1
|
Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Mukerjee N. A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genet Eng Rev 2024; 40:3193-3225. [PMID: 36063068 DOI: 10.1080/02648725.2022.2116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dibyendu Seth
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sourish Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sanchari Adhikari
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Parimita Mondal
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dechen Sherpa
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Deepjyoti Sen
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebarsham, Australia
| |
Collapse
|
2
|
Cameron KN, Mombouli JV, Niama FR, Hayes B, Olson SH, Smith BR, Pante J, Roy S, Laudisoit A, Goldstein T, Joly DO, Bagamboula MPassi R, Lange CE. Orbivirus RNA in a Banana Serotine (Afronycteris nanus) Bat in the Republic of the Congo. ECOHEALTH 2022; 19:443-449. [PMID: 36629956 PMCID: PMC9838363 DOI: 10.1007/s10393-022-01619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Orbiviruses are arthropod borne viruses of vertebrates, with some of them being important pathogens of veterinary, conservation and economic importance, while others are occasionally associated with human disease. Some apparently bat specific orbiviruses have been detected, but little is known about their distribution and diversity. We thus sampled and screened 52 bats living in the Congo Basin, and detected RNA indicative of a novel orbivirus in a single banana serotine (Afronycteris nanus) by PCR. The detected RNA clusters with epizootic haemorrhagic disease virus, bluetongue virus, and others. The findings highlight the need for more studies into arbovirus presence and diversity in bat species.
Collapse
Affiliation(s)
- Kenneth N Cameron
- Wildlife Conservation Society, Bronx, NY, USA
- Unites States Fish and Wildlife Service, Bailey's Crossroads, VA, USA
| | | | - Fabien R Niama
- National Laboratory of Public Health, Brazzaville, Republic of the Congo
| | - Ben Hayes
- Monadh, Inveruglas, Kingussie, Inverness-Shire, UK
| | | | - Brett R Smith
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jasmine Pante
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Sanjit Roy
- Labyrinth Global Health, St. Petersburg, FL, USA
- University of Victoria, Victoria, BC, Canada
| | | | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Damien O Joly
- Wildlife Conservation Society, Bronx, NY, USA
- British Columbia Ministry of Environment and Climate Change Strategy, Victoria, BC, Canada
| | | | - Christian E Lange
- Labyrinth Global Health, St. Petersburg, FL, USA.
- Metabiota Inc, Nanaimo, BC, Canada.
| |
Collapse
|
3
|
Fabiańska I, Borutzki S, Richter B, Tran HQ, Neubert A, Mayer D. LABRADOR-A Computational Workflow for Virus Detection in High-Throughput Sequencing Data. Viruses 2021; 13:v13122541. [PMID: 34960810 PMCID: PMC8704571 DOI: 10.3390/v13122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing (HTS) allows detection of known and unknown viruses in samples of broad origin. This makes HTS a perfect technology to determine whether or not the biological products, such as vaccines are free from the adventitious agents, which could support or replace extensive testing using various in vitro and in vivo assays. Due to bioinformatics complexities, there is a need for standardized and reliable methods to manage HTS generated data in this field. Thus, we developed LABRADOR—an analysis pipeline for adventitious virus detection. The pipeline consists of several third-party programs and is divided into two major parts: (i) direct reads classification based on the comparison of characteristic profiles between reads and sequences deposited in the database supported with alignment of to the best matching reference sequence and (ii) de novo assembly of contigs and their classification on nucleotide and amino acid levels. To meet the requirements published in guidelines for biologicals’ safety we generated a custom nucleotide database with viral sequences. We tested our pipeline on publicly available HTS datasets and showed that LABRADOR can reliably detect viruses in mixtures of model viruses, vaccines and clinical samples.
Collapse
|
4
|
Vučurović A, Kutnjak D, Mehle N, Stanković I, Pecman A, Bulajić A, Krstić B, Ravnikar M. Detection of Four New Tomato Viruses in Serbia Using Post Hoc High-Throughput Sequencing Analysis of Samples From a Large-Scale Field Survey. PLANT DISEASE 2021; 105:2325-2332. [PMID: 33761774 DOI: 10.1094/pdis-09-20-1915-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato production worldwide is affected by numerous plant virus species. The early and accurate detection of viruses is a critical step for disease control. However, the simultaneous detection of the most known tomato viruses can be difficult because of the high number and diversity of tomato-infecting viruses. Here, we have identified four new viruses in Serbia by applying target-independent small RNA high-throughput sequencing (HTS). HTS was applied on pools of samples and separate samples, in total comprising 30 tomato samples that exhibited (severe) virus-like symptoms and were collected in Serbia during three annual surveys (2011 to 2013). These samples had previously tested negative for the presence of 16 tomato viruses using targeted detection methods. Three divergent complete genome sequences of Physostegia chlorotic mottled virus were obtained from different localities, indicating for the first time that this virus is widespread in Serbia and might represent an emergent viral pathogen of tomato. The tomato torrado virus was detected at one locality with devastating yield losses. The southern tomato virus was detected at two localities, and the spinach latent virus was detected at one locality. In addition, we detected the presence of one already-known virus in Serbia, the tomato spotted wilt orthotospovirus. All the HTS results were subsequently confirmed by targeted detection methods. In this study, the successful application of post hoc HTS testing of a limited number of pooled samples resulted in the discovery of new viruses. Thus, our results encourage the use of HTS in research and diagnostic laboratories, including laboratories that have limited resources to resolve disease etiology.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Ivana Stanković
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Aleksandra Bulajić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Branka Krstić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- University of Nova Gorica, 5000 Nova Gorica, Slovenia
| |
Collapse
|
5
|
Bester R, Cook G, Breytenbach JHJ, Steyn C, De Bruyn R, Maree HJ. Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids. Virol J 2021; 18:61. [PMID: 33752714 PMCID: PMC7986492 DOI: 10.1186/s12985-021-01523-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. METHODS Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. RESULTS The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. CONCLUSIONS This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.
Collapse
Affiliation(s)
- Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Glynnis Cook
- Citrus Research International, P.O. Box 28, Nelspruit, 1200, South Africa
| | | | - Chanel Steyn
- Citrus Research International, P.O. Box 28, Nelspruit, 1200, South Africa
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Rochelle De Bruyn
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Citrus Research International, P.O. Box 28, Nelspruit, 1200, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Citrus Research International, P.O. Box 2201, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Misclassifications in human papillomavirus databases. Virology 2021; 558:57-66. [PMID: 33730650 DOI: 10.1016/j.virol.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023]
Abstract
We assessed the quality of human papillomavirus (HPV) sequences in GenBank by analyzing the possible presence of chimeras, "wrong-assembled" contigs and errors in taxonomy using an open-source script (HPVChimera_Gb) that compared 25 638 HPV-related nucleotide sequences in GenBank with the 221 numbered HPV types and another 220 complete HPV sequences. There were 110 sequences with taxonomy/naming errors (sequences reported as another HPV type than the one they corresponded to) and 1318 possibly chimeric sequences. Manual analysis found plausible explanations for most of them (e.g. sequence covering an integration site) but 114 sequences appeared to be chimeras (96/114 were already flagged as "unverified" by GenBank) and 13 had taxonomy/naming errors. When comparing all correct HPV sequences in GenBank, there appeared to exist about 800 unique putative HPV types. Systematic and regular work towards eliminating chimeric sequences and taxonomy/naming errors could increase the quality and order in HPV research.
Collapse
|
7
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
8
|
Kuhn JH, Adkins S, Alioto D, Alkhovsky SV, Amarasinghe GK, Anthony SJ, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bartonička T, Basler C, Bavari S, Beer M, Bente DA, Bergeron É, Bird BH, Blair C, Blasdell KR, Bradfute SB, Breyta R, Briese T, Brown PA, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Buzkan N, Calisher CH, Cao M, Casas I, Chamberlain J, Chandran K, Charrel RN, Chen B, Chiumenti M, Choi IR, Clegg JCS, Crozier I, da Graça JV, Dal Bó E, Dávila AMR, de la Torre JC, de Lamballerie X, de Swart RL, Di Bello PL, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolja VV, Dolnik O, Drebot MA, Drexler JF, Dürrwald R, Dufkova L, Dundon WG, Duprex WP, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Fernandes J, Fooks AR, Formenty PBH, Forth LF, Fouchier RAM, Freitas-Astúa J, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gbakima A, Goldstein T, Gonzalez JPJ, Griffiths A, Groschup MH, Günther S, Guterres A, Hall RA, Hammond J, Hassan M, Hepojoki J, Hepojoki S, Hetzel U, Hewson R, Hoffmann B, Hongo S, Höper D, Horie M, Hughes HR, Hyndman TH, Jambai A, Jardim R, Jiāng D, Jin Q, Jonson GB, Junglen S, Karadağ S, Keller KE, Klempa B, Klingström J, Kobinger G, Kondō H, Koonin EV, Krupovic M, Kurath G, Kuzmin IV, Laenen L, Lamb RA, Lambert AJ, Langevin SL, Lee B, Lemos ERS, Leroy EM, Li D, Lǐ J, Liang M, Liú W, Liú Y, Lukashevich IS, Maes P, Marciel de Souza W, Marklewitz M, Marshall SH, Martelli GP, Martin RR, Marzano SYL, Massart S, McCauley JW, Mielke-Ehret N, Minafra A, Minutolo M, Mirazimi A, Mühlbach HP, Mühlberger E, Naidu R, Natsuaki T, Navarro B, Navarro JA, Netesov SV, Neumann G, Nowotny N, Nunes MRT, Nylund A, Økland AL, Oliveira RC, Palacios G, Pallas V, Pályi B, Papa A, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Payne S, Pérez DR, Pfaff F, Radoshitzky SR, Rahman AU, Ramos-González PL, Resende RO, Reyes CA, Rima BK, Romanowski V, Robles Luna G, Rota P, Rubbenstroth D, Runstadler JA, Ruzek D, Sabanadzovic S, Salát J, Sall AA, Salvato MS, Sarpkaya K, Sasaya T, Schwemmle M, Shabbir MZ, Shí X, Shí Z, Shirako Y, Simmonds P, Širmarová J, Sironi M, Smither S, Smura T, Song JW, Spann KM, Spengler JR, Stenglein MD, Stone DM, Straková P, Takada A, Tesh RB, Thornburg NJ, Tomonaga K, Tordo N, Towner JS, Turina M, Tzanetakis I, Ulrich RG, Vaira AM, van den Hoogen B, Varsani A, Vasilakis N, Verbeek M, Wahl V, Walker PJ, Wang H, Wang J, Wang X, Wang LF, Wèi T, Wells H, Whitfield AE, Williams JV, Wolf YI, Wú Z, Yang X, Yáng X, Yu X, Yutin N, Zerbini FM, Zhang T, Zhang YZ, Zhou G, Zhou X. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2020; 165:3023-3072. [PMID: 32888050 PMCID: PMC7606449 DOI: 10.1007/s00705-020-04731-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon J Anthony
- Mailman School of Public Health, Columbia University, New York, NY, USA
- EcoHealth Alliance, New York, NY, USA
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Institute of Bioinformatics, Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Christopher Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- Edge BioInnovation Consulting and Mgt, Frederick, MD, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis A Bente
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Bird
- School of Veterinary Medicine, One Health Institute, University of California, Davis, CA, USA
| | - Carol Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rachel Breyta
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Thomas Briese
- Department of Epidemiology, Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Paul A Brown
- Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Heath Safety ANSES, Ploufragan, France
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service, University of the Free State, Bloemfontein, Republic of South Africa
| | - Nihal Buzkan
- Department of Plant Protection, Faculty of Agriculture, Kahramanmaras Sütçü Imam University, Avsar Campus, 46060, Kahramanmaras, Turkey
| | | | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - John Chamberlain
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, UK
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Il-Ryong Choi
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX, USA
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Alberto M R Dávila
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Rik L de Swart
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Patrick L Di Bello
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | - Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ron A M Fouchier
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aiah Gbakima
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Tracey Goldstein
- One Health Institute, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, 20057, USA
- Centaurus Biotechnologies, CTP, Manassas, VA, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Mohamed Hassan
- Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Mobidiag Ltd, Espoo, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, University of Zuerich, Zurich, Switzerland
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Seiji Hongo
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Gilda B Jonson
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Serpil Karadağ
- Republic Of Turkey Ministry Of Agriculture And Forestry, Pistachio Research Institute, Gaziantep, Turkey
| | - Karen E Keller
- United States Department of Agriculture, Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR, USA
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Ivan V Kuzmin
- US Department of Agriculture, Animal and Plant Health Inspection, National Veterinary Services Laboratories, Diagnostic Virology Laboratory, Ames, USA
| | - Lies Laenen
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elba R S Lemos
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Eric M Leroy
- MIVEGEC (IRD-CNRS-Montpellier university) Unit, French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Dexin Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mifang Liang
- Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wénwén Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yàn Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, The Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Piet Maes
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Marco Marklewitz
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Giovanni P Martelli
- Department of Plant, Soil and Food Sciences, University "Aldo Moro", Bari, Italy
| | - Robert R Martin
- United States Department of Agriculture, Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Shin-Yi L Marzano
- Department of Biology and Microbiology, Department of Plant Sciences, South Dakota State University, Brookings, SD, USA
| | - Sébastien Massart
- Gembloux Agro-Bio Tech, TERRA, Plant Pathology Laboratory, Liège University, Liège, Belgium
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Maria Minutolo
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Tomohide Natsuaki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Arnfinn L Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renata C Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrated Biosciences and Department of Entomology, Texas A&M University, College Station, USA
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aziz-Ul Rahman
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Cientifico Technológico-La Plata, Consejo Nacional de Investigaciones Científico Tecnológico-Universidad Nacional de La Plata, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jiří Salát
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamil Sarpkaya
- Department of Forestry Engineering, Faculty of Forestry, Karabuk University (UNIKA), Karabük, Turkey
| | - Takahide Sasaya
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Muhammad Z Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Zhènglì Shí
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Teemu Smura
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | | | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Ioannis Tzanetakis
- Division of Agriculture, Department of Entomology and Plant Pathology, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 73 Strada delle Cacce, 10135, Turin, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heather Wells
- Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhìqiáng Wú
- MOH Key Laboratory of Systems Biology of Pathogens, IPB, CAMS, Beijing, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xīnglóu Yáng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Xuejie Yu
- Wuhan University School of Health Sciences, Wuhan, China
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
De novo sequence assembly requires bioinformatic checking of chimeric sequences. PLoS One 2020; 15:e0237455. [PMID: 32777809 PMCID: PMC7417191 DOI: 10.1371/journal.pone.0237455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
De novo assembly of sequence reads from next generation sequencing platforms is a common strategy for detecting presence and sequencing of viruses in biospecimens. Amplification artifacts and presence of several related viruses in the same specimen can lead to assembly of erroneous, chimeric sequences. We now report that such chimeras can also occur between viral and non-viral biological sequences incorrectly joined together which may cause erroneous detection of viruses, highlighting the importance of performing a chimera checking step in bioinformatics pipelines. Using Illumina NextSeq and metagenomic sequencing, we analyzed 80 consecutive non-melanoma skin cancers (NMSCs) from 11 immunosuppressed patients together with 11 NMSCs from patients who had only developed 1 NMSC. We aligned high-quality reads against a Human Papillomavirus (HPV) database and found HPV sequences in 9/91 specimens. A previous bioinformatic analysis of the same crude sequencing data from some of these samples had found an additional 3 specimens to be HPV-positive after performing de novo assembly. The reason for the discrepancy was investigated and found to be mostly caused by chimeric sequences containing both viral and non-viral sequences. Non-viral sequences were present in these 3 samples. To avoid erroneous detection of HPV when performing sequencing, we thus developed a novel script to identify HPV chimeric sequences.
Collapse
|
10
|
Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses 2020; 12:E211. [PMID: 32074965 PMCID: PMC7077230 DOI: 10.3390/v12020211] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.
Collapse
Affiliation(s)
- Daniel Kiselev
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alina Matsvay
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| | - Ivan Abramov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Vladimir Dedkov
- Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - German Shipulin
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Kamil Khafizov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| |
Collapse
|
11
|
Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High Throughput Sequencing For Plant Virus Detection and Discovery. PHYTOPATHOLOGY 2019; 109:716-725. [PMID: 30801236 DOI: 10.1094/phyto-07-18-0257-rvw] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the last decade, virologists have discovered an unprecedented number of viruses using high throughput sequencing (HTS), which led to the advancement of our knowledge on the diversity of viruses in nature, particularly unraveling the virome of many agricultural crops. However, these new virus discoveries have often widened the gaps in our understanding of virus biology; the forefront of which is the actual role of a new virus in disease, if any. Yet, when used critically in etiological studies, HTS is a powerful tool to establish disease causality between the virus and its host. Conversely, with globalization, movement of plant material is increasingly more common and often a point of dispute between countries. HTS could potentially resolve these issues given its capacity to detect and discover. Although many pipelines are available for plant virus discovery, all share a common backbone. A description of the process of plant virus detection and discovery from HTS data are presented, providing a summary of the different pipelines available for scientists' utility in their research.
Collapse
Affiliation(s)
- D E V Villamor
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - T Ho
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - M Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis 95616; and
| | - R R Martin
- 3 Horticulture Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
12
|
Fagre AC, Kading RC. Can Bats Serve as Reservoirs for Arboviruses? Viruses 2019; 11:E215. [PMID: 30832426 PMCID: PMC6466281 DOI: 10.3390/v11030215] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are known to harbor and transmit many emerging and re-emerging viruses, many of which are extremely pathogenic in humans but do not cause overt pathology in their bat reservoir hosts: henipaviruses (Nipah and Hendra), filoviruses (Ebola and Marburg), and coronaviruses (SARS-CoV and MERS-CoV). Direct transmission cycles are often implicated in these outbreaks, with virus shed in bat feces, urine, and saliva. An additional mode of virus transmission between bats and humans requiring further exploration is the spread of disease via arthropod vectors. Despite the shared ecological niches that bats fill with many hematophagous arthropods (e.g. mosquitoes, ticks, biting midges, etc.) known to play a role in the transmission of medically important arboviruses, knowledge surrounding the potential for bats to act as reservoirs for arboviruses is limited. To this end, a comprehensive literature review was undertaken examining the current understanding and potential for bats to act as reservoirs for viruses transmitted by blood-feeding arthropods. Serosurveillance and viral isolation from either free-ranging or captive bats are described in relation to four arboviral groups (Bunyavirales, Flaviviridae, Reoviridae, Togaviridae). Further, ecological associations between bats and hematophagous viral vectors are characterized (e.g. bat bloodmeals in mosquitoes, ingestion of mosquitoes by bats, etc). Lastly, knowledge gaps related to hematophagous ectoparasites (bat bugs and bed bugs (Cimicidae) and bat flies (Nycteribiidae and Streblidae)), in addition to future directions for characterization of bat-vector-virus relationships are described.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Fagre AC, Lee JS, Kityo RM, Bergren NA, Mossel EC, Nakayiki T, Nalikka B, Nyakarahuka L, Gilbert AT, Peterhans JK, Crabtree MB, Towner JS, Amman BR, Sealy TK, Schuh AJ, Nichol ST, Lutwama JJ, Miller BR, Kading RC. Discovery and Characterization of Bukakata orbivirus ( Reoviridae:Orbivirus), a Novel Virus from a Ugandan Bat. Viruses 2019; 11:E209. [PMID: 30832334 PMCID: PMC6466370 DOI: 10.3390/v11030209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
While serological and virological evidence documents the exposure of bats to medically-important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (10⁶⁻10⁷ PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Justin S Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Nicholas A Bergren
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Eric C Mossel
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Luke Nyakarahuka
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda.
| | - Amy T Gilbert
- National Wildlife Research Center, US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80521, USA.
| | - Julian Kerbis Peterhans
- College of Arts and Sciences, Roosevelt University, Collections & Research, The Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Mary B Crabtree
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Amy J Schuh
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- United States Public Health Service, Commissioned Corps, Rockville, MD 20852, USA.
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Julius J Lutwama
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Barry R Miller
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| |
Collapse
|
14
|
Bioinformatics Applications in Advancing Animal Virus Research. RECENT ADVANCES IN ANIMAL VIROLOGY 2019. [PMCID: PMC7121192 DOI: 10.1007/978-981-13-9073-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses serve as infectious agents for all living entities. There have been various research groups that focus on understanding the viruses in terms of their host-viral relationships, pathogenesis and immune evasion. However, with the current advances in the field of science, now the research field has widened up at the ‘omics’ level. Apparently, generation of viral sequence data has been increasing. There are numerous bioinformatics tools available that not only aid in analysing such sequence data but also aid in deducing useful information that can be exploited in developing preventive and therapeutic measures. This chapter elaborates on bioinformatics tools that are specifically designed for animal viruses as well as other generic tools that can be exploited to study animal viruses. The chapter further provides information on the tools that can be used to study viral epidemiology, phylogenetic analysis, structural modelling of proteins, epitope recognition and open reading frame (ORF) recognition and tools that enable to analyse host-viral interactions, gene prediction in the viral genome, etc. Various databases that organize information on animal and human viruses have also been described. The chapter will converse on overview of the current advances, online and downloadable tools and databases in the field of bioinformatics that will enable the researchers to study animal viruses at gene level.
Collapse
|
15
|
Kruppa J, Jo WK, van der Vries E, Ludlow M, Osterhaus A, Baumgaertner W, Jung K. Virus detection in high-throughput sequencing data without a reference genome of the host. INFECTION GENETICS AND EVOLUTION 2018; 66:180-187. [DOI: 10.1016/j.meegid.2018.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
|
16
|
Nooij S, Schmitz D, Vennema H, Kroneman A, Koopmans MPG. Overview of Virus Metagenomic Classification Methods and Their Biological Applications. Front Microbiol 2018; 9:749. [PMID: 29740407 PMCID: PMC5924777 DOI: 10.3389/fmicb.2018.00749] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Metagenomics poses opportunities for clinical and public health virology applications by offering a way to assess complete taxonomic composition of a clinical sample in an unbiased way. However, the techniques required are complicated and analysis standards have yet to develop. This, together with the wealth of different tools and workflows that have been proposed, poses a barrier for new users. We evaluated 49 published computational classification workflows for virus metagenomics in a literature review. To this end, we described the methods of existing workflows by breaking them up into five general steps and assessed their ease-of-use and validation experiments. Performance scores of previous benchmarks were summarized and correlations between methods and performance were investigated. We indicate the potential suitability of the different workflows for (1) time-constrained diagnostics, (2) surveillance and outbreak source tracing, (3) detection of remote homologies (discovery), and (4) biodiversity studies. We provide two decision trees for virologists to help select a workflow for medical or biodiversity studies, as well as directions for future developments in clinical viral metagenomics.
Collapse
Affiliation(s)
- Sam Nooij
- Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Viroscience Laboratory, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dennis Schmitz
- Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Viroscience Laboratory, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Harry Vennema
- Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Annelies Kroneman
- Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marion P G Koopmans
- Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Viroscience Laboratory, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
17
|
Geisler C. A new approach for detecting adventitious viruses shows Sf-rhabdovirus-negative Sf-RVN cells are suitable for safe biologicals production. BMC Biotechnol 2018; 18:8. [PMID: 29415704 PMCID: PMC5803895 DOI: 10.1186/s12896-017-0412-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
Background Adventitious viral contamination in cell substrates used for biologicals production is a major safety concern. A powerful new approach that can be used to identify adventitious viruses is a combination of bioinformatics tools with massively parallel sequencing technology. Typically, this involves mapping or BLASTN searching individual reads against viral nucleotide databases. Although extremely sensitive for known viruses, this approach can easily miss viruses that are too dissimilar to viruses in the database. Moreover, it is computationally intensive and requires reference cell genome databases. To avoid these drawbacks, we set out to develop an alternative approach. We reasoned that searching genome and transcriptome assemblies for adventitious viral contaminants using TBLASTN with a compact viral protein database covering extant viral diversity as the query could be fast and sensitive without a requirement for high performance computing hardware. Results We tested our approach on Spodoptera frugiperda Sf-RVN, a recently isolated insect cell line, to determine if it was contaminated with one or more adventitious viruses. We used Illumina reads to assemble the Sf-RVN genome and transcriptome and searched them for adventitious viral contaminants using TBLASTN with our viral protein database. We found no evidence of viral contamination, which was substantiated by the fact that our searches otherwise identified diverse sequences encoding virus-like proteins. These sequences included Maverick, R1 LINE, and errantivirus transposons, all of which are common in insect genomes. We also identified previously described as well as novel endogenous viral elements similar to ORFs encoded by diverse insect viruses. Conclusions Our results demonstrate TBLASTN searching massively parallel sequencing (MPS) assemblies with a compact, manually curated viral protein database is more sensitive for adventitious virus detection than BLASTN, as we identified various sequences that encoded virus-like proteins, but had no similarity to viral sequences at the nucleotide level. Moreover, searches were fast without requiring high performance computing hardware. Our study also documents the enhanced biosafety profile of Sf-RVN as compared to other Sf cell lines, and supports the notion that Sf-RVN is highly suitable for the production of safe biologicals. Electronic supplementary material The online version of this article (doi: 10.1186/s12896-017-0412-z) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Gootenberg DB, Paer JM, Luevano JM, Kwon DS. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Curr Opin Infect Dis 2018; 30:31-43. [PMID: 27922852 PMCID: PMC5325247 DOI: 10.1097/qco.0000000000000341] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text Purpose of review Despite HIV therapy advances, average life expectancy in HIV-infected individuals on effective treatment is significantly decreased relative to uninfected persons, largely because of increased incidence of inflammation-related diseases, such as cardiovascular disease and renal dysfunction. The enteric microbial community could potentially cause this inflammation, as HIV-driven destruction of gastrointestinal CD4+ T cells may disturb the microbiota–mucosal immune system balance, disrupting the stable gut microbiome and leading to further deleterious host outcomes. Recent findings Varied enteric microbiome changes have been reported during HIV infection, but unifying patterns have emerged. Community diversity is decreased, similar to pathologies such as inflammatory bowel disease, obesity, and Clostridium difficile infection. Many taxa frequently enriched in HIV-infected individuals, such as Enterobacteriaceae and Erysipelotrichaceae, have pathogenic potential, whereas depleted taxa, such as Bacteroidaceae and Ruminococcaceae, are more linked with anti-inflammatory properties and maintenance of gut homeostasis. The gut viral community in HIV has been found to contain a greater abundance of pathogenesis-associated Adenoviridae and Anelloviridae. These bacterial and viral changes correlate with increased systemic inflammatory markers, such as serum sCD14, sCD163, and IL-6. Summary Enteric microbial community changes may contribute to chronic HIV pathogenesis, but more investigation is necessary, especially in the developing world population with the greatest HIV burden (Video, Supplemental Digital Content 1, which includes the authors’ summary of the importance of the work).
Collapse
Affiliation(s)
- David B Gootenberg
- aRagon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge bHarvard Medical School, Boston cDivision of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Jones S, Baizan-Edge A, MacFarlane S, Torrance L. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice. FRONTIERS IN PLANT SCIENCE 2017; 8:1770. [PMID: 29123534 PMCID: PMC5662881 DOI: 10.3389/fpls.2017.01770] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/28/2017] [Indexed: 05/04/2023]
Abstract
Viruses cause significant yield and quality losses in a wide variety of cultivated crops. Hence, the detection and identification of viruses is a crucial facet of successful crop production and of great significance in terms of world food security. Whilst the adoption of molecular techniques such as RT-PCR has increased the speed and accuracy of viral diagnostics, such techniques only allow the detection of known viruses, i.e., each test is specific to one or a small number of related viruses. Therefore, unknown viruses can be missed and testing can be slow and expensive if molecular tests are unavailable. Methods for simultaneous detection of multiple viruses have been developed, and (NGS) is now a principal focus of this area, as it enables unbiased and hypothesis-free testing of plant samples. The development of NGS protocols capable of detecting multiple known and emergent viruses present in infected material is proving to be a major advance for crops, nuclear stocks or imported plants and germplasm, in which disease symptoms are absent, unspecific or only triggered by multiple viruses. Researchers want to answer the question "how many different viruses are present in this crop plant?" without knowing what they are looking for: RNA-sequencing (RNA-seq) of plant material allows this question to be addressed. As well as needing efficient nucleic acid extraction and enrichment protocols, virus detection using RNA-seq requires fast and robust bioinformatics methods to enable host sequence removal and virus classification. In this review recent studies that use RNA-seq for virus detection in a variety of crop plants are discussed with specific emphasis on the computational methods implemented. The main features of a number of specific bioinformatics workflows developed for virus detection from NGS data are also outlined and possible reasons why these have not yet been widely adopted are discussed. The review concludes by discussing the future directions of this field, including the use of bioinformatics tools for virus detection deployed in analytical environments using cloud computing.
Collapse
Affiliation(s)
- Susan Jones
- Information and Computational Science Group, The James Hutton Institute, Dundee, United Kingdom
| | - Amanda Baizan-Edge
- School of Biology, The University of St Andrews, St Andrews, United Kingdom
| | - Stuart MacFarlane
- Cell and Molecular Science Group, The James Hutton Institute, Dundee, United Kingdom
| | - Lesley Torrance
- School of Biology, The University of St Andrews, St Andrews, United Kingdom
- Cell and Molecular Science Group, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
20
|
Krishnamurthy SR, Wang D. Origins and challenges of viral dark matter. Virus Res 2017; 239:136-142. [DOI: 10.1016/j.virusres.2017.02.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
|
21
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
22
|
Zhang J, Wang J, Wang L, Fu S, Li M, Zhao G, Zhu W, Wang D, Liang G. Molecular Characterization and Seroprevalence in Pigs of SC0806, a Cat Que Virus Isolated from Mosquitoes in Sichuan Province, China. Vector Borne Zoonotic Dis 2017; 15:423-31. [PMID: 26186514 DOI: 10.1089/vbz.2014.1767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Cat Que virus (CQV), a Simbu serogroup virus of the genus Orthobunyavirus (family Bunyaviridae), was first isolated in 2004 from mosquitoes during surveillance of arbovirus activity in acute pediatric encephalitis in northern Vietnam. We report here the complete genome sequence of SC0806 isolated from mosquitoes (Culex tritaeniorhynchus) in Sichuan Province, China. Consistent with the genomic organization of Simbu serogroup viruses, the SC0806 genome comprises three RNA segments-a large (L) segment (6928 nucleotides) that encodes the 2261-amino-acid RNA-dependent RNA polymerase, a medium (M) segment (4481 nucleotides) that encodes the 1433-amino-acid polyprotein, and a small (S) segment (984 nucleotides) that encodes a 234-amino-acid nucleocapsid protein and a 95-amino-acid nonstructural protein. The respective lengths of the 5'-untranslated region (UTR) and 3'-UTR of L, M, and S are 56 and 86, 43 and 136, and 44 and 238 nucleotides. Sequence (nucleotide and deduced amino acid) comparison and phylogenetic analysis revealed that SC0806 was closely related to the reported Vietnam isolate CQV. This is the first time that CQV has been isolated in Sichuan Province, China. Anti-SC0806 immunoglobulin M (IgM) and IgG antibodies were found in pigs reared locally, indicating that CQV has formed a natural cycle in the local area. Surveillance of the distribution and pathogenicity of SC0806 should be strengthened.
Collapse
Affiliation(s)
- Jiake Zhang
- 1 Sichuan Center for Disease Control and Prevention , Chengdu, Sichuan, China
| | - Jinglin Wang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Lihua Wang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Shihong Fu
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Minghua Li
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Guoyan Zhao
- 4 Washington University , St. Louis, Missouri
| | - Wuyang Zhu
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - David Wang
- 4 Washington University , St. Louis, Missouri
| | - Guodong Liang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| |
Collapse
|
23
|
A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 2017; 91:JVI.02463-16. [PMID: 28179532 PMCID: PMC5391440 DOI: 10.1128/jvi.02463-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
Collapse
|
24
|
Janowski AB, Krishnamurthy SR, Lim ES, Zhao G, Brenchley JM, Barouch DH, Thakwalakwa C, Manary MJ, Holtz LR, Wang D. Statoviruses, A novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology 2017; 504:36-44. [PMID: 28152382 PMCID: PMC5515247 DOI: 10.1016/j.virol.2017.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has expanded our understanding of the viral populations that constitute the mammalian virome. We describe a novel taxon of viruses named Statoviruses, for Stool associated Tombus-like viruses, present in multiple metagenomic datasets. These viruses define a novel clade that is phylogenetically related to the RNA virus families Tombusviridae and Flaviviridae. Five distinct statovirus types were identified in human, macaque, mouse, and cow gastrointestinal tract samples. The prototype genome, statovirus A, was frequently identified in macaque stool samples from multiple geographically distinct cohorts. Another genome, statovirus C1, was discovered in a stool sample from a human child with fever, cough, and rash. Further experimental data will clarify whether these viruses are infectious to mammals or if they originate from another source present in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Siddharth R Krishnamurthy
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Efrem S Lim
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jason M Brenchley
- Lab of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Chrissie Thakwalakwa
- Department of Community Health, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Mark J Manary
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
25
|
VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 2017; 503:21-30. [PMID: 28110145 DOI: 10.1016/j.virol.2017.01.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/21/2023]
Abstract
The advent of Next Generation Sequencing (NGS) has vastly increased our ability to discover novel viruses and to systematically define the spectrum of viruses present in a given specimen. Such studies have led to the discovery of novel viral pathogens as well as broader associations of the virome with diverse diseases including inflammatory bowel disease, severe acute malnutrition and HIV/AIDS. Critical to the success of these efforts are robust bioinformatic pipelines for rapid classification of microbial sequences. Existing computational tools are typically focused on either eukaryotic virus discovery or virome composition analysis but not both. Here we present VirusSeeker, a BLAST-based NGS data analysis pipeline designed for both purposes. VirusSeeker has been successfully applied in several previously published virome studies. Here we demonstrate the functionality of VirusSeeker in both novel virus discovery and virome composition analysis.
Collapse
|
26
|
Abstract
Herein we describe a detailed protocol for DNA virome analysis of low input human stool samples (Monaco et al., 2016). This protocol is divided into four main steps: 1) stool samples are pulverized to evenly distribute microbial matter; 2) stool is enriched for virus-like particles and DNA is extracted by phenol-chloroform; 3) purified DNA is multiple-strand displacement amplified (MDA) and fragmented; and 4) libraries are constructed and sequenced using Illumina Miseq. Subsequent sequence analysis for viral sequence identification should be sensitive but stringent.
Collapse
Affiliation(s)
- Cynthia L Monaco
- Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, USA.,Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
27
|
Zheng Y, Gao S, Padmanabhan C, Li R, Galvez M, Gutierrez D, Fuentes S, Ling KS, Kreuze J, Fei Z. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 2016; 500:130-138. [PMID: 27825033 DOI: 10.1016/j.virol.2016.10.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived small interfering RNAs has proven to be a highly efficient approach for virus discovery. Here we present VirusDetect, a bioinformatics pipeline that can efficiently analyze large-scale small RNA (sRNA) datasets for both known and novel virus identification. VirusDetect performs both reference-guided assemblies through aligning sRNA sequences to a curated virus reference database and de novo assemblies of sRNA sequences with automated parameter optimization and the option of host sRNA subtraction. The assembled contigs are compared to a curated and classified reference virus database for known and novel virus identification, and evaluated for their sRNA size profiles to identify novel viruses. Extensive evaluations using plant and insect sRNA datasets suggest that VirusDetect is highly sensitive and efficient in identifying known and novel viruses. VirusDetect is freely available at http://bioinfo.bti.cornell.edu/tool/VirusDetect/.
Collapse
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shan Gao
- Boyce Thompson Institute, Ithaca, NY 14853, USA; College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Chellappan Padmanabhan
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA
| | - Rugang Li
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA
| | - Marco Galvez
- Virology laboratory, International Potato Center (CIP), Lima, Peru
| | - Dina Gutierrez
- Virology laboratory, International Potato Center (CIP), Lima, Peru
| | - Segundo Fuentes
- Virology laboratory, International Potato Center (CIP), Lima, Peru
| | - Kai-Shu Ling
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414, USA
| | - Jan Kreuze
- Virology laboratory, International Potato Center (CIP), Lima, Peru
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Rose R, Constantinides B, Tapinos A, Robertson DL, Prosperi M. Challenges in the analysis of viral metagenomes. Virus Evol 2016; 2:vew022. [PMID: 29492275 PMCID: PMC5822887 DOI: 10.1093/ve/vew022] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genome sequencing technologies continue to develop with remarkable pace, yet
analytical approaches for reconstructing and classifying viral genomes from
mixed samples remain limited in their performance and usability. Existing
solutions generally target expert users and often have unclear scope, making it
challenging to critically evaluate their performance. There is a growing need
for intuitive analytical tooling for researchers lacking specialist computing
expertise and that is applicable in diverse experimental circumstances. Notable
technical challenges have impeded progress; for example, fragments of viral
genomes are typically orders of magnitude less abundant than those of host,
bacteria, and/or other organisms in clinical and environmental metagenomes;
observed viral genomes often deviate considerably from reference genomes
demanding use of exhaustive alignment approaches; high intrapopulation viral
diversity can lead to ambiguous sequence reconstruction; and finally, the
relatively few documented viral reference genomes compared to the estimated
number of distinct viral taxa renders classification problematic. Various
software tools have been developed to accommodate the unique challenges and use
cases associated with characterizing viral sequences; however, the quality of
these tools varies, and their use often necessitates computing expertise or
access to powerful computers, thus limiting their usefulness to many
researchers. In this review, we consider the general and application-specific
challenges posed by viral sequencing and analysis, outline the landscape of
available tools and methodologies, and propose ways of overcoming the current
barriers to effective analysis.
Collapse
Affiliation(s)
- Rebecca Rose
- BioInfoExperts, Norfolk, VA, USA.,Computational and Evolutionary Biology Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Bede Constantinides
- BioInfoExperts, Norfolk, VA, USA.,Computational and Evolutionary Biology Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Avraam Tapinos
- BioInfoExperts, Norfolk, VA, USA.,Computational and Evolutionary Biology Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - David L Robertson
- BioInfoExperts, Norfolk, VA, USA.,Computational and Evolutionary Biology Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Mattia Prosperi
- BioInfoExperts, Norfolk, VA, USA.,Computational and Evolutionary Biology Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Epidemiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Visser M, Burger JT, Maree HJ. Targeted virus detection in next-generation sequencing data using an automated e-probe based approach. Virology 2016; 495:122-8. [DOI: 10.1016/j.virol.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/27/2022]
|
30
|
Divergent viral presentation among human tumors and adjacent normal tissues. Sci Rep 2016; 6:28294. [PMID: 27339696 PMCID: PMC4919655 DOI: 10.1038/srep28294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets.
Collapse
|
31
|
Wuerth JD, Weber F. Phleboviruses and the Type I Interferon Response. Viruses 2016; 8:v8060174. [PMID: 27338447 PMCID: PMC4926194 DOI: 10.3390/v8060174] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system.
Collapse
Affiliation(s)
- Jennifer Deborah Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| |
Collapse
|
32
|
Segal LN, Clemente JC, Tsay JCJ, Koralov SB, Keller BC, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 2016; 1:16031. [PMID: 27572644 PMCID: PMC5010013 DOI: 10.1038/nmicrobiol.2016.31] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface.
Collapse
Affiliation(s)
- Leopoldo N. Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Brian C. Keller
- Division of Pulmonary and Critical Care Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin G. Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yonghua Li
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Nan Shen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Elodie Ghedin
- Department of Biology, Center for Genomics & Systems Biology, College of Global Public Health, New York University, New York, New York, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Phillip Diaz
- Division of Pulmonary and Critical Care Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - William R. Wikoff
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, California, USA
| | - Carles Ubeda
- Center for Public Health Research, FISABIO, Valencia, Spain
| | | | - William N. Rom
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Daniel H. Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Ronald G. Collman
- Department of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Martin J. Blaser
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Michael D. Weiden
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
33
|
Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D. Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biol 2016; 14:e1002409. [PMID: 27010970 PMCID: PMC4807089 DOI: 10.1371/journal.pbio.1002409] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. This study uses computational metagenomics and molecular experimentation to massively expand the known genomic and ecological diversity of RNA bacteriophages, identifying novel tropisms and genes. Bacteriophages (viruses that infect bacteria) can alter biological processes in numerous ecosystems. While there are numerous studies describing the role of bacteriophages with DNA genomes in these processes, the role of bacteriophages with RNA genomes (RNA bacteriophages) is poorly understood. This gap in knowledge is in part because of the limited diversity of known RNA bacteriophages. Here, we begin to address the question by identifying 122 novel RNA bacteriophage partial genome sequences present in metagenomic datasets that are highly divergent from each other and previously described RNA bacteriophages. Additionally, many of these sequences contained novel properties, including novel genes, segmentation, and host range, expanding the frontiers of RNA bacteriophage genomics, evolution, and tropism. These novel RNA bacteriophage sequences were globally distributed from numerous ecological niches, including animal-associated and environmental habitats. These findings will facilitate our understanding of the role of the RNA bacteriophage in microbial communities. Furthermore, there are likely many more unrecognized RNA bacteriophages that remain to be discovered.
Collapse
Affiliation(s)
- Siddharth R. Krishnamurthy
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew B. Janowski
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guoyan Zhao
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dan Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America, and Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Alkan C, Erisoz Kasap O, Alten B, de Lamballerie X, Charrel RN. Sandfly-Borne Phlebovirus Isolations from Turkey: New Insight into the Sandfly fever Sicilian and Sandfly fever Naples Species. PLoS Negl Trop Dis 2016; 10:e0004519. [PMID: 27007326 PMCID: PMC4805245 DOI: 10.1371/journal.pntd.0004519] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Southern Anatolia in Turkey at the border with Syria, where many refugee camps are settled, is endemic for sandfly-borne leishmaniasis. Sandfly-borne phleboviruses are also known to circulate in this region, although their relevance in terms of medical implications is virtually unknown. Therefore, the specific objectives of our study were firstly to identify isolate and characterise potentially pathogenic phleboviruses in sandflies; secondly to determine the complete genomic sequence of any viruses that we were able to isolate; and thirdly, to further our understanding of the potential medical importance and epidemiological significance of these viruses. To achieve these objectives, we organised field campaigns in 2012 and 2013. Two new phleboviruses (Toros and Zerdali viruses) were isolated and characterized by complete genome sequencing and phylogenetic analyses. Toros virus was genetically most closely related to Corfou virus within the Sandfly fever Sicilian group. Zerdali virus was most closely related to Tehran virus within the Sandfly fever Naples species. Although these new viruses belong to genetic groups that include several human pathogens, it is not yet clear if Toros and Zerdali viruses can infect humans and cause disease such as sandfly fever. Consequently, the availability of these genetically characterized infectious viruses will enable seroprevalence studies to establish their medical importance in this region and to assist the health agencies to develop appropriate and effective disease control strategies. We provide evidence that sandfly-borne phleboviruses belonging to 3 distinct genetic and phylogenetic groups (Sandfly fever Naples virus [SFNV], Sandfly fever Sicilian virus [SFSV], and Salehabad virus [SALV]) co-circulate in Adana city, in Mediterranean Turkey. While Adana virus was recently described as a new member of the SALV species, Zerdali and Toros viruses are described here as new phleboviruses genetically closely related to SFNV and SFSV, respectively. In this study, isolated and characterised these two new viruses by determining their complete genome sequence and by phylogenetic analysis. This study demonstrates that 3 distinct viruses can co-circulate in the same geographic area and based on their phylogenetic relationships and association with sandflies are likely to be transmitted by these arthropod vectors. Our molecular and phylogenetic data are important for establishing group-specific molecular detection assays in order to further understand of the possible impact of these viruses in animal and human health in this region of Turkey.
Collapse
Affiliation(s)
- Cigdem Alkan
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University—IRD 190—Inserm 1207—EHESP), Marseille, France
- Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
- * E-mail: (CA); (RNC)
| | - Ozge Erisoz Kasap
- Faculty of Science, Department of Biology, Ecology Section, ESR Laboratories, Hacettepe University, Ankara, Turkey
| | - Bulent Alten
- Faculty of Science, Department of Biology, Ecology Section, ESR Laboratories, Hacettepe University, Ankara, Turkey
| | - Xavier de Lamballerie
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University—IRD 190—Inserm 1207—EHESP), Marseille, France
- Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| | - Rémi N. Charrel
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University—IRD 190—Inserm 1207—EHESP), Marseille, France
- Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
- * E-mail: (CA); (RNC)
| |
Collapse
|
35
|
Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, Lankowski A, Baldridge MT, Wilen CB, Flagg M, Norman JM, Keller BC, Luévano JM, Wang D, Boum Y, Martin JN, Hunt PW, Bangsberg DR, Siedner MJ, Kwon DS, Virgin HW. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe 2016; 19:311-22. [PMID: 26962942 PMCID: PMC4821831 DOI: 10.1016/j.chom.2016.02.011] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/31/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) infection is associated with increased intestinal translocation of microbial products and enteropathy as well as alterations in gut bacterial communities. However, whether the enteric virome contributes to this infection and resulting immunodeficiency remains unknown. We characterized the enteric virome and bacterial microbiome in a cohort of Ugandan patients, including HIV-uninfected or HIV-infected subjects and those either treated with anti-retroviral therapy (ART) or untreated. Low peripheral CD4 T cell counts were associated with an expansion of enteric adenovirus sequences and this increase was independent of ART treatment. Additionally, the enteric bacterial microbiome of patients with lower CD4 T counts exhibited reduced phylogenetic diversity and richness with specific bacteria showing differential abundance, including increases in Enterobacteriaceae, which have been associated with inflammation. Thus, immunodeficiency in progressive HIV infection is associated with alterations in the enteric virome and bacterial microbiome, which may contribute to AIDS-associated enteropathy and disease progression.
Collapse
Affiliation(s)
- Cynthia L Monaco
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Efrem S Lim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alex Lankowski
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan T Baldridge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Meaghan Flagg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Brian C Keller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yap Boum
- Médecins Sans Frontières Epicentre, 1956 Mbarara, Uganda
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter W Hunt
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - David R Bangsberg
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard School of Public Health, Boston, MA 02114, USA
| | - Mark J Siedner
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
36
|
Salimi N, Loh KH, Kaur Dhillon S, Chong VC. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA). PeerJ 2016; 4:e1664. [PMID: 26925315 PMCID: PMC4768690 DOI: 10.7717/peerj.1664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
Collapse
Affiliation(s)
- Nima Salimi
- Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kar Hoe Loh
- Institute of Ocean & Earth Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Ving Ching Chong
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Friis-Nielsen J, Kjartansdóttir KR, Mollerup S, Asplund M, Mourier T, Jensen RH, Hansen TA, Rey-Iglesia A, Richter SR, Nielsen IB, Alquezar-Planas DE, Olsen PVS, Vinner L, Fridholm H, Nielsen LP, Willerslev E, Sicheritz-Pontén T, Lund O, Hansen AJ, Izarzugaza JMG, Brunak S. Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers. Viruses 2016; 8:E53. [PMID: 26907326 PMCID: PMC4776208 DOI: 10.3390/v8020053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/17/2022] Open
Abstract
Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped sequences that co-occur with high statistical significance potentially represent the unknown sequence space where novel pathogens can be identified.
Collapse
Affiliation(s)
- Jens Friis-Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Kristín Rós Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Sarah Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Maria Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Randi Holm Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Alba Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Stine Raith Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Ida Broman Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - David E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Pernille V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Helena Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Lars Peter Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark.
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Anders Johannes Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Jose M G Izarzugaza
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- NNF Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Pathogen Discovery. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, Warner BB, Tarr PI, Wang D, Holtz LR. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 2015; 21:1228-34. [PMID: 26366711 DOI: 10.1038/nm.3950] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age.
Collapse
Affiliation(s)
- Efrem S Lim
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology &Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yanjiao Zhou
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guoyan Zhao
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irma K Bauer
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology &Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Phillip I Tarr
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology &Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Abstract
We compared current viral respiratory diagnostic techniques with NGS. NGS is able to detect respiratory viruses in clinical diagnostic samples. With the current sample preparation method, NGS is less sensitive than RT-PCR. NGS provided additional sequence and typing information compared with RT-PCR.
Background Molecular assays are the gold standard methods used to diagnose viral respiratory pathogens. Pitfalls associated with this technique include limits to the number of targeted pathogens, the requirement for continuous monitoring to ensure sensitivity/specificity is maintained and the need to evolve to include emerging pathogens. Introducing target independent next generation sequencing (NGS) could resolve these issues and revolutionise respiratory viral diagnostics. Objectives To compare the sensitivity and specificity of target independent NGS against the current standard diagnostic test. Study design Diagnostic RT-PCR of clinical samples was carried out in parallel with target independent NGS. NGS sequences were analyzed to determine the proportion with viral origin and consensus sequences were used to establish viral genotypes and serotypes where applicable. Results 89 nasopharyngeal swabs were tested. A viral pathogen was detected in 43% of samples by NGS and 54% by RT-PCR. All NGS viral detections were confirmed by RT-PCR. Conclusions Target independent NGS can detect viral pathogens in clinical samples. Where viruses were detected by RT-PCR alone the Ct value was higher than those detected by both assays, suggesting an NGS detection cut-off – Ct = 32. The sensitivity and specificity of NGS compared with RT-PCR was 78% and 80% respectively. This is lower than current diagnostic assays but NGS provided full genome sequences in some cases, allowing determination of viral subtype and serotype. Sequencing technology is improving rapidly and it is likely that within a short period of time sequencing depth will increase in-turn improving test sensitivity.
Collapse
|
41
|
The human microbiome in hematopoiesis and hematologic disorders. Blood 2015; 126:311-8. [PMID: 26012569 DOI: 10.1182/blood-2015-04-574392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/15/2015] [Indexed: 12/27/2022] Open
Abstract
Humans are now understood to be in complex symbiosis with a diverse ecosystem of microbial organisms, including bacteria, viruses, and fungi. Efforts to characterize the role of these microorganisms, commonly referred as the microbiota, in human health have sought to answer the fundamental questions of what organisms are present, how are they functioning to interact with human cells, and by what mechanism are these interactions occurring. In this review, we describe recent efforts to describe the microbiota in healthy and diseased individuals, summarize the role of various molecular technologies (ranging from 16S ribosomal RNA to shotgun metagenomic sequencing) in enumerating the community structure of the microbiota, and explore known interactions between the microbiota and humans, with a focus on the microbiota's role in hematopoiesis and hematologic diseases.
Collapse
|
42
|
Meyer CT, Bauer IK, Antonio M, Adeyemi M, Saha D, Oundo JO, Ochieng JB, Omore R, Stine OC, Wang D, Holtz LR. Prevalence of classic, MLB-clade and VA-clade Astroviruses in Kenya and The Gambia. Virol J 2015; 12:78. [PMID: 25975198 PMCID: PMC4465002 DOI: 10.1186/s12985-015-0299-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious diarrhea leads to significant mortality in children, with 40 % of these deaths occurring in Africa. Classic human astroviruses are a well-established etiology of diarrhea. In recent years, seven novel astroviruses have been discovered (MLB1, MLB2, MLB3, VA1/HMO-C, VA2/HMO-B, VA3/HMO-A, VA4); however, there have been few studies on their prevalence or potential association with diarrhea. METHODS To investigate the prevalence and diversity of these classic and recently described astroviruses in a pediatric population, a case-control study was performed. Nine hundred and forty nine stools were previously collected from cases of moderate-to-severe diarrhea and matched controls of patients less than 5 years of age in Kenya and The Gambia. RT-PCR screening was performed using pan-astrovirus primers. RESULTS Astroviruses were present in 9.9 % of all stool samples. MLB3 was the most common astrovirus with a prevalence of 2.6 %. Two subtypes of MLB3 were detected that varied based on location in Africa. In this case-control study, Astrovirus MLB1 was associated with diarrhea in Kenya, whereas Astrovirus MLB3 was associated with the control state in The Gambia. Classic human astrovirus was not associated with diarrhea in this study. Unexpectedly, astroviruses with high similarity to Canine Astrovirus and Avian Nephritis Virus 1 and 2 were also found in one case of diarrhea and two control stools respectively. CONCLUSIONS Astroviruses including novel MLB- and VA-clade members are commonly found in pediatric stools in Kenya and The Gambia. The most recently discovered astrovirus, MLB3, was the most prevalent and was found more commonly in control stools in The Gambia, while astrovirus MLB1 was associated with diarrhea in Kenya. Furthermore, a distinct subtype of MLB3 was noted, as well as 3 unanticipated avian or canine astroviruses in the human stool samples. As a result of a broadly reactive PCR screen for astroviruses, new insight was gained regarding the epidemiology of astroviruses in Africa, where a large proportion of diarrheal morbidity and mortality occur.
Collapse
Affiliation(s)
| | - Irma K Bauer
- Washington University School of Medicine, Saint Louis, MO, USA.
| | | | | | - Debasish Saha
- Medical Research Council Unit, Banjul, The Gambia. .,Center for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Joseph O Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - John B Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Richard Omore
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - O Colin Stine
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | - David Wang
- Washington University School of Medicine, Saint Louis, MO, USA.
| | - Lori R Holtz
- Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
43
|
Ames SK, Gardner SN, Marti JM, Slezak TR, Gokhale MB, Allen JE. Using populations of human and microbial genomes for organism detection in metagenomes. Genome Res 2015; 25:1056-67. [PMID: 25926546 PMCID: PMC4484388 DOI: 10.1101/gr.184879.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
Abstract
Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.
Collapse
Affiliation(s)
- Sasha K Ames
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shea N Gardner
- Global Security Computer Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Tom R Slezak
- Global Security Computer Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Maya B Gokhale
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Jonathan E Allen
- Global Security Computer Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
44
|
Genetic characterization of the tick-borne orbiviruses. Viruses 2015; 7:2185-209. [PMID: 25928203 PMCID: PMC4452902 DOI: 10.3390/v7052185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.
Collapse
|
45
|
Zoll J, Rahamat-Langendoen J, Ahout I, de Jonge MI, Jans J, Huijnen MA, Ferwerda G, Warris A, Melchers WJG. Direct multiplexed whole genome sequencing of respiratory tract samples reveals full viral genomic information. J Clin Virol 2015; 66:6-11. [PMID: 25866327 PMCID: PMC7185507 DOI: 10.1016/j.jcv.2015.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 01/10/2023]
Abstract
WGS was used on clinical samples as proof of principle for use in viral diagnosis. Viral infections detected by routine diagnostic methods were confirmed by WGS. Viral pathogens can be detected and characterized in a single NGS run. NGS can provide information for clinical assessment and epidemiological studies.
Background Acute respiratory tract infections (RTI) cause substantial morbidity during childhood, and are responsible for the majority of pediatric infectious diseases. Although most acute RTI are thought to be of viral origin, viral etiology is still unknown in a significant number of cases. Objectives Multiplexed whole genome sequencing (WGS) was used for virome determination directly on clinical samples as proof of principle for the use of deep sequencing techniques in clinical diagnosis of viral infections. Study design WGS was performed with nucleic acids from sputum and nasopharyngeal aspirates from four pediatric patients with known respiratory tract infections (two patients with human rhinovirus, one patient with human metapneumovirus and one patient with respiratory syncytial virus), and from four pediatric patients with PCR-negative RTI, and two control samples. Results Viral infections detected by routine molecular diagnostic methods were confirmed by WGS; in addition, typing information of the different viruses was generated. In three out of four samples from pediatric patients with PCR-negative respiratory tract infections and the two control samples, no causative viral pathogens could be detected. In one sample from a patient with PCR-negative RTI, rhinovirus type-C was detected. Almost complete viral genomes could be assembled and in all cases virus species could be determined. Conclusions Our study shows that, in a single run, viral pathogens can be detected and characterized, providing information for clinical assessment and epidemiological studies. We conclude that WGS is a powerful tool in clinical virology that delivers comprehensive information on the viral content of clinical samples.
Collapse
Affiliation(s)
- Jan Zoll
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
| | | | - Inge Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Jop Jans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Martijn A Huijnen
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Adilia Warris
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
46
|
Isolation, genetic characterization, and seroprevalence of Adana virus, a novel phlebovirus belonging to the Salehabad virus complex, in Turkey. J Virol 2015; 89:4080-91. [PMID: 25653443 DOI: 10.1128/jvi.03027-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED A new phlebovirus, Adana virus, was isolated from a pool of Phlebotomus spp. (Diptera; Psychodidae) in the province of Adana, in the Mediterranean region of Turkey. Genetic analysis based on complete coding of genomic sequences indicated that Adana virus belongs to the Salehabad virus species of the genus Phlebovirus in the family Bunyaviridae. Adana virus is the third virus of the Salehabad virus species for which the complete sequence has been determined. To understand the epidemiology of Adana virus, a seroprevalence study using microneutralization assay was performed to detect the presence of specific antibodies in human and domestic animal sera collected in Adana as well as Mersin province, located 147 km west of Adana. The results demonstrate that the virus is present in both provinces. High seroprevalence rates in goats, sheep, and dogs support intensive exposure to Adana virus in the region, which has not been previously reported for any virus included in the Salehabad serocomplex; however, low seroprevalence rates in humans suggest that Adana virus is not likely to constitute an important public health problem in exposed human populations, but this deserves further studies. IMPORTANCE Until recently, in the genus Phlebovirus, the Salehabad virus species consisted of two viruses: Salehabad virus, isolated from sand flies in Iran, and Arbia virus, isolated from sand flies in Italy. Here we present the isolation and complete genome characterization of the Adana virus, which we propose to be included in the Salehabad virus species. To our knowledge, this is the first report of the isolation and complete genome characterization, from sand flies in Turkey, of a Salehabad virus-related phlebovirus with supporting seropositivity in the Mediterranean, Aegean, and Central Anatolia regions, where phleboviruses have been circulating and causing outbreaks. Salehabad species viruses have generally been considered to be a group of viruses with little medical or veterinary interest. This view deserves to be revisited according to our results, which indicate a high animal infection rate of Adana virus and recent evidence of human infection with Adria virus in Greece.
Collapse
|
47
|
Abstract
UNLABELLED The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses. IMPORTANCE Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur species exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks worldwide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward understanding infectious disease transmission.
Collapse
|
48
|
Wang Q, Jia P, Zhao Z. VERSE: a novel approach to detect virus integration in host genomes through reference genome customization. Genome Med 2015; 7:2. [PMID: 25699093 PMCID: PMC4333248 DOI: 10.1186/s13073-015-0126-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022] Open
Abstract
Fueled by widespread applications of high-throughput next generation sequencing (NGS) technologies and urgent need to counter threats of pathogenic viruses, large-scale studies were conducted recently to investigate virus integration in host genomes (for example, human tumor genomes) that may cause carcinogenesis or other diseases. A limiting factor in these studies, however, is rapid virus evolution and resulting polymorphisms, which prevent reads from aligning readily to commonly used virus reference genomes, and, accordingly, make virus integration sites difficult to detect. Another confounding factor is host genomic instability as a result of virus insertions. To tackle these challenges and improve our capability to identify cryptic virus-host fusions, we present a new approach that detects Virus intEgration sites through iterative Reference SEquence customization (VERSE). To the best of our knowledge, VERSE is the first approach to improve detection through customizing reference genomes. Using 19 human tumors and cancer cell lines as test data, we demonstrated that VERSE substantially enhanced the sensitivity of virus integration site detection. VERSE is implemented in the open source package VirusFinder 2 that is available at http://bioinfo.mc.vanderbilt.edu/VirusFinder/.
Collapse
Affiliation(s)
- Qingguo Wang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA ; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA ; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA ; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
49
|
Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, Liu X, Lin L, Andrews W, Chan S, Huang S, Tong X, Requa M, Anantharaman T, Krogh A, Yang H, Cao H, Xu X. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience 2014; 3:34. [PMID: 25671094 PMCID: PMC4322599 DOI: 10.1186/2047-217x-3-34] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides valuable information for complex regions with haplotypes in a straightforward fashion. In addition, with long single-molecule labeling patterns, exogenous viral sequences were mapped on a whole-genome scale, and sample heterogeneity was analyzed at a new level. CONCLUSION Our study highlights genome mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome.
Collapse
Affiliation(s)
- Hongzhi Cao
- />BGI-Shenzhen, Shenzhen, 518083 China
- />Shenzhen Key Laboratory of Transomics Biotechnologies, Shenzhen, 518083 China
- />Department of Biology, University of Copenhagen, Copenhagen, 2200 Denmark
| | | | - Dandan Cao
- />BGI-Shenzhen, Shenzhen, 518083 China
- />Shenzhen Key Laboratory of Transomics Biotechnologies, Shenzhen, 518083 China
| | - Ernest T Lam
- />BioNano Genomics, San Diego, California 92121 USA
| | - Yuhui Sun
- />BGI-Shenzhen, Shenzhen, 518083 China
- />School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 511400 China
| | - Haodong Huang
- />BGI-Shenzhen, Shenzhen, 518083 China
- />School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 511400 China
| | - Xiao Liu
- />BGI-Shenzhen, Shenzhen, 518083 China
- />Department of Biology, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Liya Lin
- />BGI-Shenzhen, Shenzhen, 518083 China
- />School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 511400 China
| | | | - Saki Chan
- />BioNano Genomics, San Diego, California 92121 USA
| | - Shujia Huang
- />BGI-Shenzhen, Shenzhen, 518083 China
- />School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 511400 China
| | - Xin Tong
- />BGI-Shenzhen, Shenzhen, 518083 China
| | | | | | - Anders Krogh
- />Department of Biology, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Huanming Yang
- />BGI-Shenzhen, Shenzhen, 518083 China
- />Shenzhen Key Laboratory of Transomics Biotechnologies, Shenzhen, 518083 China
| | - Han Cao
- />BioNano Genomics, San Diego, California 92121 USA
| | - Xun Xu
- />BGI-Shenzhen, Shenzhen, 518083 China
- />Shenzhen Key Laboratory of Transomics Biotechnologies, Shenzhen, 518083 China
| |
Collapse
|
50
|
Unraveling the web of viroinformatics: computational tools and databases in virus research. J Virol 2014; 89:1489-501. [PMID: 25428870 DOI: 10.1128/jvi.02027-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The beginning of the second century of research in the field of virology (the first virus was discovered in 1898) was marked by its amalgamation with bioinformatics, resulting in the birth of a new domain--viroinformatics. The availability of more than 100 Web servers and databases embracing all or specific viruses (for example, dengue virus, influenza virus, hepatitis virus, human immunodeficiency virus [HIV], hemorrhagic fever virus [HFV], human papillomavirus [HPV], West Nile virus, etc.) as well as distinct applications (comparative/diversity analysis, viral recombination, small interfering RNA [siRNA]/short hairpin RNA [shRNA]/microRNA [miRNA] studies, RNA folding, protein-protein interaction, structural analysis, and phylotyping and genotyping) will definitely aid the development of effective drugs and vaccines. However, information about their access and utility is not available at any single source or on any single platform. Therefore, a compendium of various computational tools and resources dedicated specifically to virology is presented in this article.
Collapse
|