1
|
van Niekerk G, Kelchtermans L, Broeckhoven E, Coelmont L, Alpizar YA, Dallmeier K. Cholecystokinin and gastrin as immune modulating hormones: Implications and applications. Cytokine Growth Factor Rev 2024; 80:37-46. [PMID: 39580238 DOI: 10.1016/j.cytogfr.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Cholecystokinin (CCK) and gastrin are gastrointestinal hormones traditionally recognised for their roles in digestion. However, it has been recognised that these hormones may also modulate immune function. Here, we examine the immune-modulating effects of CCK and gastrin, and explore the functional significance of this dual role. In addition to the direct effect of these hormones on immune cell function, we discuss why hormones that regulate complex physiological and behavioural aspects of digestion might also influence immune responses. Notably, recent findings highlight the importance of these hormones in promoting a tolerogenic hepatic environment, particularly as the liver encounters gut-derived inflammogens following a meal. Additionally, the neuro-immune crosstalk mediated by CCK suggests that this hormone may influence immune responses indirectly via the gut-brain axis, especially in the context of infection or inflammation. Furthermore, the role of CCK in inducing feeding cessation and satiety appears to be repurposed during sickness behaviour, such as the loss of appetite during infection. Collectively, these observations suggest that nutritional strategies, including permissive underfeeding or fasting, could have important clinical implications. A deeper understanding of the dual roles of CCK and gastrin in digestion and immunity may pave the way for novel therapeutic approaches that leverage these pathways for improved disease management and treatment outcomes.
Collapse
Affiliation(s)
- Gustav van Niekerk
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lara Kelchtermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Elias Broeckhoven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium.
| |
Collapse
|
2
|
Lin CL, Chien RN, Chen LW, Chu YD, Yeh CT. Rs9679162 genotype predicts prognosis of real-world advanced hepatocellular carcinoma treated by sorafenib. Cancer Biomark 2023; 36:251-266. [PMID: 36938726 DOI: 10.3233/cbm-220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Sorafenib and lenvatinib are tyrosine kinase inhibitors widely used in the targeted therapy to treat advanced hepatocellular carcinoma (aHCC). The GALNT14-rs9679162 genotype is a predictor of therapeutic outcome in multiple gastrointestinal cancers. OBJECTIVE To investigate the predictive role of the GALNT14-rs9679162 genotype in aHCC treated with sorafenib or lenvatinib. METHODS Totally 350 real-world patients with aHCC received sorafenib or lenvatinib were enrolled for GALNT14-rs9679162 genotyping and outcome analysis. Kaplan-Meier and Cox regression analysis were conducted to evaluate therapeutic outcomes. Cell-based assays were performed to determine the underlying mechanism. RESULTS Kaplan-Meier and Cox regression analysis showed that the "GG" genotype was not associated with overall survival (OS) when all patients were included. However, it was associated with shorter OS in specific clinical subgroups, including anti-hepatitis C virus antibody-positive (n= 108; P= 0.005) and hepatitis B surface antigen-negative (n= 117; P= 0.002) patients. Intriguingly, hepatitis B virus X protein trans-suppressed the GALNT14 promoter, thereby reducing the elevated expression of GALN14 in hepatoma cells, which partially contributed to the inability of the GALNT14-rs9679162 genotypes to predict the outcome of hepatitis B-related HCC. Finally, by analyzing the outcomes of 52 patients with aHCC treated with lenvatinib, patients with the "GG" genotype were associated with a favorable/shorter time-to-response (P= 0.013). CONCLUSIONS The GALNT14-rs9679162 "GG" genotype predicted shorter OS in patients with HBsAg-negative aHCC treated with sorafenib, but predicted a favorable response in all patients with aHCC treated with lenvatinib.
Collapse
Affiliation(s)
- Chih-Lang Lin
- Liver Research Unit, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Rong-Nan Chien
- Liver Research Unit, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Li-Wei Chen
- Liver Research Unit, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Ma L, Zeng W, Tan Z, Wang R, Yang Y, Lin S, Li F, Wang S. Activated Hepatic Nuclear Factor-κB in Experimental Colitis Regulates CYP2A5 and Metronidazole Disposition. Mol Pharm 2023; 20:1222-1229. [PMID: 36583631 DOI: 10.1021/acs.molpharmaceut.2c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic exposure of metronidazole is increased in patients with inflammatory bowel diseases (IBDs), while the underlying mechanism remains unknown. Here, we aim to decipher the mechanisms by which experimental colitis regulates metronidazole disposition in mice. We first confirmed that the systemic exposure of metronidazole was elevated in dextran sulfate sodium (DSS)-induced experimental colitis. Hepatic microsomal incubation with metronidazole revealed that the production rate of 2-hydroxymetronidazole was inhibited, suggestive of a diminished hydroxylation reaction upon colitis. Remarkably, the hydroxylation reaction of metronidazole was selectively catalyzed by CYP2A5, which was downregulated in the liver of colitis mice. In addition, hepatic nuclear factor (NF)-κB (a prototypical and critical signaling pathway in inflammation) was activated in colitis mice. Luciferase reporter and chromatin immunoprecipitation assay indicated that NF-κB downregulated Cyp2a5 transcription through binding to an NF-κB binding site (-1711 to -1720 bp) in the promoter. We further verified that the regulatory effects of colitis on CYP2A5 depended on the disease itself rather than the DSS compound. First, one-day administration of DSS did not alter mRNA and protein levels of CYP2A5. Moreover, CYP2A5 was suppressed in the Il-10-/- spontaneously developing colitis model. Furthermore, Cyp2a5 expression was downregulated in both groups of mice with modest or severe colitis, whereas the expression change was much more significant in severe colitis as compared to modest colitis. Altogether, activated hepatic NF-κB in experimental colitis regulates CYP2A5 and metronidazole disposition, revealing the mechanism of pharmacokinetic instability under IBDs, and providing a theoretical foundation for rational drug use in the future.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyi Tan
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Rui Wang
- The Third Clinical Medical College, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi Yang
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shubin Lin
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Shuai Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
4
|
Regulation of human ZNF687, a gene associated with Paget's disease of bone. Int J Biochem Cell Biol 2023; 154:106332. [PMID: 36372390 DOI: 10.1016/j.biocel.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Mutations in Zinc finger 687 (ZNF687) were associated with Paget's disease of bone (PDB), a disease characterized by increased bone resorption and excessive bone formation. It was suggested that ZNF687 plays a role in bone differentiation and development. However, the mechanisms involved in ZNF687 regulation remain unknown. This study aimed to obtain novel knowledge regarding ZNF687 transcriptional and epigenetic regulation. Through in silico analysis, we hypothesized three ZNF687 promoter regions located upstream exon 1 A, 1B, and 1 C and denominated promoter regions 1, 2, and 3, respectively. Their functionality was confirmed by luciferase activity assays and positive/negative regulatory regions were identified using promoter deletions constructs. In silico analysis revealed a high density of CpG islands in these promoter regions and in vitro methylation suppressed promoters' activity. Using bioinformatic approaches, bone-associated transcription factor binding sites containing CpG dinucleotides were identified, including those for NFκB, PU.1, DLX5, and SOX9. By co-transfection in HEK293 and hFOB cells, we found that DLX5 specifically activated ZNF687 promoter region 1, and its methylation impaired DLX5-driven promoter stimulation. NFκB repressed and activated promoter regions 1 and 2, respectively, and these activities were affected by methylation. PU.1 induced ZNF687 promoter region 1 which was affected by methylation. SOX9 differentially regulated ZNF687 promoters in HEK293 and hFOB cells that were impaired after methylation. In conclusion, this study provides novel insights into ZNF687 regulation by demonstrating that NFκB, PU.1, DLX5, and SOX9 are regulators of ZNF687 promoters, and DNA methylation influences their activity. The contribution of the dysregulation of these mechanisms in PDB should be further elucidated.
Collapse
|
5
|
Simoni-Nieves A, Clavijo-Cornejo D, Salas-Silva S, Escobedo-Calvario A, Bucio L, Souza V, Gutiérrez-Ruiz MC, Miranda-Labra RU, Gomez-Quiroz LE. HGF/c-Met regulates p22 phox subunit of the NADPH oxidase complex in primary mouse hepatocytes by transcriptional and post-translational mechanisms. Ann Hepatol 2022; 25:100339. [PMID: 33675999 DOI: 10.1016/j.aohep.2021.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES It is well-known that signaling mediated by the hepatocyte growth factor (HGF) and its receptor c-Met in the liver is involved in the control of cellular redox status and oxidative stress, particularly through its ability to induce hepatoprotective gene expression by activating survival pathways in hepatocytes. It has been reported that HGF can regulate the expression of some members of the NADPH oxidase family in liver cells, particularly the catalytic subunits and p22phox. In the present work we were focused to characterize the mechanism of regulation of p22phox by HGF and its receptor c-Met in primary mouse hepatocytes as a key determinant for cellular redox regulation. MATERIALS AND METHODS Primary mouse hepatocytes were treated with HGF (50 ng/mL) at different times. cyba expression (gene encoding p22phox) or protein content were addressed by real time RT-PCR, Western blot or immunofluorescence. Protein interactions were explored by immunoprecipitation and FRET analysis. RESULTS Our results provided mechanistic information supporting the transcriptional repression of cyba induced by HGF in a mechanism dependent of NF-κB activity. We identified a post-translational regulation mechanism directed by p22phox degradation by proteasome 26S, and a second mechanism mediated by p22phox sequestration by c-Met in plasma membrane. CONCLUSION Our data clearly show that HGF/c-Met exerts regulation of the NADPH oxidase by a wide-range of molecular mechanisms. NADPH oxidase-derived reactive oxygen species regulated by HGF/c-Met represents one of the main mechanisms of signal transduction elicited by this growth factor.
Collapse
Affiliation(s)
- Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Denise Clavijo-Cornejo
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Verónica Souza
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico.
| | - Luis E Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico.
| |
Collapse
|
6
|
Steinauer N, Zhang K, Guo C, Zhang J. Computational Modeling of Gene-Specific Transcriptional Repression, Activation and Chromatin Interactions in Leukemogenesis by LASSO-Regularized Logistic Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2109-2122. [PMID: 33961561 PMCID: PMC8572318 DOI: 10.1109/tcbb.2021.3078128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many physiological and pathological pathways are dependent on gene-specific on/off regulation of transcription. Some genes are repressed, while others are activated. Although many previous studies have analyzed the mechanisms of gene-specific repression and activation, these studies are mainly based on the use of candidate genes, which are either repressed or activated, without simultaneously comparing and contrasting both groups of genes. There is also insufficient consideration of gene locations. Here we describe an integrated machine learning approach, using LASSO-regularized logistic regression, to model gene-specific repression and activation and the underlying contribution of chromatin interactions. LASSO-regularized logistic regression accurately predicted gene-specific transcriptional events and robustly detected the rate-limiting factors that underlie the differences of gene activation and repression. An example was provided by the leukemogenic transcription factor AML1-ETO, which is responsible for 10-15 percent of all acute myeloid leukemia cases. The analysis of AML1-ETO has also revealed novel networks of chromatin interactions and uncovered an unexpected role for E-proteins in AML1-ETO-p300 interactions and a role for the pre-existing gene state in governing the transcriptional response. Our results show that logistic regression-based probabilistic modeling is a promising tool to decipher mechanisms that integrate gene regulation and chromatin interactions in regulated transcription.
Collapse
|
7
|
Mann-Nüttel R, Ali S, Petzsch P, Köhrer K, Alferink J, Scheu S. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. BMC Genom Data 2021; 22:37. [PMID: 34544361 PMCID: PMC8454182 DOI: 10.1186/s12863-021-00991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Transcription factors (TFs) control gene expression by direct binding to regulatory regions of target genes but also by impacting chromatin landscapes and modulating DNA accessibility for other TFs. In recent years several TFs have been defined that control cell fate decisions and effector functions in the immune system. Plasmacytoid dendritic cells (pDCs) are an immune cell type with the unique capacity to produce high amounts of type I interferons quickly in response to contact with viral components. Hereby, this cell type is involved in anti-infectious immune responses but also in the development of inflammatory and autoimmune diseases. To date, the global TF reservoir in pDCs early after activation remains to be fully characterized. Results To fill this gap, we have performed a comprehensive analysis in naïve versus TLR9-activated murine pDCs in a time course study covering early timepoints after stimulation (2 h, 6 h, 12 h) integrating gene expression (RNA-Seq) and chromatin landscape (ATAC-Seq) studies. To unravel the biological processes underlying the changes in TF expression on a global scale gene ontology (GO) analyses were performed. We found that 70% of all genes annotated as TFs in the mouse genome (1014 out of 1636) are expressed in pDCs for at least one stimulation time point and are covering a wide range of TF classes defined by their specific DNA binding mechanisms. GO analysis revealed involvement of TLR9-induced TFs in epigenetic modulation, NFκB and JAK-STAT signaling, and protein production in the endoplasmic reticulum. pDC activation predominantly “turned on” the chromatin regions associated with TF genes. Our in silico analyses pointed at the AP-1 family of TFs as less noticed but possibly important players in these cells after activation. AP-1 family members exhibit (1) increased gene expression, (2) enhanced chromatin accessibility in their promoter region, and (3) a TF DNA binding motif that is globally enriched in genomic regions that were found more accessible in pDCs after TLR9 activation. Conclusions In this study we define the complete set of TLR9-regulated TFs in pDCs. Further, this study identifies the AP-1 family of TFs as potentially important but so far less well characterized regulators of pDC function. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00991-2.
Collapse
Affiliation(s)
- Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Qu HJ, Lin KW, Li XL, Ou HY, Tan YF, Wang M, Wei N. Chemical Constituents and Anti-Gastric Ulcer Activity of Essential Oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and Their Herbal Pair. Chem Biodivers 2021; 18:e2100214. [PMID: 34402190 DOI: 10.1002/cbdv.202100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The essential oil (EO) of the herbal pair (HP), Alpinia officinarum-Cyperus rotundus (HP G-X) has been conventionally used in traditional Chinese medicine (TCM) for 'warming the stomach' and relieving pain. However, its pharmacologically active compounds, as well as the mechanism of its anti-gastric ulcer properties remain unclear. In this study, the EOs obtained from HP G-X and its corresponding single herbs were analyzed using GC/MS. A total of 74, 56, and 85 compounds were detected in A. officinarum (GLJ), C. rotundus (XF), and HP G-X, accounting for 93.2 %, 89.5 %, and 92.0 % of the total content, respectively. GLJ mainly contains 1,8-cineol (22.0 %) and α-terpineol (11.8 %), whereas cyperenone (22.4 %) and cyperene (12.3 %) were the major constituents in XF. These four compounds were also detected in the HP G-X with relatively high composition as 11.8 %, 5.5 %, 11.8 %, and 10.6 %, respectively. Although no new compounds were detected in HP G-X, the relative concentration of some compounds increased, while others decreased or even disappeared. HP G-X showed the lowest toxicity (TC50 >800 μg/mL) against human gastric mucosal epithelial cells (GES-1) and had the best protective effect against ethanol-induced GES-1 cell damage compared to the individual herbs. In vitro studies demonstrated that HP G-X and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In addition, in vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. This study further substantiated the traditional application of HP G-X against gastric ulcers through both in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Hui-Juan Qu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Kai-Wen Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Xiao-Liang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Hong-Ya Ou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yin-Feng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Oxford, MS 38677, USA
| | - Na Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
9
|
Lin W, Wu X, Wen J, Fei Y, Wu J, Li X, Zhang Q, Dong Y, Xu T, Fan Y, Wang N. NAicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition 2021; 91-92:111376. [PMID: 34274652 DOI: 10.1016/j.nut.2021.111376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a severe complication of rhabdomyolysis that significantly increases mortality. Unfortunately, the therapeutic approach is limited. Inflammation plays a critical role in the pathogenesis of rhabdomyolysis-induced AKI, which is a potential therapeutic target. Nicotinamide, a form of vitamin B3 and a precursor of nicotinamide adenine dinucleotide, has been shown to have potent antiinflammation effects. Klotho is a tubular highly expressed renoprotective protein. Therefore, we explored the effect of nicotinamide on rhabdomyolysis-induced AKI and the underlying mechanisms. METHODS We intramuscularly injected glycerol to induce rhabdomyolysis, and intraperitoneally administrated nicotinamide to observe the effect on kidney injury. Interleukin-1 beta, tumor necrosis factor alpha, nuclear factor kappa B (NF-κB), and Klotho were determined by Western blot. Chromatin immunoprecipitation was used to assess the interaction of NF-κB, nuclear receptor corepressor, and histone deacetylase 1 with Klotho promoters. Small interfering RNA was used to evaluate the role of Klotho in nicotinamide-related renoprotection. RESULTS The results showed that nicotinamide attenuated renal pathologic morphology, kidney functional abnormalities, and kidney inflammatory response in rhabdomyolysis. Moreover, nicotinamide effectively blocked the recruitment of NF-κB, nuclear receptor corepressor, and histone deacetylase 1 to the promoter of Klotho, and preserved Klotho expression. More importantly, the renoprotection effect of nicotinamide was abrogated when Klotho was knocked down by small interfering RNA in rhabdomyolysis mice. CONCLUSIONS Our study demonstrated that Klotho preservation is essential for the renoprotection effect of nicotinamide, and provides a new preventive strategy for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xianfeng Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Fei
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junnan Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaomei Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qunzi Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Dong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Xu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
10
|
Di Persio S, Starace D, Capponi C, Saracino R, Fera S, Filippini A, Vicini E. TNF-α inhibits GDNF levels in Sertoli cells, through a NF-κB-dependent, HES1-dependent mechanism. Andrology 2021; 9:956-964. [PMID: 33314792 DOI: 10.1111/andr.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is a soluble molecule crucial for the regulation of the spermatogonial stem cells (SSC) of the testis. The effects of GDNF on target cells have been extensively described, but mechanisms underlying GDNF regulation are currently under investigation. In the nervous system, GDNF expression is regulated by pro-inflammatory cytokines including lipopolysaccharide (LPS), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) but the effect of these cytokines on GDNF expression in the testis is unclear. OBJECTIVES The aim of the present study was to investigate the impact of TNF-α on GDNF expression levels using primary murine Sertoli cells as experimental model. MATERIAL AND METHODS The expression of TNF-α-regulated genes including Gdnf in different culture conditions was determined by real-time PCR. GDNF protein levels were determined by ELISA. The activation of the NF-κb pathway and HES1 levels were assessed by Western Blot analysis and immunofluorescence. HES1 expression was downregulated by RNAi. RESULTS In primary Sertoli cells, TNF-α downregulates GDNF levels through a nuclear factor-κB (NF-κB)-dependent mechanism. Mechanistically, TNF-α induces the transcriptional repressor HES1 by a NF-Κb-dependent mechanism, which in turn downregulates GDNF. DISCUSSION Under physiological conditions, TNF-α is secreted by germ cells suggesting that this cytokine plays a role in the paracrine control of SSC niche by modulating GDNF levels. HES1, a well-known target of the Notch pathway, is implicated in the regulation of GDNF expression. In Sertoli cells, TNF-α and Notch signaling may converge at molecular level, to regulate the expression of HES1 and HES1- target genes, including GDNF. CONCLUSIONS Because of the importance of GDNF for spermatogonial stem cell self-renewal and proliferation, this data may give important insights on how cytokine signals in the testis modulate the expression of niche-derived factors.
Collapse
Affiliation(s)
- Sara Di Persio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Donatella Starace
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Chiara Capponi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Rossana Saracino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Stefania Fera
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Daniel PV, Dogra S, Rawat P, Choubey A, Khan AS, Rajak S, Kamthan M, Mondal P. NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. J Biol Chem 2021; 296:100714. [PMID: 33930463 PMCID: PMC8144664 DOI: 10.1016/j.jbc.2021.100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Priya Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
12
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
13
|
Jabłońska E, Białopiotrowicz E, Szydłowski M, Prochorec-Sobieszek M, Juszczyński P, Szumera-Ciećkiewicz A. DEPTOR is a microRNA-155 target regulating migration and cytokine production in diffuse large B-cell lymphoma cells. Exp Hematol 2020; 88:56-67.e2. [PMID: 32702393 DOI: 10.1016/j.exphem.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
Abstract
MicroRNA-155 (MiR-155) is involved in normal B-cell development and lymphomagenesis, affecting cell differentiation, motility, and intracellular signaling. In this study, we searched for new targets of MiR-155 potentially involved in deregulation of the B-cell receptor pathway (BCR) in diffuse large B-cell lymphoma (DLBCL). We report that MiR-155 represses DEPTOR (an mTOR phosphatase) and c-CBL (SYK ubiquitin E3 ligase) through direct 3'-untranslated region interactions. In primary DLBCLs, MiR-155 exhibits a reciprocal expression pattern with DEPTOR and c-CBL. Inhibition of MiR-155 decreased expression of NFκB target genes and sensitized DLBCL cells to ibrutinib, confirming the role of MiR-155 in the modulation of BCR signaling. As the function of DEPTOR in DLBCLs has never been addressed, we first evaluated its expression in a series of 76 newly diagnosed DLBCL patients. DEPTOR protein expression was markedly lower in more aggressive nongerminal center-like (non-GCB) DLBCLs than in GCB tumors. In cell line models, inhibition of DEPTOR expression favored the migration of DLBCL cells toward the CXCL12 gradient. Finally, loss or gain of DEPTOR modulated the expression of specific pro-inflammatory cytokines and chemokines. We thus identified DEPTOR as a new MiR-155 target that is differentially expressed between GCB- and non-GCB-type DLBCLs and modulates cell migration and cytokine expression in DLBCL cells.
Collapse
Affiliation(s)
- Ewa Jabłońska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Białopiotrowicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Anna Szumera-Ciećkiewicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| |
Collapse
|
14
|
Inferring Drug-Protein⁻Side Effect Relationships from Biomedical Text. Genes (Basel) 2019; 10:genes10020159. [PMID: 30791472 PMCID: PMC6409686 DOI: 10.3390/genes10020159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Although there are many studies of drugs and their side effects, the underlying mechanisms of these side effects are not well understood. It is also difficult to understand the specific pathways between drugs and side effects. Objective: The present study seeks to construct putative paths between drugs and their side effects by applying text-mining techniques to free text of biomedical studies, and to develop ranking metrics that could identify the most-likely paths. Materials and Methods: We extracted three types of relationships—drug-protein, protein-protein, and protein–side effect—from biomedical texts by using text mining and predefined relation-extraction rules. Based on the extracted relationships, we constructed whole drug-protein–side effect paths. For each path, we calculated its ranking score by a new ranking function that combines corpus- and ontology-based semantic similarity as well as co-occurrence frequency. Results: We extracted 13 plausible biomedical paths connecting drugs and their side effects from cancer-related abstracts in the PubMed database. The top 20 paths were examined, and the proposed ranking function outperformed the other methods tested, including co-occurrence, COALS, and UMLS by P@5-P@20. In addition, we confirmed that the paths are novel hypotheses that are worth investigating further. Discussion: The risk of side effects has been an important issue for the US Food and Drug Administration (FDA). However, the causes and mechanisms of such side effects have not been fully elucidated. This study extends previous research on understanding drug side effects by using various techniques such as Named Entity Recognition (NER), Relation Extraction (RE), and semantic similarity. Conclusion: It is not easy to reveal the biomedical mechanisms of side effects due to a huge number of possible paths. However, we automatically generated predictable paths using the proposed approach, which could provide meaningful information to biomedical researchers to generate plausible hypotheses for the understanding of such mechanisms.
Collapse
|
15
|
Methot L, Soubannier V, Hermann R, Campos E, Li S, Stifani S. Nuclear factor-kappaB regulates multiple steps of gliogenesis in the developing murine cerebral cortex. Glia 2018; 66:2659-2672. [DOI: 10.1002/glia.23518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Laurent Methot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Robert Hermann
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Erin Campos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Sally Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
16
|
Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling. Biomed Pharmacother 2017; 94:1121-1128. [PMID: 28821163 DOI: 10.1016/j.biopha.2017.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin, an antidiabetic drug, is well known for its multifarious properties and its ability to modulate inflammatory cascade. Ulcerative colitis (UC) is an inflammatory condition of the colon where drugs exhibiting anti-inflammatory property have been shown to induce and maintain remission. The objective of the present study was to evaluate the efficacy of metformin against acetic-acid induced colitis in rat. The study included five groups of rats namely normal control, experimental control, drug treated groups (50 and 500mg/kg of metformin, MET50, MET500 and 300mg/kg of mesalazine, MSZ300). Parameters like small intestinal transit and colonic macroscopic changes, ulcer score, weight/length (W/L) ratio, levels of oxidative stress and inflammatory markers, tissue histology and expression of COX-2, iNOS, NFκB(p65) were evaluated. The results of this study show that treatment with metformin significantly decreased colonic mucosal damage, maintained oxidative homeostasis and normalized intestinal transit and W/L ratio in a dose-dependent manner. The restorative effect of metformin on colonic mucosa was accompanied by a marked reduction in the tissue levels of pro-inflammatory mediators and immunoreactivity of COX-2, iNOS and NFκB(p65). Further, its protective effect was found to be comparable to that of mesalazine. This study shows that metformin targets oxidative stress and down regulates transcription factor NFκB(p65) mediated pro-inflammatory signaling and has a therapeutic potential in treating inflammatory conditions of the colon.
Collapse
|
17
|
Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor. Proc Natl Acad Sci U S A 2017; 114:5497-5502. [PMID: 28487480 DOI: 10.1073/pnas.1619336114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.
Collapse
|
18
|
Matsumoto Y, Larose J, Kent OA, Lim M, Changoor A, Zhang L, Storozhuk Y, Mao X, Grynpas MD, Cong F, Rottapel R. RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. J Clin Invest 2017; 127:1303-1315. [PMID: 28287403 DOI: 10.1172/jci90527] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB-related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of β-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.
Collapse
|
19
|
Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol 2017; 25:316-328. [PMID: 28057411 DOI: 10.1016/j.tim.2016.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori colonizes the gastric mucosa in the human stomach and represents a major risk factor for peptic ulcer disease and gastric cancer. Here, we summarize our current knowledge of the complex impact of H. pylori on manipulating host signalling networks, that is, by the cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). We show that H. pylori infections reflect a paradigm for interspecies contact-dependent molecular communication, which includes the disruption of cell-cell junctions and cytoskeletal rearrangements, as well as proinflammatory, cell cycle-related, proliferative, antiapoptotic, and DNA damage responses. The contribution of these altered signalling cascades to disease outcome is discussed.
Collapse
|
20
|
Souza RB, Frota AF, Sousa RS, Cezario NA, Santos TB, Souza LMF, Coura CO, Monteiro VS, Cristino Filho G, Vasconcelos SMM, da Cunha RMS, Aguiar LMV, Benevides NMB. Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6-Hydroxydopamine Parkinson's Disease Model: Behavioural, Neurochemical and Transcriptional Alterations. Basic Clin Pharmacol Toxicol 2016; 120:159-170. [PMID: 27612165 DOI: 10.1111/bcpt.12669] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease associated with the degeneration of dopaminergic neurons and behavioural alterations. Natural bioactive compounds may provide new therapeutic alternatives for neurodegenerative disorders, such as PD. The sulphated polysaccharides isolated from marine algae are heterogenic molecules that show different biological activities. The red marine alga Gracilaria cornea has a sulphated polysaccharide (SA-Gc) with structure and anti-inflammatory and antinociceptive activities reported in the literature. Therefore, this study aimed to evaluate the neuroprotective effects of SA-Gc in rat model PD induced by 6-hydroxydopamine (6-OHDA). Firstly, we established the PD model in rats, induced by an intrastriatal injection (int.) of 6-OHDA, followed by a single administration of SA-Gc (15, 30 or 60 μg; int.). On the 14th day, behavioural tests were performed. After killing, brain areas were dissected and used for neurochemical and/or transcriptional analyses. The results showed that SA-Gc (60 μg, int.) promoted neuroprotective effects in vivo through reducing the oxidative/nitroactive stress and through alterations in the monoamine contents induced by 6-OHDA. Furthermore, SA-Gc modulated the transcription of neuroprotective and inflammatory genes, as well as returning behavioural activities and weight gain to normal conditions. Thus, this study reports the neuroprotective effects of SA-Gc against 6-OHDA in rats.
Collapse
Affiliation(s)
- Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Chistiane Oliveira Coura
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Valdécio Silvano Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Verma S, Kumar VL. Attenuation of gastric mucosal damage by artesunate in rat: Modulation of oxidative stress and NFκB mediated signaling. Chem Biol Interact 2016; 257:46-53. [DOI: 10.1016/j.cbi.2016.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023]
|
22
|
Simko V, Takacova M, Debreova M, Laposova K, Ondriskova-Panisova E, Pastorekova S, Csaderova L, Pastorek J. Dexamethasone downregulates expression of carbonic anhydrase IX via HIF-1α and NF-κB-dependent mechanisms. Int J Oncol 2016; 49:1277-88. [PMID: 27431580 PMCID: PMC5021256 DOI: 10.3892/ijo.2016.3621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Dexamethasone is a synthetic glucocorticoid frequently used to suppress side-effects of anticancer chemotherapy. In the present study, we showed that dexamethasone treatment leads to concentration-dependent downregulation of cancer-associated marker, carbonic anhydrase IX (CA IX), at the level of promoter activity, mRNA and protein expression in 2D and 3D cancer cell models. The effect of dexamethasone on CA IX expression under hypoxic conditions is predominantly mediated by impaired transcriptional activity and decreased protein level of the main hypoxic transcription factor HIF-1α. In addition, CA9 downregulation can be caused by protein-protein interactions between activated glucocorticoid receptors, major effectors of glucocorticoid action, and transcription factors that trigger CA9 transcription (e.g. AP-1). Moreover, we identified a potential NF-κB binding site in the CA9 promoter and propose the involvement of NF-κB in the dexamethasone-mediated inhibition of CA9 transcription. As high level of CA IX is often linked to aggressive tumor behavior, poor prognosis and chemo- and radiotherapy resistance, uncovering its reduction after dexa-methasone treatment and implication of additional regulatory mechanisms can be relevant for the CA IX-related clinical applications.
Collapse
Affiliation(s)
- Veronika Simko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Debreova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Laposova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Elena Ondriskova-Panisova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lucia Csaderova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
23
|
PKCζ Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NFκB-p65. Sci Rep 2015. [PMID: 26218882 PMCID: PMC4648478 DOI: 10.1038/srep12520] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression.
Collapse
|
24
|
Singh MV, Cicha MZ, Meyerholz DK, Chapleau MW, Abboud FM. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy, and Inflammatory Gene Expression. Hypertension 2015. [PMID: 26195481 DOI: 10.1161/hypertensionaha.115.06011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors are key determinants of the immunologic outcome through their proinflammatory response. Toll-like receptor-activated signaling pathways use several adaptor proteins of which adaptor proteins myeloid differentiation protein 88 (MyD88) and toll-interleukin receptor domain-containing adaptor protein-inducing interferon-β (TRIF) define 2 major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4, and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice when compared with wild-type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. However, in mice with nonfunctional TRIF (Trif(mut) mice), Ang II-induced hypertension and cardiac hypertrophy were abrogated, and proinflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a proinflammatory innate immune response, causing hypertension and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88-dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses.
Collapse
Affiliation(s)
- Madhu V Singh
- From the Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine (M.V.S., M.W.C., F.M.A.), Department of Molecular Physiology and Biophysics, Carver College of Medicine (M.W.C., F.M.A.), and Department of Pathology (D.K.M.), University of Iowa, Iowa City; and Department of Veterans Affairs Medical Center, Iowa City, IA (M.Z.C., M.W.C.).
| | - Michael Z Cicha
- From the Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine (M.V.S., M.W.C., F.M.A.), Department of Molecular Physiology and Biophysics, Carver College of Medicine (M.W.C., F.M.A.), and Department of Pathology (D.K.M.), University of Iowa, Iowa City; and Department of Veterans Affairs Medical Center, Iowa City, IA (M.Z.C., M.W.C.)
| | - David K Meyerholz
- From the Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine (M.V.S., M.W.C., F.M.A.), Department of Molecular Physiology and Biophysics, Carver College of Medicine (M.W.C., F.M.A.), and Department of Pathology (D.K.M.), University of Iowa, Iowa City; and Department of Veterans Affairs Medical Center, Iowa City, IA (M.Z.C., M.W.C.)
| | - Mark W Chapleau
- From the Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine (M.V.S., M.W.C., F.M.A.), Department of Molecular Physiology and Biophysics, Carver College of Medicine (M.W.C., F.M.A.), and Department of Pathology (D.K.M.), University of Iowa, Iowa City; and Department of Veterans Affairs Medical Center, Iowa City, IA (M.Z.C., M.W.C.)
| | - François M Abboud
- From the Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine (M.V.S., M.W.C., F.M.A.), Department of Molecular Physiology and Biophysics, Carver College of Medicine (M.W.C., F.M.A.), and Department of Pathology (D.K.M.), University of Iowa, Iowa City; and Department of Veterans Affairs Medical Center, Iowa City, IA (M.Z.C., M.W.C.).
| |
Collapse
|
25
|
Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone 2015; 74:76-82. [PMID: 25603464 DOI: 10.1016/j.bone.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.
Collapse
Affiliation(s)
- Aya Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
26
|
Wei J, Jiang H, Gao H, Wang G. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction. Biochem Biophys Res Commun 2015; 461:555-9. [PMID: 25912142 DOI: 10.1016/j.bbrc.2015.04.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
The epithelial barrier is critical in the maintenance of the homeostasis of the cornea. A number of eye disorders are associated with the corneal epithelial barrier dysfunction. Viral infection is one common eye disease type. This study aims to elucidate the mechanism by which the activation of toll like receptor 3 (TLR3) in the disruption of the corneal epithelial barrier. In this study, HCE cells (a human corneal epithelial cell line) were cultured into epithelial layers using as an in vitro model of the corneal epithelial barrier. PolyI:C was used as a ligand of TLR3. The transepithelial electric resistance (TER) and permeability of the HCE epithelial layer were assessed using as the parameters to evaluate the corneal epithelial barrier integrity. The results showed that exposure to PolyI:C markedly decreased the TER and increased the permeability of the HCE epithelial layers; the levels of cell junction protein, E-cadherin, were repressed by PolyI:C via increasing histone deacetylase-1 (HDAC1), the latter binding to the promoter of E-cadherin and repressed the transcription of E-cadherin. The addition of butyrate (an inhibitor of HDAC1) to the culture blocked the corneal epithelial barrier dysfunction caused by PolyI:C. In conclusion, activation of TLR3 can disrupt the corneal epithelial barrier, which can be blocked by the inhibitor of HDAC1.
Collapse
Affiliation(s)
- Jie Wei
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| | - Hua Jiang
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China.
| | - Hongrui Gao
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| | - Guangjie Wang
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| |
Collapse
|
27
|
Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury. PLoS One 2015; 10:e0122258. [PMID: 25815474 PMCID: PMC4376529 DOI: 10.1371/journal.pone.0122258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/10/2015] [Indexed: 01/22/2023] Open
Abstract
We reported that microRNA-30c (miR-30c) plays a key role in radiation-induced human cell damage through an apoptotic pathway. Herein we further evaluated radiation-induced miR-30 expression and mechanisms of delta-tocotrienol (DT3), a radiation countermeasure candidate, for regulating miR-30 in a mouse model and human hematopoietic CD34+ cells. CD2F1 mice were exposed to 0 (control) or 7–12.5 Gy total-body gamma-radiation, and CD34+ cells were irradiated with 0, 2 or 4 Gy of radiation. Single doses of DT3 (75 mg/kg, subcutaneous injection for mice or 2 μM for CD34+ cell culture) were administrated 24 h before irradiation and animal survival was monitored for 30 days. Mouse bone marrow (BM), jejunum, kidney, liver and serum as well as CD34+ cells were collected at 1, 4, 8, 24, 48 or 72 h after irradiation to determine apoptotic markers, pro-inflammatory cytokines interleukin (IL)-1β and IL-6, miR-30, and stress response protein expression. Our results showed that radiation-induced IL-1β release and cell damage are pathological states that lead to an early expression and secretion of miR-30b and miR-30c in mouse tissues and serum and in human CD34+ cells. DT3 suppressed IL-1β and miR-30 expression, protected against radiation-induced apoptosis in mouse and human cells, and increased survival of irradiated mice. Furthermore, an anti-IL-1β antibody downregulated radiation-induced NFκBp65 phosphorylation, inhibited miR-30 expression and protected CD34+ cells from radiation exposure. Knockdown of NFκBp65 by small interfering RNA (siRNA) significantly suppressed radiation-induced miR-30 expression in CD34+ cells. Our data suggest that DT3 protects human and mouse cells from radiation damage may through suppression of IL-1β-induced NFκB/miR-30 signaling.
Collapse
|
28
|
Datta De D, Roychoudhury S. To be or not to be: The host genetic factor and beyond in Helicobacter pylori mediated gastro-duodenal diseases. World J Gastroenterol 2015; 21:2883-2895. [PMID: 25780285 PMCID: PMC4356907 DOI: 10.3748/wjg.v21.i10.2883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) have long been associated with a spectrum of disease outcomes in the gastro-duodenal system. Heterogeneity in bacterial virulence factors or strains is not enough to explain the divergent disease phenotypes manifested by the infection. This review focuses on host genetic factors that are involved during infection and eventually are thought to influence the disease phenotype. We have summarized the different host genes that have been investigated for association studies in H. pylori mediated duodenal ulcer or gastric cancer. We discuss that as the bacteria co-evolved with the host; these host gene also show much variation across different ethnic population. We illustrate the allelic distribution of interleukin-1B, across different population which is one of the most popular candidate gene studied with respect to H. pylori infections. Further, we highlight that several polymorphisms in the pathway gene can by itself or collectively affect the acid secretion pathway axis (gastrin: somatostatin) thereby resulting in a spectrum of disease phenotype
Collapse
|
29
|
Investigation of NF-κB1 and NF-κBIA gene polymorphism in non-small cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530381. [PMID: 24707489 PMCID: PMC3953471 DOI: 10.1155/2014/530381] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023]
Abstract
Lung cancer is a complex, multifactorial disease which is the leading cause of cancer death in both men and women.
NF-κB is a transcription factor which is known to affect the expression of more than 150 genes related to inflammation, lymphocyte activation, cell proliferation, differentiation, and apoptosis, as well as contributing to cell apoptosis and survival. However, NF-κBIA (IκBα) is the inhibitor of the transcription factor. The -94ins/delATTG polymorphism of the NF-κB1 gene promoter region which causes a functional effect and NF-κBIA 3′UTR A → G polymorphism has been shown to be related to various inflammatory diseases and cancer. Ninety-five NSCLC patients and 99 healthy controls were included in study. The NF-κB1 -94ins/delATTG and NF-κBIA 3′UTR A → G polymorphism have been studied by using PCR-RFLP method. It was found that the NF-κB1 -94ins/delATTG DD genotype and D allele frequencies were higher in patients than healthy controls and the presence of the DD genotype has a 3.5-fold increased risk of the disease (P: 0.014). This study is the first to investigate the NF-κB1 -94ins/delATTG and NF-κBIA 3′UTR A → G polymorphism together in the Turkish population. According to the results, the NF-κB1 -94ins/del ATTG promoter polymorphism may have a role in lung carcinogenesis and prognosis.
Collapse
|