1
|
Jackett KN, Browne AT, Aber ER, Clements M, Kaplan RN. How the bone microenvironment shapes the pre-metastatic niche and metastasis. NATURE CANCER 2024; 5:1800-1814. [PMID: 39672975 DOI: 10.1038/s43018-024-00854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2024] [Indexed: 12/15/2024]
Abstract
The bone is a frequent metastatic site, with changes in the mineralized bone and the bone marrow milieu that can also prime other sites for metastasis by educating progenitor cells to support metastatic spread. Stromal and immune populations cooperatively maintain the organizationally complex bone niches and are dysregulated in the presence of a distant primary tumor and metastatic disease. Interrogating the bone niches that facilitate metastatic spread using innovative technologies holds the potential to aid in preventing metastasis in and mediated by the bone. Here, we review recent advances in bone niche biology and its adaptations in the context of cancer.
Collapse
Affiliation(s)
- Kailey N Jackett
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice T Browne
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Etan R Aber
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Clements
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
3
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zolotykh MA, Mingazova LA, Filina YV, Blatt NL, Nesterova AI, Sabirov AG, Rizvanov AA, Miftakhova RR. Cancer of unknown primary and the «seed and soil» hypothesis. Crit Rev Oncol Hematol 2024; 196:104297. [PMID: 38350543 DOI: 10.1016/j.critrevonc.2024.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
The worldwide incidence rate of cancer of unknown primary (CUP) reaches 5% (Kang et al, 2021; Lee, Sanoff, 2020; Yang et al, 2022). CUP has an alarmingly high mortality rate, with 84% of patients succumbing within the first year following diagnosis (Registration and Service, 2018). Under normal circumstances, tumor cell metastasis follows the «seed and soil» hypothesis, displaying a tissue-specific pattern of cancer cell homing behavior based on the microenvironment composition of secondary organs. In this study, we questioned whether seed and soil concept applies to CUP, and whether the pattern of tumor and metastasis manifestations for cancer of known primary (CKP) can be used to inform diagnostic strategies for CUP. We compared data from metastatic and primary CUP foci to the metastasis patterns observed in CKP. Furthermore, we evaluated several techniques for identifying the tissue-of-origin (TOO) in CUP profiling, including DNA, RNA, and epigenetic TOO techniques.
Collapse
Affiliation(s)
- Mariya A Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Leysan A Mingazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Yuliya V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Nataliya L Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Alfiya I Nesterova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation.
| | - Alexey G Sabirov
- Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
5
|
Chen S, Lei J, Mou H, Zhang W, Jin L, Lu S, Yinwang E, Xue Y, Shao Z, Chen T, Wang F, Zhao S, Chai X, Wang Z, Zhang J, Zhang Z, Ye Z, Li B. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors. Front Immunol 2024; 15:1335366. [PMID: 38464516 PMCID: PMC10920345 DOI: 10.3389/fimmu.2024.1335366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Collapse
Affiliation(s)
- Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangchu Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senxu Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
7
|
Monteiro AC, de Andrade Garcia D, Du Rocher B, Fontão APGA, Nogueira LP, Fidalgo G, Colaço MV, Bonomo A. Cooperation between T and B cells reinforce the establishment of bone metastases in a mouse model of breast cancer. Bone 2024; 178:116932. [PMID: 37832903 DOI: 10.1016/j.bone.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Immune cells educated by the primary breast tumor and their secreted factors support the formation of bone pre-metastatic niche. Indeed, we showed that RANKL+ CD3+ T cells, specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are completely blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells assist RANKL+ T cell activities at bone pre-metastatic niche, by differentiating into potent bone resorbing osteoclast-like cells, keeping their antigen-presenting cell properties, providing a positive feedback loop to the osteolytic profile. Here we are showing that bone marrow-derived CD19+ B cells, from 4T1 tumor-bearing mice, also express the pro-osteoclastogenic cytokine receptor activator of NFκB ligand (RANKL). Analysis of trabecular bone mineral density by conventional histomorphometry and X-ray microtomography (micro-CT) demonstrated that B cells expressing RANKL cooperate with 4T1-primed CD3+ T cells to induce bone loss. Moreover, RANKL expression by B cells depends on T cells activity, since experiments performed with B cells derived from 4T1 tumor-bearing nude BALB/c mice resulted in the maintenance of trabecular bone mass instead of bone loss. Altogether, we believe that 4T1-primed RANKL+ B cells alone are not central mediators of bone loss in vivo but when associated with T cells induce a strong decrease in bone mass, accelerating both breast cancer progression and bone metastases establishment. Although several studies performed in different pathological settings, showed that B cells, positively and negatively impact on osteoclastogenesis, due to their capacity to secret pro or anti-osteoclastogenic cytokines, as far as we know, this is the first report showing the role of RANKL expression by B cells on breast cancer-derived bone metastases scenario.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Diego de Andrade Garcia
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Barbara Du Rocher
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriel Fidalgo
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Hiraga T, Nishida D, Horibe K. Primary tumor-induced immunity suppresses bone metastases of breast cancer in syngeneic immunocompetent mouse models. Bone 2024; 178:116944. [PMID: 37863157 DOI: 10.1016/j.bone.2023.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The immune system plays a crucial role in cancer development and progression. More than a century ago, mouse models showed that primary tumors suppressed the growth of newly implanted secondary tumors. This phenomenon, in which tumor-primed T cells mediate the rejection of tumor growth at a distant site, is known as concomitant tumor immunity. Here, we investigated the role of concomitant immunity in the development of breast cancer bone metastases using newly developed syngeneic immunocompetent mouse models. The presence of primary breast tumors developed by tumor cell injection into the mammary fat pads (MFPs) significantly reduced bone metastases of mouse breast cancer 4T1 and EMT6 cells induced by cell injection through the caudal artery (CA). Similar results were obtained when primary tumors were surgically resected prior to CA injection of tumor cells. In contrast, no inhibition was found when MFP and CA injections were performed using different cell combinations. Immunohistochemical studies revealed that the number of CD8+ T cells in bone metastases of 4T1 and EMT6 cells was significantly increased in the presence of primary tumors. The primary tumor-induced inhibition of bone metastases was not reproduced in T cell-deficient athymic nude mice. Furthermore, depletion of CD8+ T cells using an anti-CD8α antibody also abolished the primary tumor-induced inhibition of bone metastases. Taken together, these results suggest that immune cell priming by orthotopic breast tumors inhibits the development of breast cancer bone metastases, which is predominantly mediated by CD8+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| | - Daisuke Nishida
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kanji Horibe
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
9
|
Yao K, Xiaojun Z, Tingxiao Z, Shiyao L, Lichen J, Wei Z, Yanlei L, Jinlong T, Xiaoyan D, Jun Z, Qing B, Jun L. Multidimensional analysis to elucidate the possible mechanism of bone metastasis in breast cancer. BMC Cancer 2023; 23:1213. [PMID: 38066539 PMCID: PMC10704724 DOI: 10.1186/s12885-023-11588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) patients tend to suffer from distant metastasis, especially bone metastasis. METHODS All the analysis based on open-accessed data was performed in R software, dependent on multiple algorithms and packages. The RNA levels of specific genes were detected using quantitative Real-time PCR as a method of detecting the RNA levels. To assess the ability of BC cells to proliferate, we utilized the CCK8 test, colony formation, and the 5-Ethynyl-20-deoxyuridine assay. BC cells were evaluated for invasion and migration by using Transwell assays and wound healing assays. RESULTS In our study, we identified the molecules involved in BC bone metastasis based on the data from multiple BC cohorts. Then, we comprehensively investigated the effect pattern and underlying biological role of these molecules. We found that in the identified molecules, the EMP1, ACKR3, ITGA10, MMP13, COL11A1, and THY1 were significantly correlated with patient prognosis and mainly expressed in CAFs. Therefore, we explored the CAFs in the BC microenvironment. Results showed that CAFs could activate multiple carcinogenic pathways and most of these pathways play an important role in cancer metastasis. Meanwhile, we noticed the interaction between CAFs and malignant, endothelial, and M2 macrophage cells. Moreover, we found that CAFs could induce the remodeling of the BC microenvironment and promote the malignant behavior of BC cells. Then, we identified MMP13 for further analysis. It was found that MMP13 can enhance the malignant phenotype of BC cells. Meanwhile, biological enrichment and immune infiltration analysis were conducted to present the effect pattern of MMP13 in BC. CONCLUSIONS Our result can improve the understanding of researchers on the underlying mechanisms of BC bone metastasis.
Collapse
Affiliation(s)
- Kang Yao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhu Xiaojun
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- State Key laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liao Shiyao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji Lichen
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Wei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Yanlei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Jinlong
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Xiaoyan
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial People`s Hospital Bijie Hospital, Bijie, China.
| | - Bi Qing
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: Clinical challenges, toxicities, and mechanisms. J Bone Oncol 2023; 43:100505. [PMID: 37842554 PMCID: PMC10568292 DOI: 10.1016/j.jbo.2023.100505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the field of anti-cancer therapy over the last decade; they provide durable clinical responses against tumors by inhibiting immune checkpoint proteins that canonically regulate the T cell-mediated immune response. Despite their success in many primary tumors and soft tissue metastases, ICIs function poorly in patients with bone metastases, and these patients do not have the same survival benefit as patients with the same primary tumor type (e.g., non-small cell lung cancer [NSCLC], urothelial, renal cell carcinoma [RCC], etc.) that has not metastasized to the bone. Additionally, immune-related adverse events including rheumatologic and musculoskeletal toxicities, bone loss, and increased fracture risk develop after treatment with ICIs. There are few preclinical studies that investigate the interplay of the immune system in bone metastases; however, the current literature suggests a role for CD8+ T cells and myeloid cell subsets in bone homeostasis. As such, this review focuses on findings from the clinical and pre-clinical studies that have investigated immune checkpoint blockade in the bone metastatic setting and highlights the need for more comprehensive investigations into the relationship between immune cell subsets, ICIs, and the bone-tumor microenvironment.
Collapse
Affiliation(s)
- Gwenyth J. Joseph
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas B. Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Carels N, Sgariglia D, Junior MGV, Lima CR, Carneiro FRG, da Silva GF, da Silva FAB, Scardini R, Tuszynski JA, de Andrade CV, Monteiro AC, Martins MG, da Silva TG, Ferraz H, Finotelli PV, Balbino TA, Pinto JC. A Strategy Utilizing Protein-Protein Interaction Hubs for the Treatment of Cancer Diseases. Int J Mol Sci 2023; 24:16098. [PMID: 38003288 PMCID: PMC10671768 DOI: 10.3390/ijms242216098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023] Open
Abstract
We describe a strategy for the development of a rational approach of neoplastic disease therapy based on the demonstration that scale-free networks are susceptible to specific attacks directed against its connective hubs. This strategy involves the (i) selection of up-regulated hubs of connectivity in the tumors interactome, (ii) drug repurposing of these hubs, (iii) RNA silencing of non-druggable hubs, (iv) in vitro hub validation, (v) tumor-on-a-chip, (vi) in vivo validation, and (vii) clinical trial. Hubs are protein targets that are assessed as targets for rational therapy of cancer in the context of personalized oncology. We confirmed the existence of a negative correlation between malignant cell aggressivity and the target number needed for specific drugs or RNA interference (RNAi) to maximize the benefit to the patient's overall survival. Interestingly, we found that some additional proteins not generally targeted by drug treatments might justify the addition of inhibitors designed against them in order to improve therapeutic outcomes. However, many proteins are not druggable, or the available pharmacopeia for these targets is limited, which justifies a therapy based on encapsulated RNAi.
Collapse
Affiliation(s)
- Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Domenico Sgariglia
- Engenharia de Sistemas e Computação, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, RJ, Brazil;
| | - Marcos Guilherme Vieira Junior
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Carlyle Ribeiro Lima
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
| | - Gilberto Ferreira da Silva
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Fabricio Alves Barbosa da Silva
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Rafaela Scardini
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-255, RJ, Brazil
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
| | - Cecilia Vianna de Andrade
- Department of Pathology, Instituto Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22250-020, RJ, Brazil;
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro 24210-201, RJ, Brazil;
| | - Marcel Guimarães Martins
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Talita Goulart da Silva
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Helen Ferraz
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Priscilla Vanessa Finotelli
- Laboratório de Nanotecnologia Biofuncional, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Tiago Albertini Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil;
| | - José Carlos Pinto
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| |
Collapse
|
12
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
13
|
Porter BA, Frerich C, Lainé M, Clark AB, Durdana I, Lee J, Taya M, Sahoo S, Greene GL, Bennett L, Conzen SD. Glucocorticoid Receptor Activation in Lobular Breast Cancer Is Associated with Reduced Cell Proliferation and Promotion of Metastases. Cancers (Basel) 2023; 15:4679. [PMID: 37835373 PMCID: PMC10571671 DOI: 10.3390/cancers15194679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor-positive (ER+) invasive lobular breast cancer (ILC) comprises about ~15% of breast cancer. ILC's unique genotypic (loss of wild type E-cadherin expression) and phenotypic (small individual round cancer cells that grow in discontinuous nests) are thought to contribute to a distinctive pattern of metastases to serosal membranes. Unlike invasive ductal carcinoma (IDC), ILC metastases often intercalate into the mesothelial layer of the peritoneum and other serosal surfaces. While ER activity is a known driver of ILC proliferation, very little is known about how additional nuclear receptors contribute to ILC's distinctive biology. In ER+ IDC, we showed previously that glucocorticoid receptor (GR) activity inhibits pro-proliferative gene expression and cell proliferation. Here we examined ER+ ILC models and found that GR activation similarly reduces S-phase entry gene expression and ILC proliferation. While slowing tumor growth rate, our data also suggest that GR activation results in an enhanced metastatic phenotype through increasing integrin-encoding gene expression, extracellular matrix protein adhesion, and mesothelial cell clearance. Moreover, in an intraductal mouse mammary gland model of ILC, we found that GR expression is associated with increased bone metastases despite slowed primary mammary tumor growth. Taken together, our findings suggest GR-mediated gene expression may contribute to the unusual characteristics of ILC biology.
Collapse
Affiliation(s)
- Baylee A. Porter
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Candace Frerich
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Muriel Lainé
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Abigail B. Clark
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ishrat Durdana
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Manisha Taya
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunati Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lynda Bennett
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne D. Conzen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Brusco I, Becker G, Palma TV, Pillat MM, Scussel R, Steiner BT, Sampaio TB, Ardisson-Araújo DMP, de Andrade CM, Oliveira MS, Machado-De-Avila RA, Oliveira SM. Kinin B 1 and B 2 receptors mediate cancer pain associated with both the tumor and oncology therapy using aromatase inhibitors. Sci Rep 2023; 13:4418. [PMID: 36932156 PMCID: PMC10023805 DOI: 10.1038/s41598-023-31535-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tais Vidal Palma
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Bethina Trevisol Steiner
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Tuane Bazanella Sampaio
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniel Mendes Pereira Ardisson-Araújo
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Melazzo de Andrade
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
16
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
The pro-tumorigenic responses in metastatic niches: an immunological perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:333-344. [PMID: 36136272 DOI: 10.1007/s12094-022-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of mortality related to cancer. In the course of metastasis, cancer cells detach from the primary tumor, enter the circulation, extravasate at secondary sites, and colonize there. All of these steps are rate limiting and decrease the efficiency of metastasis. Prior to their arrival, tumor cells can modify the secondary sites. These favorable microenvironments increase the probability of successful dissemination and are referred to as pre-metastatic niches. Cancer cells use different mechanisms to induce and maintain these niches, among which immune cells play prominent roles. The immune system, including innate and adaptive, enhances recruitment, extravasation, and colonization of tumor cells at distant sites. In addition to immune cells, stromal cells can also contribute to forming pre-metastatic niches. This review summarizes the pro-metastatic responses conducted by immune cells and the assistance of stromal cells and endothelial cells in the induction of pre-metastatic niches.
Collapse
|
18
|
Li Y, Li M, Su K, Zong S, Zhang H, Xiong L. Pre-metastatic niche: from revealing the molecular and cellular mechanisms to the clinical applications in breast cancer metastasis. Theranostics 2023; 13:2301-2318. [PMID: 37153744 PMCID: PMC10157731 DOI: 10.7150/thno.82700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the leading cause of cancer-related deaths in women worldwide. Metastasis is a major contributor to high cancer mortality and is usually the endpoint of a series of sequential and dynamic events. One of the critical events is forming a pre-metastatic niche (PMN) that occurs before macroscopic tumor cell invasion and provides a suitable environment for tumor cells to colonize and progress into metastases. Due to the unique characteristics of PMN in cancer metastasis, developing therapies to target PMN may bring new advantages in preventing cancer metastasis at an early stage. Various biological molecules, cells, and signaling pathways are altered in BC, regulating the functions of distinctive immune cells and stromal remodeling, inducing angiogenesis, and effect metabolic reprogramming and organotropism to promote PMN formation. In this review, we elucidate the multifaceted mechanisms contributing to the development of PMN in BC, discuss the characteristics of PMN, and highlight the significance of PMN in providing potential diagnostic and therapeutic strategies for BC metastasis, which may bring promising insights and foundations for future studies.
Collapse
Affiliation(s)
- Yuqiu Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kangtai Su
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Hongyan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang 330066, China
- ✉ Corresponding authors: Hongyan Zhang and Lixia Xiong; and
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- ✉ Corresponding authors: Hongyan Zhang and Lixia Xiong; and
| |
Collapse
|
19
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
20
|
Ihle CL, Wright-Hobart SJ, Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacol Ther 2022; 239:108280. [DOI: 10.1016/j.pharmthera.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
|
21
|
Arellano DL, Juárez P, Verdugo‐Meza A, Almeida‐Luna PS, Corral‐Avila JA, Drescher F, Olvera F, Jiménez S, Elzey BD, Guise TA, Fournier PG. Bone Microenvironment-Suppressed T Cells Increase Osteoclast Formation and Osteolytic Bone Metastases in Mice. J Bone Miner Res 2022; 37:1446-1463. [PMID: 35635377 PMCID: PMC9543062 DOI: 10.1002/jbmr.4615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 12/05/2022]
Abstract
Immunotherapies use components of the immune system, such as T cells, to fight cancer cells, and are changing cancer treatment, causing durable responses in some patients. Bone metastases are a debilitating complication in advanced breast and prostate cancer patients. Approved treatments fail to cure bone metastases or increase patient survival and it remains unclear whether immunotherapy could benefit patients. The bone microenvironment combines various immunosuppressive factors, and combined with T cell products could increase bone resorption fueling the vicious cycle of bone metastases. Using syngeneic mouse models, our study revealed that bone metastases from 4T1 breast cancer contain tumor-infiltrating lymphocyte (TILs) and their development is increased in normal mice compared to immunodeficient and T-cell depleted mice. This effect seemed caused by the TILs specifically in bone, because T-cell depletion increased 4T1 orthotopic tumors and did not affect bone metastases from RM-1 prostate cancer cells, which lack TILs. T cells increased osteoclast formation ex vivo and in vivo contributing to bone metastasis vicious cycle. This pro-osteoclastic effect is specific to unactivated T cells, because activated T cells, secreting interferon γ (IFNγ) and interleukin 4 (IL-4), actually suppressed osteoclastogenesis, which could benefit patients. However, non-activated T cells from bone metastases could not be activated in ex vivo cultures. 4T1 bone metastases were associated with an increase of functional polymorphonuclear and monocytic myeloid-derived suppressor cells (MDSCs), potent T-cell suppressors. Although effective in other models, sildenafil and zoledronic acid did not affect MDSCs in bone metastases. Seeking other therapeutic targets, we found that monocytic MDSCs are more potent suppressors than polymorphonuclear MDSCs, expressing programmed cell death receptor-1 ligand (PD-L1)+ in bone, which could trigger T-cell suppression because 70% express its receptor, programmed cell death receptor-1 (PD-1). Collectively, our findings identified a new mechanism by which suppressed T cells increase osteoclastogenesis and bone metastases. Our results also provide a rationale for using immunotherapy because T-cell activation would increase their anti-cancer and their anti-osteoclastic properties. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danna L. Arellano
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Patricia Juárez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| | - Andrea Verdugo‐Meza
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Paloma S. Almeida‐Luna
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Juan A. Corral‐Avila
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Florian Drescher
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Felipe Olvera
- Departamento de Biología Molecular y BioprocesosInstituto de Biotecnología Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Samanta Jiménez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
| | - Bennett D. Elzey
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Theresa A. Guise
- Department of MedicineIndiana University School of MedicineIndianapolisIN
- Endocrine Neoplasia and Hormone DisordersThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Cancer Prevention and Research Institute of TexasAustinTXUSA
| | - Pierrick G.J. Fournier
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| |
Collapse
|
22
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
23
|
Marie JC, Bonnelye E. Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Front Immunol 2022; 13:899104. [PMID: 35677054 PMCID: PMC9168268 DOI: 10.3389/fimmu.2022.899104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss associated with estrogen deficiency indicates a fundamental role of these hormones in skeletal growth and bone remodeling. In the last decades, growing recent evidence demonstrated that estrogens can also affect the immune compartment of the bone. In this review, we summarize the impacts of estrogens on bone immune cells and their consequences on bone homeostasis, metastasis settlement into the bone and tumor progression. We also addressed the role of an orphan nuclear receptor ERRalpha (“Estrogen-receptor Related Receptor alpha”) on macrophages and T lymphocytes, and as an immunomodulator in bone metastases. Hence, this review links estrogens to bone immune cells in osteo-oncology.
Collapse
Affiliation(s)
- Julien C Marie
- Cancer Research Center of Lyon (CRCL), Tumor Escape Resistance Immunity Department, INSERM-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
24
|
He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 2022; 13:1019864. [PMID: 36246916 PMCID: PMC9556850 DOI: 10.3389/fendo.2022.1019864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is closely related to the survival rate of cancer patients and reduces their quality of life. The bone marrow microenvironment contains a complex immune cell component with a local microenvironment that is conducive to tumor formation and growth. In this unique immune environment, a variety of immune cells, including T cells, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, participate in the process of bone metastasis. In this review, we will introduce the interactions between immune cells and cancer cells in the bone microenvironment, obtain the details of their contributions to the implications of bone metastasis, and discuss immunotherapeutic strategies targeting immune cells in cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, Yangzhou University, Yangzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
25
|
Gitto S, Natalini A, Antonangeli F, Di Rosa F. The Emerging Interplay Between Recirculating and Tissue-Resident Memory T Cells in Cancer Immunity: Lessons Learned From PD-1/PD-L1 Blockade Therapy and Remaining Gaps. Front Immunol 2021; 12:755304. [PMID: 34867987 PMCID: PMC8640962 DOI: 10.3389/fimmu.2021.755304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Gitto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
26
|
Cheng X, Wang Z. Immune Modulation of Metastatic Niche Formation in the Bone. Front Immunol 2021; 12:765994. [PMID: 34745140 PMCID: PMC8564379 DOI: 10.3389/fimmu.2021.765994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis is commonly seen in patients with breast cancer, prostate cancer and lung cancer. Tumor-intrinsic factors and the tumor microenvironment cooperate to affect the formation of bone metastatic niche. Within the bone microenvironment, immune cells have been regarded as a major contributor to metastatic progression. In this review, we describe the dynamic roles of immune cells in regulating metastatic homing, seeding, dormancy, and outgrowth in the bone. We also summarize the diverse functions of immune molecules including chemokines, cytokines, and exosomes in remodeling the bone metastatic niche. Furthermore, we discuss the therapeutic and prognostic potential of these cellular and molecular players in bone metastasis.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Yang H, Yu Z, Ji S, Huo Q, Yan J, Gao Y, Niu Y, Xu M, Liu Y. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches. J Control Release 2021; 341:443-456. [PMID: 34748870 DOI: 10.1016/j.jconrel.2021.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Bone tissues are the main metastatic sites of many cancers, and bone metastasis is an important cause of death. When bone metastasis occurs, dynamic interactions between tumor cells and bone tissues promote changes in the tumor-bone microenvironments that are conducive to tumor growth and progression, which also promote several related diseases, including pathological fracture, bone pain, and hypercalcemia. Accordingly, it has obvious clinical benefits for improving the cure rate and reducing the occurrence of related diseases through targeting bone microenvironments for the treatment and early detection of cancer bone metastasis niches. In this review, we briefly analyzed the relationship between bone microstructures and tumor metastasis, as well as microenvironmental changes in osteoblasts, osteoclasts, immune cells, and extracellular and bone matrixes caused when metastatic tumor cells colonize bones. We also discuss novel designs in nanodrugs for inhibiting tumor proliferation and migration through targeting to tumor bone metastases and abnormal bone-microenvironment components. In addition, related researches on the early detection of bone and multi-organ metastases by nanoprobes are also introduced. And we look forward to provide some useful proposals and enlightenments on nanotechnology-based drug delivery and probes for the treatment and early detection of bone metastasis.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China; School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Juanzhu Yan
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yue Gao
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China.
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
28
|
Batoon L, McCauley LK. Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Front Endocrinol (Lausanne) 2021; 12:763846. [PMID: 34803925 PMCID: PMC8597897 DOI: 10.3389/fendo.2021.763846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Bones and Immunology Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Monteiro AC, Bonomo A. CD8 + T cells from experimental in situ breast carcinoma interfere with bone homeostasis. Bone 2021; 150:116014. [PMID: 34022456 DOI: 10.1016/j.bone.2021.116014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Before bone colonization, immune cells primed by breast primary tumor cells actively modify the bone microenvironment, disturbing the complex and tightly homeostatic signaling network regulated by osteoblasts and osteoclasts. Indeed, we have shown that RANKL+ CD4+ T cells specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow (BM) before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells (DCs) provide a positive feedback loop to the osteolytic profile induced by the metastatic tumor. In this setting, DCs are able to differentiate into potent bone resorbing osteoclast-like cells keeping their antigen-presenting cell (APC) properties to maintain RANKL+ CD4+ Th17 T cells activities, via IL-23 expression. Here we show that 67NR non-metastatic tumor cells, a sibling of 4T1 tumor cell line, induce an increase in trabecular bone mass on day 11 post-tumor implant. This observation was associated with an expansion of the osteoblastic lineage cells accompanied by a reduction of osteoclasts numbers. Moreover, BM derived CD8+ T cells from 67NR tumor-bearing mice, express an anti-osteoclastogenic cytokine milieu enriched by IFN-γ, IL-10 and producing low levels of RANKL. The frequency of BM derived CD8+ FoxP3+ regulatory T cells, known as potent suppressors of osteoclastogenesis both in vitro and in vivo, was also increased in such animals. This milieu was capable to suppress 4T1 tumor-specific CD4+ T cells phenotype in vivo and in vitro and strongly inhibited bone metastases establishment, restoring trabecular bone mass volume. We concluded that the 67NR+ tumor derived CD8+ T cells phenotypes, either contributing to bone homeostasis and/or control of 4T1 breast tumor pre-metastatic disease, interfere with osteoclasts and osteoblasts activities inside BM. Our study highlights the opposing roles of subverted tumor CD4+ and CD8+ T cell subtypes in directing breast cancer progression and bone metastases establishment. For non-metastatic tumors, the role of T cells regarding bone remodeling has never been addressed before. As far as we know, this is the first description that an in situ carcinoma can modify distant sites. In the case showed here, modification of the distant bone site disfavors pre-metastatic bone niche formation.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Brazil.
| | - Adriana Bonomo
- Laboratory on Thymus Research, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Picoli CC, Gonçalves BÔP, Santos GSP, Rocha BGS, Costa AC, Resende RR, Birbrair A. Pericytes cross-talks within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1876:188608. [PMID: 34384850 DOI: 10.1016/j.bbcan.2021.188608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells. The arising knowledge on cross-talks within the tumor microenvironment will be essential for the development of new therapies against cancer. Here, we review recent progress in our understanding of pericytes roles within tumors.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan Ô P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
32
|
Chen F, Han Y, Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer 2021; 124:1912-1920. [PMID: 33758331 PMCID: PMC8184962 DOI: 10.1038/s41416-021-01329-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bone marrow has been widely recognised to host a unique microenvironment that facilitates tumour colonisation. Bone metastasis frequently occurs in the late stages of malignant diseases such as breast, prostate and lung cancers. The biology of bone metastasis is determined by tumour-cell-intrinsic traits as well as their interaction with the microenvironment. The bone marrow is a dynamic organ in which various stages of haematopoiesis, osteogenesis, osteolysis and different kinds of immune response are precisely regulated. These different cellular components constitute specialised tissue microenvironments-niches-that play critical roles in controlling tumour cell colonisation, including initial seeding, dormancy and outgrowth. In this review, we will dissect the dynamic nature of the interactions between tumour cells and bone niches. By targeting certain steps of tumour progression and crosstalk with the bone niches, the development of potential therapeutic approaches for the clinical treatment of bone metastasis might be feasible.
Collapse
Affiliation(s)
- Fenfang Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yujiao Han
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
33
|
de Almeida AS, Pereira GC, Brum EDS, Silva CR, Antoniazzi CTDD, Ardisson-Araújo D, Oliveira SM, Trevisan G. Role of TRPA1 expressed in bone tissue and the antinociceptive effect of the TRPA1 antagonist repeated administration in a breast cancer pain model. Life Sci 2021; 276:119469. [PMID: 33811892 DOI: 10.1016/j.lfs.2021.119469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
AIMS Breast cancer-induced chronic pain is usually treated with opioids, but these compounds cause various adverse effects. Transient receptor potential ankyrin 1 (TRPA1) is involved in cancer pain; also, endogenous TRPA1 agonists are associated with cancer pain development. The aim of this study was to observe the antinociceptive effect of a repeated-dose TRPA1 antagonist administration and the production of endogenous TRPA1 agonists and TRPA1 expression in bone tissue in a model of breast cancer pain in mice. Second, we used a sequence reading archive (SRA) strategy to observe the presence of this channel in the mouse bone and in mouse bone cell lines. MAIN METHODS We used BALB/c mice for experiments. The animals were subjected to the tumor cell inoculation (4 T1 strain). HC-030031 (a TRPA1 antagonist) treatment was done from day 11 to day 20 after tumor inoculation. TRPA1 expression and biochemical tests of oxidative stress were performed in the bone of mice (femur). SRA strategy was used to detect the TRPA1 presence. KEY FINDINGS Repeated treatment with the TRPA1 antagonist produced an antinociceptive effect. There was an increase in hydrogen peroxide levels, NADPH oxidase and superoxide dismutase activities, but the expression of TRPA1 in the bone tissue was not altered. SRA did not show TRPA1 residual transcription in the osteoblast and osteoclast cell lines, as well as for mice cranial tissue and in mouse osteoclast precursors. SIGNIFICANCE The TRPA1 receptor is a potential target for the development of new painkillers for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Cássia Regina Silva
- Programa de Pós-Graduação em Genética e Bioquímica, Instituto de Biotecnologia, Universidade Federal de Uberlandia (UFU), 38400-902 Uberlandia, MG, Brazil
| | | | - Daniel Ardisson-Araújo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
34
|
Kreps LM, Addison CL. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int J Mol Sci 2021; 22:ijms22062911. [PMID: 33805598 PMCID: PMC7998601 DOI: 10.3390/ijms22062911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.
Collapse
Affiliation(s)
- Lauren M. Kreps
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-7700
| |
Collapse
|
35
|
Haider MT, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as Mediators of the Tumor Cell-Bone Cell Crosstalk during the Initiation of Breast Cancer Bone Metastasis. Int J Mol Sci 2021; 22:2898. [PMID: 33809315 PMCID: PMC7999500 DOI: 10.3390/ijms22062898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced breast cancer are at high risk of developing bone metastasis. Despite treatment advances for primary breast cancer, metastatic bone disease remains incurable with a low relative survival. Hence, new therapeutic approaches are required to improve survival and treatment outcome for these patients. Bone is among the most frequent sites of metastasis in breast cancer. Once in the bone, disseminated tumor cells can acquire a dormant state and remain quiescent until they resume growth, resulting in overt metastasis. At this stage the disease is characterized by excessive, osteoclast-mediated osteolysis. Cells of the bone microenvironment including osteoclasts, osteoblasts and endothelial cells contribute to the initiation and progression of breast cancer bone metastasis. Direct cell-to-cell contact as well as soluble factors regulate the crosstalk between disseminated breast cancer cells and bone cells. In this complex signaling network interleukins (ILs) have been identified as key regulators since both, cancer cells and bone cells secrete ILs and express corresponding receptors. ILs regulate differentiation and function of bone cells, with several ILs being reported to act pro-osteoclastogenic. Consistently, the expression level of ILs (e.g., in serum) has been associated with poor prognosis in breast cancer. In this review we discuss the role of the most extensively investigated ILs during the establishment of breast cancer bone metastasis and highlight their potential as therapeutic targets in preventing metastatic outgrowth in bone.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| | - Nicole Ridlmaier
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
- Department of Life Sciences, IMC FH Krems University of Applied Sciences, 3500 Krems, Austria
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| |
Collapse
|
36
|
Monteiro AC, Bonomo A. Dendritic cells development into osteoclast-type APCs by 4T1 breast tumor T cells milieu boost bone consumption. Bone 2021; 143:115755. [PMID: 33217627 DOI: 10.1016/j.bone.2020.115755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Bone metastases occur in 70% of patients with advanced breast cancer, causing severe morbidity and increased mortality due to osteolytic lesions driven by osteoclasts (OCs) inside the bone marrow (BM) microenvironment. A reciprocal vicious cycle between bone remodeling system and the tumor itself is established by the release of growth factors stored in the mineralized matrix, which in turn feed the tumor, changing tumor behavior and growth. However, BM is not a passive host microenvironment for circulating tumor cells, but instead can be actively modified by the primary tumor before metastatic spread occurs. Indeed, we have shown that T cells specific for the 4T1 mammary carcinoma cell line, are characteristically RANKL+ IL-17F+ CD4+ T cells. Those cells arrive in the BM before metastatic cells and set the pre-metastatic niche. In the absence of T cell derived RANKL, there is no pre-metastatic osteolytic disease and bone metastases do not take place. Recently, dendritic cells (DCs), the main T cell partner at the beginning of the immune response, came into the spotlight as a potential source of OCs progenitors under inflammatory conditions. Regarding bone metastasis, nothing is currently known about DCs plasticity or even its partnership with tumor induced T cells for BM pre-metastatic niche formation. Here, we show that splenic CD11c+ DCs stimulated with 4T1 conditioned media (CM) efficiently differentiated into mature and activated multinucleated giant cells (DC-OC) expressing TRAP and IL-23 cytokine. More important, 4T1 CM derived DC-OCs build a positive loop which amplifies the osteolytic phenomena by maintaining the RANKL+ Th17 T cells and by its own osteoclastic activity. In conclusion, our results indicate that differentiation of OCs from DCs may be achievable in the bone pre osteolytic disease context representing an alternative OC differentiation pathway. Besides being induced by high levels of T cells pro osteoclastogenic cytokines, especially by RANKL, DC-OC keep a positive feedback loop towards osteolysis, maintaining the pro-osteoclastogenic T cell phenotype in the BM.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
38
|
Abstract
Sterile inflammation within primary tumor tissues can spread to distant organs that are devoid of tumor cells. This happens in a manner dependent on tumor-led secretome, before the actual metastasis occurs. The premetastatic microenvironment is established in this way and is at least partly regulated by hijacking the host innate immune system. The biological manifestation of premetastasis include increased vascular permeability, cell mobilization via the blood stream, degradation of the extracellular matrix, immunosuppression, and host antineoplastic activities.
Collapse
Affiliation(s)
- Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
39
|
Leto G, Flandina C, Crescimanno M, Giammanco M, Sepporta MV. Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases. Life Sci 2020; 264:118694. [PMID: 33130080 DOI: 10.1016/j.lfs.2020.118694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oleuropein (Ole) is the main bioactive phenolic compound present in olive leaves, fruits and olive oil. This molecule has been shown to exert beneficial effects on several human pathological conditions. In particular, recent preclinical and observational studies have provided evidence that Ole exhibits chemo-preventive effects on different types of human tumors. Studies undertaken to elucidate the specific mechanisms underlying these effects have shown that this molecule may thwart several key steps of malignant progression, including tumor cell proliferation, survival, angiogenesis, invasion and metastasis, by modulating the expression and activity of several growth factors, cytokines, adhesion molecules and enzymes involved in these processes. Interestingly, experimental observations have highlighted the fact that most of these signalling molecules also appear to be actively involved in the homing and growth of disseminating cancer cells in bones and, ultimately, in the development of metastatic bone diseases. These findings, and the experimental and clinical data reporting the preventive activity of Ole on various pathological conditions associated with a bone loss, are indicative of a potential therapeutic role of this molecule in the prevention and treatment of cancer-related bone diseases. This paper provides a current overview regarding the molecular mechanisms and the experimental findings underpinning a possible clinical role of Ole in the prevention and development of cancer-related bone diseases.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Carla Flandina
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marilena Crescimanno
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
40
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
41
|
Győri DS, Mócsai A. Osteoclast Signal Transduction During Bone Metastasis Formation. Front Cell Dev Biol 2020; 8:507. [PMID: 32637413 PMCID: PMC7317091 DOI: 10.3389/fcell.2020.00507] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts are myeloid lineage-derived bone-resorbing cells of hematopoietic origin. They differentiate from myeloid precursors through a complex regulation process where the differentiation of preosteoclasts is followed by intercellular fusion to generate large multinucleated cells. Under physiological conditions, osteoclastogenesis is primarily directed by interactions between CSF-1R and macrophage colony-stimulating factor (M-CSF, CSF-1), receptor activator of nuclear factor NF-κB (RANK) and RANK ligand (RANKL), as well as adhesion receptors (e.g., integrins) and their ligands. Osteoclasts play a central role in physiological and pathological bone resorption and are also required for excessive bone loss during osteoporosis, inflammatory bone and joint diseases (such as rheumatoid arthritis) and cancer cell-induced osteolysis. Due to the major role of osteoclasts in these diseases the better understanding of their intracellular signaling pathways can lead to the identification of potential novel therapeutic targets. Non-receptor tyrosine kinases and lipid kinases play major roles in osteoclasts and small-molecule kinase inhibitors are emerging new therapeutics in diseases with pathological bone loss. During the last few years, we and others have shown that certain lipid (such as phosphoinositide 3-kinases PI3Kβ and PI3Kδ) and tyrosine (Src-family and Syk) kinases play a critical role in osteoclast differentiation and function in humans and mice. Some of these signaling pathways shows similarity to immunoreceptor-like receptor signaling and involves important other enzymes (e.g., PLCγ2) and adapter proteins (such as the ITAM-bearing adapters DAP12 and the Fc-receptor γ-chain). Here, we review recently identified osteoclast signaling pathways and their role in osteoclast differentiation and function as well as pathological bone loss associated with osteolytic tumors of the bone. A better understanding of osteoclast signaling may facilitate the design of novel and more efficient therapies for pathological bone resorption and osteolytic skeletal metastasis formation.
Collapse
Affiliation(s)
- Dávid S. Győri
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
42
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
43
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Pereira GC, Lückemeyer DD, Antoniazzi CT, Kudsi SQ, Araújo DMPA, Oliveira SM, Ferreira J, Trevisan G. Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma. Pharmacol Res 2020; 152:104576. [DOI: 10.1016/j.phrs.2019.104576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
44
|
Wu H, Xia L, Jia D, Zou H, Jin G, Qian W, Xu H, Li T. PD-L1 + regulatory B cells act as a T cell suppressor in a PD-L1-dependent manner in melanoma patients with bone metastasis. Mol Immunol 2020; 119:83-91. [PMID: 32001420 DOI: 10.1016/j.molimm.2020.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The five-year survival rate of melanoma worsens significantly with advancing tumor stage. We hypothesized that regulatory B cells (Breg) might have participated in the pathogenesis of melanoma. In this study, the PD-L1+ Breg cells were investigated. The expression of PD-L1 by circulating B cells was very low in healthy controls. In melanoma patients, on the other hand, the expression of PD-L1 by circulating B cells was significantly elevated in a manner that was positively associated with tumor stage, with the highest level in stage IV bone metastasis patients. Compared to total B cells, PD-L1+ B cells presented higher IgM and higher IgD expression, and were almost exclusively CD20+CD27-, suggesting that the PD-L1+ B cells exhibited a naive B cell-like phenotype. Healthy naive B cells, which presented little PD-L1, and stage I and stage II melanoma patient naive B cells, which presented detectable but low PD-L1, were unable to suppress T cell response. However, stage III and stage IV naive B cells, which presented moderate PD-L1, could significantly suppress T cell response in a PD-L1-dependent manner. We further found that the level of PD-L1+ B cells was significantly higher in bone metastasis than in the primary tumors. Overall, we demonstrated that PD-L1+ B cells were upregulated in advanced melanoma and were enriched in metastasis compared to primary tumors. Furthermore, PD-L1+ naive B cells could act as a T cell suppressor in a PD-L1-dependent manner.
Collapse
Affiliation(s)
- Hao Wu
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liming Xia
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Dongdong Jia
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Hanhui Zou
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenkang Qian
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Haichao Xu
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Bone and Soft-tissue Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Shiozawa Y. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:57-72. [PMID: 32030676 DOI: 10.1007/978-3-030-36214-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
46
|
Abstract
Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one of the most common sites of metastasis for many solid tumors. Once cancer cells colonize in the bone, it imposes a major clinical challenge for the treatment of the disease, and fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile microenvironment enriched with nutrients, growth factors and hormones, a generous reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic (bone forming) or osteolytic lesions to promote the net resorption and/or release of growth factors from the bone extracellular matrix. These processes activate a "vicious cycle", leading to disruption of bone integrity and promoting cancer cell growth and migration. Cancer cells influence the bone microenvironment favoring their colonization and growth. In order to metastasize to the bone, cancer cells must first migrate from the site of origin, and once established within the bone, they must overcome the dormant inducing effects of resident cells. If successful, cancer cells can then colonize and continually disrupt bone homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type. For example, it has been shown that exercise induces osteocytes to release anabolic factors that inhibit osteoclast resorptive activity, promote dormancy and the release of anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will summarize recent research findings and provide mechanistic insights related to the role of osteocytes in osteolytic metastasis.
Collapse
|
47
|
Salamanna F, Borsari V, Contartese D, Costa V, Giavaresi G, Fini M. What Is the Role of Interleukins in Breast Cancer Bone Metastases? A Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2019; 11:cancers11122018. [PMID: 31847214 PMCID: PMC6966526 DOI: 10.3390/cancers11122018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer cells produce stimulators of bone resorption known as interleukins (ILs). However, data on the functional roles of ILs in the homing of metastatic breast cancer to bone are still fragmented. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science Core Collection) to identify preclinical reports, and in three clinical registers (ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, European Union (EU) Clinical Trials Register) to identify clinical trials, from 2008 to 2019. Sixty-seven preclinical studies and 11 clinical trials were recognized as eligible. Although preclinical studies identified specific key ILs which promote breast cancer bone metastases, which have pro-metastatic effects (e.g., IL-6, IL-8, IL-1β, IL-11), and whose inhibition also shows potential preclinical therapeutic effects, the clinical trials focused principally on ILs (IL-2 and IL-12), which have an anti-metastatic effect and a potential to generate a localized and systemic antitumor response. However, these clinical trials are yet to post any results or conclusions. This inconsistency indicates that further studies are necessary to further develop the understanding of cellular and molecular relations, as well as signaling pathways, both up- and downstream of ILs, which could represent a novel strategy to treat tumors that are resistant to standard care therapies for patients affected by breast cancer bone disease.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Veronica Borsari
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
- Correspondence: ; Tel.: +39-051-6366-6558
| | - Deyanira Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Viviana Costa
- Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, IRCCS Istituto Ortopedico Rizzoli, 90133 Palermo, Italy;
| | - Gianluca Giavaresi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Milena Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| |
Collapse
|
48
|
Evangelista GCM, Salvador PA, Soares SMA, Barros LRC, Xavier FHDC, Abdo LM, Gualberto ACM, Macedo GC, Clavijo-Salomon MA, Gameiro J. 4T1 Mammary Carcinoma Colonization of Metastatic Niches Is Accelerated by Obesity. Front Oncol 2019; 9:685. [PMID: 31616626 PMCID: PMC6764084 DOI: 10.3389/fonc.2019.00685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023] Open
Abstract
Breast cancer (BC) remains the leading cause of cancer-related deaths among women, and the chances to develop it are duplicated by obesity. Still, the impact of obesity during BC progression remains less understood. We investigated the role of obesity in tumor progression using the murine model of 4T1 mammary carcinoma in BALB/c female mice, previously high-fat-diet (HFD) fed. HFD induced obesity, metabolic impairment, and high serum and fat leptin levels. After injection of 4T1-cells, HFD-mice accelerated tumor progression and metastasis. 4T1-cells found within HFD-mice metastatic niches presented higher clonogenic potential. 4T1-cells treated in vitro with fat-conditioned medium derived from HFD-mice, increased migration capacity through CXCL12 and CCL25 gradients. In HFD-mice, the infiltration and activation of immune cells into tumor-sentinel lymph nodes was overall reduced, except for activated CD4+ T cells expressing low CD25 levels. Within the bone marrow, the levels of haematopoiesis-related IL-6 and TNF-α decreased after 4T1-cells injection in HFD-mice whereas increased in the controls, suggesting that upregulation of both cytokines, regardless of the tumor, is disrupted by obesity. Finally, the expression of genes for leptin, CXCR4, and CCR9 (receptors of CXCL12 and CCL25, respectively) was negatively correlated with the infiltration of CD8 T cells in human triple-negative BC tumors from obese patients compared to non-obese. Together, our data present early evidence of systemic networks triggered by obesity that promote BC progression to the metastatic niches. Targeting these pathways might be useful to prevent the rapid BC progression observed among obese patients.
Collapse
Affiliation(s)
- Gabriela Coeli Menezes Evangelista
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pollyanna Amaral Salvador
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Sara Malaguti Andrade Soares
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Luciana Rodrigues Carvalho Barros
- Center of Translational Research in Oncology, Institute of Cancer of São Paulo, ICESP, University of São Paulo Medical School, São Paulo, Brazil
| | - Felipe Henrique da Cunha Xavier
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Luiza Macedo Abdo
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Cristina Moura Gualberto
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Gilson Costa Macedo
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Maria Alejandra Clavijo-Salomon
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Center of Translational Research in Oncology, Institute of Cancer of São Paulo, ICESP, University of São Paulo Medical School, São Paulo, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology of Infectious and Parasitic Diseases and Obesity, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
49
|
Hill BS, Sarnella A, D'Avino G, Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 2019; 60:202-213. [PMID: 31377307 DOI: 10.1016/j.semcancer.2019.07.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the metastatic spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these cells come into contact with cancer cells they are "educated" and acquire a pro-tumoural phenotype, which support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal component in guiding cancer cells in their venture towards colonizing metastatic sites.
Collapse
|
50
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Dalenogare DP, Pereira GC, Ritter CDS, Peres DS, Antoniazzi CTDD, Stein C, Moresco RN, Oliveira SM, Trevisan G. Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma. Cell Mol Neurobiol 2019; 39:605-617. [PMID: 30850915 DOI: 10.1007/s10571-019-00666-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Diéssica Padilha Dalenogare
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Camila Dos Santos Ritter
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Diulle Spat Peres
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Carolina Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|