1
|
Marino A, Cacopardo B, Villa L, D'Emilio A, Piro S, Nunnari G. Think Vibrio, Think Rare: Non-O1-Non-O139- Vibrio cholerae Bacteremia in Advanced Lung Cancer-A Case Report. Trop Med Infect Dis 2024; 9:224. [PMID: 39330913 PMCID: PMC11436073 DOI: 10.3390/tropicalmed9090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium, is widely known as the cause of cholera, an acute diarrheal disease. While only certain strains are capable of causing cholera, non-O1/non-O139 V. cholerae strains (NOVC) can lead to non-pathogenic colonization or mild illnesses such as gastroenteritis. In immunocompromised patients, however, NOVC can cause severe infections, including rare cases of bacteremia, especially in those with underlying conditions like liver disease, hematologic disorders, and malignancies. This case report presents a rare instance of NOVC bacteremia in a 71-year-old patient with advanced lung cancer, illustrating the clinical presentation, diagnostic challenges, and treatment interventions required. The patient presented with fever, asthenia, and confusion, and was found to have bacteremia caused by NOVC, confirmed through blood cultures and molecular analysis. Treatment with intravenous ceftriaxone and ciprofloxacin led to a rapid clinical improvement and resolution of the infection. This case, along with an overview of similar incidents, underscores the importance of considering NOVC in differential diagnoses for immunocompromised patients presenting with fever, and highlights the necessity of timely diagnosis and targeted antimicrobial therapy to achieve favorable outcomes.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Adriana D'Emilio
- Clinical Pathology and Clinical Molecular Biology Unit, "Garibaldi Centro" Hospital, ARNAS Garibaldi, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
2
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis 2024; 24:905. [PMID: 39223499 PMCID: PMC11367852 DOI: 10.1186/s12879-024-09810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Rouard C, Njamkepo E, Quilici ML, Nguyen S, Knight-Connoni V, Šafránková R, Weill FX. Vibrio cholerae serogroup O5 was responsible for the outbreak of gastroenteritis in Czechoslovakia in 1965. Microb Genom 2024; 10. [PMID: 39235832 DOI: 10.1099/mgen.0.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Several authors have attributed the explosive outbreak of gastroenteritis that occurred in Czechoslovakia in 1965 to a toxigenic strain of Vibrio cholerae serogroup O37 based on unverified metadata associated with three particular strains from the American Type Culture Collection. Here, by sequencing the original strain preserved at the Czech National Collection of Type Cultures since 1966, we show that the strain responsible for this outbreak was actually a V. cholerae O5 that lacks the genes encoding the cholera toxin, the toxin-coregulated pilus protein and Vibrio pathogenicity islands present in V. cholerae O37 strains.
Collapse
Affiliation(s)
- Caroline Rouard
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence Vibrions et Choléra, Paris, France
| | - Elisabeth Njamkepo
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence Vibrions et Choléra, Paris, France
| | - Marie-Laure Quilici
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence Vibrions et Choléra, Paris, France
| | - Scott Nguyen
- ATCC, 10801 University Boulevard, Manassas, VA 20110, USA
| | | | - Renáta Šafránková
- Czech National Collection of Type Cultures, National Institute of Public Health, Prague, Czech Republic
| | - Francois-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence Vibrions et Choléra, Paris, France
| |
Collapse
|
4
|
Kering K, Wang Y, Mbae C, Mugo M, Ongadi B, Odityo G, Muturi P, Yakubu H, Liu P, Durry S, Deshpande A, Gebreyes W, Moe C, Kariuki S. Pathways of exposure to Vibrio Cholerae in an urban informal settlement in Nairobi, Kenya. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002880. [PMID: 39163285 PMCID: PMC11335117 DOI: 10.1371/journal.pgph.0002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Cholera is a diarrhoeal disease caused by Vibrio cholerae (V. cholerae) bacterium, with strains belonging to serogroups 01 and 0139 causing a huge proportion of the disease. V. cholerae can contaminate drinking water sources and food through poor sanitation and hygiene. This study aimed to identify environmental routes of exposure to V. cholerae within Mukuru informal settlement in Nairobi. We collected nine types of environmental samples (drinking water, flood water, open drains, surface water, shaved ice, raw produce, street food, soil, and public latrine swabs) over 12 months. All samples were analysed for V. cholerae by culture and qPCR, then qPCR-positive samples were quantified using a V. cholerae DNA standard. Data about the frequency of contact with the environment was collected using behavioural surveys. Of the 803 samples collected, 28.5% were positive for V. cholerae by qPCR. However, none were positive for V. cholerae by culture. V. cholerae genes were detected in majority of the environmental water samples (79.3%), including open drains, flood water, and surface water, but were only detected in small proportions of other sample types. Vibrio-positive environmental water samples had higher mean V. cholerae concentrations [2490-3469 genome copies (gc) per millilitre (mL)] compared to drinking water samples (25.6 gc/mL). Combined with the behavioural data, exposure assessment showed that contact with surface water had the highest contribution to the total V. cholerae exposure among children while ingestion of municipal drinking water and street food and contact with surface water made substantial contributions to the total V. cholerae exposure for adults. Detection of V. cholerae in street food and drinking water indicates possible risk of exposure to toxigenic V. cholerae in this community. Exposure to V. cholerae through multiple pathways highlights the need to improve water and sanitation infrastructure, strengthen food hygiene practices, and roll out cholera vaccination.
Collapse
Affiliation(s)
- Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michael Mugo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Beatrice Ongadi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Georgina Odityo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Aniruddha Deshpande
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Wondwossen Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, Ohio, United States of America
- Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Christine Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
6
|
Ramsey K, Britt M, Maramba J, Ushijima B, Moller E, Anishkin A, Häse C, Sukharev S. The dynamic hypoosmotic response of Vibrio cholerae relies on the mechanosensitive channel MscS. iScience 2024; 27:110001. [PMID: 38868203 PMCID: PMC11167432 DOI: 10.1016/j.isci.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Vibrio cholerae adapts to osmotic down-shifts by releasing metabolites through two mechanosensitive (MS) channels, low-threshold MscS and high-threshold MscL. To investigate each channel's contribution to the osmotic response, we generated ΔmscS, ΔmscL, and double ΔmscL ΔmscS mutants in V. cholerae O395. We characterized their tension-dependent activation in patch-clamp, and the millisecond-scale osmolyte release kinetics using a stopped-flow light scattering technique. We additionally generated numerical models describing osmolyte and water fluxes. We illustrate the sequence of events and define the parameters that characterize discrete phases of the osmotic response. Survival is correlated to the extent of cell swelling, the rate of osmolyte release, and the completeness of post-shock membrane resealing. Not only do the two channels interact functionally, but there is also an up-regulation of MscS in the ΔmscL strain, suggesting transcriptional crosstalk. The data reveal the role of MscS in the termination of the osmotic permeability response in V. cholerae.
Collapse
Affiliation(s)
- Kristen Ramsey
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Madolyn Britt
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
| | - Joseph Maramba
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Blake Ushijima
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Elissa Moller
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudia Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Agyei FK, Scharf B, Duodu S. Vibrio cholerae Bacteremia: An Enigma in Cholera-Endemic African Countries. Trop Med Infect Dis 2024; 9:103. [PMID: 38787036 PMCID: PMC11125774 DOI: 10.3390/tropicalmed9050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low-middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia.
Collapse
Affiliation(s)
- Foster K. Agyei
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Birgit Scharf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra LG54, Ghana
| |
Collapse
|
8
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
9
|
Jalalizadeh F, Njamkepo E, Weill FX, Goodarzi F, Rahnamaye-Farzami M, Sabourian R, Bakhshi B. Genetic approach toward linkage of Iran 2012-2016 cholera outbreaks with 7th pandemic Vibrio cholerae. BMC Microbiol 2024; 24:33. [PMID: 38254012 PMCID: PMC10801964 DOI: 10.1186/s12866-024-03185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Vibrio cholerae, as a natural inhabitant of the marine environment is among the world-leading causes of diarrheal diseases. The present study aimed to investigate the genetic relatedness of Iran 2012-2016 V. cholerae outbreaks with 7th pandemic cholera and to further characterize the non-ST69/non-ST75 sequence types strains by whole-genome sequencing (WGS).Twenty V. cholerae isolates related to 2012, 2013, 2015 and 2016 cholera outbreaks were studied by two genotyping methods - Pulsed-field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST)-and by antimicrobial susceptibility testing. Seven sequence types (STs) and sixteen pulsotypes were detected. Sequence type 69 was the most abundant ST confirming that most (65%, 13/20) of the studied isolates collected in Iran between 2012 and 2016 belonged to the 7th pandemic clone. All these ST69 isolates (except two) exhibited similar pulsotypes. ST75 was the second most abundant ST. It was identified in 2015 and 2016. ST438, ST178, ST579 and STs of 983 and 984 (as newfound STs) each were only detected in one isolate. All strains collected in 2016 appeared as distinct STs and pulsotypes indicative of probable different originations. All ST69 strains were resistant to nalidixic acid. Moreover, resistance to nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline was only observed in strains of ST69. These properties propose the ST69 as a unique genotype derived from a separate lineage with distinct resistance properties. The circulation of V. cholerae ST69 and its traits in recent years in Iran proposes the 7th pandemic strains as the ongoing causes of cholera outbreaks in this country, although the role of ST75 as the probable upcoming dominant ST should not be ignored.Genomic analysis of non-ST69/non-ST75 strains in this study showed ST579 is the most similar ST type to 7th pandemic sequence types, due to the presence of wild type-El Tor sequences of tcpA and VC-1319, VC-1320, VC-1577, VC-1578 genes (responsible for polymyxin resistance in El Tor biotype), the traits of rstC of RS1 phage in one strain of this ST type and the presence of VPI-1 and VSP-I islands in ST579 and ST178 strains. In silico analysis showed no significant presence of resistance genes/cassettes/plasmids within non-ST69/non-ST75 strains genomes. Overall, these data indicate the higher susceptibility of V. cholerae non-ST69/non-ST75 strains in comparison with more ubiquitous and more circulating ST69 and ST75 strains.In conclusion, the occurrence of small outbreaks and sporadic cholera cases due to V. cholerae ST69 in recent years in Iran shows the 7th pandemic strains as the persistent causes of cholera outbreaks in this country, although the role of ST75 as the second most contributed ST should not be ignored. The occurrence of non-ST69/non-ST75 sequence types with some virulence factors characteristics in border provinces in recent years is noteworthy, and further studies together with surveillance efforts are expected to determine their likely route of transport.
Collapse
Affiliation(s)
- Fatemeh Jalalizadeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Luo Y, Payne M, Kaur S, Octavia S, Jiang J, Lan R. Emergence and genomic insights of non-pandemic O1 Vibrio cholerae in Zhejiang, China. Microbiol Spectr 2023; 11:e0261523. [PMID: 37819129 PMCID: PMC10871787 DOI: 10.1128/spectrum.02615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE It is well recognized that only Vibrio cholerae O1 causes cholera pandemics. However, not all O1 strains cause pandemic-level disease. In this study, we analyzed non-pandemic O1 V. cholerae isolates from the 1960s to the 1990s from China and found that they fell into three lineages, one of which shared the most recent common ancestor with pandemic O1 strains. Each of these non-pandemic O1 lineages has unique properties that contribute to their capacity to cause cholera. The findings of this study enhanced our understanding of the emergence and evolution of both pandemic and non-pandemic O1 V. cholerae.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
12
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Lau DYL, Aguirre Sánchez JR, Baker-Austin C, Martinez-Urtaza J. What Whole Genome Sequencing Has Told Us About Pathogenic Vibrios. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:337-352. [PMID: 36792883 DOI: 10.1007/978-3-031-22997-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.
Collapse
Affiliation(s)
- Dawn Yan Lam Lau
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jose Roberto Aguirre Sánchez
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK.,Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK. .,Department of Genetics and Microbiology, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Leard E, Carmichael RH, Ortmann AC, Jones JL. Environmental Drivers of Vibrio cholerae Abundances in Mobile Bay, Alabama. Microbiol Spectr 2023; 11:e0173322. [PMID: 36692305 PMCID: PMC9927273 DOI: 10.1128/spectrum.01733-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Vibrio cholerae is the etiological agent of the illness cholera. However, there are non-O1/non-O139 V. cholerae (NOVC) strains that generally lack the toxin gene (ctx) and colonization factors that cause cholera. These NOVC strains are autochthonous members of estuarine environments and a significant cause of seafood-borne gastroenteritis in the United States. The objective of this study was to identify environmental parameters that correlate with NOVC prevalence in oysters, water, and sediment at three ecologically diverse locations in Mobile Bay, AL, including Dog River (DR), Fowl River (FR), and Cedar Point (CP). Oyster, water, and sediment samples were collected twice a month when conditions were favorable for NOVC growth and once a month when they were not. A most probable number (MPN)/real-time PCR assay was used to determine NOVC abundances. Environmental parameters were measured during sampling to determine their relationship, if any, with NOVC at each site. NOVC abundances in oysters at DR, FR, and CP were 0.87, 0.87, and -0.13 log MPN/g, respectively. In water, the median NOVC levels at DR, FR, and CP were 1.18, -0.13, and -0.82 log MPN/mL, and in sediment, the levels were 1.48, 1.87, and -0.03 log MPN/g, respectively. Correlations of NOVC abundances in oyster, water, and sediment samples with environmental parameters were largely site specific. For example, the levels of NOVC in oysters at DR had a positive correlation with temperature but a negative correlation with dissolved oxygen (DO) and nutrient concentrations, NO2-, NO3-, dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN), and dissolved inorganic phosphorus (DIP). At FR, however, the levels of NOVC in oysters displayed only a negative correlation with NO2-. When grouping NOVC abundances by temperature, the main driving factor for prevalence, additional correlations with salinity, total cell counts, dissolved organic nitrogen (DON), and dissolved organic carbon (DOC) became evident regardless of the site. IMPORTANCE NOVC can cause gastrointestinal illness in humans, which typically occurs after the consumption of raw or undercooked seafood. Incidence rates of NOVC gastroenteritis have increased during the past decade. In this study, NOVC was enumerated from oysters, sediment, and water collected at three sites in Mobile Bay, with environmental parameters measured concurrently over the course of a year, to identify potential environmental drivers of NOVC abundances. The data from this study, from an area lacking in V. cholerae research, provide a useful baseline for risk analysis of V. cholerae infections. Defining correlations between NOVC and environmental attributes at different sites and temperatures within a dynamic system such as Mobile Bay provides valuable data to better understand the occurrence and proliferation of V. cholerae in the environment.
Collapse
Affiliation(s)
- Elizabeth Leard
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Ruth H. Carmichael
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
- University Programs, Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Alice C. Ortmann
- Department of Marine Sciences, University of South Alabama, Mobile, Alabama, USA
| | - Jessica L. Jones
- Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| |
Collapse
|
15
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
16
|
Janecko N, Bloomfield SJ, Palau R, Mather AE. Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail. Microb Genom 2021; 7. [PMID: 34586050 PMCID: PMC8715430 DOI: 10.1099/mgen.0.000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae. Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus, though multiple resistance genes were also identified in V. cholerae and V. vulnificus. This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
17
|
Abstract
Since 1817, cholera, caused by Vibrio cholerae, has been characterized by seven distinct pandemics. The ongoing seventh pandemic (7P) began in 1961. In this study, we developed a Multilevel Genome Typing (MGT) tool for classifying the V. cholerae species with a focus on the 7P. MGT is based on multilocus sequence typing (MLST), but the concept has been expanded to include a series of MLST schemes that compare population structure from broad to fine resolutions. The V. cholerae MGT consists of eight levels, with the lowest, MGT1, composed of 7 loci and the highest, MGT8, consisting of the 7P core genome (3,759 loci). We used MGT to analyze 5,771 V. cholerae genomes. The genetic relationships revealed by lower MGT levels recapitulated previous findings of large-scale 7P transmission across the globe. Furthermore, the higher MGT levels provided an increased discriminatory power to differentiate subgroups within a national outbreak. Additionally, we demonstrated the usefulness of MGT for non-7P classification. In a large non-7P MGT1 type, MGT2 and MGT3 described continental and regional distributions, respectively. Finally, MGT described trends of 7P in virulence, and MGT2 to MGT3 sequence types (STs) grouped isolates of the same ctxB, tcpA, and ctxB-tcpA genotypes and characterized their trends over the pandemic. MGT offers a range of resolutions for typing V. cholerae. The MGT nomenclature is stable, transferable, and directly comparable between investigations. The MGT database (https://mgtdb.unsw.edu.au/) can accept and process newly submitted samples. MGT allows tracking of existing and new isolates and will be useful for understanding future spread of cholera. IMPORTANCE In 2017, the World Health Organization launched the “Ending Cholera” initiative to reduce cholera-related deaths by 90% by 2030. This strategy emphasized the importance of the speed and accessibility of newer technologies to contain outbreaks. Here, we present a new tool named Multilevel Genome Typing (MGT), which classifies isolates of the cholera-causing agent, Vibrio cholerae. MGT is a freely available online database that groups genetically similar V. cholerae isolates to quickly indicate the origins of outbreaks. We validated the MGT database retrospectively in an outbreak setting, showcasing rapid confirmation of the Nepalese origins for the 2010 Haiti outbreak. In the past 5 years, thousands of V. cholerae genomes have been submitted to the NCBI database, which underscores the importance of and need for proper genome data classification for cholera epidemiology. The V. cholerae MGT database can assist in early decision making that directly impacts controlling both the local and global spread of cholera.
Collapse
|
18
|
Luo Y, Wang H, Liang J, Qian H, Ye J, Chen L, Yang X, Chen Z, Wang F, Octavia S, Payne M, Song X, Jiang J, Jin D, Lan R. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. MICROBIAL ECOLOGY 2021; 82:319-333. [PMID: 33410933 DOI: 10.1007/s00248-020-01645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Jie Liang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Huiqin Qian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Lixia Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Xianqing Yang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Zhongwen Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Fei Wang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Abstract
Cholera, an acute diarrheal disease, is caused by pathogenic strains of Vibrio cholerae generated by the lysogenization of the filamentous cholera toxin phage CTXΦ. Although CTXΦ phage in the classical biotype are usually integrated solitarily or with a truncated copy, those in El Tor biotypes are generally found in tandem and/or with related genetic elements. Due to this structural difference in the CTXΦ prophage array, the prophage in the classical biotype strains does not yield extrachromosomal CTXΦ DNA and does not produce virions, whereas the El Tor biotype strains can replicate the CTXΦ genome and secrete infectious CTXΦ phage particles. However, information on the CTXΦ prophage array structure of pathogenic V. cholerae is limited. Therefore, we investigated the complete genomic sequences of five clinical V. cholerae isolates obtained in Kolkata (India) during 2007 to 2011. The analysis revealed that recent isolates possessed an altered CTXΦ prophage array of the prototype El Tor strain. These strains were defective in replicating the CTXΦ genome. All recent isolates possessed identical rstA and intergenic sequence 1 (Ig-1) sequences and comparable rstA expression in the prototype El Tor strain, suggesting that the altered CTXΦ array was responsible for the defective replication of the prophage. Therefore, CTXΦ structures available in the database and literatures can be classified as replicative and nonreplicative. Furthermore, V. cholerae epidemic strains became capable of producing CTXΦ phage particles since the 1970s. However, V. cholerae epidemic strains again lost the capacity for CTXΦ production around the year 2010, suggesting that a significant change in the dissemination pattern of the current cholera pandemic occurred. IMPORTANCE Cholera is an acute diarrheal disease caused by pathogenic strains of V. cholerae generated by lysogenization of the filamentous cholera toxin phage CTXΦ. The analysis revealed that recent isolates possessed altered CTXΦ prophage array of prototype El Tor strain and were defective in replicating the CTXΦ genome. Classification of CTXΦ structures in isolated years suggested that V. cholerae epidemic strains became capable of producing CTXΦ phage particles since the 1970s. However, V. cholerae epidemic strains again lost the capacity for CTXΦ production around the year 2010, suggesting that a critical change had occurred in the dissemination pattern of the current cholera pandemic.
Collapse
|
20
|
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF. A Vibrio cholerae Core Genome Multilocus Sequence Typing Scheme To Facilitate the Epidemiological Study of Cholera. J Bacteriol 2020; 202:e00086-20. [PMID: 32540931 PMCID: PMC7685551 DOI: 10.1128/jb.00086-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022] Open
Abstract
Core genome multilocus sequence typing (cgMLST) has gained popularity in recent years in epidemiological research and subspecies-level classification. cgMLST retains the intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly larger portions of the genome. Here, we introduce a cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical and environmental strains collected from 52 countries, including 65 newly sequenced genomes in this study. We established a sublineage threshold based on 133 allelic differences that creates clusters nearly identical to traditional MLST types, providing backwards compatibility to new cgMLST classifications. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying strains from the same outbreak and closely related isolates that could give clues on outbreak origin. Using cgMLST, we confirmed the South Asian origin of modern epidemics and identified clustering affinity among sublineages of environmental isolates from the same geographic origin. Advantages of this method are highlighted by direct comparison with existing classification methods, such as MLST and single-nucleotide polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, standardization, and ease of use. We anticipate this scheme will serve as a basis for a universally applicable and standardized classification system for V. cholerae research and epidemiological surveillance in the future. This cgMLST scheme is publicly available on PubMLST (https://pubmlst.org/vcholerae/).IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are the causative agents of cholera, an acute diarrheal disease that plagued the world for centuries, if not millennia. Here, we introduce a core genome multilocus sequence typing scheme for V. cholerae Using this scheme, we have standardized the definition for subspecies-level classification, facilitating global collaboration in the surveillance of V. cholerae In addition, this typing scheme allows for quick identification of outbreak-related isolates that can guide subsequent analyses, serving as an important first step in epidemiological research. This scheme is also easily scalable to analyze thousands of isolates at various levels of resolution, making it an invaluable tool for large-scale ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Narendrakumar L, Jaikumar VS, Chandrika SK, Thomas S. Epidemiological and pathogenic characteristics of Haitian variant V. cholerae circulating in India over a decade (2000-2018). Microb Pathog 2020; 149:104538. [PMID: 32987116 DOI: 10.1016/j.micpath.2020.104538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Vibrio cholerae, causative agent of the water-borne disease cholera still threatens a large proportion of world's population. The major biotypes of the pathogen are classical and El Tor. There have been recent reports of variant V. cholerae strains circulating around the world. In the present study, the epidemiological status of V. cholerae strains circulating in the country over a decade was assessed. Also, a comprehensive analysis of the difference in pathogenicity between the different biotypes of V. cholerae strains was evaluated both in-vitro and in-vivo. The amount of CT produced by different biotypes of V. cholerae strains were analyzed by GM1 ELISA and the probable reasons for the difference in toxin production was discussed. MLST analysis grouped the isolates into a single Sequence Type (ST 69) whereas PFGE analysis clustered the isolates into ten different pulsotypes revealing molecular diversity. The circulating strains were identified to produce cholera toxin and CT mRNA intermediate to the classical and prototype El Tor strains. Also, the circulating strains were identified to possess four ToxR binding sequences. In-vivo pathogenicity analysis by rabbit ileal loop fluid accumulation assay revealed the Haitian variant strains to be more hyperemic than the prototype strains.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Vishnu S Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sivakumar K Chandrika
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India.
| |
Collapse
|
22
|
Kanampalliwar A, Singh DV. Virulence Pattern and Genomic Diversity of Vibrio cholerae O1 and O139 Strains Isolated From Clinical and Environmental Sources in India. Front Microbiol 2020; 11:1838. [PMID: 32982995 PMCID: PMC7479179 DOI: 10.3389/fmicb.2020.01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is an autochthonous inhabitant of the aquatic environment. Several molecular methods have been used for typing V. cholerae strains, but there is no proper database for such scheme, including multilocus sequence typing (MLST) for V. cholerae O1 and O139 strains. We used 54 V. cholerae O1 and three O139 strains isolated from clinical and environmental sources and regions of India during the time period of 1975-2015 to determine the presence of virulence genes and production of biofilm. We devised a MLST scheme and developed a database for typing V. cholerae strains. Also, we performed pulsed-field gel electrophoresis to see the genomic diversity among them and compared it with MLST. We used the MEGA 7.0 software for the alignment and comparison of different nucleotide sequences. The advanced cluster analysis was performed to define complexes. All strains of V. cholerae, except five strains, showed variation in phenotypic characteristics but carried virulence-associated genes indicating they belonged to the El Tor/hybrid/O139 variants. MLST analysis showed 455 sequences types among V. cholerae strains, irrespective of sources and places of isolation. With these findings, we set up an MLST database on PubMLST.org using the BIGSdb software for V. cholerae O1 and O139 strains, which is available at https://pubmlst.org/vcholerae/ under the O1/O139 scheme. The pulsed-field gel electrophoresis (PFGE) fingerprint showed six fingerprint patterns namely E, F, G, H, I, and J clusters among 33 strains including strain N16961 carrying El Tor ctxB of which cluster J representing O139 strain was entirely different from other El Tor strains. Twenty strains carrying Haitian ctxB showed a fingerprint pattern classified as cluster A. Of the five strains, four carrying classical ctxB comprising two each of El Tor and O139 strains and one El Tor strain carrying Haitian ctxB clustered together under cluster B along with V. cholerae 569B showing pattern D. This study thus indicates that V. cholerae strains are undergoing continuous genetic changes leading to the emergence of new strains. The MLST scheme was found more appropriate compared to PFGE that can be used to determine the genomic diversity and population structure of V. cholerae.
Collapse
Affiliation(s)
- Amol Kanampalliwar
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
23
|
Flach EJ, LeNette-Dawson D, Greig DR, Ismail Ahmed A, Jenkins C, John SK, Macgregor SK, Masters N, Stidworthy MF, Zimmerman B, Chattaway MA. Isolation and characterisation of Vibrio cholerae from fish examined postmortem at ZSL London Zoo between 2014 and 2018. Vet Rec 2020; 187:e86. [PMID: 32826344 DOI: 10.1136/vr.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 06/17/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND When suspect Vibrio cholerae were cultured from fish at ZSL London Zoo, investigations were carried out to determine whether they were possible causes of cholera. METHODS Bacterial culture was carried out on fish examined postmortem and colonies were identified using standard techniques including the API 20NE biochemical test kits. Suspect isolates were submitted to the Public Health England laboratory for additional testing. Separately, a number of fish were submitted for routine histopathology. RESULTS On 13 occasions between 2014 and 2018, suspected V cholerae were cultured from individuals of eight different freshwater fish species. Archived cultures for eight of these (from six different fish species) were investigated and seven isolates (from five fish species) were confirmed as V cholerae, but all were non-O1, non-O139 strains. Whole-genome sequencing showed that the five fish species had unique V cholerae multilocus sequence types (three isolates from Aphanius danfordii were identical), all of which were genetically distant from human isolates. CONCLUSIONS There was no evidence that these isolates could cause cholera. Histopathological changes consistent with vibriosis were seen in several fish, suggesting that V cholerae were causing the disease, but there were also concurrent infections or predisposing stress factors.
Collapse
Affiliation(s)
- Edmund J Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | - David R Greig
- Gastrointestinal Bacteria Referral Unit, Public Health England Colindale, London, UK
- Division of Infection and Immunity, The University of Edinburgh, The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, UK
| | - Amina Ismail Ahmed
- Gastrointestinal Bacteria Referral Unit, Public Health England Colindale, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Referral Unit, Public Health England Colindale, London, UK
| | - Shinto K John
- Institute of Zoology, Zoological Society of London, London, UK
| | | | - Nic Masters
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | - Brian Zimmerman
- Zoological Services, Zoological Society of London, London, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Referral Unit, Public Health England Colindale, London, UK
| |
Collapse
|
24
|
Tangestani MG, Alinezhad J, Khajeian A, Gharibi S, Haghighi MA. Identification of cholix toxin gene in Vibrio cholerae non-O1/non-O139 isolated from diarrhea patients in Bushehr, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:273-280. [PMID: 32994897 PMCID: PMC7502140 DOI: 10.18502/ijm.v12i4.3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Cholixin (cholix toxin) is a novel exotoxin in Vibrio cholerae identified as an elongation factor II specific ADP-ribosyltransferase which inhibits protein synthesis in the eukaryotic cell. Previous researches have suggested that cholixin probably is an important virulence factor in non-O1/non-O139 V. cholerae (NAG) serotypes that could be related to extra-intestinal rather than intestinal infections. This study was aimed to investigate the frequency and genetic diversity of colixin gene (chxA) in clinical V. cholerae NAG isolates. Materials and Methods: The presence of chxA gene in 44 clinical V. cholerae NAG isolates were screened using PCR through specific primers designed for the receptor-binding domain (RBD) of chxA gene. The five PCR products of chxA gene were sequenced. Results: This study showed that chxA gene presented in 19 V. cholerae NAG isolates. The sequences analysis of 5 out of 19 the partial chxA genes amplicon showed that 4 of them belonged to chxA I and the other one belonged to chxA II subtypes. Two distinct clusters were revealed for these isolates by phylogenic analysis, too. Conclusion: The chxA gene contained high frequency among V. cholerae NAG isolates in Bushehr, Iran. The polymorphism study on RBD of cholixin gene is suggested as an appropriate method for phylogenic characterization of the various chxA gene subtypes.
Collapse
Affiliation(s)
- Marziyeh Gholizadeh Tangestani
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jafar Alinezhad
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abdolmohammad Khajeian
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayyeh Gharibi
- Department of Microbiology, School of Sciences, Kherad Institute of Higher Education, Bushehr, Iran
| | - Mohammad Ali Haghighi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
25
|
Hirsch N, Kappe E, Gangl A, Schwartz K, Mayer-Scholl A, Hammerl JA, Strauch E. Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany. Microorganisms 2020; 8:microorganisms8081104. [PMID: 32717968 PMCID: PMC7463538 DOI: 10.3390/microorganisms8081104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae non-O1, non-O139 bacteria are natural inhabitants of aquatic ecosystems and have been sporadically associated with human infections. They mostly lack the two major virulence factors of toxigenic V. cholerae serogroups O1 and O139 strains, which are the causative agent of cholera. Non-O1, non-O139 strains are found in water bodies, sediments, and in association with other aquatic organisms. Occurrence of these bacteria in fecal specimens of waterfowl were reported, and migratory birds likely contribute to the long-distance transfer of strains. We investigated four V. cholerae non-O1, non-O139 isolates for phenotypic traits and by whole genome sequencing (WGS). The isolates were recovered from organs of domestic ducks with serious disease symptoms. WGS data revealed only a distant genetic relationship between all isolates. The isolates harbored a number of virulence factors found in most V. cholerae strains. Specific virulence factors of non-O1, non-O139 strains, such as the type III secretion system (TTSS) or cholix toxin, were observed. An interesting observation is that all isolates possess multifunctional autoprocessing repeats-in-toxin toxins (MARTX) closely related to the MARTX of toxigenic El Tor O1 strains. Different primary sequences of the abundant OmpU proteins could indicate a significant role of this virulence factor. Phenotypic characteristics such as hemolysis and antimicrobial resistance (AMR) were studied. Three isolates showed susceptibility to a number of tested antimicrobials, and one strain possessed AMR genes located in an integron. Knowledge of the environmental occurrence of V. cholerae non-O1, non-O139 in Germany is limited. The source of the infection of the ducks is currently unknown. In the context of the ‘One Health’ concept, it is desirable to study the ecology of V. cholerae non-O1, non-O139, as it cannot be excluded that the isolates possess zoonotic potential and could cause infections in humans.
Collapse
Affiliation(s)
- Nicola Hirsch
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Eva Kappe
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Armin Gangl
- Tiergesundheitsdienst Bayern, Bavarian Animal Health Service, 85586 Poing, Germany; (N.H.); (E.K.); (A.G.)
| | - Keike Schwartz
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (K.S.); (A.M.-S.); (J.A.H.)
- Correspondence:
| |
Collapse
|
26
|
Shashindran N, Narendrakumar L, Udayakumaran S, Vijayakumar DM, Thomas S, Kumar A. First report of Vibrio cholerae O9, novel st520, isolated from a child with bacteraemia-associated sepsis. Indian J Med Microbiol 2020; 38:489-491. [PMID: 33154272 DOI: 10.4103/ijmm.ijmm_20_283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Vibrios have been identified to cause extra-intestinal complications apart from the occasional cholera-like diarrhoeal outbreaks. The non-O1/O139 Vibrio cholerae strains are ubiquitous in environmental water bodies and hence pose a threat to people even without obvious risk factors. We describe a case of sepsis in a child with spinal dysraphism caused by a V. cholerae O9 strain belonging to a novel sequence type (ST520). The present case highlights the need of considering V. cholerae non-O1/O139 as one of the pathogens while dealing with sepsis cases, and also, the study expounds the importance of proper characterisation of the pathogen for an effective treatment.
Collapse
Affiliation(s)
- Nandita Shashindran
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Cochin, Kerala, India
| | - Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| | - Suhas Udayakumaran
- Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Cochin, Kerala, India
| | - Divya Mavanavila Vijayakumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Cochin, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Cochin, Kerala, India
| |
Collapse
|
27
|
Irenge LM, Ambroise J, Mitangala PN, Bearzatto B, Kabangwa RKS, Durant JF, Gala JL. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014-2017). PLoS Negl Trop Dis 2020; 14:e0007642. [PMID: 32310947 PMCID: PMC7192507 DOI: 10.1371/journal.pntd.0007642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/30/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Over the past recent years, Vibrio cholerae has been associated with outbreaks in sub-Saharan Africa, notably in Democratic Republic of the Congo (DRC). This study aimed to determine the genetic relatedness of isolates responsible for cholera outbreaks in eastern DRC between 2014 and 2017, and their potential spread to bordering countries. METHODS/PRINCIPAL FINDINGS Phenotypic analysis and whole genome sequencing (WGS) were carried out on 78 clinical isolates of V. cholerae associated with cholera in eastern provinces of DRC between 2014 and 2017. SNP-based phylogenomic data show that most isolates (73/78) were V. cholerae O1 biotype El Tor with CTX-3 type prophage. They fell within the third transmission wave of the current seventh pandemic El Tor (7PET) lineage and were contained in the introduction event (T)10 in East Africa. These isolates clustered in two sub-clades corresponding to Multiple Locus Sequence Types (MLST) profiles ST69 and the newly assigned ST515, the latter displaying a higher genetic diversity. Both sub-clades showed a distinct geographic clustering, with ST69 isolates mostly restricted to Lake Tanganyika basin and phylogenetically related to V. cholerae isolates associated with cholera outbreaks in western Tanzania, whereas ST515 isolates were disseminated along the Albertine Rift and closely related to isolates in South Sudan, Uganda, Tanzania and Zambia. Other V. cholerae isolates (5/78) were non-O1/non-O139 without any CTX prophage and no phylogenetic relationship with already characterized non-O1/non-O139 isolates. CONCLUSIONS/SIGNIFICANCE Current data confirm the association of both DRC O1 7PET (T)10 sub-clades ST69 and ST515 with recurrent outbreaks in eastern DRC and at regional level over the past 10 years. Interestingly, while ST69 is predominantly a locally endemic sequence type, ST515 became adaptable enough to expand across DRC neighboring countries.
Collapse
Affiliation(s)
- Leonid M. Irenge
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- Defence Laboratories Department, ACOS Ops&Trg, Belgian Armed Forces, Peutie, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Jean-François Durant
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
28
|
Osawa K, Shigemura K, Kitagawa K, Kuntaman K, Mertaniasih NM, Setyarini W, Arizandy D, Rahadjo D, Osawa R, Shirakawa T, Fujisawa M. Difference of Phenotype and Genotype Between Human and Environmental: Isolated Vibrio cholerae in Surabaya, Indonesia. Indian J Microbiol 2020; 60:230-238. [PMID: 32255856 DOI: 10.1007/s12088-020-00861-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
Cholera due to Vibrio cholerae has been spreading worldwide, although the reports focusing on Indonesian V. cholerae are few. In this study, in order to investigate how V. cholerae transmitted to human from environment. We extended an epidemiological report that had investigated the genotype of V. cholerae isolated from human pediatric samples and environmental samples. We examined 44 strains of V. cholerae isolated from pediatric diarrhea patients and the environment such as shrimps or oysters collected in three adjacent towns in Surabaya, Indonesia. Susceptibilities were examined for 11 antibiotics. Serotype O1 or O139 genes and pathogenic genes including cholera toxin were detected. Multi-locus sequence typing (MLST) and enterobacterial repetitive intergenic consensus (ERIC)-PCR were also performed to determine genetic diversity of those isolates. Serotype O1 was seen in 17 strains (38.6%) with all pathogenic genes among 44 isolates. Other isolates were non-O1/non-O139 V. cholerae. Regarding antibiotic susceptibilities, those isolates from environmental samples showed resistance to ampicillin (11.4%), streptomycin (9.1%) and nalidixic acid (2.3%) but those isolates from pediatric stools showed no resistance to those 3 kinds of antibiotics. MLST revealed sequence type (ST) 69 in 17 strains (38.6%), ST198 in 3 strains (6.8%) and non-types in 24 strains (54.5%). All the ST69 strains were classified to O1 type with more than 95% similarity by ERIC-PCR, including all 6 (13.6%) isolates from environmental samples with resistance to streptomycin. In conclusion, V. cholerae O1 ST69 strains has been clonally spreading in Surabaya, exhibiting pathogenic factors and antibiotic resistance to streptomycin, especially in the isolates from environment.
Collapse
Affiliation(s)
- Kayo Osawa
- 1Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - Katsumi Shigemura
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Koichi Kitagawa
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 4Division of Translational Research for Biologics, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
- 5Department of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - K Kuntaman
- 6Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- 6Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Wahyu Setyarini
- 7Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dita Arizandy
- 7Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dadik Rahadjo
- 8Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Ro Osawa
- 9Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Toshiro Shirakawa
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
- 4Division of Translational Research for Biologics, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
- 5Department of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Masato Fujisawa
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
29
|
Arteaga M, Velasco J, Rodriguez S, Vidal M, Arellano C, Silva F, Carreño LJ, Vidal R, Montero DA. Genomic characterization of the non-O1/non-O139 Vibrio cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. Microb Genom 2020; 6:e000340. [PMID: 32100707 PMCID: PMC7200058 DOI: 10.1099/mgen.0.000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae is a human pathogen, which is transmitted by the consumption of contaminated food or water. V. cholerae strains belonging to the serogroups O1 and O139 can cause cholera outbreaks and epidemics, a severe life-threatening diarrheal disease. In contrast, serogroups other than O1 and O139, denominated as non-O1/non-O139, have been mainly associated with sporadic cases of moderate or mild diarrhea, bacteremia and wound infections. Here we investigated the virulence determinants and phylogenetic origin of a non-O1/non-O139 V. cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. We found that this outbreak strain lacks the classical virulence genes harboured by O1 and O139 strains, including the cholera toxin (CT) and the toxin-coregulated pilus (TCP). However, this strain carries genomic islands (GIs) encoding Type III and Type VI secretion systems (T3SS/T6SS) and antibiotic resistance genes. Moreover, we found these GIs are wide distributed among several lineages of non-O1/non-O139 strains. Our results suggest that the acquisition of these GIs may enhance the virulence of non-O1/non-O139 strains that lack the CT and TCP-encoding genes. Our results highlight the pathogenic potential of these V. cholerae strains.
Collapse
Affiliation(s)
- Mónica Arteaga
- Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile “Dr. José Joaquín Aguirre”, Santiago, Chile
| | - Juliana Velasco
- Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile “Dr. José Joaquín Aguirre”, Santiago, Chile
| | - Shelly Rodriguez
- Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile “Dr. José Joaquín Aguirre”, Santiago, Chile
| | - Maricel Vidal
- Laboratorio de Salud Pública Ambiental y Laboral, Secretaría Regional Ministerial de Salud Región Metropolitana, Santiago, Chile
| | - Carolina Arellano
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Silva
- Servicio de Laboratorio Clínico, Hospital Clínico de la Universidad de Chile “Dr. José Joaquín Aguirre”, Santiago, Chile
| | - Leandro J. Carreño
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Meena B, Anburajan L, Sathish T, Das AK, Vinithkumar NV, Kirubagaran R, Dharani G. Studies on diversity of Vibrio sp. and the prevalence of hapA, tcpI, st, rtxA&C, acfB, hlyA, ctxA, ompU and toxR genes in environmental strains of Vibrio cholerae from Port Blair bays of South Andaman, India. MARINE POLLUTION BULLETIN 2019; 144:105-116. [PMID: 31179975 DOI: 10.1016/j.marpolbul.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Vibrio species are widely distributed in the estuarine and coastal waters that possess the greatest threat to human health worldwide. In this study it is aimed to isolate and observe the abundance of Vibrio sp. and prevalence of biomarker genes and antibiotic resistance profile of V. cholerae isolated from the Port Blair bays of South Andaman. A total of 56 water samples were collected from the seven sampling stations of Port Blair bays in which maximum number of Vibrio sp. population density (1.78 × 104) was recorded in Phoenix Bay. Among the 786 isolates 57.38% of the isolates were confirmed as Vibrio sp., Vibrio cholerae and Vibrio parahaemolyticus. PCR results revealed that the prevalence of biomarker genes was recorded maximum in the isolates from Phoenix Bay and Junglighat Bay samples. Upon further analysis, it was observed that the prevalence of hlyA gene (215 bp), was found to be the most widespread biomarker determinant in 84.17% of isolates. Major virulence determinants; ctxA, ompU and toxR genes were not detected in V. cholerae isolates from Port Blair bays. Maximum antibiotic resistance pattern was observed in Phoenix Bay isolates and maximum number of V. cholerae isolates was resistance to tetracycline (60.76%). Cluster and Principal Component Analysis were employed to understand the diversity and distribution of Vibrio isolates and its biomarker genes. Upon PCA analysis seasonal influence was not much perceived in Vibrio species diversity in Port Blair bays and the lack of significant difference in the detection of species diversity in this study is due to resemblance in geographical conditions and sources of pollution.
Collapse
Affiliation(s)
- Balakrishnan Meena
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Lawrance Anburajan
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Thadikamala Sathish
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Apurba Kumar Das
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Ramalingam Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, Tamil Nadu, India
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, Tamil Nadu, India.
| |
Collapse
|
31
|
Fu S, Hao J, Jin S, Wu K, Wang Y, Ye S, Liu Y, Li R. A Human Intestinal Infection Caused by a Novel Non-O1/O139 Vibrio cholerae Genotype and Its Dissemination Along the River. Front Public Health 2019; 7:100. [PMID: 31069211 PMCID: PMC6491804 DOI: 10.3389/fpubh.2019.00100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/08/2019] [Indexed: 12/25/2022] Open
Abstract
Non-O1/O139 Vibrio cholerae is increasingly reported in the clinical settings. However, intestinal infections via the consumption of non-O1/O139 V. cholerae-carrying seafood are rarely documented in China. In this study, we reported a case of mild watery diarrhea in a young male, caused by non-O1/O139 V. cholerae in the downstream of Liaohe River. Epidemiological investigation showed that this intestinal infection potentially associated with the raw consumption of mollusc. Prior to this finding, we conducted a 6-month pathogen surveillance of three locations along the Liaohe River and identified three environmental non-O1/O139 V. cholerae strains. To confirm the epidemiological links between clinical and environmental strains, high-resolution genomic typing was employed and revealed that V. cholerae isolated from human stool sample was genomically related to the one found in local mollusc and shared a common ancestor with other environmental strains obtained in the upstream sites of the Liaohe River. This fact suggests that the river is a natural reservoir for non-O1/O139 V. cholerae which poses a potential threat to the public health. In summary, our results deepened the insights on the transmission of non-pandemic V. cholerae strains and underscored the significance of genomic surveillance for drinking water along the river sites.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jingwei Hao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shibo Jin
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Kui Wu
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shigen Ye
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ruijun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
32
|
Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar Virulence Gene Profiles. Front Microbiol 2019; 10:733. [PMID: 31031724 PMCID: PMC6474259 DOI: 10.3389/fmicb.2019.00733] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems globally. Strains of the serogroups O1 and O139 cause the epidemic diarrheal disease cholera. In Northern European waters, V. cholerae bacteria belonging to other serogroups (designated non-O1, non-O139) are present, of which some strains have been associated with gastrointestinal infections or extraintestinal infections, like wound infections or otitis. For this study, environmental strains from the German coastal waters of the North Sea and the Baltic Sea were selected (100 strains) and compared to clinical strains (10 isolates) that were from patients who contracted the infections in the same geographical region. The strains were characterized by MLST and examined by PCR for the presence of virulence genes encoding the cholera toxin, the toxin-coregulated pilus (TCP), and other virulence-associated accessory factors. The latter group comprised hemolysins, RTX toxins, cholix toxin, pandemic islands, and type III secretion system (TTSS). Phenotypic assays for hemolytic activity against human and sheep erythrocytes were also performed. The results of the MLST analysis revealed a considerable heterogeneity of sequence types (in total 74 STs). The presence of virulence genes was also variable and 30 profiles were obtained by PCR. One profile was found in 38 environmental strains and six clinical strains. Whole genome sequencing (WGS) was performed on 15 environmental and 7 clinical strains that were ST locus variants in one, two, or three alleles. Comparison of WGS results revealed that a set of virulence genes found in some clinical strains is also present in most environmental strains irrespective of the ST. In few strains, more virulence factors are acquired through horizontal gene transfer (i.e., TTSS, genomic islands). A distinction between clinical and environmental strains based on virulence gene profiles is not possible for our strains. Probably, many virulence traits of V. cholerae evolved in response to biotic and abiotic pressure and serve adaptation purposes in the natural aquatic environment, but provide a prerequisite for infection of susceptible human hosts. These findings indicate the need for surveillance of Vibrio spp. in Germany, as due to global warming abundance of Vibrio will rise and infections are predicted to increase.
Collapse
Affiliation(s)
- Keike Schwartz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Cornelia Göllner
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Eckhard Strauch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
33
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
34
|
Evaluation of Whole-Genome Sequencing for Identification and Typing of Vibrio cholerae. J Clin Microbiol 2018; 56:JCM.00831-18. [PMID: 30135231 DOI: 10.1128/jcm.00831-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023] Open
Abstract
Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.
Collapse
|
35
|
Liao F, Mo Z, Chen M, Pang B, Fu X, Xu W, Jing H, Kan B, Gu W. Comparison and Evaluation of the Molecular Typing Methods for Toxigenic Vibrio cholerae in Southwest China. Front Microbiol 2018; 9:905. [PMID: 29867816 PMCID: PMC5951969 DOI: 10.3389/fmicb.2018.00905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae, one was used seven housekeeping genes (adk, gyrB, metE, pntA, mdh, purM, and pyrC), and all the isolates belonged to ST69; another was used nine housekeeping genes (cat, chi, dnaE, gyrB, lap, pgm, recA, rstA, and gmd). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method (ctxAB, tcpA, and toxR) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Collapse
Affiliation(s)
- Feng Liao
- Department of Respiratory Medicine, First People's Hospital of Yunnan Province, Kunming, China
| | - Zhishuo Mo
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Bo Pang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wen Xu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China.,Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical School, Kunming, China
| |
Collapse
|
36
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Vibrio cholerae embraces two major evolutionary traits as revealed by targeted gene sequencing. Sci Rep 2018; 8:1631. [PMID: 29374205 PMCID: PMC5785995 DOI: 10.1038/s41598-018-19995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/11/2018] [Indexed: 01/27/2023] Open
Abstract
Vibrio cholerae inhabits aquatic environments worldwide and has over 200 recognized serogroups classified by O-polysaccharide specificity. Here, we report that V. cholerae selects either of two genetic traits during their evolution. Sequencing of the specific gene locus MS6_A0927 revealed that 339 of 341 strains of V. cholerae and closely related Vibrio species originating from 34 countries over a century carried either metY (M) (~1,269 bp) or luxR-hchA (LH) (~1,600 bp) genes, and consequently those vibrios were separated into two clusters, M (45.4%) and LH (54.6%). Only two strains contained both M and LH in the same locus. Moreover, extensive polymorphisms in those genes were detected in M and LH with 79 and 46 sequence variations, respectively. V. cholerae O1 strains isolated from cholera outbreaks worldwide, and some non-O1 strains evolving from O1 via exchange of genes encoding cell surface polysaccharides possessed LH alleles. Analysis of polymorphisms in the gene locus implicated a high degree of genetic diversity and identical subpopulations among the V. cholerae species.
Collapse
|
38
|
Zago V, Zambon M, Civettini M, Zaltum O, Manfrin A. Virulence-associated factors in Vibrio cholerae non-O1/non-O139 and V. mimicus strains isolated in ornamental fish species. JOURNAL OF FISH DISEASES 2017; 40:1857-1868. [PMID: 28677232 DOI: 10.1111/jfd.12659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
During recent decades, ornamental fish have proven to be one of the fastest growing categories of pets in Europe. In this framework, we evaluated both the potential pathogenic and zoonotic risks caused by 53 Vibrio cholerae non-O1/non-O139 and a Vibrio mimicus strain isolated from ornamental fish species mostly originating from South-East Asia countries between 2000 and 2015 in Italy. All the strains were firstly identified at species level by biochemical, phylogenetic and mass spectrometry (matrix-assisted laser desorption ionization time of flight) methods, and then studied to reveal the presence of the main virulence and colonization-associated factors, as ctxA, ace, zot, stn/sto, toxR, rtxA, hlyA and tcpA by multiplex and single endpoint PCR assays. Findings showed that 21 of 54 strains harboured at least one virulence factor with a predominance for the toxR+ , rtxA+ and hlyAET+ genotype. Interestingly, the V. mimicus strain harboured the colonization factor and the CTX prophage receptor, tcpA, indicating the ability to capture and integrate it in its genome increasing its pathogenicity. Although these enterotoxins can sporadically cause gastroenteritis, the results highlight their probable involvement in causing severe implications for public health, suggesting the need for an European microbiological monitoring.
Collapse
Affiliation(s)
- V Zago
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - M Zambon
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - M Civettini
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - O Zaltum
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| | - A Manfrin
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Adria, RO, Italy
| |
Collapse
|
39
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
40
|
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenström I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AKT. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 2017; 19:328-344. [PMID: 27871138 PMCID: PMC5718291 DOI: 10.1111/1462-2920.13612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties.
Collapse
Affiliation(s)
- Carina Pretzer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Irina S Druzhinina
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Carmen Amaro
- ERI BioTecMed University of Valencia, Valencia, Spain
| | - Eva Benediktsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | | | - Franciska M Schets
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas H Farnleitner
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| |
Collapse
|
41
|
Abstract
Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.
Collapse
|
42
|
Oladokun MO, Okoh IA. Vibrio cholerae: A historical perspective and current trend. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population. Appl Environ Microbiol 2016; 82:5576-86. [PMID: 27371587 DOI: 10.1128/aem.01177-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae is a ubiquitous aquatic microbe in temperate and tropical coastal areas. It is a diverse species, with many isolates that are harmless to humans, while others are highly pathogenic. Most notable among them are strains belonging to the pandemic O1/O139 serogroup lineage, which contains the causative agents of cholera. The environmental selective regimes that led to this diversity are key to understanding how pathogens evolve in environmental reservoirs. A local population of V. cholerae and its close relative Vibrio metoecus from a coastal pond and lagoon system was extensively sampled during two consecutive months across four size fractions (480 isolates). In stark contrast to previous studies, the observed population was highly clonal, with 60% of V. cholerae isolates falling into one of five clonal complexes, which varied in abundance in the short temporal scale sampled. V. cholerae clonal complexes had significantly different distributions across size fractions and the two environments sampled, the pond and the lagoon. Sequencing the genomes of 20 isolates representing these five V. cholerae clonal complexes revealed different evolutionary trajectories, with considerable variations in gene content with potential ecological significance. Showing genotypic differentiation and differential spatial distribution, the dominant clonal complexes are likely ecologically divergent. Temporal variation in the relative abundance of these complexes suggests that transient blooms of specific clones could dominate local diversity. IMPORTANCE Vibrio cholerae is commonly found in coastal areas worldwide, with only a single group of this bacterium capable of causing severe cholera outbreaks. However, the potential to evolve the ability to cause disease exists in many strains of this species in its aquatic reservoir. Understanding how pathogenic bacteria evolve requires the study of their natural environments. By extensive sampling in a geographically restricted location in the United States, we found that most cells of a V. cholerae population belong to only a small number of strains. Analysis of their genome composition and spatial distribution indicates differential environmental adaptations between these strains. Other strains exist in smaller numbers, and the population was found to be temporally varied. This suggests frequent bloom and collapse cycles on a time scale of weeks. These population dynamics make it possible that more virulent strains could stochastically rise to large numbers, allowing for infection to occur.
Collapse
|
44
|
Miller KA, Chaand M, Gregoire S, Yoshida T, Beck LA, Ivanov AI, Dziejman M. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol 2016; 18:1857-1870. [PMID: 27302486 DOI: 10.1111/cmi.12629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
Abstract
AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mudit Chaand
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stacy Gregoire
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
45
|
Eibach D, Herrera-León S, Gil H, Hogan B, Ehlkes L, Adjabeng M, Kreuels B, Nagel M, Opare D, Fobil JN, May J. Molecular Epidemiology and Antibiotic Susceptibility of Vibrio cholerae Associated with a Large Cholera Outbreak in Ghana in 2014. PLoS Negl Trop Dis 2016; 10:e0004751. [PMID: 27232338 PMCID: PMC4883745 DOI: 10.1371/journal.pntd.0004751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ghana is affected by regular cholera epidemics and an annual average of 3,066 cases since 2000. In 2014, Ghana experienced one of its largest cholera outbreaks within a decade with more than 20,000 notified infections. In order to attribute this rise in cases to a newly emerging strain or to multiple simultaneous outbreaks involving multi-clonal strains, outbreak isolates were characterized, subtyped and compared to previous epidemics in 2011 and 2012. METHODOLOGY/PRINCIPAL FINDINGS Serotypes, biotypes, antibiotic susceptibilities were determined for 92 Vibrio cholerae isolates collected in 2011, 2012 and 2014 from Southern Ghana. For a subgroup of 45 isolates pulsed-field gel electrophoresis, multilocus sequence typing and multilocus-variable tandem repeat analysis (MLVA) were performed. Eighty-nine isolates (97%) were identified as ctxB (classical type) positive V. cholerae O1 biotype El Tor and three (3%) isolates were cholera toxin negative non-O1/non-O139 V. cholerae. Among the selected isolates only sulfamethoxazole/trimethoprim resistance was detectable in 2011, while 95% of all 2014 isolates showed resistance towards sulfamethoxazole/trimethoprim, ampicillin and reduced susceptibility to ciprofloxacin. MLVA achieved the highest subtype discrimination, revealing 22 genotypes with one major outbreak cluster in each of the three outbreak years. Apart from those clusters genetically distant genotypes circulate during each annual epidemic. CONCLUSIONS/SIGNIFICANCE This analysis suggests different endemic reservoirs of V. cholerae in Ghana with distinct annual outbreak clusters accompanied by the occurrence of genetically distant genotypes. Preventive measures for cholera transmission should focus on aquatic reservoirs. Rapidly emerging multidrug resistance must be monitored closely.
Collapse
Affiliation(s)
- Daniel Eibach
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- * E-mail:
| | - Silvia Herrera-León
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Horacio Gil
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Benedikt Hogan
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Germany
| | - Lutz Ehlkes
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Germany
| | - Michael Adjabeng
- Ghana Health Service, Disease Surveillance Service, Accra, Ghana
| | - Benno Kreuels
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Germany
- University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michael Nagel
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - David Opare
- Ghana Health Service, National Public Health and Reference Laboratory (NPHRL), Accra, Ghana
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Germany
| |
Collapse
|
46
|
Luo Y, Octavia S, Jin D, Ye J, Miao Z, Jiang T, Xia S, Lan R. US Gulf-like toxigenic O1 Vibrio cholerae causing sporadic cholera outbreaks in China. J Infect 2016; 72:564-72. [PMID: 26920786 DOI: 10.1016/j.jinf.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/15/2016] [Accepted: 02/12/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Cholera is potentially a life threatening disease caused by toxigenic Vibrio cholerae. Here we report the identification and characterisation of 76 non-7th pandemic clone O1 V. cholerae isolates including 65 clinical isolates from diarrhoeal patients from 2005 to 2014 in Zhejiang Province, China. METHODS We used multilocus sequence typing (MLST) to characterise 65 V. cholerae isolates. Pulse-Field Gel Electrophoresis (PFGE) was performed on a subset of the isolates and whole-genome sequencing was done on 13 isolates. RESULTS MLST separated 65 isolates into 19 sequence types (STs). Thirty three isolates belonged to ST75 which also contains the US Gulf Coast clone. PFGE separated the 33 isolates into 16 pulsotypes. Whole genome sequencing of 10 ST75 isolates showed that the US Gulf Coast clone and the Chinese ST75 isolates can be separated into two distinct lineages, ST75a and ST75b. All Zhejiang ST75 isolates were ST75b. CONCLUSION PFGE and genome sequencing confirmed the linked cases and identified small outbreaks caused by ST75b. The emergence and potential spread of ST75b may pose significant threat to public health. Epidemiological surveillance is required to further understand its epidemic potential.
Collapse
Affiliation(s)
- Yun Luo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dazhi Jin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ziping Miao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Tao Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shichang Xia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
47
|
Yu J, Sun Z, Liu W, Xi X, Song Y, Xu H, Lv Q, Bao Q, Menghe B, Sun T. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia. BMC Microbiol 2015; 15:236. [PMID: 26497818 PMCID: PMC4620635 DOI: 10.1186/s12866-015-0551-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/07/2015] [Indexed: 12/04/2022] Open
Abstract
Background Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. Methods All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. Results The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS = 0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the other two species in the salivarius group. Conclusions Our newly developed MLST scheme improved the understanding on the genetic diversity and population structure of the S. thermophilus, as well as provided useful information for further studies on the genotyping and evolutionary research for S. thermophilus strains with global diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0551-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Qiang Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, P. R. China.
| |
Collapse
|
48
|
Esteves K, Mosser T, Aujoulat F, Hervio-Heath D, Monfort P, Jumas-Bilak E. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons. Front Microbiol 2015; 6:708. [PMID: 26236294 PMCID: PMC4503927 DOI: 10.3389/fmicb.2015.00708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/28/2015] [Indexed: 01/09/2023] Open
Abstract
Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.
Collapse
Affiliation(s)
- Kévin Esteves
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Thomas Mosser
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Fabien Aujoulat
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | | | - Patrick Monfort
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France
| | - Estelle Jumas-Bilak
- Team "Pathogènes Hydriques Santé, Environnements", HydroSciences Montpellier, UMR 5569, Centre National de la Recherche, IRD, Université de Montpellier Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire Montpellier, France
| |
Collapse
|
49
|
Aydanian A, Tang L, Chen Y, Morris JG, Olsen P, Johnson JA, Nair GB, Stine OC. Genetic relatedness of selected clinical and environmental non-O1/O139 Vibrio cholerae. Int J Infect Dis 2015; 37:152-8. [PMID: 26164777 DOI: 10.1016/j.ijid.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND In an attempt to better understand the non-O1/O139 isolates of Vibrio cholerae, a systematic study of clinical and environmental isolates collected from various geographical locations between the years 1932 and 1998 was conducted. METHODS Ninety-nine V. cholerae isolates collected from clinical and environmental sources from various geographical regions between 1932 and 1998 were studied by sequencing seven housekeeping genes. Genetic relatedness was defined by multiple methods that allow for the observed high levels of recombination. RESULTS Four V. cholerae subpopulations were determined. One subpopulation contained mostly environmental isolates, a second contained the cholera toxin-positive serogroup O1/O139 isolates, and the other two subpopulations were enriched for non-O1/O139 clinical isolates that were frequently clonally related to each other. CONCLUSIONS The data suggest that many of these non-O1/O139 clinical isolates were phylogenetically related to common ancestors, even though the isolates had been collected up to 36 years apart and from different countries or continents.
Collapse
Affiliation(s)
| | - Li Tang
- University of Maryland College of Medicine, Baltimore, Maryland, USA
| | - Yuansha Chen
- University of Maryland College of Medicine, Baltimore, Maryland, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Peter Olsen
- Department of Computer Science, University of Maryland Baltimore County, Catonsville, MD, USA
| | - Judith A Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - G Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - O Colin Stine
- University of Maryland College of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Chapman C, Henry M, Bishop-Lilly KA, Awosika J, Briska A, Ptashkin RN, Wagner T, Rajanna C, Tsang H, Johnson SL, Mokashi VP, Chain PSG, Sozhamannan S. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity. PLoS One 2015; 10:e0120311. [PMID: 25794000 PMCID: PMC4368569 DOI: 10.1371/journal.pone.0120311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.
Collapse
Affiliation(s)
- Carol Chapman
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Matthew Henry
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Kimberly A. Bishop-Lilly
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Joy Awosika
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Adam Briska
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | | | - Trevor Wagner
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | - Chythanya Rajanna
- University of Florida, Gainesville, Florida, United States of America
| | - Hsinyi Tsang
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Shannon L. Johnson
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Vishwesh P. Mokashi
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Patrick S. G. Chain
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shanmuga Sozhamannan
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|