1
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
2
|
Ibrahim D, I Abdel Rahman MM, M Abd El-Ghany A, A A Hassanen E, A Al-Jabr O, A Abd El-Wahab R, Zayed S, Abd El Khalek Salem M, Nabil El Tahawy S, Youssef W, A Tolba H, E Dawod R, Taha R, H Arisha A, T Y Kishawy A. Chlorella vulgaris extract conjugated magnetic iron nanoparticles in nile tilapia (Oreochromis niloticus): Growth promoting, immunostimulant and antioxidant role and combating against the synergistic infection with Ichthyophthirius multifiliis and Aeromonashydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109352. [PMID: 38171430 DOI: 10.1016/j.fsi.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1β, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | | | - Amany M Abd El-Ghany
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Eman A A Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Omar A Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Mona Abd El Khalek Salem
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center, Mansoura, Egypt
| | - Shimaa Nabil El Tahawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Wessam Youssef
- Biotechnology Department, Animal Health Research Institute (AHRI), 246 Dokki, Giza 12618, Egypt
| | - Heba A Tolba
- Department of Fish Health and Management, Central Laboratory of Aquaculture Research (CLAR), AboHamad, Agriculture Research Center (ARC), Egypt
| | - Rehab E Dawod
- Department of Bacteriology, Animal Health Institute, Damietta Branch, Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Rahma Taha
- Department of Zoology, Animal Immunology and Physiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Ambat A, Antony L, Maji A, Ghimire S, Mattiello S, Kashyap PC, More S, Sebastian V, Scaria J. Enhancing recovery from gut microbiome dysbiosis and alleviating DSS-induced colitis in mice with a consortium of rare short-chain fatty acid-producing bacteria. Gut Microbes 2024; 16:2382324. [PMID: 39069899 PMCID: PMC11290756 DOI: 10.1080/19490976.2024.2382324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
The human gut microbiota is a complex community comprising hundreds of species, with a few present in high abundance and the vast majority in low abundance. The biological functions and effects of these low-abundant species on their hosts are not yet fully understood. In this study, we assembled a bacterial consortium (SC-4) consisting of B. paravirosa, C. comes, M. indica, and A. butyriciproducens, which are low-abundant, short-chain fatty acid (SCFA)-producing bacteria isolated from healthy human gut, and tested its effect on host health using germ-free and human microbiota-associated colitis mouse models. The selection also favored these four bacteria being reduced in abundance in either Ulcerative Colitis (UC) or Crohn's disease (CD) metagenome samples. Our findings demonstrate that SC-4 can colonize germ-free (GF) mice, increasing mucin thickness by activating MUC-1 and MUC-2 genes, thereby protecting GF mice from Dextran Sodium Sulfate (DSS)-induced colitis. Moreover, SC-4 aided in the recovery of human microbiota-associated mice from DSS-induced colitis, and intriguingly, its administration enhanced the alpha diversity of the gut microbiome, shifting the community composition closer to control levels. The results showed enhanced phenotypes across all measures when the mice were supplemented with inulin as a dietary fiber source alongside SC-4 administration. We also showed a functional redundancy existing in the gut microbiome, resulting in the low abundant SCFA producers acting as a form of insurance, which in turn accelerates recovery from the dysbiotic state upon the administration of SC-4. SC-4 colonization also upregulated iNOS gene expression, further supporting its ability to produce an increasing number of goblet cells. Collectively, our results provide evidence that low-abundant SCFA-producing species in the gut may offer a novel therapeutic approach to IBD.
Collapse
Affiliation(s)
- Achuthan Ambat
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Abhijit Maji
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Samara Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Department of Medicine and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Vanessa Sebastian
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur, India
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
4
|
Mishra RK, Ahmad A, Kumar A, Ali A, Kanika, Jori C, Tabrez S, Zughaibi TA, Almashjary MN, Raza SS, Khan R. Cortisone-loaded stearoyl ascorbic acid based nanostructured lipid carriers alleviate inflammatory changes in DSS-induced colitis. BIOMATERIALS ADVANCES 2023; 148:213383. [PMID: 36958119 DOI: 10.1016/j.bioadv.2023.213383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Ulcerative colitis is a chronic inflammatory disease which poorly affects the colon and spreads toward the rectum over time. Cortisone (CRT) is a corticosteroid clinically used for the management of inflammatory diseases like colitis and other inflammatory bowel diseases. Due to some physicochemical properties' cortisone has limited potency in clinics. To overcome drug-related problems, we successfully prepared lipid nanocarriers with generally regarded as safe (GRAS) materials approved by USFDA. The present study aimed to assess the therapeutic efficacy of CRT-loaded 6-o-stearoyl ascorbic acid (SAA) nanostructured lipid carriers (NLCs) against DSS-induced colitis mice. Formulation and characterizations of reported nanostructured lipid carrier were performed according to our previously optimized parameters. The average hydrodynamic diameter of NLCs was 182 nm as measured by DLS with 81.14 % encapsulation efficacy. TEM, AFM and SEM images analysis confirmed its spherical appearance. hTERT-BJ cells viability up to a dose of 500 μg/ml shows cytocompatible characteristics of blank NLCs. CRT-loaded NLCs treatment normalizes physically observed parameters such as disease activity index, weight variation etc. These NLCs were able to significantly reduce the severity of colitis in terms of colon histoarchitecture, regaining of the goblet cells, mucins secretions, inhibition of proinflammatory cytokines etc. Treatment with CRT-loaded NLCs effectively downregulated the overexpression of inflammatory enzymes like cyclooxygenase-2 (COX-2), Inducible nitric oxide synthase (iNOS) etc. The results of this study concluded that these CRT-encapsulated NLCs efficiently manage the disease severity induced by DSS.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Aneesh Ali
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Kanika
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Majed N Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
5
|
Khan A, Khan A, Shal B, Aziz A, Ahmad S, Amin MU, Ahmed MN, Zia-Ur-Rehman, Khan S. Ameliorative effect of two structurally divergent hydrazide derivatives against DSS-induced colitis by targeting Nrf2 and NF-κB signaling in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1167-1188. [PMID: 35851927 DOI: 10.1007/s00210-022-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The environmental factors and genetic vulnerability trigger the inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn's disease. Furthermore, the oxidative stress and inflammatory cytokines have been implicated in the aggravation of the IBDs. The aim of the present study was to investigate the effect of N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (NCHDH and NTHDH) compounds against the DSS-induced colitis in mice. The colitis was induced by 5% dextran sulfate sodium (DSS) dissolved in normal saline for 5 days. The effect of the NCHDH and NTHDH on the behavioral, biochemical, histological, and immunohistological parameters was assessed. The NCHDH and NTHDH treatment improved the behavioral parameters such as food intake, disease activity index, and diarrhea score significantly compared to DSS control. The NCHDH and NTHDH treatments significantly increased the antioxidant enzymes, whereas oxidative stress markers were markedly reduced. Similarly, the NCHDH and NTHDH treatments significantly suppressed the activity of nitric oxide (NO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO). The histological studies showed a significant reduction in inflammation, immune cell infiltration, and fibrosis in the NCHDH- and NTHDH-treated groups. The immunohistochemical results demonstrated that NCHDH and NTHDH treatments markedly increase the expression level of Nrf2, HO-1 (hemeoxygenase-1), TRX (thioredoxin reductase), and IκB compared to the DSS-induced group. In the same way, the NCHDH and NTHDH significantly reduced the NF-κB and COX-2 (cyclooxygenase-2) expression levels. The NCHDH and NTHDH treatment significantly improved the symptoms associated with colitis via inducing antioxidants and attenuating oxidative stress markers.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Muhammad Usman Amin
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Zia-Ur-Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Lactobacillus salivarius UCC118™ Dampens Inflammation and Promotes Microbiota Recovery to Provide Therapeutic Benefit in a DSS-Induced Colitis Model. Microorganisms 2022; 10:microorganisms10071383. [PMID: 35889102 PMCID: PMC9324116 DOI: 10.3390/microorganisms10071383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics such as Lactobacillus and Bifidobacterium spp. as a therapeutic against inflammatory bowel disease (IBD) is of significant interest. Lactobacillus salivarus strain UCC118TM is a commensal that has been shown to possess probiotic properties in vitro and anti-infective properties in vivo. However, the usefulness of UCC118 TM as a therapeutic against colitis remains unclear. This study investigates the probiotic potential of Lactobacillus salivarius, UCC118™ in a mouse model of colitis. DSS-induced colitis was coupled with pre-treatment or post-treatment with UCC118TM by daily oral gavage. In the pre-treatment model of colitis, UCC118TM reduced the severity of the disease in the early stages. Improvement in disease severity was coupled with an upregulation of tissue IL-10 levels and increased expression of macrophage M2 markers. This anti-inflammatory activity of UCC118TM was further confirmed in vitro, using a model of LPS-treated bone marrow-derived macrophages. Taken together, these results suggest that UCC118TM may promote the resolution of inflammation. This was supported in a mouse model of established DSS-induced colitis whereby UCC118TM treatment accelerated recovery, as evidenced by weight, stool, histological markers and the recovery of microbiome-associated dysbiosis with an increased abundance of beneficial commensal species. These results demonstrate the potential of Lactobacillus salivarius UCC118TM as a probiotic-based therapeutic strategy to promote health through the upregulation of anti-inflammatory IL-10 and protect against dysbiosis during IBD.
Collapse
|
7
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
8
|
Motawea A, Abd El Hady WE, Ahmed El-Emam G. The protective impact of adapted trimebutine maleate-loaded nanostructured lipid carriers for alleviating the severity of acute colitis. Drug Deliv 2022; 29:906-924. [PMID: 35297699 PMCID: PMC8933020 DOI: 10.1080/10717544.2022.2050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues such as high adverse effects of released drugs, insufficient drug amount at diseased areas, and unintentionally premature drug release to noninflamed GIT regions. Herein, the goal of this work was to convert trimebutine maleate (TMB) into nanostructured lipid carriers (NLC) in order to improve its protective effects in ulcerative colitis. NLC of TMB was prepared by the hot homogenization followed by ultra-sonication method. A full 42-factorial design was used to estimate the produced TMB-NLC. The study design included the exploration of the impact of two independent variables namely lipid mix amount and ratio (glyceryl mono stearate and capryol 90), surfactant concentration (0.5, 1, 1.5, and 2%), on the particle size, polydispersity index, and the entrapment efficiency (EE%). The protective activity of F9 was examined through macroscopical scores, histopathological changes, immunohistochemical localization of tumor necrosis factor-α (TNF-α) and examination of oxidative stress such as reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) against acetic acid-induced colitis in rats. Consistent with our expectations, the orally administered optimized formula (F9) alleviated the severity of colitis in acetic acid-induced rat model of colitis likely owing to the controlled release compared to free TMB. We aimed to develop TMB-loaded NLC for the treatment of acute colitis with the goal of providing a superior drug safety profile over long-term remission and maintenance therapy.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Akinrinde AS, Adekanmbi AO, Olojo FO. Nigella sativa oil protects against cadmium-induced intestinal toxicity via promotion of anti-inflammatory mechanisms, mucin expression and microbiota integrity. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:241-256. [PMID: 36186933 PMCID: PMC9482710 DOI: 10.22038/ajp.2021.18774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Objective This study examined the protective effects of Nigella sativa oil (NSO) on cadmium (Cd)-induced alterations affecting gut morphology and microbiota composition, as well as the involvement of mucus glycoprotein (MUC2) and immuno-inflammatory markers (TNFα and IL-2) in the colon of rats. Materials and Methods Male Wistar rats, randomized into four groups, were treated either with distilled water (control), CdCl2 (100 mg/kg), CdCl2+NSO (1 ml/kg) or NSO alone. After the experiments, faecal samples were processed for microbial culture on various selective media, while intestinal segments were prepared for histopathological examination and immunohistochemistry. The composition of NSO was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). Results Oral Cd administration provoked dramatic increases in faecal counts of potentially pathogenic bacteria (Staphylococci, Enterococci, Pseudomonas and Escherichia coli), while decreasing probiotic lactobacilli counts. Cadmium treatment caused down-regulation of colonic MUC2 (p=0.003) and IL-2 (p=0.03), but increased TNFα (p=0.034), along with reduced goblet cell counts and mucus production. Conversely, treatment with NSO significantly improved Lactobacilli counts (p=0.042), while reducing the levels of potentially pathogenic species. In addition, NSO significantly restored colonic expressions of MUC2 (p=0.001), TNFα (p=0.007) and IL-2 (p=0.025) to control levels. GC-MS analysis of NSO revealed the presence of the active ingredient, thymoquinone and a high content of unsaturated fatty acids, including trans-13-octadecenoic acid and oleic acid. Conclusion This study highlights the intestinal mucus, microbiota and immuno-inflammatory system as important protective targets of NSO against Cd-induced intestinal toxicity.
Collapse
Affiliation(s)
- Akinleye Stephen Akinrinde
- Environmental and Gastrointestinal Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria,Corresponding Author: Tel: +234(0)7064368126,
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, Faculty of Science, University of Ibadan, Oyo State, Nigeria
| | - Folake Olayinka Olojo
- Department of Chemistry, Faculty of Science, The Polytechnic, Ibadan, Oyo State, Nigeria
| |
Collapse
|
10
|
Sun T, Xue M, Yang J, Pei Z, Zhang N, Qin K, Liang H. Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4456-4463. [PMID: 33682122 DOI: 10.1002/jsfa.11202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important functions and is considered to be an essential 'organ' because it plays an important role in regulating human metabolism. Fucoidan contains a large amount of fucose and galactose residues, as well as various other neutral and acidic monosaccharides. Fucoidan particularly effects tumors, inflammatory bowel disease, diabetes and obesity by repairing intestinal mucosal damage and improving the intestinal microecological environment. It has been proposed that fucoidan could be used as a prebiotic agent for pharmaceutical and functional foods. In this review, we elucidate the potential mechanisms of the metabolic regulation of fucoidan with respect to the intestinal microecology of diseases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
11
|
El-Shiekh RA, Hussein D, Atta AH, Mounier SM, Mousa Shiekh MR, Abdel-Sattar E. Anti-inflammatory activity of Jasminum grandiflorum L. subsp. floribundum (Oleaceae) in inflammatory bowel disease and arthritis models. Biomed Pharmacother 2021; 140:111770. [PMID: 34119929 DOI: 10.1016/j.biopha.2021.111770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Our study has renewed interest in the genus Jasmine for the treatment of chronic inflammatory conditions. Aerial parts of Jasminum grandiflorum L. subsp. floribundum total methanolic extract (JTME) were tested for its therapeutic potential as an anti-inflammatory agent using two experimental models in rats; acetic acid (AA) induced ulcerative colitis and adjuvant induced arthritis. The administration of JTME showed anti-inflammatory activity in a dose dependent manner. JTME, 400 mg/kg was like prednisolone, 2 mg/kg p.o. (the reference drug), since it improved the tissues of the colon clinically, macro and microscopically (ulcer index), and histopathological (scoring). It reduced the intestinal expression of pro-inflammatory cytokines in the colonic mucosa; IFNγ, TNFα, IL-6, IL-1, and MPO. It also preserved tight junctions in intestinal epithelial cells by counter-regulating claudin-5 and occludin levels additionally, it had a potent antioxidant activity. The expressions of NF-κB p65, TNF-α and caspase-3 in rats administered AA (2 mL of 4% solution, once, intrarectally) were significantly increased, where the lowest expression was scored in JTME, 400 mg/kg group. In the adjuvant induced model of rheumatoid arthritis, the TJME, 400 mg/kg reduced the levels of cathepsin D, iNOS, NO, RF, CRP, CPP and elevated the total antioxidant capacity of tissues. Additionally, it maintained bones without histopathological lesions, articular cartilage damage, and inflammation of the synovial membrane and periarticular tissues, in contrast to arthritic rats. Finally, we report a new detailed study to validate the medicinal importance of Jasminum for the chronic inflammatory disorders with immune dysfunction with anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St, Cairo 11562, Egypt.
| | - Dorria Hussein
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Attia H Atta
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Samar M Mounier
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St, Cairo 11562, Egypt.
| |
Collapse
|
12
|
The role of inflammatory cytokines in anemia and gastrointestinal mucosal injury induced by foot electric stimulation. Sci Rep 2021; 11:3101. [PMID: 33542312 PMCID: PMC7862408 DOI: 10.1038/s41598-021-82604-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Foot electrical stimulation (FES) has been considered as a classic stressor that can disturb homeostasis. Acute anemia was observed in the model induced by FES. The aim of this study was to explore the role of inflammatory cytokines underlying the acute anemia and gastrointestinal (GI) mucosal injury in the FES. Twenty-four male Kunming mice (20 ± 2 g) were randomly divided into control group and experimental group. The mice were placed in a footshock chamber that can generate 0.5 mA electrical impulse periodically for 0.5 h. After the process, red blood cell count, hemoglobin concentration and hematocrit, the levels of corticotropin releasing hormone (CRH) in serum and hypothalamus, and adrenocorticotropic hormone (ACTH) in serum and pituitary were detected separately. In addition, we investigated the expressions of inflammatory cytokines (IL-1, IL-6, TNF-α, iNOS, and IL-10) in the hypothalamus and duodenum by Polymerase Chain Reaction (PCR). Results showed that this FES model induced anemia, increased CRH and ACTH activity in the serum after the FES. Moreover, the expressions of IL-1β, IL-6, TNF-α, and iNOS were significantly increased following the process, while IL-10 was not activated. These findings suggest that anemia, the inflammatory cytokines in the hypothalamus and duodenum of the mice in the model induced by FES is closely related to GI mucosal injury/bleeding. Taken together, these results underscore the importance of anemia, GI mucosal injury/bleeding and stress, future studies would be needed to translate these findings into the benefit of affected patients.
Collapse
|
13
|
Pan MH, Koh YC, Liu SY, Wu JC, Chou YC, Nagabhushanam K, Ho CT. A new metabolite: The effects of aminated tetrahydrocurcumin on inducible nitric oxide synthase and cyclooxygenase-2. JOURNAL OF CANCER RESEARCH AND PRACTICE 2021. [DOI: 10.4103/jcrp.jcrp_21_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Mishra RK, Ahmad A, Kumar A, Vyawahare A, Raza SS, Khan R. Lipid-based nanocarrier-mediated targeted delivery of celecoxib attenuate severity of ulcerative colitis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111103. [DOI: 10.1016/j.msec.2020.111103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
15
|
Sevrin G, Massier S, Chassaing B, Agus A, Delmas J, Denizot J, Billard E, Barnich N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes 2020; 11:364-380. [PMID: 29494278 PMCID: PMC7524368 DOI: 10.1080/19490976.2017.1421886] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of Crohn's disease (CD) is multifactorial and involves genetic susceptibility, environmental triggers and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are flagellated bacteria more prevalent in CD patients than in healthy subjects and promote chronic intestinal inflammation. We aim at deciphering the role of flagella and flagellin modulation by intestinal conditions. AIEC flagellum expression is required for optimal adhesion to and invasion of intestinal epithelial cells. Interestingly, differential flagellin regulation was observed between commensal E. coli (HS) and AIEC (LF82) strains: flagellum expression by AIEC bacteria, in contrast to that of commensal E. coli, is enhanced under intestinal conditions (the presence of bile acids and mucins). Flagella are involved in the ability of the AIEC LF82 strain to cross a mucus layer in vitro and in vivo, conferring a selective advantage in penetrating the mucus layer and reaching the epithelial surface. In a CEABAC10 mouse model, a non-motile mutant (LF82-ΔfliC) exhibits reduced colonization that is restored by a dextran sodium sulfate treatment that alters mucus layer integrity. Moreover, a mutant that continuously secretes flagellin (LF82-ΔflgM) triggers a stronger inflammatory response than the wild-type strain, and the mutant's ability to colonize the CEABAC10 mouse model is decreased. Overexpression of flagellin in bacteria in contact with epithelial cells can be detrimental to their virulence by inducing acute inflammation that enhances AIEC clearance. AIEC pathobionts must finely modulate flagellum expression during the infection process, taking advantage of their specific virulence gene regulation to improve their adaptability and flexibility within the gut environment.
Collapse
Affiliation(s)
- Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Sébastien Massier
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute & Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Allison Agus
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Service de Bactériologie, Parasitologie Mycologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Elisabeth Billard
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France,CONTACT Nicolas Barnich M2iSH, Inserm, Université Clermont Auvergne, USC-INRA 2018, 28 place Henri Dunant, 63001Clermont-Ferrand, France
| |
Collapse
|
16
|
Ma S, Yeom J, Lim YH. Dairy Propionibacterium freudenreichii ameliorates acute colitis by stimulating MUC2 expression in intestinal goblet cell in a DSS-induced colitis rat model. Sci Rep 2020; 10:5523. [PMID: 32218552 PMCID: PMC7099060 DOI: 10.1038/s41598-020-62497-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
An intact mucus layer is important in managing inflammatory bowel disease (IBD). Dairy Propionibacterium freudenreichii has probiotic potential, produces propionic acid and is known to promote health. The aim of this study was to evaluate the effects of P. freudenreichii on the improvement of colitis. LS 174T goblet cells and a dextran sodium sulfate (DSS)-induced colitis rat model were used to investigate the P. freudenreichii-induced stimulation of mucin production in vitro and in vivo, respectively. The mRNA and protein expression levels of MUC2, a main component of intestinal mucus, increased in the supernatant of P. freudenreichii culture (SPFC)-treated LS 174 cells. The SPFC and live P. freudenreichii (LPF) reduced the disease activity index (DAI) in the rats with DSS-induced colitis. After treatment with SPFC or LPF, the mRNA levels of typical pro-inflammatory cytokines decreased and the inflammatory state was histologically improved in the rats with DSS-induced colitis. The SPFC and LPF treatments increased the gene and protein expression levels of MUC2 in the rats with DSS-induced colitis compared with the expression levels in the negative control rats, and immunohistochemistry (IHC) showed an increase of the intestinal MUC2 level. In addition, SPFC and LPF augmented the level of propionate in the faeces of the rats with DSS-induced colitis. In conclusion, P. freudenreichii might improve acute colitis by restoring goblet cell number and stimulating the expression of MUC2 in intestinal goblet cells.
Collapse
Affiliation(s)
- Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
17
|
Gao Y, Yang L, Chin Y, Liu F, Li RW, Yuan S, Xue C, Xu J, Tang Q. Astaxanthin n-Octanoic Acid Diester Ameliorates Insulin Resistance and Modulates Gut Microbiota in High-Fat and High-Sucrose Diet-Fed Mice. Int J Mol Sci 2020; 21:ijms21062149. [PMID: 32245087 PMCID: PMC7139465 DOI: 10.3390/ijms21062149] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin n-octanoic acid diester (AOD) is a type of astaxanthin connecting medium-chain fatty acids with a more stable structure. In this study, we examined the role of AOD in ameliorating insulin resistance (IR) induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating gut microbiota in mice, with free astaxanthin (AST) as a comparison. Four groups of male C57BL/6J mice (6 weeks old; n = 10 per group) were fed with a normal control diet (NC), HFD orally administered with AOD, AST (50 mg/kg body weight), or vehicle for 8 weeks. AOD improved glucose tolerance, IR, systematic and intestinal inflammation, and intestinal integrity better than AST. Further, both AOD and AST modulated gut microbiota. A significantly higher abundance of Bacteroides and Coprococcus was found in AOD than in AST, and the predicted pathway of carbohydrate metabolism was significantly impacted by AOD. Overall, AOD may play a role in alleviating IR and inflammation with the modulating effect on microbiota in HFD-fed mice. Our findings could facilitate the development of AOD as a bioactive nutraceutical and more stable alternative to AST.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lu Yang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaoxian Chin
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Robert W. Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (J.X.); (Q.T.); Tel.: +86-0532-8203-2597 (J.X. & Q.T.)
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (J.X.); (Q.T.); Tel.: +86-0532-8203-2597 (J.X. & Q.T.)
| |
Collapse
|
18
|
Ogushi M, Imai M, Yoshizawa M, Suzuki K, Harada N. Effects of Crystalline and Amorphous Forms of Paramylon from Euglena gracilis on the Development of Water-immersion Restraint Stress-induced Gastric Ulcer. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Misa Ogushi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- Department of Food and Nutrition, Hagoromo University of International Studies
| | - Momoko Imai
- Development of Clinical Nutrition, Osaka Prefecture University
| | | | | | - Naoki Harada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
19
|
Ooi K. [Protection of the Skin Barrier Function in Inflammatory Disease]. YAKUGAKU ZASSHI 2019; 139:1553-1556. [PMID: 31787644 DOI: 10.1248/yakushi.19-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The skin is the largest human organ, comprising the epidermis that is composed of epithelial tissue, the dermis composed of connective tissue, and the innermost subcutaneous tissue. Generally, skin conditions are due to aging and the influence of the external environment, but empirically patients with gastrointestinal diseases are more prone to pruritus and inflammation caused by dry skin. A decrease in the skin barrier function, involving immunocompetent mast cells and oxidative stress, was noted in indomethacin-induced small intestine inflammation, dextran sodium sulfate (DSS)-induced ulcerative colitis, and azoxymethane+DSS-induced colorectal cancer. A possible correlation was found to exist between inflammatory gastrointestinal diseases and the skin, and this correlation was investigated using a rheumatoid arthritis model as representative of inflammatory diseases. Similar to previously reported results, deterioration of the skin barrier function was observed, and new information was obtained by analyzing changes in inflammatory markers in the blood and skin tissues. Understanding the underlying mechanism of decreased skin barrier function will help in establishing effective prophylaxis and treatment methods and clarify the importance of crosstalk between organs. It will also help accelerate drug development.
Collapse
Affiliation(s)
- Kazuya Ooi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
20
|
Tristetraprolin targets Nos2 expression in the colonic epithelium. Sci Rep 2019; 9:14413. [PMID: 31595002 PMCID: PMC6783411 DOI: 10.1038/s41598-019-50957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.
Collapse
|
21
|
Liu H, Walden TB, Ahl D, Nyman M, Bertilsson S, Phillipson M, Holm L. High‐Fat Diet Enriched with Bilberry Modifies Colonic Mucus Dynamics and Restores Marked Alterations of Gut Microbiome in Rats. Mol Nutr Food Res 2019; 63:e1900117. [DOI: 10.1002/mnfr.201900117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Hao‐Yu Liu
- Department of Medical Cell BiologyUppsala University Uppsala 75123 Sweden
| | - Tomas B. Walden
- Department of Medical Cell BiologyUppsala University Uppsala 75123 Sweden
| | - David Ahl
- Department of Medical Cell BiologyUppsala University Uppsala 75123 Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and NutritionLund University Lund 22100 Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life LaboratoryUppsala University Uppsala 75236 Sweden
| | - Mia Phillipson
- Department of Medical Cell BiologyUppsala University Uppsala 75123 Sweden
| | - Lena Holm
- Department of Medical Cell BiologyUppsala University Uppsala 75123 Sweden
| |
Collapse
|
22
|
Truong VL, Bak MJ, Jeong WS. Chemopreventive Activity of Red Ginseng Oil in a Mouse Model of Azoxymethane/Dextran Sulfate Sodium-Induced Inflammation-Associated Colon Carcinogenesis. J Med Food 2019; 22:578-586. [PMID: 30864851 DOI: 10.1089/jmf.2018.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have demonstrated antioxidant and cytoprotective properties of red ginseng oil (RGO). However, the role of RGO in models of intestinal inflammation has not been elucidated. In this study, we evaluated the chemopreventive effect of RGO in a mouse model of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis and explored its underlying mechanisms. Male C57BL/6 mice were intraperitoneally injected with a single dose of AOM (10 mg/kg), followed by 1.5% DSS in drinking water for 7 days to produce colon carcinogenesis. RGO at 10 or 100 mg/kg was orally given for 17 weeks. RGO supplementation reduced the plasma nitric oxide (NO) concentration as well as lipid peroxidation and inhibited the production of proinflammatory factors such as inducible NO synthase, cyclooxygenase-2, interleukin 1β, IL-6, and tumor necrosis factor-α in the mouse colitis tissue. Increased phosphorylation levels of p65 and IκB by AOM/DSS exposure were attenuated by the presence of RGO. In addition, RGO supplementation induced the activity of primary antioxidant enzymes such as superoxide dismutase and catalase as well as the expression of nuclear factor erythroid 2-related factor 2-mediated antioxidant enzyme hemeoxygenase-1 in the colons of AOM/DSS-treated mice. These findings indicate that RGO may be a potent natural chemopreventive agent for ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Min Ji Bak
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea.,2 Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
23
|
Hao S, Yan Y, Huang W, Gai F, Wang J, Liu L, Wang C. C-phycocyanin reduces inflammation by inhibiting NF-κB activity through downregulating PDCD5 in lipopolysaccharide-induced RAW 264.7 macrophages. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Shi H, Chang Y, Gao Y, Wang X, Chen X, Wang Y, Xue C, Tang Q. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide. Food Funct 2018; 8:3383-3393. [PMID: 28861559 DOI: 10.1039/c7fo00932a] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (cy) is a widely used cancer drug. Many researchers have focused on the prevention and alleviation of its side effects, particularly damage to the intestinal mucosal barrier. In this study, we examined the effects of fucoidan, isolated from Acaudina molpadioides, on mice with intestinal mucosal damage induced by cyclophosphamide. Our results showed that fucoidan intervention could relieve injury such as decreasing inflammation and increasing the expression of tight junction proteins, and 50 kDa fucoidan significantly increased the abundance of short chain fatty acid (SCFA) producer Coprococcus, Rikenella, and Butyricicoccus (p < 0.05, p < 0.001, and p < 0.05, respectively) species within the intestinal mucosa compared with the cyclophosphamide group, as determined by 16S rDNA gene high-throughput sequencing. In addition, SCFAs, particularly propionate, butyrate, and total SCFAs, were increased in the feces, and SCFA receptors were upregulated in the small intestine. The protective effects of fucoidan on cyclophosphamide treatment may be associated with gut microflora, and 50 kDa fucoidan had superior effects. Therefore, fucoidan may have applications as an effective supplement to protect against intestinal mucosal barrier damage during chemotherapy.
Collapse
Affiliation(s)
- Hongjie Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bergamo P, Cocca E, Monaco A, Cozzolino V, Boscaino F, Ferrandino I, Maurano F, Rossi M. Protective effect of Rumenic acid rich cow's milk against colitis is associated with the activation of Nrf2 pathway in a murine model. Prostaglandins Leukot Essent Fatty Acids 2017; 125:14-23. [PMID: 28987717 DOI: 10.1016/j.plefa.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022]
Abstract
Dietary supplementation with pure cis9, trans11 isomer of Conjugated Linoleic Acid -known as Rumenic Acid (RA)- improves cytoprotective defenses downstream through the activation of nuclear factor-E2-related factor-2(Nrf2). This capability, when Rumenic Acid is consumed in the form of foods, is still unknown. The ability of standard (St) or cow milk naturally-enriched in RA (En) to activate Nrf2 pathway and its impact on dextran sodium sulfate (DSS)-induced colitis was comparatively evaluated. Activity of Nrf2 pathway was investigated in colonic tissue of BALB/c mice, receiving 4-week supplement with skimmed milk (SK), St or St reinforced with pure RA (RSt) providing increasing RA dose (0, 124 or 404mg RA/kg-1 b.w, respectively). Next, the anti-oxidant/ anti-inflammatory effect produced by St or En treatment (383mg RA/kg-1 b.w.) was explored. Finally, macroscopic and histomorphologic features of colitis were evaluated in animals challenged with 5% (w/v) DSS, at the end of St or En treatment. Significant activation of Nrf2 pathway is associated with RSt and En intake (P<0.05), but not with SK or En treatment. En pre-treatment offers better protection, in comparison with St, against pro-oxidant, pro-inflammatory signs (P<0.01) and macroscopic signs triggered by DSS. It can be concluded that Nrf2 activation by higher RA amount contained in En is, at least in part, responsible for the improved protection associated with En intake against DSS-induced colitis.
Collapse
Affiliation(s)
- P Bergamo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy.
| | - E Cocca
- Institute of Biosciences and Bio-resources, National Research Council (CNR-IBBR), Naples, Italy
| | - A Monaco
- Department of Biology, University "Federico II" of Naples, Italy
| | - V Cozzolino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - F Boscaino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - I Ferrandino
- Department of Biology, University "Federico II" of Naples, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - M Rossi
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
26
|
Yokoyama S, Hiramoto K, Yamate Y, Ooi K. Influence of Repeated Senna Laxative Use on Skin Barrier Function in Mice. Ann Dermatol 2017; 29:414-421. [PMID: 28761288 PMCID: PMC5500705 DOI: 10.5021/ad.2017.29.4.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/12/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023] Open
Abstract
Background Senna, one of the major stimulant laxatives, is widely used for treating constipation. Chronic senna use has been reported to be associated with colonic disorders such as melanosis coli and/or epithelial hyperplasia. However, there is no obvious information on the influence of chronic senna use on organs except for the intestine. Objective To clarify the influence of senna laxative use on skin barrier function by repeated senna administration. Methods Eight-week-old male hairless mice received senna (10 mg/kg/day) for 21 days. After administration, we evaluated transepidermal water loss (TEWL), and investigated the biomarkers in plasma and skin using protein analysis methods. Results Fecal water content on day seven was significantly increased; however, on day 21, it was significantly decreased after repeated senna administration. In the senna-administered group, TEWL was significantly higher compared to the control on days seven and 21. Plasma acetylcholine concentration and NO2−/NO3− were increased on days seven and 21, respectively. In skin, tryptase-positive mast cells and inducible nitric oxide synthase (iNOS)-positive cells were increased on days seven and 21, respectively. The increase of TEWL on days seven and 21 was suppressed by the administration of atropine and N(G)-nitro-L-arginine methyl ester, respectively. Conclusion It was suggested that diarrhea or constipation induced by repeated senna administration caused the impairment of skin barrier function. There is a possibility that this impaired skin barrier function occurred due to degranulation of mast cells via cholinergic signals or oxidative stress derived from iNOS.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan
| | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan
| |
Collapse
|
27
|
Chiu CT, Kuo SN, Hung SW, Yang CY. Combined Treatment with Hyaluronic Acid and Mesalamine Protects Rats from Inflammatory Bowel Disease Induced by Intracolonic Administration of Trinitrobenzenesulfonic Acid. Molecules 2017; 22:molecules22060904. [PMID: 28556814 PMCID: PMC6152619 DOI: 10.3390/molecules22060904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Drugs such as mesalamine (5-ASA) are currently recommended for the treatment of inflammatory bowel disease (IBD). To reduce the frequency of their administration and improve their therapeutic effect, this study investigated the adhesion efficacy, wound healing promotion, and decrease in inflammation in ulcers in the colonic tissue of rats with colitis after combined treatment with hyaluronic acid (HA) and 5-ASA (IBD98-M). HA-fluoresceinamine (FL) conjugates successfully adhered to the mucosal layer and were conjugated in the vascular tissue. In addition, macroscopic and microscopic observations indicated that colonic injuries reduced significantly after treatment with IBD98-M. Compared with PBS and 5-ASA treatment alone, treatment with IBD98-M more effectively reduced bowel inflammation and promoted colonic mucosal healing in TNBS-induced colitis. IBD98-M treatment also reduced myeloperoxidase activity and the expression levels of cyclooxygenase 2 and tumor necrosis factor-αin the colitis tissue. In conclusion, IBD98-M treatment strongly promoted wound healing in colonic injuries and significantly inhibited MPO activity in the inflamed colon tissue of rats. Combined treatment with HA and 5-ASA can accelerate wound healing and reduce inflammatory reaction in rat colitis.
Collapse
Affiliation(s)
| | - Sheng-Nan Kuo
- Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan.
| | - Shao-Wen Hung
- Division of Animal Resource, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.
| | - Cheng-Yao Yang
- Division of Animal Resource, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.
| |
Collapse
|
28
|
Nitric Oxide and Hydrogen Sulfide Interact When Modulating Gastric Physiological Functions in Rodents. Dig Dis Sci 2017; 62:93-104. [PMID: 27864656 DOI: 10.1007/s10620-016-4377-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
AIM The objective was to evaluate the effects of nitric oxide (NO) and hydrogen sulfide (H2S) donors and possible interactions between these two systems in modulating gastric function. METHODS Mice received saline, sodium nitroprusside (SNP), or sodium hydrosulfite (NaHS), and after 1 h, the animals were killed for immunofluorescence analysis of CSE or eNOS expressions, respectively. Other groups received saline, SNP, NaHS, Lawesson's reagent (H2S donor), PAG + SNP, L-NAME, L-NAME + NaHS, or L-NAME + Lawesson's reagent. Then, the gastric secretions (mucous and acid), gastric blood flow, gastric defense against ethanol, and gastric motility (gastric emptying and gastric contractility) were evaluated. RESULTS SNP and NaHS increased the expression of CSE or eNOS, respectively. SNP or Lawesson's reagent did not alter gastric acid secretion but increased mucus production, and these effects reverted with PAG and L-NAME treatment, respectively. SNP or NaHS increased gastric blood flow and protected the gastric mucosa against ethanol injury, and these effects reverted with PAG and L-NAME treatments, respectively. SNP delayed gastric emptying when compared with saline, and PAG partially reversed this effect. NaHS accelerate gastric emptying, and L-NAME partially reversed this effect. SNP and NaHS alone induced gastric fundus and pylorus relaxation. However, pretreatment with PAG or L-NAME reversed these relaxant effects only in the pylorus but not in the gastric fundus. CONCLUSION NO and H2S interact in gastric physiological functions, and this "cross-talk" is important in the control of mucus secretion, gastric blood flow, gastric mucosal defense, and gastric motility, but not in the control of basal gastric acid secretion.
Collapse
|
29
|
Ahl D, Liu H, Schreiber O, Roos S, Phillipson M, Holm L. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta Physiol (Oxf) 2016; 217:300-10. [PMID: 27096537 DOI: 10.1111/apha.12695] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/10/2015] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. METHODS Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. RESULTS Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. CONCLUSION These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts.
Collapse
Affiliation(s)
- D. Ahl
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - H. Liu
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - O. Schreiber
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - S. Roos
- Department of Microbiology; Uppsala BioCenter; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - M. Phillipson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Holm
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
30
|
Zhu C, Ling Q, Cai Z, Wang Y, Zhang Y, Hoffmann PR, Zheng W, Zhou T, Huang Z. Selenium-Containing Phycocyanin from Se-Enriched Spirulina platensis Reduces Inflammation in Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-κB Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5060-5070. [PMID: 27223481 DOI: 10.1021/acs.jafc.6b01308] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selenium (Se) plays an important role in fine-tuning immune responses. Inflammatory bowel disease (IBD) involves hyperresponsive immunity of the digestive tract, and a low Se level might aggravate IBD progression; however, the beneficial effects of natural Se-enriched diets on IBD remain unknown. Previously, we developed high-yield Se-enriched Spirulina platensis (Se-SP) as an excellent organic nutritional Se source. Here we prepared Se-containing phycocyanin (Se-PC) from Se-SP and observed that Se-PC administration effectively reduced the extent of colitis in mouse induced by dextran sulfate sodium. Supplementation with Se-PC resulted in significant protective effects, including mitigation of body weight loss, bloody diarrhea, and colonic inflammatory damage. The anti-inflammatory effects of Se-PC supplementation were found to involve modulation of cytokines, including IL-6, TNF-α, MCP-1, and IL-10. Mechanistically, Se-PC inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which is involved in the transcription of these pro-inflammatory cytokines. These results together suggest potential benefits of Se-PC as a functional Se supplement to reduce the symptoms of IBD.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Pharmacy, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Qinjie Ling
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Zhihui Cai
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Yun Wang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Yibo Zhang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Peter R Hoffmann
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii , Honolulu, Hawaii 96813, United States
| | - Wenjie Zheng
- Department of Chemistry, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Tianhong Zhou
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Zhi Huang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
31
|
Liu B, Lin Q, Yang T, Zeng L, Shi L, Chen Y, Luo F. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct 2015; 6:3454-63. [PMID: 26292622 DOI: 10.1039/c5fo00563a] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ulcerative colitis is a major inflammatory bowel disease (IBD), characterized by inflammation within the gastrointestinal tract through chronic or relapsing immune system activation. The aim of this study is to investigate the potential protective effect of oat β-glucan (βG) against colitis induced by DSS in mice. Eighty mice were randomly divided into the control group (no DSS, no βG), DSS group (DSS only), DSS + L-βG group (DSS plus 500 mg per kg βG), and DSS + H-βG group (DSS plus 1000 mg per kg βG). Compared with the DSS group, administration of βG significantly reduced clinical symptoms with less weight loss, diarrhea and shortening of the colon, the severity of colitis was significantly inhibited as evidenced by the reduced disease activity index (DAI) and degree of histological damage in colon. Moreover, treatment with βG not only decreased myeloperoxidase activity (MPO), and nitric oxide (NO) and malondialdehyde (MDA) levels, but also inhibited mRNA and protein expression of pro-inflammatory factors such as TNF-α, IL-1β, IL-6 and iNOS. This suggests that oat βG in diet might exhibit an anti-inflammatory function against colitis through inhibition of expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Bo Liu
- Department of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yokoyama S, Hiramoto K, Koyama M, Ooi K. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model. Exp Dermatol 2015; 24:779-84. [DOI: 10.1111/exd.12775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Satoshi Yokoyama
- Faculty of Pharmaceutical Sciences; Suzuka University of Medical Science; Mie Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences; Suzuka University of Medical Science; Mie Japan
| | - Mayu Koyama
- Faculty of Pharmaceutical Sciences; Suzuka University of Medical Science; Mie Japan
| | - Kazuya Ooi
- Faculty of Pharmaceutical Sciences; Suzuka University of Medical Science; Mie Japan
| |
Collapse
|
33
|
Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae. J Nutr Sci 2015; 4:e24. [PMID: 26495116 PMCID: PMC4611082 DOI: 10.1017/jns.2015.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.
Collapse
Key Words
- 0_ScYE, 0 g/kg Scizochytrium sp. + yeast extract (control)
- 15_ScYE, 150 g/kg Scizochytrium sp. + yeast extract
- 1_ScYE, 10 g/kg Scizochytrium sp. + yeast extract
- 6_ScYE, 60 g/kg Scizochytrium sp. + yeast extract
- ADC, apparent digestibility coefficient
- CK, creatine kinase
- FAME, fatty acid methyl esters
- FCR, feed conversion ratio
- Farmed salmon fish fillet nutritional quality
- ISO, International Organization for Standardization
- Microalgae
- ScYE, Scizochytrium sp. + yeast extract
- TGC, thermal growth coefficient
- iNOS, inducible nitric oxide synthase
- n-3 LC-PUFA, n-3 long-chain PUFA
- n-3 Long-chain PUFA
Collapse
|
34
|
Yildiz HM, Carlson TL, Goldstein AM, Carrier RL. Mucus Barriers to Microparticles and Microbes are Altered in Hirschsprung's Disease. Macromol Biosci 2015; 15:712-8. [PMID: 25644515 PMCID: PMC4494658 DOI: 10.1002/mabi.201400473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/20/2014] [Indexed: 12/22/2022]
Abstract
Mucus forms a protective hydrogel layer over the intestinal epithelium, presenting a selective and robust barrier to the uptake of particulates and microbe invasion. Disease can alter mucus production and composition, thus potentially modifying mucosal barrier properties. Hirschsprung's disease (HD) is a developmental abnormality of the nervous system often complicated by intestinal infection. An investigation of colonic mucus barrier properties in an HD animal model, endothelin receptor B mutant mice, revealed significantly reduced microsphere (passive) and microbe (active) transport rates (7-fold and 3.6-fold, respectively, in proximal colonic mucus) relative to wild-type. Transport differences were evident in both the ganglionic and aganglionic colon segments, in agreement with the risk of HD-associated enterocolitis after surgery to remove aganglionic colon segments. The development of therapies aimed at altering colonic mucus barrier properties could be explored towards preventing the onset of enterocolitis in HD.
Collapse
Affiliation(s)
- Hasan M Yildiz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Taylor L Carlson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
35
|
Cortés A, Muñoz-Antoli C, Sotillo J, Fried B, Esteban JG, Toledo R. Echinostoma caproni (Trematoda): differential in vivo mucin expression and glycosylation in high- and low-compatible hosts. Parasite Immunol 2015; 37:32-42. [PMID: 25382212 DOI: 10.1111/pim.12159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
Abstract
Enhanced mucus production and release appears to be a common mechanism for the clearance of intestinal helminths, and this expulsion is normally mediated by Th2-type immune responses. To investigate the factors determining the expulsion of intestinal helminths, we have analysed in vivo expression of mucin genes at the site of infection in two host species displaying different compatibility with Echinostoma caproni (Trematoda). Surprisingly, a general down-regulation on mucin mRNA expression was detected in low-compatible hosts (rats) coinciding with the development of Th2/Th17 responses and the early rejection of the worms from the intestinal lumen. This suggests the existence of a mechanism by which the parasites can modulate the mucus barrier to favour their survival. In highly compatible hosts (mice), some mucin genes were found to be up-regulated throughout the infection, probably, to protect the intestinal epithelium against the infection-induced inflammation developed in this host species. Moreover, infection-induced changes on mucin glycans were also studied by lectin histochemistry. Similar alterations were detected in the ileum of infected mice and rats, except with SNA lectin, indicating that sylated mucins might play an important role in determining the evolution of the infection in each host species.
Collapse
Affiliation(s)
- A Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS. Anti-inflammatory and immunomodulatory effects ofSpirulina platensisin comparison toDunaliella salinain acetic acid-induced rat experimental colitis. Immunopharmacol Immunotoxicol 2015; 37:126-39. [DOI: 10.3109/08923973.2014.998368] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Tauroursodeoxycholic acid inhibits experimental colitis by preventing early intestinal epithelial cell death. J Transl Med 2014; 94:1419-30. [PMID: 25310532 DOI: 10.1038/labinvest.2014.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/04/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is characterized by increased epithelial cell death and subsequent breakdown of the intestinal epithelial barrier, which perpetuates chronic intestinal inflammation. Since fecal bile acid dysmetabolism is associated with UC and tauroursodeoxycholic acid (TUDCA) has been shown to improve murine colitis, we evaluated the effect of TUDCA on intestinal epithelial cell death in a mouse model of UC-like barrier dysfunction elicited by dextran sulfate sodium (DSS). We identified the prevention of colonic caspase-3 induction, a key proapoptotic marker which was also over-activated in UC, as the earliest event resulting in a clear clinical benefit. Whereas vehicle-treated mice showed a cumulative mortality of 40%, all TUDCA-treated mice survived the DSS experiment during a 14-day follow-up period. In line with a barrier protective effect, TUDCA decreased bacterial translocation to the spleen and stimulated mucin production. Similarly, TUDCA inhibited lipopolysaccharide-induced intestinal permeability and associated enterocyte apoptosis. The anti-apoptotic effect was confirmed in vitro by a dose-dependent inhibition of both receptor-dependent (using tumor necrosis factor and Fas ligand) and receptor-independent (staurosporine) caspase-3 induction in HT29 colonic epithelial cells. These data imply that caspase-3 activation is an early marker of colitis that is prevented by TUDCA treatment. These data, together with the previously reported beneficial effect in colitis, suggest that TUDCA could be an add-on strategy to current immunosuppressive treatment of UC patients.
Collapse
|
38
|
Yamada S, Koyama T, Noguchi H, Ueda Y, Kitsuyama R, Shimizu H, Tanimoto A, Wang KY, Nawata A, Nakayama T, Sasaguri Y, Satoh T. Marine hydroquinone zonarol prevents inflammation and apoptosis in dextran sulfate sodium-induced mice ulcerative colitis. PLoS One 2014; 9:e113509. [PMID: 25409433 PMCID: PMC4237432 DOI: 10.1371/journal.pone.0113509] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIM We previously identified an anti-inflammatory compound, zonarol, a hydroquinone isolated from the brown algae Dictyopteris undulata as a marine natural product. To ascertain the in vivo functions of zonarol, we examined the pharmacological effects of zonarol administration on dextran sulfate sodium (DSS)-induced inflammation in a mouse model of ulcerative colitis (UC). Our goal is to establish a safe and effective cure for inflammatory bowel disease (IBD) using zonarol. METHODS AND RESULTS We subjected Slc:ICR mice to the administration of 2% DSS in drinking water for 14 days. At the same time, 5-aminosalicylic acid (5-ASA) at a dose of 50 mg/kg (positive control) and zonarol at doses of 10 and 20 mg/kg, were given orally once a day. DSS-treated animals developed symptoms similar to those of human UC, such as severe bloody diarrhea, which were evaluated by the disease activity index (DAI). Treatment with 20 mg/kg of zonarol, as well as 5-ASA, significantly suppressed the DAI score, and also led to a reduced colonic ulcer length and/or mucosal inflammatory infiltration by various immune cells, especially macrophages. Zonarol treatment significantly reduced the expression of pro-inflammatory signaling molecules, and prevented the apoptosis of intestinal epithelial cells. Finally, zonarol protected against in vitro lipopolysaccharide (LPS)-induced activation in the RAW264.7 mouse macrophage cell line. CONCLUSIONS This is the first report that a marine bioproduct protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine, a well-known prodrug that releases 5-ASA. We believe that the oral administration of zonarol might offer a better treatment for human IBDs than 5-ASA, or may be useful as an alternative/additive therapeutic strategy against UC, without any evidence of side effects.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tomoyuki Koyama
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Hirotsugu Noguchi
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yuki Ueda
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ryo Kitsuyama
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan
| | - Hiroya Shimizu
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ke-Yong Wang
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Shared-Use Research Center, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Aya Nawata
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Laboratory of Pathology, Fukuoka Wajiro Hospital, Fukuoka 811-0213, Japan
| | - Takumi Satoh
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan
| |
Collapse
|
39
|
Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 2014; 194:310-5. [DOI: 10.1016/j.jconrel.2014.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 02/01/2023]
|
40
|
Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res 2014; 7:113-20. [PMID: 25075198 PMCID: PMC4106026 DOI: 10.2147/jir.s65979] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results from host-microbial interactions in a genetically susceptible individual. IBDs are a group of autoimmune diseases that are characterized by inflammation of both the small and large intestine, in which elements of the digestive system are attacked by the body’s own immune system. This inflammatory condition encompasses two major forms, known as Crohn’s disease and ulcerative colitis. Patients affected by these diseases experience abdominal symptoms, including diarrhea, abdominal pain, bloody stools, and vomiting. Moreover, defects in intestinal epithelial barrier function have been observed in a number of patients affected by IBD. In this review, we first describe the types and symptoms of IBD and investigate the role that the epithelial barrier plays in the pathophysiology of IBD as well as the major cytokines involved. We then discuss steps used to diagnose this disease and the treatment options available, and finally provide an overview of the recent research that aims to develop new therapies for such chronic disorders.
Collapse
Affiliation(s)
- Marc Fakhoury
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical engineering and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Rebecca Negrulj
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Pharmacy, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Pharmacy, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Pharmacy, Curtin University, Perth, WA, Australia
| |
Collapse
|