2022; 24:ijms24010710. [PMID: 36614150 PMCID: PMC9820830 DOI: 10.3390/ijms24010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.
Collapse
Affiliation(s)
- Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Bożena Jaszczyk
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-670-95-63
| |
Collapse
|
3
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
4
|
Li W, Zheng H, Yang Y, Xu H, Guo Z. A diverse English keyword search reveals the value of scriptaid treatment for porcine embryo development following somatic cell nuclear transfer. Reprod Fertil Dev 2022; 34:798-803. [PMID: 35580865 DOI: 10.1071/rd22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Incomplete epigenetic reprogramming of histone deacetylation (HDAC) is one of the main reasons for the low efficiency of somatic cell nuclear transfer (SCNT). Scriptaid is a synthetic HDAC inhibitor (HDACi) that may improve the efficiency of porcine SCNT. AIMS This study aimed to determine whether scriptaid increases the number of blastocyst cells or the cleavage rate. METHODS We conducted a meta-analysis of the pertinent literature published over the past decade. KEY RESULTS A total of 73 relevant papers were retrieved using a diverse English keyword search, and 11 articles were used for the meta-analysis. Scriptaid was positively correlated with blastocyst rate but had no effect on cleavage rate or blastocyst cell number. A subgroup analysis of blastocyst cell number showed that the staining method was the source of the heterogeneity. CONCLUSIONS In SCNT embryos, scriptaid treatment after activation can promote embryonic development, but there may be adverse effects on early development. IMPLICATIONS HDACi research should focus on SCNT birth efficiency.
Collapse
Affiliation(s)
- Wei Li
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Hui Zheng
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yali Yang
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Hong Xu
- Northeast Agricultural University, College of Arts and Sciences, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P. R. China
| |
Collapse
|
5
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
6
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
7
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
8
|
Jeong PS, Yang HJ, Park SH, Gwon MA, Joo YE, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Combined Chaetocin/Trichostatin A Treatment Improves the Epigenetic Modification and Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos. Front Cell Dev Biol 2021; 9:709574. [PMID: 34692674 PMCID: PMC8526721 DOI: 10.3389/fcell.2021.709574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Soo-Hyun Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ah Gwon
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
9
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
10
|
Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev 2020; 66:505-514. [PMID: 32908081 PMCID: PMC7768172 DOI: 10.1262/jrd.2019-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) is currently inefficient, as 1–3.95% of reconstructed embryos survive to term; inadequate or erroneous epigenetic
reprogramming of the specialized donor somatic nucleus could be a primary reason. Therefore, a locus-specific analysis of DNA methylation dynamics in
embryogenesis and the DNA methylation status of gametes and donor cells used for SCNT were conducted in the following developmentally important gene loci:
POU5F1, NANOG, SOX2, H19, IGF2, IGF2R,
XIST; and the retrotransposon LINE-1. There were significant epigenetic differences between the gametes and the somatic
donor cells. Three gamete-specific differentially methylated regions (DMRs) in POU5F1, XIST, and LINE-1 were
identified. A delayed demethylation process at POU5F1 and LINE-1 loci occurred after three successive cleavages, compared to
the in vitro fertilized (IVF) embryos. Although cloned embryos could undergo de-methylation and re-methylation dynamics at the DMRs of
imprinted genes (H19,IGF2R, and XIST), the re-methylation process was compromised, unlike in fertilized
embryos. LINE-1 loci are widely dispersed across the whole genome, and LINE-1 DMR might be a potential porcine nuclear
reprogramming epi-marker. Data from observations in our present and previous studies, and two published articles were pooled to produce a schematic diagram of
locus-specific, DNA methylation dynamics of cloned and IVF embryos during porcine early embryogenesis. This also indicated aberrant DNA methylation
reprogramming events, including inadequate DNA demethylation and insufficient re-methylation in cloned embryos. Further research should focus on mechanisms
underlying demethylation during the early cleavage of embryos and de novo DNA methylation at the blastocyst stage.
Collapse
Affiliation(s)
- Weihua Xu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China.,Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongyi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Mao Zhang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Junsong Shi
- Guangdong Provincial Wen's Research Institute, Yunfu 527400, P. R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
11
|
Al-Ghadi MQ, Alhimaidi AR, Iwamoto D, Al-Mutary MG, Ammari AA, Saeki KO, Aleissa MS. The in vitro development of cloned sheep embryos treated with Scriptaid and Trichostatin (A). Saudi J Biol Sci 2020; 27:2280-2286. [PMID: 32884408 PMCID: PMC7451688 DOI: 10.1016/j.sjbs.2020.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/03/2022] Open
Abstract
Although, it has been success in the generation of animal clones from somatic cells in various animal species, the information related to nuclear reprogramming of cloned embryos is found to be limited. This study aims to compares the effect of both Scriptaid (SCR) and Trichostatin (A) treatments in improving cloning efficiency, and embryos developmental rate of cloned sheep embryos in vitro. Three groups were formed, i.e., one SCR group, second TSA group, with both treatment concentrations of 5 nM, 50 nM, and 500 nM, respectively, and third were control group with 0 nM. Methods: Ovaries of slaughtered sheep were collected and oocytes were recovered from antral follicles using aspiration method and in vitro maturation of oocytes were done. Then zona dissecting with micropipettes and oocyte enucleation were carried out under the micromanipulator. Later nuclear transfer, cell fusion and activation were done via cell fusion machine. Finally the embryo cultured in incubating chamber at the CO2 incubator up to 9 days. The result: In general the results showed that when the concentration increases the cleavage rate increased. The cleavage rates of the SCNT embryos treated with SCR at different concentrations are closely related to cleavage rate of embryos treated with TSA at same concentration; such as 39.47% for 500 nM TSA, 38.09% for 500 nM SCR; 18.6% for 50 nM TSA, 19.17% for 50 nM SCR, and 22.64% for 5 nM TSA, 17.18% for 5 nM SCR. As for the control group, the cleavage rate of the SCNT embryos cleavage ratewere27.47%., 30% and 30.85% respectively for bothtreatments. While there is a significant difference in TSA treatments at an eight-cell stage at the concentration (5 and 50 nM TSA) compared to the all other cleavage cell stages of (500 nM TSA and control). Also their were a differences between (50 nM of TSA) compared to the (50 nM SCR). Also there were a significant differences between the 16 cell stage at the (500 nM TSA) compared to other treatment (5 nM, 50 nM TSA and control). Regarding the SCR there were a significant difference at 8 cell stage between (5 nM SCR), compared to the other treatment (50 nM, 500 nM SCR and control). Also there were a significant difference at 16 cell stage between (50 nM, and 500 nM SCR), compared to the other treatment (5 nM SCR and control). While in the development of the embryos reach to blastocyst stage the SCR and the control group show a higher rate, in compered to TSA that did not show any development to blastocyst stage. The total SCR treatment showed (3/41 = 7.31%), and the total control showed (4/89 = 4.49%) blastula stage. It concludes that SCR improve the final development blastula stage compared to the TSA treatments that did not improved embryos reach to final developmental blastula stages may be due to spices differences or to the toxicity of TSA, especially at higher concentrations.
Collapse
Affiliation(s)
- Muath Q Al-Ghadi
- King Saud University, College of Science, Zoology Dept. Riyadh, Saudi Arabia
| | - Ahmad R Alhimaidi
- King Saud University, College of Science, Zoology Dept. Riyadh, Saudi Arabia
| | - Daisaku Iwamoto
- Kindai University Faculty of Biological -Oriented Sci. and Technology Dept. of Genetic Engineering. Wakayama, Japan
| | - Mohsen G Al-Mutary
- University of Imam Abdulrahman Bin Faisal, Basic Sciences Dept. Dammam, Saudi Arabia.,Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Fisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aiman A Ammari
- King Saud University, College of Science, Zoology Dept. Riyadh, Saudi Arabia.,Department of Veterinary Medicine, College of Agriculture and Medicine, Thamar University, Yemen
| | - Kazuhiro O Saeki
- Kindai University Faculty of Biological -Oriented Sci. and Technology Dept. of Genetic Engineering. Wakayama, Japan
| | - Mohammed S Aleissa
- Department of Biology, College of Science, Immam Mohammad Ibn Saud Islamic University Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development. ZYGOTE 2020; 28:286-290. [PMID: 32285760 DOI: 10.1017/s0967199419000856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate the effects of alternative protocols to improve oocyte selection, embryo activation and genomic reprogramming on in vitro development of porcine embryos cloned by somatic cell nuclear transfer (SCNT). In Experiment 1, in vitro-matured oocytes were selected by exposure to a hyperosmotic sucrose solution prior to micromanipulation. In Experiment 2, an alternative chemical activation protocol using a zinc chelator as an adjuvant (ionomycin + N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) + N-6-dimethylaminopurine (6-DMAP)) was compared with a standard protocol (ionomycin + 6-DMAP) for the activation of porcine oocytes or SCNT embryos. In Experiment 3, presumptive cloned zygotes were incubated after chemical activation in a histone deacetylase inhibitor (Scriptaid) for 15 h, with the evaluation of embryo yield and total cell number in day 7 blastocysts. In Experiment 1, cleavage rates tended to be higher in sucrose-treated oocytes than controls (123/199, 61.8% vs. 119/222, 53.6%, respectively); however, blastocyst rates were similar between groups. In Experiment 2, cleavage rates were higher in zygotes treated with TPEN than controls but no difference in blastocyst rates between groups occurred. For Experiment 3, the exposure to Scriptaid did not improve embryo development after cloning. Nevertheless, the total number of cells was higher in cloned zygotes treated with Scriptaid than SCNT controls. In conclusion, oocyte selection by sucrose as well as treatments with zinc chelator and an inhibitor of histone deacetylases did not significantly improve blastocyst yield in cloned and parthenotes. However, the histone deacetylases inhibitor produced a significant improvement in the blastocyst quality.
Collapse
|
13
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Cao H, Li J, Su W, Li J, Wang Z, Sun S, Tian S, Li L, Wang H, Li J, Fang X, Wei Q, Liu C. Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos. Reprod Fertil Dev 2019; 31:357-365. [PMID: 30196805 DOI: 10.1071/rd17357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/14/2018] [Indexed: 01/23/2023] Open
Abstract
Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.
Collapse
Affiliation(s)
- Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jun Li
- Department of Reproductive Medicine,The First Hospital of Hebei Medical University, NO.89 Donggang Road, Yuhua District, Shijiazhuang 050031, PR China
| | - Wenlong Su
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Lu Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Hanyang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jiexin Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| |
Collapse
|
15
|
Wu CF, Zhang DF, Zhang S, Sun L, Liu Y, Dai JJ. Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod Domest Anim 2019; 54:1604-1611. [PMID: 31549747 DOI: 10.1111/rda.13569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Aberration in DNA methylation is believed to be one of the major causes of abnormal gene expression and inefficiency of somatic cell nuclear transfer (SCNT). RG108, a non-nucleoside DNA methyltransferase (DNMT) inhibitor, has been reported to facilitate somatic nuclear reprogramming and improved blastocyst formation. The aim of this study was to investigate interaction effect of RG108 treatment time (24-72 hr) and concentrations (0.05-50 µM) on donor cells, and further to optimize the treatment for porcine SCNT. Our results showed that RG108 treatment resulted in time-dependent decrease of genome-wide DNA methylation on foetal fibroblasts, which only happened after 72-hr treatment in our experiments, and no interaction effect between treatment time and concentration. Remarkable decrease of methylation in imprinted gene H19 and increased apoptosis was observed in 5 and 50 µM RG108-treated cells. Furthermore, the blastocyst rates of SCNT embryos were increased as the fibroblasts treated with RG108 at 5 and 50 µM, and additional treatment during cultivation of SCNT embryos would not provide any advantage for blastocyst formation. In conclusion, the RG108 treatment of 72 hr and 5 μM would be optimized time and concentration for porcine foetal fibroblasts to improve the SCNT embryonic development. In addition, combined treatment of RG108 on donor cells and SCNT embryos would not be beneficial for embryonic development.
Collapse
Affiliation(s)
- Cai-Feng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - De-Fu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Ying Liu
- Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jian-Jun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| |
Collapse
|
16
|
Samiec M, Romanek J, Lipiński D, Opiela J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim Sci J 2019; 90:1127-1141. [PMID: 31298467 DOI: 10.1111/asj.13260] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The present study sought to examine whether trichostatin A (TSA)-assisted epigenetic transformation of porcine bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) affects the transcriptional activities of pluripotency-related genes (Oct4, Nanog, c-Myc, Sox2 and Rex1), multipotent stemness-related gene (Nestin) and anti-apoptotic/anti-senescence-related gene (Survivin). Epigenetically transformed or non-transformed BM-MSCs that had been transcriptionally profiled by qRT-PCR and had been analysed for different stages of apoptosis progression provided a source of nuclear donor cells for the in vitro production of cloned pig embryos. TSA-mediated epigenomic modulation has been found to enhance the multipotency extent, stemness and intracellular anti-ageing properties of porcine BM-MSCs. This has been confirmed by the relative abundances for Nanog, c-Myc Rex1, Sox2 and Survivin mRNAs in TSA-exposed BM-MSCs that turned out to be significantly higher than those of TSA-unexposed BM-MSCs. Additionally, TSA-assisted epigenomic modulation of BM-MSCs did not impact the caspase-8 activity, Bax protein expression and the incidence of TUNEL-positive cells. In conclusion, the considerably elevated quantitative profiles of Sox2, Rex1, c-Myc, Nanog and Survivin mRNA transcripts seem to trigger improved reprogrammability of TSA-treated BM-MSC nuclei in cloned pig embryos that thereby displayed remarkably increased blastocyst formation rates as compared to those noticed for embryos derived from TSA-untreated BM-MSCs.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Joanna Romanek
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Opiela
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| |
Collapse
|
17
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos. Cell Reprogram 2019; 20:76-88. [PMID: 29412736 DOI: 10.1089/cell.2017.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Collapse
Affiliation(s)
- Himanshu Agrawal
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,2 School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, India
| | - Naresh Lalaji Selokar
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Manoj Kumar Singh
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,4 ICAR-Central Institute for Research on Goats , Mathura, India
| | - Prabhat Palta
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Radhey Sham Manik
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| |
Collapse
|
18
|
Fang X, Xia W, Cao H, Guo Y, Wang H, Zhang X, Wan P, Liu C, Wei Q, Sun S, Tian S, Li J, Wang Z. Effect of supplemetation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Anim Biotechnol 2019; 31:155-163. [PMID: 30734624 DOI: 10.1080/10495398.2018.1559846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 μmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Wei Xia
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Xiaosheng Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin, China
| | - Pengcheng Wan
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| |
Collapse
|
19
|
Assis RIF, Wiench M, Silvério KG, da Silva RA, Feltran GDS, Sallum EA, Casati MZ, Nociti FH, Andia DC. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS One 2018; 13:e0207873. [PMID: 30507955 PMCID: PMC6277091 DOI: 10.1371/journal.pone.0207873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBMSCs) are important for tissue regeneration but their epigenetic regulation is not well understood. Here we investigate the ability of a non-nucleoside DNA methylation inhibitor, RG108 to induce epigenetic changes at both global and gene-specific levels in order to enhance mesenchymal cell markers, in hBMSCs. hBMSCs were treated with complete culture medium, 50 μM RG108 and DMSO for three days and subjected to viability and apoptosis assays, global and gene-specific methylation/hydroxymethylation, transcript levels’ analysis of epigenetic machinery enzymes and multipotency markers, protein activities of DNMTs and TETs, immunofluorescence staining and western blot analysis for NANOG and OCT4 and flow cytometry for CD105. The RG108, when used at 50 μM, did not affect the viability, apoptosis and proliferation rates of hBMSCs or hydroxymethylation global levels while leading to 75% decrease in DNMTs activity and 42% loss of global DNA methylation levels. In addition, DNMT1 was significantly downregulated while TET1 was upregulated, potentially contributing to the substantial loss of methylation observed. Most importantly, the mesenchymal cell markers CD105, NANOG and OCT4 were upregulated being NANOG and OCT4 epigenetically modulated by RG108, at their gene promoters. We propose that RG108 could be used for epigenetic modulation, promoting epigenetic activation of NANOG and OCT4, without affecting the viability of hBMSCs. DMSO can be considered a modulator of epigenetic machinery enzymes, although with milder effect compared to RG108.
Collapse
Affiliation(s)
- Rahyza I. F. Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Malgorzata Wiench
- School of Dentistry, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karina G. Silvério
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Rodrigo A. da Silva
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu,São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu,São Paulo, Brazil
| | - Enilson A. Sallum
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Marcio Z. Casati
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco H. Nociti
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Denise C. Andia
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
- Division of Epigenetics, School of Dentistry, Health Science Institute, Paulista University, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Hu J, Zhao Q, Feng Y, Li N, Gu Y, Sun R, Duan L, Wu Y, Shan Z, Lei L. Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells. Sci Rep 2018; 8:10955. [PMID: 30026469 PMCID: PMC6053380 DOI: 10.1038/s41598-018-29339-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) have the potential to be useful in the treatment of human diseases. While prior studies have reported multiple methods to generate iPSCs, DNA methylation continues to limit the totipotency and reprogramming efficiency of iPSCs. Here, we first show the competency of embryonic germ cells (EGCs) as a reprogramming catalyst capable of effectively promoting reprogramming induced by four defined factors, including Oct4, Sox2, Klf4 and c-Myc. Combining EGC extracts with these four factors resulted in formation of more embryonic stem cell-like colonies than did factors alone. Notably, expression of imprinted genes was higher with combined induction than with factors alone. Moreover, iPSCs derived from the combined inductors tended to have more global hypomethylation. Our research not only provides evidence that EGC extracts could activate DNA demethylation and reprogram imprinted genes, but also establishes a new way to enhance reprogramming of iPSCs, which remains a critical safety concern for potential use of iPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.,Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yukuan Feng
- Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Na Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanli Gu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Lian Duan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, P. R. China.
| |
Collapse
|
21
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
22
|
Jin L, Guo Q, Zhang GL, Xing XX, Xuan MF, Luo QR, Luo ZB, Wang JX, Yin XJ, Kang JD. The Histone Deacetylase Inhibitor, CI994, Improves Nuclear Reprogramming and In Vitro Developmental Potential of Cloned Pig Embryos. Cell Reprogram 2018; 20:205-213. [PMID: 29782192 DOI: 10.1089/cell.2018.0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic reprogramming and somatic cell nuclear transfer (SCNT) cloning efficiency were recently enhanced using histone deacetylase inhibitors (HDACis). In this study, we investigated the time effect of CI994, an HDACi, on the blastocyst formation rate, acetylation levels of H3K9 and H4K12, DNA methylation levels of anti-5-methylcytosine (5mC), and some mRNA expression of pluripotency-related genes in pig SCNT embryos. Treatment with 10 μM CI994 for 24 hours significantly improved the blastocyst formation rate of SCNT embryos in comparison with the untreated group (p < 0.05). Moreover, average fluorescence intensities of H3K9 and H4K12 in CI994-treated embryos were remarkably increased at the pseudo-pronuclear stage, but not at the blastocyst stage. The intensity of POU5F1 was higher in CI994-treated blastocysts than in control blastocysts, whereas that of 5mC did not differ between the two groups. The percentage of apoptotic cells in blastocysts was significantly higher in the untreated group than in the CI994-treated group. mRNA levels of POU5F1 and SOX2 were significantly increased in the CI994-treated group. These observations suggest that optimum exposure (10 μM for 24 hours) to CI994 after activation elevates the level of histone acetylation and subsequently improves the in vitro development of pig SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Guang-Lei Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xiao-Xu Xing
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qi-Rong Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jun-Xia Wang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| |
Collapse
|
23
|
Zhang Y, Qu P, Ma X, Qiao F, Ma Y, Qing S, Zhang Y, Wang Y, Cui W. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One 2018; 13:e0196785. [PMID: 29718981 PMCID: PMC5931650 DOI: 10.1371/journal.pone.0196785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengxiang Qu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaonan Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fang Qiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shannxi Province, PR China
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, United States of America
- * E-mail: (YZ); (YW); (WC)
| |
Collapse
|
24
|
Wang D, Liu Z, Yao H, Hao Y, Zhou L, Du J, Zhu Y, Xu Y, Wang G, Song Y, Li Z. Disruption of NNAT, NAP1L5 and MKRN3 DNA methylation and transcription in rabbit parthenogenetic fetuses. Gene 2017; 626:158-162. [PMID: 28526651 DOI: 10.1016/j.gene.2017.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Parthenogenetically activated oocytes cannot develop to term in mammals due to lack of paternal gene expression. Disruption of imprinted gene expression and DNA methylation status in parthenogenetic fetuses has been reported in mice and pigs, but not in rabbits. In this study, the genomic imprinting status of the paternally expressed genes Neuronatin (NNAT), Nucleosome assembly protein 1-like 5 (NAP1L5), and Makorin ring finger protein 3 (MKRN3) was compared between rabbit parthenogenetic (PA) and normally fertilized fetuses (Con) using quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR (BSP). The results revealed a significantly reduced expression of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses compared with Con fetuses (p<0.05). In addition, the BSP results demonstrated hypermethylation in the differentially methylated regions (DMRs) of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses. Taken together, these results suggest that hypermethylation of DMRs is associated with decreased NNAT, NAP1L5, and MKRN3 expression, which may be responsible for developmental failure of rabbit PA fetuses.
Collapse
Affiliation(s)
- Dongxu Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhiquan Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Haobin Yao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yang Hao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lina Zhou
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jian Du
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yixin Zhu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuxin Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Guodong Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuning Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Song X, Li F, Jiang Z, Sun Y, Li H, Gao S, Zhang L, Xue B, Zhao G, Li J, Liu Z, He H, Huan Y. Imprinting disorder in donor cells is detrimental to the development of cloned embryos in pigs. Oncotarget 2017; 8:72363-72374. [PMID: 29069793 PMCID: PMC5641136 DOI: 10.18632/oncotarget.20390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023] Open
Abstract
Imprinting disorder during somatic cell nuclear transfer usually leads to the abnormality of cloned animals and low cloning efficiency. However, little is known about the role of donor cell imprinting in the development of cloned embryos. Here, we demonstrated that the imprinting (H19/Igf2) in porcine fetus fibroblasts derived from the morphologically abnormal cloned fetuses (the abnormal imprinting group) was more hypomethylated, and accordingly, significantly higher H19 transcription and lower Igf2 expression occurred in comparison with those in fibroblasts derived from morphologically normal cloned fetuses (the normal imprinting group) or donor fetus fibroblasts (the control group). When these fibroblasts were used as donor cells, the abnormal imprinting group displayed an even lower imprinting methylation level, in correspondence to the significantly downregulated expression of Dnmt1, Dnmt3a and Zfp57, and a markedly reduced blastocyst rate, while the normal imprinting group took on the similar patterns of imprinting, gene expression and embryo development to the control group. When 5-aza-dC was applied to reduce the fibroblasts imprinting methylation level in the normal imprinting group, cloned embryos displayed the more severely impaired imprinting and significantly lower blastocyst rate. While the upregulated H19 transcription in the abnormal imprinting group was knocked down, the imprinting statuses were partly rescued, and the cleavage and blastocyst rates significantly increased in cloned embryos. In all, donor cell imprinting disorder reduced the developmental efficiency of cloned embryos. This work provides a new insight into understanding the molecular mechanism of donor cells regulating the cloned embryo development.
Collapse
Affiliation(s)
- Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Fangzheng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhongling Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yueping Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Shansong Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Liping Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Guimin Zhao
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
26
|
Wang P, Li X, Cao L, Huang S, Li H, Zhang Y, Yang T, Jiang J, Shi D. MicroRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos. PLoS One 2017; 12:e0180535. [PMID: 28665977 PMCID: PMC5493425 DOI: 10.1371/journal.pone.0180535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Incomplete epigenetic reprogramming of donor cell nuclei is one of the main contributors to the low efficiency of somatic cell nuclear transfer (SCNT). To improve the success of SCNT, somatic cell DNA methylation levels must be reduced to those levels found in totipotent embryonic cells. Recent studies have demonstrated that miR-148a can affect DNA methylation via DNMT1 modulation in various cancers. Therefore, the focus of this study was to examine the influence of miR-148a on DNA methylation in donor cells and in SCNT embryo development. Thus, a stable cell line overexpressing miR-148a was established and used to produce SCNT embryos. Upon examination, DNMT1 was found to be a miR-148a target in porcine fetal fibroblasts (PFF). Furthermore, miR-148a overexpression in PFFs significantly decreased DNMT1 expression and global DNA methylation levels (P < 0.05). Moreover, miRNA-148a expression levels in SCNT embryos were significantly lower at the 2-cell and 4-cell stages when compared to IVF and parthenogenetic embryos. The group overexpressing miRNA-148a also showed a significant increase in blastocyst formation and total cell numbers (P < 0.05). Additionally, miR-148a overexpression altered the immunofluorescence signal of 5-mC and H3K9ac, and enhanced pluripotent gene (Oct4 and Nanog) expression levels during embryo development. These results indicate that miR-148a overexpression enhances the developmental potential of SCNT embryos and modifies epigenetic status.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail: (XPL); (DSS)
| | - Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haiyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail: (XPL); (DSS)
| |
Collapse
|
27
|
Opiela J, Samiec M, Romanek J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology 2017; 97:27-33. [PMID: 28583605 DOI: 10.1016/j.theriogenology.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed.
Collapse
Affiliation(s)
- J Opiela
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland.
| | - M Samiec
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| | - J Romanek
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| |
Collapse
|
28
|
Lee WJ, Lee JH, Jeon RH, Jang SJ, Lee SC, Park JS, Lee SL, King WA, Rho GJ. Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development. Reprod Domest Anim 2017; 52:437-445. [PMID: 28191700 DOI: 10.1111/rda.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is considered as the technique in which a somatic cell is introduced into an enucleated oocyte to make a cloned animal. However, it is unavoidable to lose a small amount of the ooplasm during enucleation step during SCNT procedure. The present study was aimed to uncover whether the supplement of autologous ooplasm could ameliorate the oocyte competence so as to improve low efficiency of embryo development in porcine SCNT. Autologous ooplasm-transferred (AOT) embryos were generated by the supplementation with autologous ooplasm into SCNT embryos. They were comparatively evaluated with respect to embryo developmental potential, the number of apoptotic body formation and gene expression including embryonic lineage differentiation, apoptosis, epigenetics and mitochondrial activity in comparison with parthenogenetic, in vitro-fertilized (IVF) and SCNT embryos. Although AOT embryos showed perfect fusion of autologous donor ooplasm with recipient SCNT embryos, the supplement of autologous ooplasm could not ameliorate embryo developmental potential in regard to the rate of blastocyst formation, total cell number and the number of apoptotic body. Furthermore, overall gene expression of AOT embryos was presented with no significant alterations in comparison with that of SCNT embryos. Taken together, the results of AOT demonstrated inability to make relevant values improved from the level of SCNT embryos to their IVF counterparts.
Collapse
Affiliation(s)
- W-J Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - J-H Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - R-H Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-J Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-C Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - J-S Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-L Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - W-A King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - G-J Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
29
|
Rissi VB, Glanzner WG, Mujica LKS, Antoniazzi AQ, Gonçalves PBD, Bordignon V. Effect of Cell Cycle Interactions and Inhibition of Histone Deacetylases on Development of Porcine Embryos Produced by Nuclear Transfer. Cell Reprogram 2016; 18:8-16. [PMID: 27281695 DOI: 10.1089/cell.2015.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to evaluate if the positive effects of inhibiting histone deacetylase enzymes on cell reprogramming and development of somatic cell nuclear transfer (SCNT) embryos is affected by the cell cycle stage of nuclear donor cells and host oocytes at the time of embryo reconstruction. SCNT embryos were produced with metaphase II (MII) or telophase II (TII) cytoplasts and nuclear donor cells that were either at the G1-0 or G2/M stages. Embryos reconstructed with the different cell cycle combinations were treated or not with the histone deacetylase inhibitor (HDACi) Scriptaid for 15 h and then cultured in vitro for 7 days. Embryos reconstructed with MII-G1-0 and TII-G2/M developed to the blastocyst stage with a higher frequency compared to the other groups, confirming the importance of cell cycle interactions on cell reprogramming and SCNT embryo development. Treatment with HDACi improved development of SCNT embryos produced with MII but not TII cytoplasts, independently of the cell cycle stage of nuclear donor cells. These findings provide evidence that the positive effect of HDACi treatment on development of SCNT embryos depends upon cell cycle interactions between the host cytoplast and the nuclear donor cells.
Collapse
Affiliation(s)
- Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Werner G Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Lady K S Mujica
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Alfredo Q Antoniazzi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Vilceu Bordignon
- 2 Department of Animal Science, McGill University , Ste. Anne de Bellevue, Quebec, Canada , H9X 3V9
| |
Collapse
|
30
|
Nie JY, Zhu XX, Xie BK, Nong SQ, Ma QY, Xu HY, Yang XG, Lu YQ, Lu KH, Liao YY, Lu SS. Successful cloning of an adult breeding boar from the novel Chinese Guike No. 1 swine specialized strain. 3 Biotech 2016; 6:218. [PMID: 28330290 PMCID: PMC5055876 DOI: 10.1007/s13205-016-0525-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022] Open
Abstract
Somatic cloning, also known as somatic cell nuclear transfer (SCNT), is a promising technology which has been expected to rapidly extend the population of elaborately selected breeding boars with superior production performance. Chinese Guike No. 1 pig breed is a novel swine specialized strain incorporated with the pedigree background of Duroc and Chinese Luchuan pig breeds, thus inherits an excellent production performance. The present study was conducted to establish somatic cloning procedures of adult breeding boars from the Chinese Guike No. 1 specialized strain. Ear skin fibroblasts were first isolated from a three-year-old Chinese Guike No. 1 breeding boar, and following that, used as donor cell to produce nuclear transfer embryos. Such cloned embryos showed full in vitro development and with the blastocyst formation rate of 18.4 % (37/201, three independent replicates). Finally, after transferring of 1187 nuclear transfer derived embryos to four surrogate recipients, six live piglets with normal health and development were produced. The overall cloning efficiency was 0.5 % and the clonal provenance of such SCNT derived piglets was confirmed by DNA microsatellite analysis. All of the cloned piglets were clinically healthy and had a normal weight at 1 month of age. Collectively, the first successful cloning of an adult Chinese Guike No. 1 breeding boar may lay the foundation for future improving the pig production industry.
Collapse
Affiliation(s)
- Jun-Yu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing-Kun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Su-Qun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Qing-Yan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu-Ying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China.
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
31
|
Hou X, Liu J, Zhang Z, Zhai Y, Wang Y, Wang Z, Tang B, Zhang X, Sun L, Li Z. Effects of cytochalasin B on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reproduction 2016; 152:519-27. [PMID: 27581081 DOI: 10.1530/rep-16-0280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2023]
Abstract
DNA methylation and histone modification play important roles in the development of mammalian embryos. Cytochalasin B (CB) is an actin polymerization inhibitor that can significantly affect cell activity and is often used in studies concerning cytology. In recent years, CB is also commonly being used in in vitro experiments on mammalian embryos, but few studies have addressed the effect of CB on the epigenetic modification of embryonic development, and the mechanism underlying this process is also unknown. This study was conducted to investigate the effects of CB on DNA methylation and histone modification in the development of parthenogenetically activated porcine embryos. Treatment with 5 μg/mL CB for 4 h significantly increased the cleavage rate, blastocyst rate and total cell number of blastocysts. However, the percentage of apoptotic cells and the expression levels of the apoptosis-related genes BCL-XL, BAX and CASP3 were significantly decreased. Treatment with CB significantly decreased the expression levels of DNMT1, DNMT3a, DNMT3b, HAT1 and HDAC1 at the pronuclear stage and promoted the conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). After CB treatment, the level of AcH3K9 was upregulated and the level of H3K9me3 was downregulated. When combined with Scriptaid and 5-Aza-Cdr, CB further improved the embryonic development competence and decreased the expression of BCL-XL, BAX and CASP3 In conclusion, these results suggest that CB could improve embryonic development and the quality of the blastocyst by improving the epigenetic modification during the development of parthenogenetically activated embryos.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China College of Animal ScienceJilin University, Changchun, Jilin, China
| | - Jun Liu
- Second HospitalJilin University, Changchun, Jilin, China
| | - Zhiren Zhang
- College of Animal ScienceJilin University, Changchun, Jilin, China
| | - Yanhui Zhai
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Yutian Wang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Zhengzhu Wang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Bo Tang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Xueming Zhang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Liguang Sun
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
33
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
34
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
35
|
Lopez M, Halby L, Arimondo PB. DNA Methyltransferase Inhibitors: Development and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:431-473. [DOI: 10.1007/978-3-319-43624-1_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Zhu X, Nie J, Quan S, Xu H, Yang X, Lu Y, Lu K, Lu S. In vitro production of cloned and transgenically cloned embryos from Guangxi Huanjiang Xiang pig. In Vitro Cell Dev Biol Anim 2015; 52:137-43. [PMID: 26559066 DOI: 10.1007/s11626-015-9957-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
Abstract
Guangxi Huanjiang Xiang pig is a unique miniature pig strain that is originally from Huanjiang Maonan Autonomous County of Guangxi province, China, and shows great potential in agricultural and biomedical research. Although cloning and genetic modification of this pig would enhance its application value, cloning of this strain has not yet been reported. We sought to establish appropriate cloning procedures and produce transgenic embryos in Huanjiang Xiang pigs through the following methods. We isolated fibroblasts from tails of Huanjiang Xiang pig and genetically modified them using Xfect transfection. Fibroblasts, either in non-transgenic or transgenic forms, were used as donor cells for reconstructed embryos by somatic cell nuclear transfer (SCNT), and in vitro development was monitored after the reconstruction. We found no difference in blastocyst formation rate between non-transgenic and transgenic embryos (10.8% vs. 10.3%; P ≥ 0.05). In addition, we tested whether Scriptaid, a widely used histone deacetylase inhibitor, could enhance the in vitro development of Huanjiang Xiang pig cloned embryos. Treatment with 500 nM Scriptaid for 16 h post-activation significantly increased the blastocyst formation rate (26.1% vs. 10.8% for non-transgenic nuclear transfer groups with vs. without the Scriptaid treatment and 28.5% vs. 10.3% for transgenic nuclear transfer groups with vs. without the Scriptaid treatment; P < 0.05). This study provided a basis for further generation of cloned and transgenically cloned Huanjiang Xiang pigs used in agricultural and biomedical research.
Collapse
Affiliation(s)
- Xiangxing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shouneng Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Assisted Reproductive Centre, People's Hospital, Guigang, 537100, Guangxi, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
37
|
Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells. Biosci Rep 2015; 35:BSR20150064. [PMID: 26285804 PMCID: PMC4613706 DOI: 10.1042/bsr20150064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022] Open
Abstract
BIX-01294 (a diazepin-quinazolin-amine derivative) has important biological effects and its epigenetic regulation at imprinting control regions is highly complex. BIX-01294 may reduce global H3K9me2 levels and affect epigenetic modifications of small nuclear ribonucleoprotein N (Snrpn) in MEFs. Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 μM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs.
Collapse
|
38
|
Fernández-Nogales M, Hernández F, Miguez A, Alberch J, Ginés S, Pérez-Navarro E, Lucas JJ. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Hum Mol Genet 2015; 24:5040-52. [DOI: 10.1093/hmg/ddv224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
|
39
|
Huan Y, Wu Z, Zhang J, Zhu J, Liu Z, Song X. Epigenetic Modification Agents Improve Gene-Specific Methylation Reprogramming in Porcine Cloned Embryos. PLoS One 2015; 10:e0129803. [PMID: 26068219 PMCID: PMC4465902 DOI: 10.1371/journal.pone.0129803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail: (LZH); (SXX)
| | - Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (LZH); (SXX)
| |
Collapse
|
40
|
Huan Y, Wang H, Wu Z, Zhang J, Zhu J, Liu Z, He H. Epigenetic Modification of Cloned Embryos Improves Nanog Reprogramming in Pigs. Cell Reprogram 2015; 17:191-8. [PMID: 26053519 PMCID: PMC4487246 DOI: 10.1089/cell.2014.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Incomplete reprogramming of pluripotent genes in cloned embryos is associated with low cloning efficiency. Epigenetic modification agents have been shown to enhance the developmental competence of cloned embryos; however, the effect of the epigenetic modification agents on pluripotent gene reprogramming remains unclear. Here, we investigated Nanog reprogramming and the expression patterns of pluripotent transcription factors during early embryo development in pigs. We found that compared with fertilized embryos, cloned embryos displayed higher methylation in the promoter and 5'-untranslated region and lower methylation in the first exon of Nanog. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of porcine cloned embryos, Nanog methylation reprogramming was also improved, similar to that detected in fertilized counterparts. Furthermore, our results showed that the epigenetic modification agents improved the expression levels of Oct4 and Sox2 and effectively promoted Nanog transcription in cloned embryos. In conclusion, our results demonstrated that the epigenetic modification agent 5-aza-dC or TSA improved Nanog methylation reprogramming and the expression patterns of pluripotent transcription factors, thereby resulting in the enhanced expression of Nanog and high development of porcine cloned embryos. This work has important implications in the improvement of cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongmei Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese medicine, Weifang, Shandong Province, 262700, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese medicine, Weifang, Shandong Province, 262700, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongbin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| |
Collapse
|
41
|
Huan Y, Zhu J, Huang B, Mu Y, Kong Q, Liu Z. Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs. PLoS One 2015; 10:e0126607. [PMID: 25962071 PMCID: PMC4427324 DOI: 10.1371/journal.pone.0126607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022] Open
Abstract
Imprinting disorders induced by somatic cell nuclear transfer (SCNT) usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development remain poorly studied. In this study, we investigated the dynamics of H19/Igf2 methylation and transcription in porcine cloned embryos treated with trichostatin A (TSA), and examined H19/Igf2 imprinting patterns in cloned fetuses and piglets. Our results showed that compared with the maintenance of H19/Igf2 methylation in fertilized embryos, cloned embryos displayed aberrant H19/Igf2 methylation and lower H19/Igf2 transcripts. When TSA enhanced the development of cloned embryos, the disrupted H19/Igf2 imprinting was largely rescued in these treated embryos, more similar to those detected in fertilized counterparts. Further studies displayed that TSA effectively rescued the disrupted imprinting of H19/Igf2 in cloned fetuses and piglets, prevented the occurrence of cloned fetus and piglet abnormalities, and enhanced the full-term development of cloned embryos. In conclusion, our results demonstrated that aberrant imprinting induced by SCNT led to the abnormalities of cloned fetuses and piglets and low cloning efficiency, and TSA rescued the disrupted imprinting in cloned embryos, fetuses and piglets, and prevented the occurrence of cloned fetus and piglet abnormalities, thereby improving the development of cloned embryos. This study would have important implications in improving cloning efficiency and the health of cloned animals.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bo Huang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yanshuang Mu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
42
|
Huan Y, Wang H, Wu Z, Zhang J, Liu Z, He H. The expression patterns of DNA methylation reprogramming related genes are associated with the developmental competence of cloned embryos after zygotic genome activation in pigs. Gene Expr Patterns 2015; 18:1-7. [PMID: 25917378 DOI: 10.1016/j.gep.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
DNA methylation reprogramming, regulated by DNA methylation and demethylation related genes, is essential for early embryo development; however, it is incomplete in cloned embryos, leading to poor cloning efficiency. Previous studies have shown that DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), could enhance the development of cloned embryos, thus, the genes regulating DNA methylation reprogramming should appropriately express in these embryos. To examine whether there is a correlation between embryo development and the expression patterns of DNA methylation reprogramming related genes, we investigated the developmental progress and transcription levels of candidate genes containing DNA methyltransferases (Dnmt1 and Dnmt3a), ten eleven translocation (Tet) dioxygenases (Tet1, Tet2 and Tet3) and base excision repair related genes including activation induced deamination (Aid), thymine DNA glycosylase (Tdg) and AP endonuclease 1 (Apex1) in porcine early embryos. In this study, our results demonstrated that compared with in vitro fertilized embryos, delayed and reduced development and downregulated transcripts of DNA methylation reprogramming related genes after the 4-cell stage were observed in cloned embryos, showing the significantly (P < 0.05) lower proportions of embryos at the 8-cell, morula and blastocyst stages (19.69% vs 32.64% at 72 h, 16.67% vs 25.49% at 120 h and 19.82% vs 26.29% at 156 h, respectively) and transcription levels of Dnmt3a, Tet1, Tet2, Tet3, Aid, Tdg and Apex1. When cloned embryos were treated with 5-aza-dC, the developmental progress and transcription levels of DNA methylation reprogramming related genes were improved, more similar to those detected in fertilized counterparts. Furthermore, we found that the transcripts of zygotic genome activation and blastocyst quality related genes were also effectively promoted in porcine cloned embryos after 5-aza-dC treatment. In conclusion, our results demonstrated that the disturbed transcripts of DNA methylation reprogramming related genes were observed in porcine cloned embryos, while the enhanced development of porcine cloned embryos induced by 5-aza-dC was accompanied with the improved expression of DNA methylation reprogramming related genes after the 4-cell stage, providing a positive correlation between the expression patterns of DNA methylation reprogramming related genes and the developmental competence of porcine cloned embryos after zygotic genome activation.
Collapse
Affiliation(s)
- Yanjun Huan
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China; College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongmei Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| | - Zhanfeng Wu
- Department of Obstetrics and Gynecology, Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, 262700, China
| | - Jiguang Zhang
- Department of Obstetrics and Gynecology, Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, 262700, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China.
| | - Hongbin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China.
| |
Collapse
|
43
|
Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814686. [PMID: 25866813 PMCID: PMC4381569 DOI: 10.1155/2015/814686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
Collapse
|
44
|
Shi J, Zhou R, Luo L, Mai R, Zeng H, He X, Liu D, Zeng F, Cai G, Ji H, Tang F, Wang Q, Wu Z, Li Z. Influence of embryo handling and transfer method on pig cloning efficiency. Anim Reprod Sci 2015; 154:121-7. [PMID: 25640459 DOI: 10.1016/j.anireprosci.2015.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 12/14/2022]
Abstract
The somatic cell nuclear transfer (SCNT) technique could be used to produce genetically superior or genetically engineered cloned pigs that have wide application in agriculture and bioscience research. However, the efficiency of porcine SCNT currently is very low. Embryo transfer (ET) is a key step for the success of SCNT. In this study, the effects of several ET-related factors, including cloned embryo culture time, recipient's ovulation status, co-transferred helper embryos and ET position, on the success rate of pig cloning were investigated. The results indicated that transfer of cloned embryos cultured for a longer time (22-24h vs. 4-6h) into pre-ovulatory sows decreased recipient's pregnancy rate and farrowing rate, and use of pre-ovulatory and post-ovulatory sows as recipients for SCNT embryos cultured for 22-24h resulted in a similar porcine SCNT efficiency. Use of insemination-produced in vivo fertilized, parthenogenetically activated and in vitro fertilized embryos as helper embryos to establish and/or maintain pregnancy of SCNT embryos recipients could not improve the success rate of porcine SCNT. Transfer of cloned embryos into double oviducts of surrogates significantly increased pregnancy rate as well as farrowing rate of recipients, and the developmental rate of transferred cloned embryos, as compared to unilateral oviduct transfer. This study provided useful information for optimization of the embryo handling and transfer protocol, which will help to improve the ability to generate cloned pigs.
Collapse
Affiliation(s)
- Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Rong Zhou
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Lvhua Luo
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Ranbiao Mai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Haiyu Zeng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Xiaoyan He
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China; College of Animal Science, South China Agricultural University, Guangdong, PR China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China
| | - Fang Zeng
- College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China
| | - Gengyuan Cai
- College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China
| | - Hongmei Ji
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Fei Tang
- College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China
| | - Qinglai Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China; College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China.
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University and Guangdong Wen's Foodstuff Group, Guangdong, PR China; College of Animal Science, South China Agricultural University, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangdong, PR China.
| |
Collapse
|
45
|
Kim DH, No JG, Choi MK, Yeom DH, Kim DK, Yang BC, Yoo JG, Kim MK, Kim HT. In vitro development of canine somatic cell nuclear transfer embryos in different culture media. J Vet Sci 2014; 16:233-5. [PMID: 25549216 PMCID: PMC4483508 DOI: 10.4142/jvs.2015.16.2.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/06/2014] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Division of Animal Biotechnology, National Institute of Animal Science, Rural Development Administration, Suwon 441-706,
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang H, Wang L, Li W, Mao Q, Wang Y, Li Q, Hua S, Zhang Y. A simple and efficient method to transfect small interference RNA into bovine SCNT embryos. Theriogenology 2014; 84:846-52. [PMID: 26194696 DOI: 10.1016/j.theriogenology.2014.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023]
Abstract
RNA interference is an important tool to study the gene function. Microinjection and electroporation are usually used to transfer DNA, small interference RNA (siRNA), morpholinos, and protein into oocytes or embryos. This study used a simple and effective method to transfect siRNA into bovine somatic cell nuclear transfer (SCNT) embryos. In this method, siRNA transfection and electrofusion of SCNT were combined. A pair of platinum microelectrodes was used during SCNT to complete electrofusion. A CY3-labeled siRNA-targeted DNA methyltransferase-1 (DNMT1) was chosen to verify the siRNA transfection efficiency of this approach. First, a suitable concentration of siRNA was mixed with Zimmermann's fusion medium. Reconstructed embryos were then added into the microdrops of the mixed fusion medium to simultaneously transfect the siRNA and electrofuse the SCNT embryos. Our results showed that transfecting DNMT1 siRNA via the proposed method caused obvious CY3 fluorescence and significant downregulation of DNMT1 messenger RNA, DNMT1 protein, and global DNA methylation levels in the SCNT embryos. Meanwhile, the survival rate after electrofusion (90.4% vs. 89.4% vs. 89.1%, P > 0.05) and developmental rates of the SCNT embryos (72.8% vs. 74.9% vs. 72.4%, P > 0.05; 29.7% vs. 31.7% vs. 29.7%, P > 0.05) were not significantly affected. In summary, siRNAs were effectively transfected into the SCNT embryos via the proposed method and exert their functions, and the normal development of preimplantation SCNT embryos was not affected by the method used.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - LiJun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - WenZhe Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - QingFu Mao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - YongSheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
47
|
Yuan L, Wang A, Yao C, Huang Y, Duan F, Lv Q, Wang D, Ouyang H, Li Z, Lai L. Aberrant expression of Xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos. Int J Mol Sci 2014; 15:21631-43. [PMID: 25429426 PMCID: PMC4284668 DOI: 10.3390/ijms151221631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022] Open
Abstract
Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.
Collapse
Affiliation(s)
- Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Anfeng Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Chaogang Yao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Yongye Huang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Feifei Duan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Qinyan Lv
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Dongxu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
48
|
Dasmahapatra G, Patel H, Friedberg J, Quayle SN, Jones SS, Grant S. In vitro and in vivo interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib in non-Hodgkin lymphoma cells. Mol Cancer Ther 2014; 13:2886-97. [PMID: 25239935 DOI: 10.1158/1535-7163.mct-14-0220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib were examined in non-Hodgkin lymphoma (NHL) models, including diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), and double-hit lymphoma cells. Marked in vitro synergism was observed in multiple cell types associated with activation of cellular stress pathways (e.g., JNK1/2, ERK1/2, and p38) accompanied by increases in DNA damage (γH2A.X), G2-M arrest, and the pronounced induction of mitochondrial injury and apoptosis. Combination treatment with carfilzomib and ricolinostat increased reactive oxygen species (ROS), whereas the antioxidant TBAP attenuated DNA damage, JNK activation, and cell death. Similar interactions occurred in bortezomib-resistant and double-hit DLBCL, MCL, and primary DLBCL cells, but not in normal CD34(+) cells. However, ricolinostat did not potentiate inhibition of chymotryptic activity by carfilzomib. shRNA knockdown of JNK1 (but not MEK1/2), or pharmacologic inhibition of p38, significantly reduced carfilzomib-ricolinostat lethality, indicating a functional contribution of these stress pathways to apoptosis. Combined exposure to carfilzomib and ricolinostat also markedly downregulated the cargo-loading protein HR23B. Moreover, HR23B knockdown significantly increased carfilzomib- and ricolinostat-mediated lethality, suggesting a role for this event in cell death. Finally, combined in vivo treatment with carfilzomib and ricolinostat was well tolerated and significantly suppressed tumor growth and increased survival in an MCL xenograft model. Collectively, these findings indicate that carfilzomib and ricolinostat interact synergistically in NHL cells through multiple stress-related mechanisms, and suggest that this strategy warrants further consideration in NHL.
Collapse
Affiliation(s)
- Girija Dasmahapatra
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Hiral Patel
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Johnathan Friedberg
- James T. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Department of Medicine, University of Rochester Medical Center, Rochester, New York. Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | | | - Simon S Jones
- Acetylon Pharmaceuticals Inc., Boston, Massachusetts
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
49
|
Huan YJ, Zhu J, Wang HM, Wu ZF, Zhang JG, Xie BT, Li JY, Kong QR, Liu ZH, He HB. Epigenetic modification agents improve genomic methylation reprogramming in porcine cloned embryos. J Reprod Dev 2014; 60:377-82. [PMID: 25047549 PMCID: PMC4219995 DOI: 10.1262/jrd.2014-062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to low cloning efficiency. Our previous studies showed that the epigenetic modification agents 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) could enhance the developmental competence of porcine cloned embryos. Here, we investigated genomic methylation dynamics and specific gene expression levels during early embryonic development in pigs. In this study, our results showed that there was a typical wave of DNA demethylation and remethylation of centromeric satellite repeat (CenRep) in fertilized embryos, whereas in cloned embryos, delayed demethylation and a lack of remethylation were observed. When cloned embryos were treated with 5-aza-dC or TSA, CenRep methylation reprogramming was improved, and this was similar to that detected in fertilized counterparts. Furthermore, we found that the epigenetic modification agents, especially TSA, effectively promoted silencing of tissue specific genes and transcription of early embryo development-related genes in porcine cloned embryos. In conclusion, our results showed that the epigenetic modification agent 5-aza-dC or TSA could improve genomic methylation reprogramming in porcine cloned embryos and regulate the appropriate expression levels of genes related to early embryonic development, thereby resulting in high developmental competence.
Collapse
Affiliation(s)
- Yan Jun Huan
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang D, Chen X, Song Y, Lv Q, Lai L, Li Z. Disruption of imprinted gene expression and DNA methylation status in porcine parthenogenetic fetuses and placentas. Gene 2014; 547:351-8. [PMID: 24979339 DOI: 10.1016/j.gene.2014.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.
Collapse
Affiliation(s)
- Dongxu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Xianju Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Qinyan Lv
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|