1
|
Nemec-Bakk AS, Bel J, Niccoli S, Boreham DR, Tai TC, Lees SJ, Khaper N. Effects of prenatal dexamethasone exposure on adult C57BL/6J mouse metabolism and oxidative stress. Can J Physiol Pharmacol 2024; 102:180-195. [PMID: 38329060 DOI: 10.1139/cjpp-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Prenatal glucocorticoid exposure has been shown to alter hypothalamic-pituitary-adrenal axis function resulting in altered fetal development that can persist through adulthood. Fetal exposure to excess dexamethasone, a synthetic glucocorticoid, has been shown to alter adult behaviour and metabolism. This study investigated the effects prenatal dexamethasone exposure had on adult offspring cardiac and liver metabolism and oxidative stress. Pregnant C57BL/6 mice received a dose of 0.4 mg/kg dexamethasone on gestational days 15-17. Once pups were approximately 7 months old, glucose uptake was determined using positron emission tomography and insulin resistance (IR) was determined by homeostatic model assessment (HOMA) IR calculation. Oxidative stress was assessed by measuring 4-hydroxynonenal protein adduct formation and total reactive oxygen species. Female dexamethasone group had significantly increased glucose uptake when insulin stimulated compared to vehicle-treated mice. HOMA IR revealed no evidence of IR in either male or female offspring. There was also no change in oxidative stress markers in either cardiac or liver tissues of male or female offspring. These data suggest that prenatal dexamethasone exposure in male mice does not alter oxidative stress or metabolism. However, prenatal dexamethasone exposure increased glucocorticoids, cardiac glucose uptake, and pAkt signaling in female heart tissues in adult mice, suggesting there are sex differences in prenatal dexamethasone exposure.
Collapse
Affiliation(s)
- A S Nemec-Bakk
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - J Bel
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - S Niccoli
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
| | - D R Boreham
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - S J Lees
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - N Khaper
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
2
|
Xiao H, He B, Liu H, Chen Y, Xiao D, Wang H. Dexamethasone exposure during pregnancy triggers metabolic syndrome in offspring via epigenetic alteration of IGF1. Cell Commun Signal 2024; 22:62. [PMID: 38263047 PMCID: PMC10807214 DOI: 10.1186/s12964-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Previous research has reported that prenatal exposure to dexamethasone (PDE) results in organ dysplasia and increased disease susceptibility in offspring. This study aimed to investigate the epigenetic mechanism of metabolic syndrome induced by PDE in offspring. METHODS Pregnant Wistar rats were administered dexamethasone, and their offspring's serum and liver tissues were analyzed. The hepatocyte differentiation model was established to unveil the molecular mechanism. Neonatal cord blood samples were collected to validate the phenomenon and mechanism. RESULTS The findings demonstrated that PDE leads to insulin resistance and typical metabolic syndrome traits in adult offspring rats, which originated from fetal liver dysplasia. Additionally, PDE reduced serum corticosterone level and inhibited hepatic insulin-like growth factor 1 (IGF1) signaling in fetal rats. It further revealed that liver dysplasia and functional impairment induced by PDE persist after birth, driven by the continuous downregulation of serum corticosterone and hepatic IGF1 signaling. Both in vitro and in vivo experiments confirmed that low endogenous corticosterone reduces the histone 3 lysine 9 acetylation (H3K27ac) level of IGF1 and its expression by blocking glucocorticoid receptor α, special protein 1, and P300 into the nucleus, resulting in hepatocyte differentiation inhibition and liver dysplasia. Intriguingly, neonatal cord blood samples validated the link between reduced liver function in neonates induced by PDE and decreased serum cortisol and IGF1 levels. CONCLUSIONS This study demonstrated that low endogenous glucocorticoid level under PDE lead to liver dysplasia by downregulating the H3K27ac level of IGF1 and its expression, ultimately contributing to metabolic syndrome in adult offspring.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Di Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
3
|
Malatiali SA, Kilarkaje N, Al‐Bader M. Maternal dexamethasone exposure does not affect glucose tolerance but alters renal haemodynamics in F 1 rats in a sex-dependent manner. Endocrinol Diabetes Metab 2023; 6:e450. [PMID: 37723884 PMCID: PMC10638624 DOI: 10.1002/edm2.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Prenatal programming with dexamethasone increases the risk of the development of hyperglycaemia and insulin resistance, leading to diabetes in adulthood. Dexamethasone also causes a decline in renal glomerular filtration in the adult offspring. Sodium-glucose cotransporter-2 (SGLT2) plays a significant role in regulating blood glucose and renal haemodynamics in diabetic patients. However, the role of SGLT2 in dexamethasone-induced programming and the putative sex-dependent effects on the changes named earlier is unknown. Therefore, this study aimed to investigate the impact of maternal dexamethasone treatment on glucose tolerance, insulin sensitivity, renal perfusion and renal function in adult male and female offspring and the possible contribution of SGLT2 to these changes. METHODS AND RESULTS Pregnant Sprague Dawley rats (F0 ) were treated with either vehicle or dexamethasone (0.2 mg/kg ip) from gestation Day 15 to 20. F1 males and F1 females were randomly selected from each mother at 4 months of age. There was no change in serum Na+ , Na+ excretion rate, glucose tolerance or insulin sensitivity in F1 male or female rats. However, dexamethasone caused significant glomerular hypertrophy and decreases in CSinistrin and CPAH indicating decreased glomerular filtration rate and renal plasma flow, respectively, in dexamethasone-treated F1 male but not female rats. Dexamethasone did not affect SGLT2 mRNA or protein expression in F1 males or females. CONCLUSION We conclude that dexamethasone-mediated prenatal programming of glomerular volume, renal function and haemodynamics is sex-dependent, occurring only in adult male offspring.
Collapse
Affiliation(s)
- Slava A. Malatiali
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| | | | - Maie Al‐Bader
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| |
Collapse
|
4
|
Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. BIOLOGY 2023; 12:1104. [PMID: 37626990 PMCID: PMC10452123 DOI: 10.3390/biology12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Alterations in the hypothalamic-pituitary-adrenal (HPA) axis and associated changes in circulating levels of glucocorticoids are integral to an organism's response to stressful stimuli. Glucocorticoids acting via glucocorticoid receptors (GRs) play a role in fertility, reproduction, placental function, and foetal development. GRs are ubiquitously expressed throughout the female reproductive system and regulate normal reproductive function. Stress-induced glucocorticoids have been shown to inhibit reproduction and affect female gonadal function by suppressing the hypothalamic-pituitary-gonadal (HPG) axis at each level. Furthermore, during pregnancy, a mother's exposure to prenatal stress or external glucocorticoids can result in long-lasting alterations to the foetal HPA and neuroendocrine function. Several GR isoforms generated via alternative splicing or translation initiation from the GR gene have been identified in the mammalian ovary and uterus. The GR isoforms identified include the splice variants, GRα and GRβ, and GRγ and GR-P. Glucocorticoids can exert both stimulatory and inhibitory effects and both pro- and anti-inflammatory functions in the ovary, in vitro. In the placenta, thirteen GR isoforms have been identified in humans, guinea pigs, sheep, rats, and mice, indicating they are conserved across species and may be important in mediating a differential response to stress. Distinctive responses to glucocorticoids, differential birth outcomes in pregnancy complications, and sex-based variations in the response to stress could all potentially be dependent on a particular GR expression pattern. This comprehensive review provides an overview of the structure and function of the GR in relation to female fertility and reproduction and discusses the changes in the GR and glucocorticoid signalling during pregnancy. To generate this overview, an extensive non-systematic literature search was conducted across multiple databases, including PubMed, Web of Science, and Google Scholar, with a focus on original research articles, meta-analyses, and previous review papers addressing the subject. This review integrates the current understanding of GR variants and their roles in glucocorticoid signalling, reproduction, placental function, and foetal growth.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane 4102, Australia
| | - James Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane 4067, Australia;
| | - Vicki L. Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| |
Collapse
|
5
|
Dorey ES, Headrick JP, Paravicini TM, Wlodek ME, Moritz KM, Reichelt ME. Periconceptional alcohol alters in vivo heart function in ageing female rat offspring: Possible involvement of oestrogen receptor signalling. Exp Physiol 2023; 108:772-784. [PMID: 36951040 PMCID: PMC10988452 DOI: 10.1113/ep090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the cardiovascular consequences of periconceptual ethanol on offspring throughout the lifespan? What is the main finding and its importance? It is shown for the first time that periconceptional alcohol has sex-specific effects on heart growth, with ageing female offspring exhibiting decreased cardiac output. Altered in vivo cardiac function in ageing female offspring may be linked to changes in cardiac oestrogen receptor expression. ABSTRACT Alcohol exposure throughout gestation is detrimental to cardiac development and function. Although many women decrease alcohol consumption once aware of a pregnancy, exposure prior to recognition is common. We, therefore, examined the effects of periconceptional alcohol exposure (PC:EtOH) on heart function, and explored mechanisms that may contribute. Female Sprague-Dawley rats received a liquid diet ±12.5% v/v ethanol from 4 days prior to mating until 4 days after mating (PC:EtOH). Cardiac function was assessed via echocardiography, and offspring were culled at multiple time points for assessment of morphometry, isolated heart and aortic ring function, protein and transcriptional changes. PC:EtOH-exposed embryonic day 20 fetuses (but not postnatal offspring) had larger hearts relative to body weight. Ex vivo analysis of hearts at 5-7 months old (mo) indicated no changes in coronary function or cardiac ischaemic tolerance, and apparently improved ventricular compliance in PC:EtOH females (compared to controls). At 12 mo, vascular responses in isolated aortic rings were unaltered by PC:EtOH, whilst echocardiography revealed reduced cardiac output in female but not male PC:EtOH offspring. At 19 mo, left ventricular transcript and protein for type 1 oestrogen receptor (ESR1), HSP90 transcript and plasma oestradiol levels were all elevated in female PC:EtOH exposed offspring. Summarising, PC:EtOH adversely impacts in vivo heart function in mature female offspring, associated with increased ventricular oestrogen-related genes. PC:EtOH may thus influence age-related heart dysfunction in females through modulation of oestrogen signalling.
Collapse
Affiliation(s)
- Emily S. Dorey
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - John P. Headrick
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Tamara M. Paravicini
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Mary E. Wlodek
- The Department of Obstetrics and GynaecologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Child Health Research CentreUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Melissa E. Reichelt
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|
7
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|
8
|
Telles PVN, Severo JS, de Oliveira LCS, Reis E Sousa JF, Cavalcante AKM, da Silva ACA, Aguiar Dos Santos A, Tolentino Bento da Silva M. Effect of anaerobic resistance training on gastric emptying of solids, nutritional parameters and food behavior in the rats treated with dexamethasone. Physiol Behav 2022; 245:113674. [PMID: 34921837 DOI: 10.1016/j.physbeh.2021.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Dexamethasone (Dexa) is a potent glucocorticoid that can trigger side effects, such as neuromuscular, cardiovascular, and gastric motility disorders. Exercise can ameliorate gastrointestinal disorders. However, it is not clear whether exercise can modulate the side effects of using Dexa on gastric motility. To investigate the role of anaerobic resistance training (ART) on gastric motility and feeding behavior of rats treated with dexamethasone, rats were divided into three groups: control (Ctrl), dexamethasone (Dexa), and anaerobic resistance training + dexamethasone (ARTDexa). Anaerobic resistance training (ART) consisted of climbing a vertical ladder 5 days/week (with intensity of 50% to 100% of the maximum overload/8 weeks). At the end of the ART or control period, the rats received Dexa (1 mg/kg i.p) for 10 consecutive days. In the end, we evaluated anthropometric parameters and feeding behavior, heart rate, gastric emptying, and lipid profile in all groups. We observed significant decrease (p < 0.05) in body weight and food intake in the Dexa and ARTDexa groups compared to the control. Dexa promoted significant tachycardia (p < 0.05) and a decrease (p < 0.05) in the r-r' interval. The ART significantly prevented (p < 0.05) cardiovascular effects. Dexa induced a decrease (p < 0.05) in gastric emptying compared to the control group. On the other hand, ART significantly prevented (p < 0.05) the decrease in gastric emptying compared to Dexa. The chronic use of Dexa caused tachycardia, decreased food intake, and decreased gastric emptying. The ART modulated cardiovascular parameters, improving tachycardia. In addition, this exercise prevented gastric dysmotility induced by dexamethasone.
Collapse
Affiliation(s)
- Pedro Victor Nogueira Telles
- Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina-PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina-PI, Brazil
| | - Juliana Soares Severo
- Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina-PI, Brazil
| | | | - Jessica Fernanda Reis E Sousa
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina-PI, Brazil
| | | | | | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Moisés Tolentino Bento da Silva
- Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina-PI, Brazil; Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina-PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina-PI, Brazil.
| |
Collapse
|
9
|
Maréchal L, Sicotte B, Caron V, Brochu M, Tremblay A. Fetal Cardiac Lipid Sensing Triggers an Early and Sex-related Metabolic Energy Switch in Intrauterine Growth Restriction. J Clin Endocrinol Metab 2021; 106:3295-3311. [PMID: 34245263 PMCID: PMC8530737 DOI: 10.1210/clinem/dgab496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/21/2022]
Abstract
CONTEXT Intrauterine growth restriction (IUGR) is an immediate outcome of an adverse womb environment, exposing newborns to developing cardiometabolic disorders later in life. OBJECTIVE This study investigates the cardiac metabolic consequences and underlying mechanism of energy expenditure in developing fetuses under conditions of IUGR. METHODS Using an animal model of IUGR characterized by uteroplacental vascular insufficiency, mitochondrial function, gene profiling, lipidomic analysis, and transcriptional assay were determined in fetal cardiac tissue and cardiomyocytes. RESULTS IUGR fetuses exhibited an upregulation of key genes associated with fatty acid breakdown and β-oxidation (Acadvl, Acadl, Acaa2), and mitochondrial carnitine shuttle (Cpt1a, Cpt2), instigating a metabolic gene reprogramming in the heart. Induction of Ech1, Acox1, Acox3, Acsl1, and Pex11a indicated a coordinated interplay with peroxisomal β-oxidation and biogenesis mainly observed in females, suggesting sexual dimorphism in peroxisomal activation. Concurring with the sex-related changes, mitochondrial respiration rates were stronger in IUGR female fetal cardiomyocytes, accounting for enhanced adenosine 5'-triphosphate production. Mitochondrial biogenesis was induced in fetal hearts with elevated expression of Ppargc1a transcript specifically in IUGR females. Lipidomic analysis identified the accumulation of arachidonic, eicosapentaenoic, and docosapentaenoic polyunsaturated long-chain fatty acids (LCFAs) in IUGR fetal hearts, which leads to nuclear receptor peroxisome proliferator-activated receptor α (PPARα) transcriptional activation in cardiomyocytes. Also, the enrichment of H3K27ac chromatin marks to PPARα-responsive metabolic genes in IUGR fetal hearts outlines an epigenetic control in the early metabolic energy switch. CONCLUSION This study describes a premature and sex-related remodeling of cardiac metabolism in response to an unfavorable intrauterine environment, with specific LCFAs that may serve as predictive effectors leading to IUGR.
Collapse
Affiliation(s)
- Loïze Maréchal
- Department of Pharmacology & Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Research Center, CHU Ste-Justine, Montréal, Quebec H3T 1C5, Canada
| | - Benoit Sicotte
- Department of Pharmacology & Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Véronique Caron
- Research Center, CHU Ste-Justine, Montréal, Quebec H3T 1C5, Canada
| | - Michèle Brochu
- Department of Pharmacology & Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - André Tremblay
- Research Center, CHU Ste-Justine, Montréal, Quebec H3T 1C5, Canada
- Department of Obstetrics & Gynecology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
10
|
Jahandideh F, Bourque SL, Armstrong EA, Cherak SJ, Panahi S, Macala KF, Davidge ST, Yager JY. Late-pregnancy uterine artery ligation increases susceptibility to postnatal Western diet-induced fat accumulation in adult female offspring. Sci Rep 2020; 10:6926. [PMID: 32332768 PMCID: PMC7181802 DOI: 10.1038/s41598-020-63392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Stressors during the fetal and postnatal period affect the growth and developmental trajectories of offspring, causing lasting effects on physiologic regulatory systems. Here, we tested whether reduced uterine artery blood flow in late pregnancy would alter body composition in the offspring, and whether feeding offspring a western diet (WD) would aggravate these programming effects. Pregnant rats underwent bilateral uterine artery ligation (BUAL) or sham surgery on gestational day (GD)18 (term = GD22). At weaning, offspring from each group received either a normal diet (ND) or a WD. BUAL surgery increased fetal loss and caused offspring growth restriction, albeit body weights were no longer different at weaning, suggesting postnatal catch-up growth. BUAL did not affect body weight gain, fat accumulation, or plasma lipid profile in adult male offspring. In contrast, while ND-fed females from BUAL group were smaller and leaner than their sham-littermates, WD consumption resulted in excess weight gain, fat accumulation, and visceral adiposity. Moreover, WD increased plasma triglycerides and cholesterol in the BUAL-treated female offspring without any effect on sham littermates. These results demonstrate that reduced uterine artery blood flow during late pregnancy in rodents can impact body composition in the offspring in a sex-dependent manner, and these effects may be exacerbated by postnatal chronic WD consumption.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Stephana J Cherak
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sareh Panahi
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kimberly F Macala
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y Yager
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Jellyman JK, Fletcher AJW, Fowden AL, Giussani DA. Glucocorticoid Maturation of Fetal Cardiovascular Function. Trends Mol Med 2020; 26:170-184. [PMID: 31718939 DOI: 10.1016/j.molmed.2019.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
The last decade has seen rapid advances in the understanding of the central role of glucocorticoids in preparing the fetus for life after birth. However, relative to other organ systems, maturation by glucocorticoids of the fetal cardiovascular system has been ignored. Here, we review the effects of glucocorticoids on fetal basal cardiovascular function and on the fetal cardiovascular defense responses to acute stress. This is important because glucocorticoid-driven maturational changes in fetal cardiovascular function under basal and stressful conditions are central to the successful transition from intra- to extrauterine life. The cost-benefit balance for the cardiovascular health of the preterm baby of antenatal glucocorticoid therapy administered to pregnant women threatened with preterm birth is also discussed.
Collapse
Affiliation(s)
- Juanita K Jellyman
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA.
| | | | - Abigail L Fowden
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK.
| |
Collapse
|
12
|
Dorey ES, Walton SL, Kalisch‐Smith JI, Paravicini TM, Gardebjer EM, Weir KA, Singh RR, Bielefeldt‐Ohmann H, Anderson ST, Wlodek ME, Moritz KM. Periconceptional ethanol exposure induces a sex specific diuresis and increase in AQP2 and AVPR2 in the kidneys of aged rat offspring. Physiol Rep 2019; 7:e14273. [PMID: 31691500 PMCID: PMC6832009 DOI: 10.14814/phy2.14273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Maternal alcohol consumption can impair renal development and program kidney dysfunction in offspring. Given that most women who drink alcohol cease consumption upon pregnancy recognition, we aimed to investigate the effect of alcohol around the time of conception (PC:EtOH) on offspring renal development and function. Rats received a liquid diet ±12.5% v/v ethanol from 4 days before to 4 days after mating. At postnatal day 30, nephron number was assessed. Urine flow and electrolyte (Na, K, Cl) excretion was measured at 6 and 19 months and blood pressure at 12 months. At 19 months, kidneys were collected for gene and protein analysis and assessment of collecting duct length. At postnatal day 30, PC:EtOH offspring had fewer nephrons. At 6 months, PC:EtOH exposure did not alter urine flow nor affect blood pressure at 12 months. At 19 months, female but not male offspring exposed to PC:EtOH drank more water and had a higher urine flow despite no differences in plasma arginine vasopressin (AVP) concentrations. Aqp2 mRNA and Avpr2 mRNA and protein expression was increased in kidneys from female PC:EtOH offspring but collecting duct lengths were similar. Immunofluorescent staining revealed diffuse cytoplasmic distribution of AQP2 protein in kidneys from PC:EtOH females, compared with controls with apical AQP2 localization. PC:EtOH resulted in a low nephron endowment and in female offspring, associated with age-related diuresis. Changes in expression and cellular localization of AQP2 likely underpin this disturbance in water homeostasis and highlight the need for alcohol to be avoided in early pregnancy.
Collapse
Affiliation(s)
- Emily S. Dorey
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueensland
| | - Sarah L. Walton
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueensland
| | | | | | | | - Kristy A. Weir
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueensland
| | - Reetu R. Singh
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueensland
| | | | | | - Mary E. Wlodek
- The Department of PhysiologyThe University of MelbourneMelbourneVictoria
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueensland
- Child Health Research CentreThe University of QueenslandBrisbaneQueensland
| |
Collapse
|
13
|
Agnew EJ, Garcia-Burgos A, Richardson RV, Manos H, Thomson AJW, Sooy K, Just G, Homer NZM, Moran CM, Brunton PJ, Gray GA, Chapman KE. Antenatal dexamethasone treatment transiently alters diastolic function in the mouse fetal heart. J Endocrinol 2019; 241:279-292. [PMID: 31013474 PMCID: PMC6541236 DOI: 10.1530/joe-18-0666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
Abstract
Endogenous glucocorticoid action is important in the structural and functional maturation of the fetal heart. In fetal mice, although glucocorticoid concentrations are extremely low before E14.5, glucocorticoid receptor (GR) is expressed in the heart from E10.5. To investigate whether activation of cardiac GR prior to E14.5 induces precocious fetal heart maturation, we administered dexamethasone in the drinking water of pregnant dams from E12.5 to E15.5. To test the direct effects of glucocorticoids upon the cardiovascular system we used SMGRKO mice, with Sm22-Cre-mediated disruption of GR in cardiomyocytes and vascular smooth muscle. Contrary to expectations, echocardiography showed no advancement of functional maturation of the fetal heart. Moreover, litter size was decreased 2 days following cessation of antenatal glucocorticoid exposure, irrespective of fetal genotype. The myocardial performance index and E/A wave ratio, markers of fetal heart maturation, were not significantly affected by dexamethasone treatment in either genotype. Dexamethasone treatment transiently decreased the myocardial deceleration index (MDI; a marker of diastolic function), in control fetuses at E15.5, with recovery by E17.5, 2 days after cessation of treatment. MDI was lower in SMGRKO than in control fetuses and was unaffected by dexamethasone. The transient decrease in MDI was associated with repression of cardiac GR in control fetuses following dexamethasone treatment. Measurement of glucocorticoid levels in fetal tissue and hypothalamic corticotropin-releasing hormone (Crh) mRNA levels suggest complex and differential effects of dexamethasone treatment upon the hypothalamic-pituitary-adrenal axis between genotypes. These data suggest potentially detrimental and direct effects of antenatal glucocorticoid treatment upon fetal heart function.
Collapse
Affiliation(s)
- E J Agnew
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - A Garcia-Burgos
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - R V Richardson
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - H Manos
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - A J W Thomson
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - K Sooy
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - G Just
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - N Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - C M Moran
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - P J Brunton
- Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - G A Gray
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - K E Chapman
- Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
- Correspondence should be addressed to K E Chapman:
| |
Collapse
|
14
|
Abstract
A sexual agreement is a mutual understanding between two partners regarding sexual and relational behaviors both within and outside of their relationship. Sexual agreements have been central to research and programming efforts around HIV prevention, primarily for male couples. A comprehensive scoping review of the primary literature on sexual agreements, including negotiated safety, was performed to identify what is known about sexual agreements among couples (n = 66). Results indicate a wide range of prevalence of agreements and measurements used to characterize sexual agreements. Findings also report associations between sexual agreements and health and relational outcomes. Several knowledge gaps were identified; specifically, the need to expand sexual agreements research beyond MSM populations and the need to better understand agreement breaks, break disclosure, and how variation in agreement categorization may impact reported prevalence. This review demonstrates the importance of broadening the evidence-base of sexual agreements research and programmatic focus.
Collapse
|
15
|
Tiu AC, Bishop MD, Asico LD, Jose PA, Villar VAM. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 2017; 19:70. [PMID: 28780627 PMCID: PMC6314210 DOI: 10.1007/s11906-017-0768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA.
| | - Michael D Bishop
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| |
Collapse
|
16
|
Cuffe JSM, Saif Z, Perkins AV, Moritz KM, Clifton VL. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice. J Endocrinol 2017; 234:89-100. [PMID: 28490442 DOI: 10.1530/joe-17-0171] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1-3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11, particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring.
Collapse
Affiliation(s)
- James S M Cuffe
- School of Medical Science and Menzies Health Institute QueenslandGriffith University, Southport, Queensland, Australia
- School of Biomedical Sciencesand Child Health Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research InstituteTranslational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Zarqa Saif
- Mater Research InstituteTranslational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science and Menzies Health Institute QueenslandGriffith University, Southport, Queensland, Australia
| | - Karen M Moritz
- School of Biomedical Sciencesand Child Health Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Vicki L Clifton
- Mater Research InstituteTranslational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
17
|
Clifton V, Cuffe J, Moritz K, Cole T, Fuller P, Lu N, Kumar S, Chong S, Saif Z. Review: The role of multiple placental glucocorticoid receptor isoforms in adapting to the maternal environment and regulating fetal growth. Placenta 2017; 54:24-29. [DOI: 10.1016/j.placenta.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023]
|
18
|
Cheong JN, Cuffe JSM, Jefferies AJ, Moritz KM, Wlodek ME. Adrenal, metabolic and cardio-renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy. J Physiol 2016; 594:6055-6068. [PMID: 27291586 PMCID: PMC5063931 DOI: 10.1113/jp272212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/28/2016] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Women born small are at an increased risk of developing pregnancy complications. Stress may further increase a woman's likelihood for an adverse pregnancy. Adverse pregnancy adaptations can lead to long-term diseases even after her pregnancy. The current study investigated the effects of stress during pregnancy on the long-term adrenal, metabolic and cardio-renal health of female rats that were born small. Stress programmed increased adrenal Mc2r gene expression, a higher insulin secretory response to glucose during intraperitoneal glucose tolerance test (+36%) and elevated renal creatinine clearance after pregnancy. Females that were born small had increased homeostatic model assessment-insulin resistance and elevated systolic blood pressure after pregnancy, regardless of stress exposure. These findings suggest that being born small or being stressed during pregnancy programs long-term adverse health outcomes after pregnancy. However, stress in pregnancy does not exacerbate the long-term adverse health outcomes for females that were born small. ABSTRACT Females born small are more likely to experience complications during their pregnancy, including pregnancy-induced hypertension, pre-eclampsia and gestational diabetes. The risk of developing complications is increased by stress exposure during pregnancy. In addition, pregnancy complications may predispose the mother to diseases after pregnancy. We determined whether stress during pregnancy would exacerbate the adrenal, metabolic and cardio-renal dysfunction of growth-restricted females in later life. Late gestation bilateral uterine vessel ligation was performed in Wistar Kyoto rats to induce growth restriction. At 4 months, growth-restricted and control female offspring were mated with normal males. Those allocated to the stressed group had physiological measurements [metabolic cage, tail cuff blood pressure, intraperitoneal glucose tolerance test (IPGTT)] conducted during pregnancy whilst the unstressed groups were unhandled. After the completion of pregnancy, dams were aged to 12 months and blood pressure, and metabolic and renal function were assessed. At 13 months, adrenal glands, pancreases and plasma were collected at post-mortem. Females stressed during pregnancy had increased adrenal Mc2r gene expression (+22%), higher insulin secretory response to glucose during IPGTT (+36%) and higher creatinine clearance (+29%, indicating increased estimated glomerular filtration rate). In contrast, females that were born small had increased homeostatic model assessment-insulin resistance (+54%), increased water intake (+23%), urine output (+44%) and elevated systolic blood pressure (+7%) regardless of exposure to stress. Our findings suggest that low maternal birth weight and maternal stress exposure during pregnancy are both independently detrimental for long-term adrenal, metabolic and cardio-renal health of the mother, although their effects were not exacerbated.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Andrew J Jefferies
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Mary E Wlodek
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
19
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
20
|
Cheong JN, Wlodek ME, Moritz KM, Cuffe JSM. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 2016; 594:4727-40. [PMID: 26970222 PMCID: PMC5009791 DOI: 10.1113/jp271745] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask 'programmed' impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex-specific outcomes partly attributed to different placenta-regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a 'second hit' for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long-term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long-term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long-term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
21
|
Narayan EJ, Williams M. Understanding the dynamics of physiological impacts of environmental stressors on Australian marsupials, focus on the koala (Phascolarctos cinereus). BMC ZOOL 2016. [DOI: 10.1186/s40850-016-0004-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
22
|
Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH. Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. J Pathol 2016; 238:665-76. [PMID: 26800422 DOI: 10.1002/path.4690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 11/11/2022]
Abstract
Congenital medullary dysplasia with obstructive nephropathy is a common congenital disorder observed in paediatric patients and represents the foremost cause of renal failure. However, the molecular processes regulating normal papillary outgrowth during the postnatal period are unclear. In this study, transcriptional profiling of the renal medulla across postnatal development revealed enrichment of non-canonical Wnt signalling, vascular development, and planar cell polarity genes, all of which may contribute to perinatal medulla/papilla maturation. These pathways were investigated in a model of papillary hypoplasia with functional obstruction, the Crim1(KST264/KST264) transgenic mouse. Postnatal elongation of the renal papilla via convergent extension was unaffected in the Crim1(KST264/KST264) hypoplastic renal papilla. In contrast, these mice displayed a disorganized papillary vascular network, tissue hypoxia, and elevated Vegfa expression. In addition, we demonstrate the involvement of accompanying systemic hypoxia arising from placental insufficiency, in appropriate papillary maturation. In conclusion, this study highlights the requirement for normal vascular development in collecting duct patterning, development of appropriate nephron architecture, and perinatal papillary maturation, such that disturbances contribute to obstructive nephropathy.
Collapse
Affiliation(s)
- Yu Leng Phua
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,School of Medicine, Department of Pediatrics, Division of Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | - Alexander Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Maternal hypomagnesemia alters renal function but does not program changes in the cardiovascular physiology of adult offspring. J Dev Orig Health Dis 2016; 7:473-480. [PMID: 27019320 DOI: 10.1017/s2040174416000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal undernutrition is known to adversely impact fetal health and development. Insults experienced in utero alter development of the fetus as it adapts to microenvironment stressors, leading to growth restriction and subsequent low birth weight. Infants born small for gestational age have significantly increased risk of developing cardiovascular and renal disease in later life, an effect that is often characterized by hypertension and reduced glomerular number. Maternal magnesium (Mg2+) deficiency during pregnancy impairs fetal growth, however, the long-term health consequences for the offspring remain unknown. Here, we used a mouse model of dietary Mg2+ deficiency before and during pregnancy to investigate cardiovascular and renal outcomes in male and female adult offspring at 6 months of age. There were no differences between groups in 24-h mean arterial pressure or heart rate as measured by radiotelemetry. Cardiovascular responses to aversive (restraint, dirty cage switch) and non-aversive (feeding response) stressors were also similar in all groups. There were no differences in nephron number, however, Mg2+-deficient offspring had increased urine flow (in both males and females) and reduced Mg2+ excretion (in males only). Despite evidence suggesting that maternal nutrient restriction programs for hypertension in adult offspring, we found that a moderate level of maternal dietary Mg2+ deficiency did not program for a nephron deficit, or alter cardiovascular function at 6 months of age. These data suggest there are no long-term adverse outcomes for the cardiovascular health of offspring of Mg2+ deficient mothers.
Collapse
|
24
|
Master JS, Zimanyi MA, Yin KV, Moritz KM, Gallo LA, Tran M, Wlodek ME, Black MJ. Transgenerational left ventricular hypertrophy and hypertension in offspring after uteroplacental insufficiency in male rats. Clin Exp Pharmacol Physiol 2015; 41:884-90. [PMID: 25199478 DOI: 10.1111/1440-1681.12303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/30/2023]
Abstract
Epidemiological studies have shown an association between low birthweight and adult disease development with transmission to subsequent generations. The aim of the present study was to examine the effect of intrauterine growth restriction in rats, induced by uteroplacental insufficiency, on cardiac structure, number, size, nuclearity, and adult blood pressure in first (F1) and second (F2) generation male offspring. Uteroplacental insufficiency or sham surgery was induced in F0 Wistar-Kyoto pregnant rats in late gestation giving rise to F1 restricted and control offspring, respectively. F1 control and restricted females were mated with normal males, resulting in F2 control and restricted offspring, respectively. F1 restricted male offspring were significantly lighter at birth (P < 0.05), but there were no differences in birthweight of F2 offspring. Left ventricular weights and volumes were significantly increased (P < 0.05) in F1 and F2 restricted offspring at day 35. Left ventricular cardiomyocyte number was not different in F1 and F2 restricted offspring. At 6 months-of-age, F1 and F2 restricted offspring had elevated blood pressure (8-15 mmHg, P < 0.05). Our findings demonstrate the emergence of left ventricular hypertrophy and hypertension, with no change in cardiomyocyte number, in F1 restricted male offspring, and this was transmitted to the F2 offspring. The findings support transgenerational programming effects.
Collapse
Affiliation(s)
- Jordanna S Master
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
O'Sullivan L, Cuffe JSM, Koning A, Singh RR, Paravicini TM, Moritz KM. Excess prenatal corticosterone exposure results in albuminuria, sex-specific hypotension, and altered heart rate responses to restraint stress in aged adult mice. Am J Physiol Renal Physiol 2015; 308:F1065-73. [PMID: 25715988 DOI: 10.1152/ajprenal.00676.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls (P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT (P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.
Collapse
Affiliation(s)
- Lee O'Sullivan
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Anselm Koning
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
26
|
Differential mRNA expression and glucocorticoid-mediated regulation of TRPM6 and TRPM7 in the heart and kidney throughout murine pregnancy and development. PLoS One 2015; 10:e0117978. [PMID: 25692682 PMCID: PMC4333289 DOI: 10.1371/journal.pone.0117978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
The transient receptor potential (TRP) channels TRPM6 and TRPM7 are critically involved in maintaining whole body and cellular Mg2+ homeostasis and ensuring the normal function of organs such as the heart and kidney. However, we do not know how the expression of TRPM6 and TPRM7 in these organs changes throughout fetal development and adult life, and whether this expression can be hormonally regulated. This study determined the ontogeny of TRPM6 and TRPM7 mRNA expression from mid-gestation through to adulthood in the mouse. In a second series of experiments, we examined how maternal administration of the glucocorticoids corticosterone and dexamethasone between embryonic days 12.5–15 affected TRPM6 and TRPM7 channel mRNA expression in the mother and fetus. Whilst renal TRPM7 expression was relatively constant throughout development, renal TRPM6 expression was markedly upregulated after birth. In contrast, cardiac TRPM7 expression was 2–4 fold higher in the fetus than in the adult. Surprisingly, TRPM6 expression was detected in the fetal heart (qPCR and in situ hybridization). Glucocorticoid administration during gestation increased fetal cardiac expression of both channels without affecting renal expression. In contrast, in the dam renal TRPM6 and TRPM7 expression was increased by glucocorticoids with no change in the cardiac channel expression. These data suggest that TRPM6 and TRPM7 channels are important in organogenesis, and that elevated maternal glucocorticoid levels can alter the expression of these channels. This suggests that perturbations in hormonal regulatory systems during pregnancy may adversely impact upon normal fetal development, at least in part by altering expression of TRPM channels.
Collapse
|
27
|
Vaughan OR, Phillips HM, Everden AJ, Sferruzzi-Perri AN, Fowden AL. Dexamethasone treatment of pregnant F0 mice leads to parent of origin-specific changes in placental function of the F2 generation. Reprod Fertil Dev 2015; 27:704-11. [DOI: 10.1071/rd14285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/08/2015] [Indexed: 02/05/2023] Open
Abstract
Dexamethasone treatment of F0 pregnant rodents alters F1 placental function and adult cardiometabolic phenotype. The adult phenotype is transmitted to the F2 generation without further intervention, but whether F2 placental function is altered by F0 dexamethasone treatment remains unknown. In the present study, F0 mice were untreated or received dexamethasone (0.2 µg g–1 day–1, s.c.) over Days 11–15 or 14–18 of pregnancy (term Day 21). Depending on the period of F0 dexamethasone treatment, F1 offspring were lighter at birth or grew more slowly until weaning (P < 0.05). Glucose tolerance (1 g kg–1, i.p.) of adult F1 males was abnormal. Mating F1 males exposed prenatally to dexamethasone with untreated females had no effect on F2 placental function on Day 19 of pregnancy. In contrast, when F1 females were mated with untreated males, F2 placental clearance of the amino acid analogue 14C-methylaminoisobutyric acid was increased by 75% on Day 19 specifically in dams prenatally exposed to dexamethasone on Days 14–18 (P < 0.05). Maternal plasma corticosterone was also increased, but F2 placental Slc38a4 expression was decreased in these dams (P < 0.05). F0 dexamethasone treatment had no effect on F2 fetal or placental weights, regardless of lineage. Therefore, the effects of F0 dexamethasone exposure are transmitted intergenerationally to the F2 placenta via the maternal, but not paternal, line.
Collapse
|
28
|
Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration. Toxicology 2014; 325:74-84. [PMID: 25194749 DOI: 10.1016/j.tox.2014.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.
Collapse
|
29
|
Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol 2014; 13:106. [PMID: 25077824 PMCID: PMC4147163 DOI: 10.1186/s12933-014-0106-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 01/25/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sepsis is a common disease that continues to increase in incidence in the world. Diseases, such as diabetes mellitus, may make the situation worse. Diabetic patients are at increased risk for common infections. This study was designed to investigate the role of glibenclamide on myocardial injury by lipopolysaccharides (LPS) in streptozotocin induced diabetic mice (STZ-mice). METHODS LPS was used to induce endotoxemia in STZ-mice. Heart rate and mean arterial pressure were measured by MPA-HBBS. Serum epinephrine level was measured by enzyme-linked immunosorbent assays (ELISA). Myocardial injury was examined by light and transmission electron microscope and TUNEL staining. Macrophage infiltration was measured by immunohistochemistry. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in myocardial tissue and serum in STZ-mice, and in conditional medium of primary cultured peritoneal macrophages were determined by ELISA. Nalp3 and Caspase-1 protein levels were measured by Western blotting analysis. RESULTS STZ administration decreased body weight and increased blood glucose in C57BL/6 mice. LPS injection caused decreases of heart rate and mean arterial pressure, and elevated serum epinephrine level in C57BL/6 mice. Compared with control mice without STZ treatment, LPS induced more severe myocardial injury and macrophage infiltration in STZ-mice, which was attenuated by pretreatment of glibenclamide. LPS stimulation enhanced the levels of IL-1β and TNF-α in both cardiac tissue and serum. Glibenclamide pretreatment significantly inhibited the serum levels of pro-inflammatory cytokines. Either high glucose or LPS increased the levels of IL-1β and TNF-α in the conditional medium of peritoneal macrophages. Glibenclamide treatment suppressed the increase of IL-1β level induced by high glucose and LPS. Furthermore, Nalp3 and Caspase-1 levels were markedly increased by high glucose plus LPS, and both proteins were significantly inhibited by glibenclamide treatment. CONCLUSIONS We conclude that glibenclamide could attenuate myocardial injury induced by LPS challenge in STZ-mice, which was possibly related to inhibiting inflammation through Nalp3 inflammasomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Shen
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang, China.
| | | |
Collapse
|
30
|
Richards EM, Wood CE, Rabaglino MB, Antolic A, Keller-Wood M. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum. Physiol Genomics 2014; 46:547-59. [PMID: 24867915 DOI: 10.1152/physiolgenomics.00009.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown in sheep that 10 days of modest chronic increase in maternal cortisol resulting from maternal infusion of cortisol (1 mg/kg/day) caused fetal heart enlargement and Purkinje cell apoptosis. In subsequent studies we extended the cortisol infusion to term, finding a dramatic incidence of stillbirth in the pregnancies with chronically increased cortisol. To investigate effects of maternal cortisol on the heart, we performed transcriptomic analyses on the septa using ovine microarrays and Webgestalt and Cytoscape programs for pathway inference. Analyses of the transcriptomic effects of maternal cortisol infusion for 10 days (130 day cortisol vs 130 day control), or ∼25 days (140 day cortisol vs 140 day control) and of normal maturation (140 day control vs 130 day control) were performed. Gene ontology terms related to immune function and cytokine actions were significantly overrepresented as genes altered by both cortisol and maturation in the septa. After 10 days of cortisol, growth factor and muscle cell apoptosis pathways were significantly overrepresented, consistent with our previous histologic findings. In the term fetuses (∼25 days of cortisol) nutrient pathways were significantly overrepresented, consistent with altered metabolism and reduced mitochondria. Analysis of mitochondrial number by mitochondrial DNA expression confirmed a significant decrease in mitochondria. The metabolic pathways modeled as altered by cortisol treatment to term were different from those modeled during maturation of the heart to term, and thus changes in gene expression in these metabolic pathways may be indicative of the fetal heart pathophysiologies seen in pregnancies complicated by stillbirth, including gestational diabetes, Cushing's disease and chronic stress.
Collapse
Affiliation(s)
- Elaine M Richards
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria Belen Rabaglino
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Andrew Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| |
Collapse
|
31
|
Cuffe JSM, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, Little MH, Moritz KM. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol 2014; 592:3127-41. [PMID: 24801305 DOI: 10.1113/jphysiol.2014.272856] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maternal hypoxia is a common perturbation that can disrupt placental and thus fetal development, contributing to neonatal impairments. Recently, evidence has suggested that physiological outcomes are dependent upon the sex of the fetus, with males more susceptible to hypoxic insults than females. This study investigated the effects of maternal hypoxia during mid- to late gestation on fetal growth and placental development and determined if responses were sex specific. CD1 mice were housed under 21% or 12% oxygen from embryonic day (E) 14.5 until tissue collection at E18.5. Fetuses and placentas were weighed before collection for gene and protein expression and morphological analysis. Hypoxia reduced fetal weight in both sexes at E18.5 by 7% but did not affect placental weight. Hypoxia reduced placental mRNA levels of the mineralocorticoid and glucocorticoid receptors and reduced the gene and protein expression of the glucocorticoid metabolizing enzyme HSD11B2. However, placentas of female fetuses responded differently to maternal hypoxia than did placentas of male fetuses. Notably, morphology was significantly altered in placentas from hypoxic female fetuses, with a reduction in placental labyrinth blood spaces. In addition mRNA expression of Glut1, Igf2 and Igf1r were reduced in placentas of female fetuses only. In summary, maternal hypoxia altered placental formation in a sex specific manner through mechanisms involving placental vascular development, growth factor and nutrient transporter expression and placental glucocorticoid signalling. This study provides insight into how sex differences in offspring disease development may be due to sex specific placental adaptations to maternal insults.
Collapse
Affiliation(s)
- J S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - S L Walton
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - R R Singh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - J G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - H Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - L Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - M H Little
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
32
|
Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol 2014; 52:R125-35. [PMID: 24299741 DOI: 10.1530/jme-13-0204] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones, essential in mammals to prepare for life after birth. Blood levels of glucocorticoids (cortisol in most mammals including humans; corticosterone in rats and mice) rise dramatically shortly before birth. This is mimicked clinically in the routine administration of synthetic glucocorticoids to pregnant women threatened by a preterm birth or to preterm infants to improve neonatal survival. Whilst effects on lung are well documented and essential for postnatal survival, those on heart are less well known. In this study, we review recent evidence for a crucial role of glucocorticoids in late gestational heart maturation. Either insufficient or excessive glucocorticoid exposure before birth may alter the normal glucocorticoid-regulated trajectory of heart maturation with potential life-long consequences.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
33
|
Dorey ES, Pantaleon M, Weir KA, Moritz KM. Adverse prenatal environment and kidney development: implications for programing of adult disease. Reproduction 2014; 147:R189-98. [PMID: 24686455 DOI: 10.1530/rep-13-0478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 'developmental origins of health and disease' hypothesis suggests that many adult-onset diseases can be attributed to altered growth and development during early life. Perturbations during gestation can be detrimental and lead to an increased risk of developing renal, cardiovascular, metabolic, and neurocognitive dysfunction in adulthood. The kidney has emerged as being especially vulnerable to insult at almost any stage of development resulting in a reduction in nephron endowment. In both humans and animal models, a reduction in nephron endowment is strongly associated with an increased risk of hypertension. The focus of this review is twofold: i) to determine the importance of specific periods during development on long-term programing and ii) to examine the effects of maternal perturbations on the developing kidney and how this may program adult-onset disease. Recent evidence has suggested that insults occurring around the time of conception also have the capacity to influence long-term health. Although epigenetic mechanisms are implicated in mediating these outcomes, it is unclear as to how these may impact on kidney development. This presents exciting new challenges and areas for research.
Collapse
Affiliation(s)
- Emily S Dorey
- School of Biomedical SciencesThe University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marie Pantaleon
- School of Biomedical SciencesThe University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristy A Weir
- School of Biomedical SciencesThe University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karen M Moritz
- School of Biomedical SciencesThe University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|