1
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
2
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, Charles B, Collombat P. Wnt Pathway in Pancreatic Development and Pathophysiology. Cells 2023; 12:cells12040565. [PMID: 36831232 PMCID: PMC9954665 DOI: 10.3390/cells12040565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/β-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting β-cells. This review summarizes recent work on the role of Wnt/β-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.
Collapse
Affiliation(s)
| | | | - Chaïma Ayachi
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | | | - Hugo Fofo
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
- Correspondence:
| |
Collapse
|
4
|
Wnt6 plays a complex role in maintaining human limbal stem/progenitor cells. Sci Rep 2021; 11:20948. [PMID: 34686698 PMCID: PMC8536737 DOI: 10.1038/s41598-021-00273-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023] Open
Abstract
The corneal epithelium is consistently regenerated by limbal stem/progenitor cells (LSCs), a very small population of adult stem cells residing in the limbus. Several Wnt ligands, including Wnt6, are preferentially expressed in the limbus. To investigate the role of Wnt6 in regulating proliferation and maintenance of human LSCs in an in vitro LSC expansion setting, we generated NIH-3T3 feeder cells to overexpress different levels of Wnt6. Characterization of LSCs cultured on Wnt6 expressing 3T3 cells showed that high level of Wnt6 increased proliferation of LSCs. Medium and high levels of Wnt6 also increased the percentage of small cells (diameter ≤ 12 µm), a feature of the stem cell population. Additionally, the percentage of cells expressing the differentiation marker K12 was significantly reduced in the presence of medium and high Wnt6 levels. Although Wnt6 is mostly known as a canonical Wnt ligand, our data showed that canonical and non-canonical Wnt signaling pathways were activated in the Wnt6-supplemented LSC cultures, a finding suggesting that interrelationships between both pathways are required for LSC regulation.
Collapse
|
5
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
6
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
7
|
L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res 2019; 37:101430. [PMID: 30933720 PMCID: PMC6579736 DOI: 10.1016/j.scr.2019.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Conditioned medium (CM) derived from engineered cells often facilitates the cost-effective culture of a variety of stem cells. Growing emphasis on the importance of rigor and reproducibility in lab-based science requires development of best practices approaches, including quality control procedures for the assessment of CM batches to ensure reliable interpretation and reproducibility. Here, we tested activity level variations of L-WRN CM, which is produced from an L cell line engineered to secrete Wnt3a, R spondin 3, and Noggin into a single CM that is widely used for gastrointestinal stem cell culture. We assessed 14 independent batches of L-WRN CM, produced by 5 laboratories at 3 research institutions, by multiple quantitative assays. We observed highly replicable activity levels among L-WRN CM batches prepared according to a previously published protocol. Quality control assays measuring spheroid growth or mRNA gene marker expression were best able to distinguish the quality L-WRN CM batches, whereas a Wnt reporter assay did not. Thus, we have validated that L-WRN CM activity is highly reproducible over time and between laboratories and have provided guidelines for L-WRN CM quality control testing. These validation procedures and guidelines will benefit experiment replication efforts in stem cell research.
Collapse
|
8
|
Kuljanin M, Elgamal RM, Bell GI, Xenocostas A, Lajoie GA, Hess DA. Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration. Stem Cells 2019; 37:516-528. [DOI: 10.1002/stem.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine & Dentistry; Western University; London Ontario Canada
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories; Robarts Research Institute; London Ontario Canada
| | - Ruth M. Elgamal
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - Gillian I. Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories; Robarts Research Institute; London Ontario Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Haematology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine & Dentistry; Western University; London Ontario Canada
| | - David A. Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; Western University; London Ontario Canada
| |
Collapse
|
9
|
Wan X, Zinselmeyer BH, Zakharov PN, Vomund AN, Taniguchi R, Santambrogio L, Anderson MS, Lichti CF, Unanue ER. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 2018; 560:107-111. [PMID: 30022165 PMCID: PMC6090537 DOI: 10.1038/s41586-018-0341-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in β-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruth Taniguchi
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Nie J, Sun C, Chang Z, Musi N, Shi Y. SAD-A Promotes Glucose-Stimulated Insulin Secretion Through Phosphorylation and Inhibition of GDIα in Male Islet β Cells. Endocrinology 2018; 159:3036-3047. [PMID: 29873699 PMCID: PMC6693047 DOI: 10.1210/en.2017-03243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Rho GDP-dissociation inhibitor (GDIα) inhibits glucose-stimulated insulin secretion (GSIS) in part by locking Rho GTPases in an inactive GDP-bound form. The onset of GSIS causes phosphorylation of GDIα at Ser174, a critical inhibitory site for GDIα, leading to the release of Rho GTPases and their subsequent activation. However, the kinase regulator(s) that catalyzes the phosphorylation of GDIα in islet β cells remains elusive. We propose that SAD-A, a member of AMP-activated protein kinase-related kinases that promotes GSIS as an effector kinase for incretin signaling, interacts with and inhibits GDIα through phosphorylation of Ser174 during the onset GSIS from islet β cells. Coimmunoprecipitation and phosphorylation analyses were carried out to identify the physical interaction and phosphorylation site of GDIα by SAD-A in the context of GSIS from INS-1 β cells and primary islets. We identified GDIα directly binds to SAD-A kinase domain and phosphorylated by SAD-A on Ser174, leading to dissociation of Rho GTPases from GDIα complexes. Accordingly, overexpression of SAD-A significantly stimulated GDIα phosphorylation at Ser174 in response to GSIS, which is dramatically potentiated by glucagonlike peptide-1, an incretin hormone. Conversely, SAD-A deficiency, which is mediated by short hairpin RNA transfection in INS-1 cells, significantly attenuated endogenous GDIα phosphorylation at Ser174. Consequently, coexpression of SAD-A completely prevented the inhibitory effect of GDIα on insulin secretion in islets. In summary, glucose and incretin stimulate insulin secretion through the phosphorylation of GDIα at Ser174 by SAD-A, which leads to the activation of Rho GTPases, culminating in insulin exocytosis.
Collapse
Affiliation(s)
- Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Correspondence: Jia Nie, PhD, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245. E-mail:
| | - Chao Sun
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat Commun 2017; 8:298. [PMID: 28824164 PMCID: PMC5563509 DOI: 10.1038/s41467-017-00129-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Diabetes is linked to loss of pancreatic beta-cells. Pluripotent stem cells offer a valuable source of human beta-cells for basic studies of their biology and translational applications. However, the signalling pathways that regulate beta-cell development and functional maturation are not fully understood. Here we report a high content chemical screen, revealing that H1152, a ROCK inhibitor, promotes the robust generation of insulin-expressing cells from multiple hPSC lines. The insulin expressing cells obtained after H1152 treatment show increased expression of mature beta cell markers and improved glucose stimulated insulin secretion. Moreover, the H1152-treated beta-like cells show enhanced glucose stimulated insulin secretion and increased capacity to maintain glucose homeostasis after transplantation. Conditional gene knockdown reveals that inhibition of ROCKII promotes the generation and maturation of glucose-responding cells. This study provides a strategy to promote human beta-cell maturation and identifies an unexpected role for the ROCKII pathway in the development and maturation of beta-like cells.Our incomplete understanding of how pancreatic beta cells form limits the generation of beta-like cells from human pluripotent stem cells (hPSC). Here, the authors identify a ROCKII inhibitor H1152 as increasing insulin secreting cells from hPSCs and improving beta-cell maturation on transplantation in vivo.
Collapse
|
12
|
Wang L, Qing L, Liu H, Liu N, Qiao J, Cui C, He T, Zhao R, Liu F, Yan F, Wang C, Liang K, Guo X, Shen YH, Hou X, Chen L. Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling. Stem Cell Res Ther 2017; 8:188. [PMID: 28807051 PMCID: PMC5557510 DOI: 10.1186/s13287-017-0640-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Background Islet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM). The islets of Langerhans are highly vascularized miniorgans, and preserving the structural integrity and full function of the microvascular endothelium is vital for protecting the islets from the infiltration of immune cells and secondary inflammatory attack. Mesenchymal stromal cell (MSC)-based therapies have been proven to promote angiogenesis of the islets; however, the underlying mechanism for the protective role of MSCs in the islet endothelium is still vague. Methods In this study, we used MS-1, a murine islet microvascular endothelium cell line, and an MSC-MS1 transwell culturing system to investigate the protective mechanism of rat bone marrow-derived MSCs under oxidative stress in vitro. Cell apoptosis was detected by TUNEL staining, annexin V/PI flow cytometry analysis, and cleaved caspase 3 western blotting analysis. Endothelial cell activation was determined by expression of intercellular cell adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as well as eNOS phosphorylation/activation. The changes of VCAM-1, eNOS, and the β-catenin expression were also tested in the isolated islets of T2DM rats infused with MSCs. Results We observed that treating MS-1 cells with H2O2 triggered significant apoptosis, induction of VCAM expression, and reduction of eNOS phosphorylation. Importantly, coculturing MS-1 cells with MSCs prevented oxidative stress-induced apoptosis, eNOS inhibition, and VCAM elevation in MS-1 cells. Similar changes in VCAM-1 and eNOS phosphorylation could also be observed in the islets isolated from T2DM rats infused with MSCs. Moreover, MSCs cocultured with MS-1 in vitro or their administration in vivo could both result in an increase of β-catenin, which suggested activation of the β-catenin-dependent Wnt signaling pathway. In MS-1 cells, activation of the β-catenin-dependent Wnt signaling pathway partially mediated the protective effects of MSCs against H2O2-induced apoptosis and eNOS inhibition. Furthermore, MSCs produced a significant amount of Wnt4 and Wnt5a. Although both Wnt4 and Wnt5a participated in the interaction between MSCs and MS-1 cells, Wnt4 exhibited a protective role while Wnt5a seemed to show a destructive role in MS-1 cells. Conclusions Our observations provide evidence that the orchestration of the MSC-secreted Wnts could promote the survival and improve the endothelial function of the injured islet endothelium via activating the β-catenin-dependent Wnt signaling in target endothelial cells. This finding might inspire further in-vivo studies.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Li Qing
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - He Liu
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- College of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Jingting Qiao
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tianyi He
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fuqiang Liu
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chuan Wang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Texas Heart Institute, Houston, TX, USA
| | - Xinguo Hou
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Institute of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
13
|
Korostylev A, Mahaddalkar PU, Keminer O, Hadian K, Schorpp K, Gribbon P, Lickert H. A high-content small molecule screen identifies novel inducers of definitive endoderm. Mol Metab 2017; 6:640-650. [PMID: 28702321 PMCID: PMC5485240 DOI: 10.1016/j.molmet.2017.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 01/28/2023] Open
Abstract
Objectives Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can generate any given cell type in the human body. One challenge for cell-replacement therapy is the efficient differentiation and expansion of large quantities of progenitor cells from pluripotent stem cells produced under good manufacturing practice (GMP). FOXA2 and SOX17 double positive definitive endoderm (DE) progenitor cells can give rise to all endoderm-derived cell types in the thymus, thyroid, lung, pancreas, liver, and gastrointestinal tract. FOXA2 is a pioneer transcription factor in DE differentiation that is also expressed and functionally required during pancreas development and islet cell homeostasis. Current differentiation protocols can successfully generate endoderm; however, generation of mature glucose-sensitive and insulin-secreting β-cells is still a challenge. As a result, it is of utmost importance to screen for small molecules that can improve DE and islet cell differentiation for cell-replacement therapy for diabetic patients. Methods The aim of this study was to identify and validate small molecules that can induce DE differentiation and further enhance pancreatic progenitor differentiation. Therefore, we developed a large scale, high-content screen for testing a chemical library of 23,406 small molecules to identify compounds that induce FoxA2 in mouse embryonic stem cells (mESCs). Results Based on our high-content screen algorithm, we selected 84 compounds that directed differentiation of mESCs towards the FoxA2 lineage. Strikingly, we identified ROCK inhibition (ROCKi) as a novel mechanism of endoderm induction in mESCs and hESCs. DE induced by the ROCK inhibitor Fasudil efficiently gives rise to PDX1+ pancreatic progenitors from hESCs. Conclusion Taken together, DE induction by ROCKi can simplify and improve current endoderm and pancreatic differentiation protocols towards a GMP-grade cell product for β-cell replacement. High content screen of 23,406 small molecules identifies novel definitive endoderm inducers Fasudil and RKI-1447 in mESCs. Fasudil and RKI-1447 induce anterior definitive endoderm differentiation in mESCs and hESCs through ROCK inhibition. Fasudil and RKI-1447 further differentiates the ADE cells into PDX1+ pancreatic progenitors.
Collapse
Affiliation(s)
- Alexander Korostylev
- Institute for Diabetes and Regeneration, Helmholtz Zentrum München, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Germany
| | | | - Oliver Keminer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME, ScreeningPort, 22525, Hamburg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Philip Gribbon
- Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME, ScreeningPort, 22525, Hamburg, Germany
| | - Heiko Lickert
- Institute for Diabetes and Regeneration, Helmholtz Zentrum München, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Germany
| |
Collapse
|
14
|
Phelps EA, Cianciaruso C, Santo-Domingo J, Pasquier M, Galliverti G, Piemonti L, Berishvili E, Burri O, Wiederkehr A, Hubbell JA, Baekkeskov S. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep 2017; 7:45961. [PMID: 28401888 PMCID: PMC5388888 DOI: 10.1038/srep45961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
A robust and reproducible method for culturing monolayers of adherent and well-spread primary islet cells on glass coverslips is required for detailed imaging studies by super-resolution and live-cell microscopy. Guided by an observation that dispersed islet cells spread and adhere well on glass surfaces in neuronal co-culture and form a monolayer of connected cells, we demonstrate that in the absence of neurons, well-defined surface coatings combined with components of neuronal culture media collectively support robust attachment and growth of primary human or rat islet cells as monolayers on glass surfaces. The islet cell monolayer cultures on glass stably maintain distinct mono-hormonal insulin+, glucagon+, somatostatin+ and PP+ cells and glucose-responsive synchronized calcium signaling as well as expression of the transcription factors Pdx-1 and NKX-6.1 in beta cells. This technical advance enabled detailed observation of sub-cellular processes in primary human and rat beta cells by super-resolution microscopy. The protocol is envisaged to have broad applicability to sophisticated analyses of pancreatic islet cells that reveal new biological insights, as demonstrated by the identification of an in vitro protocol that markedly increases proliferation of primary beta cells and is associated with a reduction in ciliated, ostensibly proliferation-suppressed beta cells.
Collapse
Affiliation(s)
- Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gabriele Galliverti
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lorenzo Piemonti
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, CH-1211 Geneva, Switzerland
| | - Olivier Burri
- BioImaging and Optics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Stamateris RE, Sharma RB, Kong Y, Ebrahimpour P, Panday D, Ranganath P, Zou B, Levitt H, Parambil NA, O'Donnell CP, García-Ocaña A, Alonso LC. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor. Diabetes 2016; 65:981-95. [PMID: 26740601 PMCID: PMC5314707 DOI: 10.2337/db15-0529] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Abstract
An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal-related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation.
Collapse
Affiliation(s)
- Rachel E Stamateris
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Yahui Kong
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Pantea Ebrahimpour
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Deepika Panday
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Pavana Ranganath
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Baobo Zou
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Helena Levitt
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Christopher P O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Disease, The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
16
|
Bedinger DH, Adams SH. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators. Mol Cell Endocrinol 2015; 415:143-56. [PMID: 26277398 DOI: 10.1016/j.mce.2015.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/17/2022]
Abstract
Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease.
Collapse
Affiliation(s)
| | - Sean H Adams
- Arkansas Children's Nutrition Center and University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock, AR, USA
| |
Collapse
|
17
|
Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development. Differentiation 2015; 90:77-90. [DOI: 10.1016/j.diff.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023]
|
18
|
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes 2015; 6:1259-1273. [PMID: 26516410 PMCID: PMC4620106 DOI: 10.4239/wjd.v6.i14.1259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder.
Collapse
|
19
|
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10:518-28. [PMID: 26170801 PMCID: PMC4424733 DOI: 10.4103/1673-5374.155427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
20
|
Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci 2014; 8:271. [PMID: 25221469 PMCID: PMC4148024 DOI: 10.3389/fnins.2014.00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.
Collapse
Affiliation(s)
- Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Mélissa Bowerman
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
21
|
Abstract
WNT-β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective.
Collapse
Affiliation(s)
- Michael Kahn
- USC Norris Comprehensive Cancer Center, USC Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
22
|
Cao X, Han ZB, Zhao H, Liu Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int J Biochem Cell Biol 2014; 53:372-9. [PMID: 24915493 DOI: 10.1016/j.biocel.2014.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/16/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023]
Abstract
Alleviation of hyperglycemia in chemical-induced diabetic mice has been reported after bone marrow transplantation. Nevertheless, the underlying mechanism remains elusive. In the present study, we transplanted genetically labeled primary mouse mesenchymal stem cells into the pancreas of the streptozotocin-treated hyperglycemic isogeneic mice, resulting in a decrease in blood glucose due to a recovery in beta cell mass. Further analysis revealed that the increase in beta cell mass was predominantly attributable to beta cell replication. The grafted mesenchymal stem cells did not transdifferentiate into beta cells themselves but recruited and polarized macrophages in a Stromal cell-derived factor 1-dependent manner, which in turn promoted beta cell replication. Our finding thus suggests that transplantation of autogenic mesenchymal stem cells may increase functional beta cell mass by boosting beta cell replication in diabetes.
Collapse
Affiliation(s)
- Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| | - Zhi-Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Abstract
Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study.
Collapse
Affiliation(s)
| | - Mieke Baan
- Division of Endocrinology, Department of Medicine, and,School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI; and
| | - Dawn Belt Davis
- Division of Endocrinology, Department of Medicine, and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Therapies that increase functional β-cell mass may be the best long-term treatment for diabetes. Significant resources are devoted toward this goal, and progress is occurring at a rapid pace. Here, we summarize recent advances relevant to human β-cell regeneration. RECENT FINDINGS New β-cells arise from proliferation of pre-existing β-cells or transdifferentiation from other cell types. In addition, dedifferentiated β-cells may populate islets in diabetes, possibly representing a pool of cells that could redifferentiate into functional β-cells. Advances in finding strategies to drive β-cell proliferation include new insight into proproliferative factors, both circulating and local, and elements intrinsic to the β-cell, such as cell cycle machinery and regulation of gene expression through epigenetic modification and noncoding RNAs. Controversy continues in the arena of generation of β-cells by transdifferentiation from exocrine, ductal, and alpha cells, with studies producing both supporting and opposing data. Progress has been made in redifferentiation of β-cells that have lost expression of β-cell markers. SUMMARY Although significant progress has been made, and promising avenues exist, more work is needed to achieve the goal of β-cell regeneration as a treatment for diabetes.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Diabetes Center of Excellence, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
25
|
Cao X, Han ZB, Zhao H, Liu Q. WITHDRAWN: Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int J Biochem Cell Biol 2013:S1357-2725(13)00329-4. [PMID: 24231647 DOI: 10.1016/j.biocel.2013.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/26/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, China.
| | | | | | | |
Collapse
|
26
|
Yi J, Xiong W, Gong X, Bellister S, Ellis LM, Liu Q. Analysis of LGR4 receptor distribution in human and mouse tissues. PLoS One 2013; 8:e78144. [PMID: 24205130 PMCID: PMC3804454 DOI: 10.1371/journal.pone.0078144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
LGR4 is an R-spondin receptor with strong positive effect on Wnt signaling. It plays a critical role in development as its ablation in the mouse led to total embryonic/neonatal lethality with profound defects in multiple organs. Haplotype insufficiency of LGR4 in human was associated with several diseases, including increased risk of squamous cell carcinoma of the skin, reduced birth weights, electrolyte imbalance, and decreased levels of testosterone, which are similar to the phenotypes of LGR4-hypomorphic mice. Tissue distribution of LGR4 was extensively analyzed in the mouse using gene-trap reporter enzyme alleles. However, its expression pattern in human tissues remained largely unknown. We have developed LGR4-specific monoclonal antibodies and used them to examine the expression of LGR4 in selected adult human and mouse tissues by immunohistochemical analysis. Intense LGR4-like immunoreactivity was observed in the epidermis and hair follicle of the skin, pancreatic islet cells, and epithelial cells in both the male and female reproductive organs. Of particular interest is that LGR4 is highly expressed in germ cells and pancreatic islet cells, which have important implications given the role of R-spondin-LGR4 signaling in the survival of adult stem cells. In addition, the majority of colon tumors showed elevated levels of LGR4 receptor. Overall, the expression pattern of LGR4 in human tissues mapped by this IHC analysis is similar to that in the mouse as revealed from gene trap alleles. Importantly, the pattern lends strong support to the important role of LGR4 in the development and maintenance of skin, kidney, reproductive systems, and other organs.
Collapse
Affiliation(s)
- Jing Yi
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wei Xiong
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xing Gong
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Seth Bellister
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyun Liu
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
|