1
|
Zhu M, Zhao R, Wu H, Zhang B, Zhang B, Han X. Integrated transcriptome and metabolome analysis provides insights into anthocyanin biosynthesis in Cichorium intybus L. BMC PLANT BIOLOGY 2025; 25:409. [PMID: 40165067 PMCID: PMC11959762 DOI: 10.1186/s12870-025-06393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Chicory is a unique and nutritious vegetable crop. However, the molecular mechanisms underlying anthocyanin biosynthesis in chicory remain poorly understood. We combined transcriptomics and metabolomics analyses to explore the molecular basis of anthocyanin biosynthesis in red-budded (Z1) and yellow-budded (Z7) chicory. RESULTS Integrated transcriptomics and metabolomics analyses were performed to investigate the molecular basis of anthocyanin biosynthesis in chicory. A total of 26 key structural genes, including F3'H, DFR, CHS, and ANS, were identified and enriched in pathways such as flavonoid and anthocyanin biosynthesis. Additionally, 29 transcription factors were identified, including 11 MYB, five bHLH, and two WD40 transcription factors, with seven MYB genes upregulated and four genes downregulated, indicating their roles in regulating anthocyanin biosynthesis. Notably, the MYB transcription factor, CI35997, which is homologous to RLL2A in lettuce, was predicted to positively regulate anthocyanin biosynthesis. Other transcription factors, such as AP2/ERF, bZIP, NAC, and Trihelix, have also been implicated. Metabolomics analysis revealed that cyanidin derivatives were the main contributors to the red coloration of chicory buds, with cyanidin-3-O-(6-O-malonyl)-glucoside being the most abundant. Furthermore, a competitive relationship between lignin and anthocyanin biosynthesis was observed, wherein the downregulation of lignin-related genes enhanced anthocyanin accumulation. CONCLUSIONS This study identified key structural genes and transcription factors that offer molecular-level insights into anthocyanin biosynthesis in chicory. These findings provide valuable guidance for genetic improvement of chicory and other crops with high anthocyanin content.
Collapse
Affiliation(s)
- Mingzhao Zhu
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Ran Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Baohai Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Bin Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xiangyang Han
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
3
|
Zeng X, Wu C, Zhang L, Lan L, Fu W, Wang S. Molecular Mechanism of Resistance to Alternaria alternata Apple Pathotype in Apple by Alternative Splicing of Transcription Factor MdMYB6-like. Int J Mol Sci 2024; 25:4353. [PMID: 38673937 PMCID: PMC11050356 DOI: 10.3390/ijms25084353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
As a fruit tree with great economic value, apple is widely cultivated in China. However, apple leaf spot disease causes significant damage to apple quality and economic value. In our study, we found that MdMYB6-like is a transcription factor without auto-activation activity and with three alternative spliced variants. Among them, MdMYB6-like-β responded positively to the pathogen infection. Overexpression of MdMYB6-like-β increased the lignin content of leaves and improved the pathogenic resistance of apple flesh callus. In addition, all three alternative spliced variants of MdMYB6-like could bind to the promoter of MdBGLU H. Therefore, we believe that MdMYB6-like plays an important role in the infection process of the pathogen and lays a solid foundation for breeding disease-resistant cultivars of apple in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (C.W.); (L.Z.); (L.L.); (W.F.)
| |
Collapse
|
4
|
Liang Y, Li X, Lei F, Yang R, Bai W, Yang Q, Zhang D. Transcriptome Profiles Reveals ScDREB10 from Syntrichia caninervis Regulated Phenylpropanoid Biosynthesis and Starch/Sucrose Metabolism to Enhance Plant Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:205. [PMID: 38256758 PMCID: PMC10820175 DOI: 10.3390/plants13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching -100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.
Collapse
Affiliation(s)
- Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Feiya Lei
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| |
Collapse
|
5
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
He Y, Hao Q, Chen P, Qin Y, Peng M, Yao S, He X, Yu Q, Agassin RH, Ji K. Cloning of PmMYB6 in Pinus massoniana and an Analysis of Its Function. Int J Mol Sci 2023; 24:13766. [PMID: 37762069 PMCID: PMC10530544 DOI: 10.3390/ijms241813766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Phenylpropanoids are crucial for the growth and development of plants and their interaction with the environment. As key transcriptional regulators of plant growth and development, MYB-like transcription factors play a vital role in the biosynthesis of phenylpropanoid metabolites. In this study, we functionally characterized PmMYB6, a Pinus massoniana gene that encodes an R2R3-MYB transcription factor. It was confirmed by qPCR that PmMYB6 was highly expressed in the flowers, xylem, and phloem of P. massoniana. By overexpressing PmMYB6 in tobacco and poplar, we found that transgenic plants had enlarged xylem, increased content of lignin and flavonoids, and up-regulated expression of several enzyme genes of the phenylpropane metabolism pathway to different degrees. The above research results indicate that PmMYB6 is involved in the metabolic flux distribution of different branches of the phenylpropane metabolic pathway, and the results may provide clues for the regulation of metabolic fluxes between flavonoids and the lignin biosynthesis pathways of P. massoniana, as well as provide a basis for the molecular breeding of P. massoniana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (Q.H.); (P.C.); (Y.Q.); (M.P.); (S.Y.); (X.H.); (Q.Y.); (R.H.A.)
| |
Collapse
|
8
|
Li J, Xu S, Mei Y, Gu Y, Sun M, Zhang W, Wang J. Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis. BMC PLANT BIOLOGY 2023; 23:381. [PMID: 37550611 PMCID: PMC10405574 DOI: 10.1186/s12870-023-04394-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.
Collapse
Affiliation(s)
- Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Mingyang Sun
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Tang Y, Lu L, Sheng Z, Zhao D, Tao J. An R2R3-MYB network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1237-1258. [PMID: 36633057 DOI: 10.1111/tpj.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhipeng Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
11
|
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6663-6677. [PMID: 35927220 PMCID: PMC9629790 DOI: 10.1093/jxb/erac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is among the most devastating diseases in Brassica napus worldwide. Conventional breeding for SSR resistance in Brassica species is challenging due to the limited availability of resistant germplasm. Therefore, genetic engineering is an attractive approach for developing SSR-resistant Brassica crops. Compared with the constitutive promoter, an S. sclerotiorum-inducible promoter would avoid ectopic expression of defense genes that may cause plant growth deficits. In this study, we generated a S. sclerotiorum-inducible promoter. pBnGH17D7, from the promoter of B. napus glycosyl hydrolase 17 gene (pBnGH17). Specifically, 5'-deletion and promoter activity analyses in transgenic Arabidopsis thaliana plants defined a 189 bp region of pBnGH17 which was indispensable for S. sclerotiorum-induced response. Compared with pBnGH17, pBnGH17D7 showed a similar response upon S. sclerotiorum infection, but lower activity in plant tissues in the absence of S. sclerotiorum infection. Moreover, we revealed that the transcription factor BnTGA7 directly binds to the TGACG motif in pBnGH17D7 to activate BnGH17. Ultimately, pBnGH17D7 was exploited for engineering Sclerotinia-resistant B. napus via host-induced gene silencing. It induces high expression of siRNAs against the S. sclerotiorum pathogenic factor gene specifically during infection, leading to increased resistance.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jialin Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Keyun Lin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
12
|
Yuan Y, Zuo J, Zhang H, Zu M, Liu S. Analysis of the different growth years accumulation of flavonoids in Dendrobium moniliforme (L.) Sw. by the integration of metabolomic and transcriptomic approaches. Front Nutr 2022; 9:928074. [PMID: 36225877 PMCID: PMC9549206 DOI: 10.3389/fnut.2022.928074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dendrobium moniliforme (L.) Sw. is a valuable herbal crop, and flavonoids are primarily distributed as active ingredients in the stem, but the composition and synthesis mechanisms of flavonoids in different growth years are not clear. The accumulation of flavonoids in D. moniliforme from four different years was investigated, using a combined metabolomics and transcriptomics approach in this study. The phenylpropanoid and flavonoid biosynthetic pathways were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). The widely targeted metabolomics technique revealed a total of 173 kinds of flavonoid metabolites. The metabolomics data confirmed the trend of total flavonoids (TF) content in stems of D. moniliforme, with chalcone, naringenin, eriodictyol, dihydroquercetin, and other flavonoids considerably up-accumulating in the third year. Twenty DEGs were detected that regulate flavonoid synthesis and the expression of these genes in different growth years was verified using real-time quantitative PCR (qRT-PCR). Furthermore, a comprehensive regulatory network was built for flavonoid biosynthesis and it was discovered that there is one FLS gene, one CCR gene and two MYB transcription factors (TFs) with a high connection with flavonoid biosynthesis by weighted gene co-expression network analysis (WGCNA). In this study, the correlation between genes involved in flavonoid biosynthesis and metabolites was revealed, and a new regulatory mechanism related to flavonoid biosynthesis in D. moniliforme was proposed. These results provide an important reference for the farmers involved in the cultivation of D. moniliforme.
Collapse
|
13
|
Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Mol Genet Genomics 2022; 297:125-145. [PMID: 34978004 DOI: 10.1007/s00438-021-01839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.
Collapse
|
14
|
Wang X, Li Y, Liu Y, Zhang D, Ni M, Jia B, Heng W, Fang Z, Zhu LW, Liu P. Transcriptomic and Proteomic Profiling Reveal the Key Role of AcMYB16 in the Response of Pseudomonas syringae pv. actinidiae in Kiwifruit. FRONTIERS IN PLANT SCIENCE 2021; 12:756330. [PMID: 34868148 PMCID: PMC8632638 DOI: 10.3389/fpls.2021.756330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 06/01/2023]
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa), is an important disease of kiwifruit (Actinidia Lind.). Plant hormones may induce various secondary metabolites to resist pathogens via modulation of hormone-responsive transcription factors (TFs), as reported in past studies. In this study, we showed that JA accumulated in the susceptible cultivar Actinidia chinensis 'Hongyang' but decreased in the resistant cultivar of A. chinensis var. deliciosa 'Jinkui' in response to Psa. Integrated transcriptomic and proteomic analyses were carried out using the resistant cultivar 'Jinkui'. A total of 5,045 differentially expressed genes (DEGs) and 1,681 differentially expressed proteins (DEPs) were identified after Psa infection. Two pathways, 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis,' were activated at the protein and transcript levels. In addition, a total of 27 R2R3-MYB transcription factors (TFs) were involved in the response to Psa of 'Jinkui,' including the R2R3-MYB TF subgroup 4 gene AcMYB16, which was downregulated in 'Jinkui' but upregulated in 'Hongyang.' The promoter region of AcMYB16 has a MeJA responsiveness cis-acting regulatory element (CRE). Transient expression of the AcMYB16 gene in the leaves of 'Jinkui' induced Psa infection. Together, these data suggest that AcMYB16 acts as a repressor to regulate the response of kiwifruit to Psa infection. Our work will help to unravel the processes of kiwifruit resistance to pathogens and will facilitate the development of varieties with resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Yawei Li
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Dongle Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Min Ni
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-wu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Yang J, Zhang S, Li H, Wang L, Liu Y, Niu L, Yang Q, Meng D, Fu Y. Genome-wide analysis and characterization of R2R3-MYB family in pigeon pea (Cajanus cajan) and their functional identification in phenylpropanoids biosynthesis. PLANTA 2021; 254:64. [PMID: 34487243 DOI: 10.1007/s00425-021-03713-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Thirty CcMYB were identified to involve in flavonoid and lignin biosynthesis in pigeon pea genome. A comprehensive analysis of gene structure, phylogenetic relationships, distribution on chromosomes, gene duplication, and expression patterns was performed. MYB transcription factor is one of the largest gene families in plants and plays critical roles in plant growth and development, as well as resistance to biotic and abiotic stress. However, the function of MYB genes in pigeon pea (Cajanus cajan) remains largely unknown. Here, 30 R2R3-MYB which involved flavonoid and lignin biosynthesis were identified in the pigeon pea genome and were classified into five groups based on phylogenetic analysis. Simultaneously, another 122 key enzyme genes from biosynthetic pathways of flavonoid and lignin were identified and all of them were mapped on 11 chromosomes with the co-linearity relationship. Among these genes, the intron/exon organization and motif compositions were conserved and they have undergone a strong purifying selection and tandem duplications during evolution. Expression profile analysis demonstrated most of these genes were expressed in different tissues and responded significantly to MeJA, RNA-seq analysis revealed clear details of genes varied with time of induction. Ten key genes from the phenylpropanoid pathway were selected to further verify whether they responded to induction under different abiotic stress conditions (UV-B, cold, heat, salt, drought, and GA3). This study elaborates on potential regulatory relationships between R2R3-MYB genes and some key genes involved in flavonoid and lignin biosynthesis under MeJA treatment, as well as adding to the understanding of improving abiotic stress tolerance and regulating the secondary metabolism in woody crops. A simplified discussion model for the different regulation networks involved with flavonoid and lignin biosynthesis in pigeon pea is proposed.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Su Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lili Niu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Anwar M, Chen L, Xiao Y, Wu J, Zeng L, Li H, Wu Q, Hu Z. Recent Advanced Metabolic and Genetic Engineering of Phenylpropanoid Biosynthetic Pathways. Int J Mol Sci 2021; 22:9544. [PMID: 34502463 PMCID: PMC8431357 DOI: 10.3390/ijms22179544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
The MYB transcription factors (TFs) are evolving as critical role in the regulation of the phenylpropanoid and tanshinones biosynthetic pathway. MYB TFs relate to a very important gene family, which are involved in the regulation of primary and secondary metabolisms, terpenoids, bioactive compounds, plant defense against various stresses and cell morphology. R2R3 MYB TFs contained a conserved N-terminal domain, but the domain at C-terminal sorts them different regarding their structures and functions. MYB TFs suppressors generally possess particular repressive motifs, such as pdLNLD/ELxiG/S and TLLLFR, which contribute to their suppression role through a diversity of complex regulatory mechanisms. A novel flower specific "NF/YWSV/MEDF/LW" conserved motif has a great potential to understand the mechanisms of flower development. In the current review, we summarize recent advanced progress of MYB TFs on transcription regulation, posttranscriptional, microRNA, conserved motif and propose directions to future prospective research. We further suggest there should be more focus on the investigation for the role of MYB TFs in microalgae, which has great potential for heterologous protein expression system for future perspectives.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibo Xiao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
| | - Qingyu Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
17
|
Xue J, Lu D, Wang S, Lu Z, Liu W, Wang X, Fang Z, He X. Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Sci Rep 2021; 11:14083. [PMID: 34238989 PMCID: PMC8266841 DOI: 10.1038/s41598-021-93532-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is one of the most precisely modulated developmental process and affects various agronomic traits of rice. Anti-senescence rice varieties are important for breeding application. However, little is known about the mechanisms underlying the metabolic regulatory process of leaf senescence in rice. In this study, we performed transcriptomic and metabolomic analyses of the flag leaves in Yuenong Simiao (YN) and YB, two indica rice cultivars that differ in terms of their leaf senescence. We found 8524 genes/204 metabolites were differentially expressed/accumulated in YN at 30 days after flowering (DAF) compared to 0 DAF, and 8799 genes/205 metabolites were differentially expressed in YB at 30 DAF compared to 0 DAF. Integrative analyses showed that a set of genes and metabolites involved in flavonoid pathway were significantly enriched. We identified that relative accumulation of PHENYLALANINE AMMONIA-LYASE (PAL), CINNAMATE 4-HYDROXYLASE (C4H), 4-COUMAROYL-COA LIGASE (4CL), CHALCONE SYNTHASE (CHS) and CHALCONE ISOMERASE (CHI) in YN30/0 was higher than that in YB30/0. Three flavonoid derivatives, including phloretin, luteolin and eriodictyol, showed lower abundances in YB than in YN at 30 DAF. We further revealed a MYB transcription factor, which is encoded by OsR498G0101613100 gene, could suppress the expression of CHI and CHS. Our results suggested a comprehensive analysis of leaf senescence in a view of transcriptome and metabolome and would contribute to exploring the molecular mechanism of leaf senescence in rice.
Collapse
Affiliation(s)
- Jiao Xue
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dongbai Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Shiguang Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhanhua Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiaofei Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Fang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiuying He
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
18
|
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J Mol Sci 2021; 22:3560. [PMID: 33808132 PMCID: PMC8037110 DOI: 10.3390/ijms22073560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.
Collapse
Affiliation(s)
- Ruixue Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| |
Collapse
|
19
|
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, Cao L, Guo M, Yin Z. Enhanced Biosynthesis of Chlorogenic Acid and Its Derivatives in Methyl-Jasmonate-Treated Gardenia jasminoides Cells: A Study on Metabolic and Transcriptional Responses of Cells. Front Bioeng Biotechnol 2021; 8:604957. [PMID: 33469531 PMCID: PMC7813945 DOI: 10.3389/fbioe.2020.604957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chlorogenic acid and its derivatives (CQAs) are considered as important bioactive secondary metabolites in Gardenia jasminoides Ellis (G. jasminoides). However, few studies have investigated the biosynthesis and regulation of CQAs in G. jasminoides. In this study, methyl jasmonate (MeJA) was used to enhance CQAs accumulation in cultured G. jasminoides cells. Moreover, the possible molecular mechanism of MeJA-mediated accumulation of CQAs is also explored. To this end, time-course transcriptional profiles of G. jasminoides cells responding to MeJA were used to investigate the mechanism from different aspects, including jasmonate (JAs) biosynthesis, signal transduction, biosynthesis of precursor, CQAs biosynthesis, transporters, and transcription factors (TFs). A total of 57,069 unigenes were assembled from the clean reads, in which 80.7% unigenes were successfully annotated. Furthermore, comparative transcriptomic results indicated that differentially expressed genes (DEGs) were mainly involved in JAs biosynthesis and signal transduction (25 DEGs), biosynthesis of precursor for CQAs (18 DEGs), CQAs biosynthesis (19 DEGs), and transporters (29 DEGs). Most of these DEGs showed continuously upregulated expressions over time, which might activate the jasmonic acid (JA) signal transduction network, boost precursor supply, and ultimately stimulate CQAs biosynthesis. Additionally, various TFs from different TF families also responded to MeJA elicitation. Interestingly, 38 DEGs from different subgroups of the MYB family might display positive or negative regulations on phenylpropanoids, especially on CQAs biosynthesis. Conclusively, our results provide insight into the possible molecular mechanism of regulation on CQAs biosynthesis, which led to a high CQAs yield in the G. jasminoides cells under MeJA treatment.
Collapse
Affiliation(s)
- Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
20
|
Peng J, Dong X, Xue C, Liu Z, Cao F. Exploring the Molecular Mechanism of Blue Flower Color Formation in Hydrangea macrophylla cv. "Forever Summer". FRONTIERS IN PLANT SCIENCE 2021; 12:585665. [PMID: 33679822 PMCID: PMC7925886 DOI: 10.3389/fpls.2021.585665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Hydrangea macrophylla has a large inflorescence and rich colors, which has made it one of the most popular ornamental flowers worldwide. Thus far, the molecular mechanism of flower color formation in H. macrophylla flowers is unknown. By comparing the pigment content and transcriptome data of the bud period (FSF1), discoloration period (FSF2) and full-bloom stage (FSF3) of infertile blue flowers of H. macrophylla cv. "Forever Summer," we found that genes associated with anthocyanin production were most associated with the formation of blue infertile flowers throughout development. The anthocyanin biosynthesis pathway is the main metabolic pathway associated with flower color formation, and the carotenoid biosynthesis pathway appeared to have almost no contribution to flower color. There was no competition between the flavonoid and flavonol and anthocyanin biosynthesis pathways for their substrate. At FSF1, the key genes CHS and CHI in the flavonoid biosynthesis pathway were up-regulated, underlying the accumulation of a substrate for anthocyanin synthesis. By FSF3, the downstream genes F3H, C3'5'H, CYP75B1, DFR, and ANS in the anthocyanin biosynthesis pathway were almost all up-regulated, likely promoting the synthesis and accumulation of anthocyanins and inducing the color change of infertile flowers. By analyzing protein-protein interaction networks and co-expression of transcription factors as well as differentially expressed structural genes related to anthocyanin synthesis, we identified negatively regulated transcription factors such as WER-like, MYB114, and WDR68. Their site of action may be the key gene DFR in the anthocyanin biosynthesis pathway. The potential regulatory mechanism of flower color formation may be that WER-like, MYB114, and WDR68 inhibit or promote the synthesis of anthocyanins by negatively regulating the expression of DFR. These results provide an important basis for studying the infertile flower color formation mechanism in H. macrophylla and the development of new cultivars with other colors.
Collapse
Affiliation(s)
- Jiqing Peng
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, China
- *Correspondence: Jiqing Peng,
| | - Xujie Dong
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, China
| | - Chao Xue
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, United States
| | - Fuxiang Cao
- College of Landscape and Horticulture, Hunan Agricultural University, Changsha, China
- Fuxiang Cao,
| |
Collapse
|
21
|
García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. PLANTS 2020; 9:plants9060774. [PMID: 32575698 PMCID: PMC7357106 DOI: 10.3390/plants9060774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Peter Palove-Balang
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia;
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
- Correspondence: ; Tel.: +34-954557145
| |
Collapse
|
22
|
Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. BIOLOGY 2020; 9:biology9030061. [PMID: 32213912 PMCID: PMC7150910 DOI: 10.3390/biology9030061] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
MYB transcription factors (TFs), as one of the largest gene families in plants, play important roles in multiple biological processes, such as plant growth and development, cell morphology and pattern building, physiological activity metabolism, primary and secondary metabolic reactions, and responses to environmental stresses. The function of MYB TFs in crops has been widely studied, but few studies have been done on medicinal plants. In this review, we summarized the MYB TFs that play important roles in secondary metabolism and emphasized the possible mechanisms underlying how MYB TFs are regulated at the protein, posttranscriptional, and transcriptional levels, as well as how they regulate the downstream target gene networks related to secondary metabolism in plants, especially in medicinal plants.
Collapse
Affiliation(s)
- Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kui Li
- Science and Technology Promotion Center, Huaihua Forestry Research Institute, Huaihua 418000, China;
| | - Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopei Zhao
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Correspondence:
| |
Collapse
|
23
|
Wang B, Luo Q, Li Y, Yin L, Zhou N, Li X, Gan J, Dong A. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res 2020; 48:460-471. [PMID: 31733060 PMCID: PMC7145699 DOI: 10.1093/nar/gkz1081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
Abstract
As the largest group of MYB family transcription factors, R2R3-MYB proteins play essential roles during plant growth and development. However, the structural basis underlying how R2R3-MYBs recognize the target DNA remains elusive. Here, we report the crystal structure of Arabidopsis WEREWOLF (WER), an R2R3-MYB protein, in complex with its target DNA. Structural analysis showed that the third α-helices in both the R2 and R3 repeats of WER fit in the major groove of the DNA, specifically recognizing the DNA motif 5'-AACNGC-3'. In combination with mutagenesis, in vitro binding and in vivo luciferase assays, we showed that K55, N106, K109 and N110 are critical for the function of WER. Although L59 of WER is not involved in DNA binding in the structure, ITC analysis suggested that L59 plays an important role in sensing DNA methylation at the fifth position of cytosine (5mC). Like 5mC, methylation at the sixth position of adenine (6mA) in the AAC element also inhibits the interaction between WER and its target DNA. Our study not only unravels the molecular basis of how WER recognizes its target DNA, but also suggests that 5mC and 6mA modifications may block the interaction between R2R3-MYB transcription factors and their target genes.
Collapse
Affiliation(s)
- Baihui Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yingping Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Nana Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiangnan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Su X, Xia Y, Jiang W, Shen G, Pang Y. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. PLANTA 2020; 252:68. [PMID: 32990805 PMCID: PMC7524859 DOI: 10.1007/s00425-020-03476-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Main Conclusion GbMYBR1, a new type of R2R3-MYB repressor from Ginkgo biloba, displayed pleiotropic effects on plant growth, phenylpropanoid accumulation, by regulating multiple related genes at different levels. Abstract Ginkgo biloba is a typical gymnosperm that has been thriving on earth for millions of years. MYB transcription factors (TFs) play important roles in diverse processes in plants. However, the role of MYBs remains largely unknown in Ginkgo. Here, an MYB TF gene from Ginkgo, designated as GbMYBR1, was found to act as a repressor in multiple processes. GbMYBR1 was mainly expressed in the leaves of Ginkgo. Over-expression of GbMYBR1 in Arabidopsis thaliana led to growth retardation, decreases in lignin content, reduced trichome density, and remarkable reduction in anthocyanin and flavonol contents in leaves. Proanthocyanidin content was decreased in the seeds of transgenic Arabidopsis, which led to light-brown seed color. Both qPCR and transcriptome sequencing analyses demonstrated that the transcript levels of multiple genes related to phenylpropanoid biosynthesis, trichome formation, and pathogen resistance were down-regulated in the transgenic Arabidopsis. In particular, we found that GbMYBR1 directly interacts with the bHLH cofactor GL3 as revealed by yeast two-hybrid assays. Our work indicated that GbMYBR1 has pleiotropic effects on plant growth, phenylpropanoid accumulation, and trichome development, mediated by interaction with GL3 or direct suppression of key pathway genes. Thus, GbMYBR1 represents a novel type of R2R3 MYB repressor. Electronic supplementary material The online version of this article (10.1007/s00425-020-03476-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guoan Shen
- The Institute of Medicinal Plant Development, Beijing, 100193 China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
25
|
Sarkar MAR, Watanabe S, Suzuki A, Hashimoto F, Anai T. Identification of novel MYB transcription factors involved in the isoflavone biosynthetic pathway by using the combination screening system with agroinfiltration and hairy root transformation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:241-251. [PMID: 31983878 PMCID: PMC6978502 DOI: 10.5511/plantbiotechnology.19.1025a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/25/2019] [Indexed: 05/20/2023]
Abstract
Soybean isoflavones are functionally important secondary metabolites that are mainly accumulated in seeds. Their biosynthetic processes are regulated coordinately at the transcriptional level; however, screening systems for key transcription factors (TFs) are limited. Here we developed a combination screening system comprising a simple agroinfiltration assay and a robust hairy root transformation assay. First, we screened for candidate MYB TFs that could activate the promoters of the chalcone synthase (CHS) gene GmCHS8 and the isoflavone synthase (IFS) genes GmIFS1 and GmIFS2 in the isoflavone biosynthetic pathway. In the agroinfiltration assay, we co-transformed a LjUbi (Lotus japonicus polyubiquitin gene) promoter-fused MYB gene with target promoter-fused GUS (β-glucuronidase) gene constructs, and identified three genes (GmMYB102, GmMYB280, and GmMYB502) as candidate regulators of isoflavone biosynthesis. We then evaluated the functional regulatory role of identified three MYB genes in isoflavone biosynthesis using hairy roots transformation assay in soybean for the accumulation of isoflavones. Three candidate MYB genes showed an increased accumulation of total isoflavones in hairy root transgenic lines. Accumulation of total isoflavones in the three MYB-overexpressing lines was approximately 2-to 4-folds more than that in the vector control, confirming their possible role to regulate isoflavone biosynthesis. However, the significant accumulation of authentic GmCHS8, GmIFS1, and GmIFS2 transcripts could not be observed except for the GmMYB502-overexpressing line. Therefore, the analysis of isoflavone accumulation in transgenic hairy root was effective for evaluation of transactivation activity of MYB TFs for isoflavone biosynthetic genes. Our results demonstrate a simple and robust system that can potentially identify the function of orphan TFs in diverse plant metabolic pathways.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- E-mail: Tel & Fax: +81-952-28-8725
| |
Collapse
|
26
|
Zhou Q, Jia C, Ma W, Cui Y, Jin X, Luo D, Min X, Liu Z. MYB transcription factors in alfalfa ( Medicago sativa): genome-wide identification and expression analysis under abiotic stresses. PeerJ 2019; 7:e7714. [PMID: 31576246 PMCID: PMC6753925 DOI: 10.7717/peerj.7714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Alfalfa is the most widely cultivated forage legume and one of the most economically valuable crops in the world. Its survival and production are often hampered by environmental changes. However, there are few studies on stress-resistance genes in alfalfa because of its incomplete genomic information and rare expression profile data. The MYB proteins are characterized by a highly conserved DNA-binding domain, which is large, functionally diverse, and represented in all eukaryotes. The role of MYB proteins in plant development is essential; they function in diverse biological processes, including stress and defense responses, and seed and floral development. Studies on the MYB gene family have been reported in several species, but they have not been comprehensively analyzed in alfalfa. Methods To identify more comprehensive MYB transcription factor family genes, the sequences of 168 Arabidopsis thaliana, 430 Glycine max, 185 Medicago truncatula, and 130 Oryza sativa MYB proteins were downloaded from the Plant Transcription Factor Database. These sequences were used as queries in a BLAST search against the M. sativa proteome sequences provided by the Noble Research Institute. Results In the present study, a total of 265 MsMYB proteins were obtained, including 50 R1-MYB, 186 R2R3-MYB, 26 R1R2R3-MYB, and three atypical-MYB proteins. These predicted MsMYB proteins were divided into 12 subgroups by phylogenetic analysis, and gene ontology (GO) analysis indicated that most of the MsMYB genes are involved in various biological processes. The expression profiles and quantitative real-time PCR analysis indicated that some MsMYB genes might play a crucial role in the response to abiotic stresses. Additionally, a total of 170 and 914 predicted protein–protein and protein-DNA interactions were obtained, respectively. The interactions between MsMYB043 and MSAD320162, MsMYB253 and MSAD320162, and MsMYB253 and MSAD308489 were confirmed by a yeast two-hybrid system. This work provides information on the MYB family in alfalfa that was previously lacking and might promote the cultivation of stress-resistant alfalfa.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenxue Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yue Cui
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
An C, Sheng L, Du X, Wang Y, Zhang Y, Song A, Jiang J, Guan Z, Fang W, Chen F, Chen S. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. HORTICULTURE RESEARCH 2019; 6:84. [PMID: 31645945 PMCID: PMC6804602 DOI: 10.1038/s41438-019-0166-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 05/27/2023]
Abstract
MYB transcription factors are widely involved in the development of and physiological processes in plants. Here, we isolated the chrysanthemum R2R3-MYB family transcription factor CmMYB15, a homologous gene of AtMYB15. It was demonstrated that CmMYB15 expression was induced by aphids and that CmMYB15 could bind to AC elements, which usually exist in the promoter of lignin biosynthesis genes. Overexpression of CmMYB15 in chrysanthemum enhanced the resistance of aphids. Additionally, the content of lignin and the expression of several lignin biosynthesis genes increased. In summary, the results indicate that CmMYB15 regulates lignin biosynthesis genes that enhance the resistance of chrysanthemum to aphids.
Collapse
Affiliation(s)
- Cong An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinping Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Miyamoto T, Takada R, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:975-987. [PMID: 30773774 DOI: 10.1111/tpj.14290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 05/23/2023]
Abstract
Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.
Collapse
Affiliation(s)
- Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
29
|
Zhang X, Xu Z, Yu X, Zhao L, Zhao M, Han X, Qi S. Identification of Two Novel R2R3-MYB Transcription factors, PsMYB114L and PsMYB12L, Related to Anthocyanin Biosynthesis in Paeonia suffruticosa. Int J Mol Sci 2019; 20:E1055. [PMID: 30823465 PMCID: PMC6429501 DOI: 10.3390/ijms20051055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Flower color is a charming phenotype with very important ornamental and commercial values. Anthocyanins play a critical role in determining flower color pattern formation, and their biosynthesis is typically regulated by R2R3-MYB transcription factors (TFs). Paeonia suffruticosa is a famous ornamental plant with colorful flowers. However, little is known about the R2R3-MYB TFs that regulate anthocyanin accumulation in P. suffruticosa. In the present study, two R2R3-MYB TFs, namely, PsMYB114L and PsMYB12L, were isolated from the petals of P. suffruticosa 'Shima Nishiki' and functionally characterized. Sequence analysis suggested that PsMYB114L contained a bHLH-interaction motif, whereas PsMYB12L contained two flavonol-specific motifs (SG7 and SG7-2). Subsequently, the in vivo function of PsMYB114L and PsMYB12L was investigated by their heterologous expression in Arabidopsis thaliana and apple calli. In transgenic Arabidopsis plants, overexpression of PsMYB114L and of PsMYB12L caused a significantly higher accumulation of anthocyanins, resulting in purple-red leaves. Transgenic apple calli overexpressing PsMYB114L and PsMYB12L also significantly enhanced the anthocyanins content and resulted in a change in the callus color to red. Meanwhile, gene expression analysis in A. thaliana and apple calli suggested that the expression levels of the flavonol synthase (MdFLS) and anthocyanidin reductase (MdANR) genes were significantly downregulated and the dihydroflavonol 4-reductase (AtDFR) and anthocyanin synthase (AtANS) genes were significantly upregulated in transgenic lines of PsMYB114L. Moreover, the expression level of the FLS gene (MdFLS) was significantly downregulated and the DFR (AtDFR/MdDFR) and ANS (AtANS/MdANS) genes were all significantly upregulated in transgenic lines plants of PsMYB12L. These results indicate that PsMYB114L and PsMYB12L both enhance anthocyanin accumulation by specifically regulating the expression of some anthocyanin biosynthesis-related genes in different plant species. Together, these results provide a valuable resource with which to further study the regulatory mechanism of anthocyanin biosynthesis in P. suffruticosa and for the breeding of tree peony cultivars with novel and charming flower colors.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Xiaoyan Yu
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Mingyuan Zhao
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Xu Han
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Shuai Qi
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
30
|
Wang Y, Sun J, Wang N, Xu H, Qu C, Jiang S, Fang H, Su M, Zhang Z, Chen X. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:187-196. [PMID: 32172760 DOI: 10.1071/fp17216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
Anthocyanin biosynthesis is induced by cytokinins, and is regulated by MYB transcription factors. However, the underlying molecular mechanisms have not been fully characterised. In the present study, red-fleshed apple callus were induced from the leaves of an R6/R6 homozygous line, which was the hybrid offspring of Malus sieversii f. niedzwetzkyana and 'Fuji'. We analysed the callus anthocyanin contents in response to different cytokinin concentrations. We observed that cytokinin treatments upregulated the expression of anthocyanin structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3. Additionally, the expression of MdMYBL2, which encodes the bHLH and EAR motifs, was inhibited by cytokinin treatments. The MdMYBL2-overexpressing callus had lower anthocyanin contents than the wild-type controls. We noted that the expression levels of anthocyanin biosynthesis structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3 were strongly suppressed in the transgenic callus. Subsequent yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MdMYBL2 interacts with MdbHLH3, which may influence the expression of anthocyanin biosynthesis-related genes. Our findings may provide new insights into how MYB transcription factors influence the cytokinin-regulated anthocyanin biosynthesis in red-fleshed apples.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jingjing Sun
- College of Forestry, Shandong Agricultural University, Tai-An, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Changzhi Qu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
31
|
Naing AH, Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. PLANT MOLECULAR BIOLOGY 2018; 98:1-18. [PMID: 30167900 DOI: 10.1007/s11103-018-0771-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
This review contains functional roles of MYB transcription factors in the transcriptional regulation of anthocyanin biosynthesis in horticultural plants. This review describes potential uses of MYB TFs as tools for metabolic engineering for anthocyanin production. Anthocyanins (ranging from red to blue) are controlled by specific branches of the anthocyanin biosynthetic pathway and are mostly visible in ornamentals, fruits, and vegetables. In the present review, we describe which R2R3-MYB transcription factors (TFs) control the transcriptional regulation of anthocyanin structural genes involved in the specific branches of the anthocyanin biosynthetic pathway in various horticultural plants (e.g., ornamentals, fruits, and vegetables). In addition, some MYBs responsible for anthocyanin accumulation in specific tissues are described. Moreover, we highlight the phylogenetic relationships of the MYBs that suppress or promote anthocyanin synthesis in horticultural crops. Enhancement of anthocyanin synthesis via metabolic genetic engineering of anthocyanin MYBs, which is described in the review, is indicative of the potential use of the mentioned anthocyanin-related MYBs as tools for anthocyanin production. Therefore, the MYBs would be suitable for metabolic genetic engineering for improvement of flower colors, fruit quality, and vegetable nutrients.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
32
|
Anwar M, Wang G, Wu J, Waheed S, Allan AC, Zeng L. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules 2018; 23:E781. [PMID: 29597321 PMCID: PMC6017421 DOI: 10.3390/molecules23040781] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022] Open
Abstract
R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.
Collapse
Affiliation(s)
- Muhammad Anwar
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Guiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Jiacheng Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research, Mt Albert Research Centre, Private Bag 92169, 1142 Auckland, New Zealand.
- School of Biological Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand.
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| |
Collapse
|
33
|
Wei Q, Zhang F, Sun F, Luo Q, Wang R, Hu R, Chen M, Chang J, Yang G, He G. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:112-123. [PMID: 29223332 DOI: 10.1016/j.plantsci.2017.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 05/24/2023]
Abstract
MYB transcription factors are involved in the regulation of plant development and response to biotic and abiotic stress. In this study, TaMyb1D, a novel subgroup 4 gene of the R2R3-MYB subfamily, was cloned from wheat (Triticum aestivum L.). TaMyb1D was localized in the nucleus and functioned as a transcriptional repressor. The overexpression of TaMyb1D in tobacco (Nicotiana tabacum) plants repressed the expression of genes related to phenylpropanoid metabolism and down-regulated the accumulation of lignin in stems and flavonoids in leaves. These changes affected plant development under normal conditions. The expression of TaMyb1D was ubiquitous and up-regulated by PEG6000 and H2O2 treatments in wheat. TaMyb1D-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate during drought stress, as well as higher chlorophyll content in leaves during oxidative stress. The transgenic plants showed a lower leakage of ions as well as reduced malondialdehyde and H2O2 levels during conditions of drought and oxidative stresses. In addition, TaMyb1D up-regulated the expression levels of ROS- and stress-related genes in response to drought stress. Therefore, the overexpression of TaMyb1D enhanced tolerance to drought and oxidative stresses in tobacco plants. Our study demonstrates that TaMyb1D functions as a negative regulator of phenylpropanoid metabolism and a positive regulator of plant tolerance to drought and oxidative stresses.
Collapse
Affiliation(s)
- Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
34
|
Li R, Reddy VA, Jin J, Rajan C, Wang Q, Yue G, Lim CH, Chua NH, Ye J, Sarojam R. Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif-containing R2R3-MYB that modulates phenylpropene biosynthesis. BMC PLANT BIOLOGY 2017; 17:219. [PMID: 29169327 PMCID: PMC5701422 DOI: 10.1186/s12870-017-1174-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/13/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Oil palm is the most productive oil crop and the efficiency of pollination has a direct impact on the yield of oil. Pollination by wind can occur but maximal pollination is mediated by the weevil E. kamerunicus. These weevils complete their life cycle by feeding on male flowers. Attraction of weevils to oil palm flowers is due to the emission of methylchavicol by both male and female flowers. In search for male flowers, the weevils visit female flowers by accident due to methylchavicol fragrance and deposit pollen. Given the importance of methylchavicol emission on pollination, we performed comparative transcriptome analysis of oil palm flowers and leaves to identify candidate genes involved in methylchavicol production in flowers. RESULTS RNA sequencing (RNA-Seq) of male open flowers, female open flowers and leaves was performed using Illumina HiSeq 2000 platform. Analysis of the transcriptome data revealed that the transcripts of methylchavicol biosynthesis genes were strongly up-regulated whereas transcripts encoding genes involved in lignin production such as, caffeic acid O-methyltransferase (COMT) and Ferulate-5-hydroxylase (F5H) were found to be suppressed in oil palm flowers. Among the transcripts encoding transcription factors, an EAR-motif-containing R2R3-MYB transcription factor (EgMYB4) was found to be enriched in oil palm flowers. We determined that EgMYB4 can suppress the expression of a monolignol pathway gene, EgCOMT, in vivo by binding to the AC elements present in the promoter region. EgMYB4 was further functionally characterized in sweet basil which also produces phenylpropenes like oil palm. Transgenic sweet basil plants showed significant reduction in lignin content but produced more phenylpropenes. CONCLUSIONS Our results suggest that EgMYB4 possibly restrains lignin biosynthesis in oil palm flowers thus allowing enhanced carbon flux into the phenylpropene pathway. This study augments our understanding of the diverse roles that EAR-motif-containing MYBs play to fine tune the metabolic flux along the various branches of core phenylpropanoid pathway. This will aid in metabolic engineering of plant aromatic compounds.
Collapse
Affiliation(s)
- Ran Li
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
- Present Address: Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vaishnavi Amarr Reddy
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
| | - Jingjing Jin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Chakaravarthy Rajan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
- Present Address: Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qian Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
- Present Address: College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Genhua Yue
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Chin Huat Lim
- R&D Department, Wilmar International Plantation, Palembang, Indonesia
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10065 USA
| | - Jian Ye
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
35
|
Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genomics 2017; 40:49-61. [PMID: 29892898 DOI: 10.1007/s13258-017-0609-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Flavonoids are a group of metabolites in Ginkgo biloba thought to provide health benefits. R2R3-MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthesis in plants. In this study, an R2R3-MYB transcription factor gene, GbMYBFL, was isolated from G. biloba and characterized. Results of bioinformatic analysis indicated that GbMYBFL is more closely related to the R2R3-MYB involved in flavonoid biosynthesis and displayed high similarity to MYB from other plants. The genmomic sequence of GbMYBFL had three exons and two introns, with its upstream sequence containing cis-acting regulatory elements Myb binding site, Myc recognition sites, and light, SA, MeJA responsive elements. Subcellular localization analysis indicates that GbMYBFL was located in the nucleus. Quantitative real-time PCR revealed that GbMYBFL was expressed in leaves, stems, roots, young fruits, male flower and female flower, and the level of transcription in male flower and leaves were higher than that in female flower, stems, roots, and young fruits. During G. biloba leaf growth, the transcription of GbMYBFL is positively correlated with the flavonoid content, suggesting that the GbMYBFL is involved in the flavonoid biosynthesis. Overexpression of GbMYBFL under the control of the CaMV35S promoter in Ginkgo callus notably enhanced the accumulation of flavonoids and anthocyanin compared with non-transformed callus. This finding suggested that GbMYBFL positively related to flavonoid biosynthesis, and the overexpression of GbMYBFL was sufficient to induce flavonoids and anthocyanin accumulation.
Collapse
|
36
|
Xu H, Wang N, Liu J, Qu C, Wang Y, Jiang S, Lu N, Wang D, Zhang Z, Chen X. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. PLANT MOLECULAR BIOLOGY 2017; 94:149-165. [PMID: 28286910 DOI: 10.1007/s11103-017-0601-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/27/2017] [Indexed: 05/22/2023]
Abstract
MdMYB16 forms homodimers and directly inhibits anthocyanin synthesis via its C-terminal EAR repressor. It weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis when overexpressing MdbHLH33 in callus overexpressing MdMYB16. MdMYB16 could interact with MdbHLH33. Anthocyanins are strong antioxidants that play a key role in the prevention of cardiovascular disease, cancer, and diabetes. The germplasm of Malus sieversii f. neidzwetzkyana is important for the study of anthocyanin metabolism. To date, only limited studies have examined the negative regulatory mechanisms underlying anthocyanin synthesis in apple. Here, we analyzed the relationship between anthocyanin levels and MdMYB16 expression in mature Red Crisp 1-5 apple (M. domestica) fruit, generated an evolutionary tree, and identified an EAR suppression sequence and a bHLH binding motif of the MdMYB16 protein using protein sequence analyses. Overexpression of MdMYB16 or MdMYB16 without bHLH binding sequence (LBSMdMYB16) in red-fleshed callus inhibited MdUFGT and MdANS expression and anthocyanin synthesis. However, overexpression of MdMYB16 without the EAR sequence (LESMdMYB16) in red-fleshed callus had no inhibitory effect on anthocyanin. The yeast one-hybrid assay showed that MdMYB16 and LESMdMYB16 interacted the promoters of MdANS and MdUFGT, respectively. Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays showed that MdMYB16 formed homodimers and interacted with MdbHLH33, however, the LBSMdMYB16 could not interact with MdbHLH33. We overexpressed MdbHLH33 in callus overexpressing MdMYB16 and found that it weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis. Together, these results suggested that MdMYB16 and MdbHLH33 may be important part of the regulatory network controlling the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Haifeng Xu
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Nan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jingxuan Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Changzhi Qu
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yicheng Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shenghui Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ninglin Lu
- Shandong institute of pomology, Tai-An, Shandong, China
| | - Deyun Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zongying Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xuesen Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|
37
|
CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis. Int J Mol Sci 2017; 18:ijms18030619. [PMID: 28287502 PMCID: PMC5372634 DOI: 10.3390/ijms18030619] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin.
Collapse
|
38
|
Li M, Li Y, Guo L, Gong N, Pang Y, Jiang W, Liu Y, Jiang X, Zhao L, Wang Y, Xie DY, Gao L, Xia T. Functional Characterization of Tea ( Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:943. [PMID: 28659938 PMCID: PMC5467005 DOI: 10.3389/fpls.2017.00943] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a's localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters' activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is characterized to encode a R2R3-MYB transcription factor. It is shown to repressively control the phenylpropanoid and shikimate pathway.
Collapse
Affiliation(s)
- Mingzhuo Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Lili Guo
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Niandi Gong
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Yongzheng Pang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wenbo Jiang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Lei Zhao
- College of Horticulture, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural UniversityQingdao, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - De-Yu Xie
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| | - Liping Gao
- School of Life Science, Anhui Agricultural UniversityHefei, China
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| | - Tao Xia
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| |
Collapse
|
39
|
Zhang J, Liu Y, Bu Y, Zhang X, Yao Y. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:137. [PMID: 28223999 PMCID: PMC5293739 DOI: 10.3389/fpls.2017.00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/23/2017] [Indexed: 05/11/2023]
Abstract
Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plant Science and Technology, Beijing University of AgricultureBeijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of AgricultureBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
| | - Yingying Liu
- Department of Plant Science and Technology, Beijing University of AgricultureBeijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of AgricultureBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
| | - YuFen Bu
- Department of Plant Science and Technology, Beijing University of AgricultureBeijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of AgricultureBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
| | - Xi Zhang
- Department of Plant Science and Technology, Beijing University of AgricultureBeijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of AgricultureBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
| | - Yuncong Yao
- Department of Plant Science and Technology, Beijing University of AgricultureBeijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of AgricultureBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
- *Correspondence: Yuncong Yao
| |
Collapse
|
40
|
Poovaiah CR, Bewg WP, Lan W, Ralph J, Coleman HD. Sugarcane transgenics expressing MYB transcription factors show improved glucose release. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:143. [PMID: 27429646 PMCID: PMC4946106 DOI: 10.1186/s13068-016-0559-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. RESULTS MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plant height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. CONCLUSIONS This study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.
Collapse
Affiliation(s)
| | - William P. Bewg
- />Center for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Wu Lan
- />US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA
- />Department of Biological System Engineering, University of Wisconsin, Madison, WI USA
| | - John Ralph
- />US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin, Madison, WI 53726 USA
| | | |
Collapse
|
41
|
Abstract
Brown midrib mutants in sorghum are associated with reduced lignin content and increased cell wall digestibility. In this study, we characterized a bmr-6 sorghum mutant, which shows reddish pigment in the midrib and stem after the fifth-leaf stage. Compared to wild type, Kalson lignin content of bmr-6 is decreased significantly. We used histological analysis to determine that the mutant exhibited a modified pattern of lignin staining and found an increased polysaccharide content. We cloned BMR-6 gene, a gene encoded a cinnamyl alcohol dehydrogenase (CAD), using a map-based cloning approach. Genetic complementation confirmed that CAD is responsible for the BMR-6 phenotype. BMR-6 gene was expressed in all tested sorghum tissues, with the highest being in midrib and stem. Transient expression assays in Nicotiana benthamiana leaves demonstrated cytomplasmic localization of BMR-6. We found that the expression level of bmr-6 was significantly decreased in the mutant but expression of SbCAD3 and SbCAD5 were significantly increased. Our results indicate that BMR-6 not only affects the distribution of lignin but also the biosynthesis of lignin in sorghum.
Collapse
|
42
|
Song A, Wu D, Fan Q, Tian C, Chen S, Guan Z, Xin J, Zhao K, Chen F. Transcriptome-Wide Identification and Expression Profiling Analysis of Chrysanthemum Trihelix Transcription Factors. Int J Mol Sci 2016; 17:ijms17020198. [PMID: 26848650 PMCID: PMC4783932 DOI: 10.3390/ijms17020198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 12/23/2022] Open
Abstract
Trihelix transcription factors are thought to feature a typical DNA-binding trihelix (helix-loop-helix-loop-helix) domain that binds specifically to the GT motif, a light-responsive DNA element. Members of the trihelix family are known to function in a number of processes in plants. Here, we characterize 20 trihelix family genes in the important ornamental plant chrysanthemum (Chrysanthemum morifolium). Based on transcriptomic data, 20 distinct sequences distributed across four of five groups revealed by a phylogenetic tree were isolated and amplified. The phylogenetic analysis also identified four pairs of orthologous proteins shared by Arabidopsis and chrysanthemum and five pairs of paralogous proteins in chrysanthemum. Conserved motifs in the trihelix proteins shared by Arabidopsis and chrysanthemum were analyzed using MEME, and further bioinformatic analysis revealed that 16 CmTHs can be targeted by 20 miRNA families and that miR414 can target 9 CmTHs. qPCR results displayed that most chrysanthemum trihelix genes were highly expressed in inflorescences, while 20 CmTH genes were in response to phytohormone treatments and abiotic stresses. This work improves our understanding of the various functions of trihelix gene family members in response to hormonal stimuli and stress.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chang Tian
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kunkun Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Zhu L, Zheng C, Liu R, Song A, Zhang Z, Xin J, Jiang J, Chen S, Zhang F, Fang W, Chen F. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana. Sci Rep 2016; 6:20009. [PMID: 26819087 PMCID: PMC4730235 DOI: 10.1038/srep20009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022] Open
Abstract
The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation.
Collapse
Affiliation(s)
- Lu Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixia Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaohe Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. PLANT MOLECULAR BIOLOGY 2016; 90:63-76. [PMID: 26497001 DOI: 10.1007/s11103-015-0394-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/17/2015] [Indexed: 05/18/2023]
Abstract
In grapevine, anthocyanins and proanthocyanidins are the main flavonoids in berries, which are associated to organoleptic properties in red wine such as color and astringency. Flavonoid pathway is specifically regulated at transcriptional level and several R2R3-MYB proteins have shown to act as positive regulators. However, some members of this family have shown to repress the flavonoid biosynthesis. In this work, we present the characterization of VvMYB4-like gene, which encodes a putative transcriptional factor highly expressed in the skin of berries at the pre veraison stage in grapevine. Its over-expression in tobacco resulted in the loss of pigmentation in flowers due a decrease in anthocyanin accumulation. Severity in anthocyanin suppression observed in petals could be associated with the expression level of the VvMYB4-like transgene. Expression analysis of flavonoid structural genes revealed the strong down-regulation of the flavonoid-related genes anthocyanidin synthase (ANS) and dihydroflavonol reductase (DFR) genes and also the reduction of the anthocyanin-related gene UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), which was dependent of the transgene expression. In addition, expression of VvMYB4-like in the model plant Arabidopsis showed similar results, with the higher down-regulation observed in the AtDFR and AtLDOX genes. These results suggest that VvMYB4-like may play an important role in regulation of anthocyanin biosynthesis in grapevine acting as a transcriptional repressor of flavonoid structural genes.
Collapse
Affiliation(s)
- J Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - José Madrid-Espinoza
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | - Yerko Moreno
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, Talca, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
45
|
A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLoS One 2015; 10:e0143892. [PMID: 26619181 PMCID: PMC4664390 DOI: 10.1371/journal.pone.0143892] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin content of cultivars with red, pink and yellow flower colors, respectively. CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6. Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter. Moreover, yeast two-hybrid assays indicated protein-protein interaction between CmbHLH2 and CmMYB6. These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum.
Collapse
|
46
|
Yan J, Wang B, Zhong Y, Yao L, Cheng L, Wu T. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis. PLANT MOLECULAR BIOLOGY 2015; 89:35-48. [PMID: 26231207 DOI: 10.1007/s11103-015-0349-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/23/2015] [Indexed: 05/02/2023]
Abstract
Soybean flavonoids, a group of important signaling molecules in plant-environment interaction, ubiquitously exist in soybean and are tightly regulated by many genes. Here we reported that GmMYB100, a gene encoding a R2R3 MYB transcription factor, is involved in soybean flavonoid biosynthesis. GmMYB100 is mainly expressed in flowers, leaves and immature embryo, and its level is decreased after pod ripening. Subcellular localization assay indicates that GmMYB100 is a nuclear protein. GmMYB100 has transactivation ability revealed by a yeast functional assay; whereas bioinformatic analysis suggests that GmMYB100 has a negative function in flavonoid biosynthesis. GmMYB100-overexpression represses the transcript levels of flavonoid-related genes in transgenic soybean hairy roots and Arabidopsis, and inhibits isoflavonoid (soybean) and flavonol (Arabidopsis) production in transgenic plants. Furthermore, the transcript levels of six flavonoid-related genes and flavonoid (isoflavonoid and flavone aglycones) accumulation are elevated in the GmMYB100-RNAi transgenic hairy roots. We also demonstrate that GmMYB100 protein depresses the promoter activities of soybean chalcone synthase and chalcone isomerase. These findings indicate that GmMYB100 is a negative regulator in soybean flavonoid biosynthesis pathway.
Collapse
Affiliation(s)
- Junhui Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Biao Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| | - Yunpeng Zhong
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Luming Yao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Linjing Cheng
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tianlong Wu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| |
Collapse
|
47
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
48
|
Yoshida K, Ma D, Constabel CP. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. PLANT PHYSIOLOGY 2015; 167:693-710. [PMID: 25624398 PMCID: PMC4348771 DOI: 10.1104/pp.114.253674] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism.
Collapse
Affiliation(s)
- Kazuko Yoshida
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - Dawei Ma
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| | - C Peter Constabel
- Center for Forest Biology and Department of Biology, University of Victoria, Station CSC, Victoria, British Columbia, Canada V8W 3N5
| |
Collapse
|
49
|
Xie R, Li Y, He S, Zheng Y, Yi S, Lv Q, Deng L. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments. PLoS One 2014; 9:e113971. [PMID: 25473954 PMCID: PMC4256393 DOI: 10.1371/journal.pone.0113971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/01/2014] [Indexed: 11/26/2022] Open
Abstract
The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development.
Collapse
Affiliation(s)
- Rangjin Xie
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Yongjie Li
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shaolan He
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Yongqiang Zheng
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shilai Yi
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiang Lv
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Lie Deng
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
50
|
Nakatsuka T, Yamada E, Saito M, Fujita K, Nishihara M. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers. PLANT CELL REPORTS 2013; 32:1925-37. [PMID: 24037114 DOI: 10.1007/s00299-013-1504-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE Single-repeat MYB transcription factors, GtMYB1R1 and GtMYB1R9 , were isolated from gentian. Overexpression of these genes reduced anthocyanin accumulation in tobacco flowers, demonstrating their applicability to modification of flower color. RNA interference (RNAi) has recently been used to successfully modify flower color intensity in several plant species. In most floricultural plants, this technique requires prior isolation of target flavonoid biosynthetic genes from the same or closely related species. To overcome this limitation, we developed a simple and efficient method for reducing floral anthocyanin accumulation based on genetic engineering using novel transcription factor genes isolated from Japanese gentians. We identified two single-repeat MYB genes--GtMYB1R and GtMYB1R9--predominantly expressed in gentian petals. Transgenic tobacco plants expressing these genes were produced, and their flowers were analyzed for flavonoid components and expression of flavonoid biosynthetic genes. Transgenic tobacco plants expressing GtMYB1R1 or GtMYB1R9 exhibited significant reductions in floral anthocyanin accumulation, resulting in white-flowered phenotypes. Expression levels of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) genes were preferentially suppressed in these transgenic tobacco flowers. A yeast two-hybrid assay demonstrated that both GtMYB1R1 and GtMYB1R9 proteins interacted with the GtbHLH1 protein, previously identified as an anthocyanin biosynthesis regulator in gentian flowers. In addition, a transient expression assay indicated that activation of the gentian GtDFR promoter by the GtMYB3-GtbHLH1 complex was partly canceled by addition of GtMYB1R1 or GtMYB1R9. These results suggest that GtMYB1R1 and GtMYB1R9 act as antagonistic transcription factors of anthocyanin biosynthesis in gentian flowers. These genes should consequently be useful for manipulating anthocyanin accumulation via genetic engineering in flowers of other floricultural plant species.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | |
Collapse
|