1
|
Torun IE, Kilinc YB, Kilinc E, Töre F. TRESK channel activation ameliorates migraine-like pain via modulation of CGRP release from the trigeminovascular system and meningeal mast cells in experimental migraine models. Life Sci 2024; 357:123091. [PMID: 39362587 DOI: 10.1016/j.lfs.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Accumulating evidence indicates the involvement of TRESK potassium channels in migraine, however, effects of TRESK activation on migraine-related mechanisms remain unclear. We explored effects of TRESK channel modulation on migraine-related behavioral and molecular markers in in-vivo and ex-vivo rat models of migraine. MAIN METHODS The selective TRESK activator cloxyquin at different doses, the TRESK inhibitor A2764, and the migraine drug sumatriptan were tested alone or in different combinations in nitroglycerin (NTG)-induced in-vivo model, and in ex-vivo meningeal, trigeminal ganglion and brainstem preparations in which CGRP release was induced by capsaicin. Mechanical allodynia, CGRP and c-fos levels in trigeminovascular structures and meningeal mast cells were evaluated. KEY FINDINGS Cloxyquin attenuated NTG-induced mechanical allodynia, brainstem c-fos and CGRP levels, trigeminal ganglion CGRP levels and meningeal mast cell degranulation and number, in-vivo. It also diminished capsaicin-induced CGRP release from ex-vivo meningeal, trigeminal ganglion and brainstem preparations. Specific TRESK inhibitor A2764 abolished all effects of cloxyquin in in-vivo and ex-vivo. Combining cloxyquin and sumatriptan exerted a synergistic effect ex-vivo, but not in-vivo. SIGNIFICANCE Our findings provide the experimental evidence for the anti-migraine effect of TRESK activation in migraine-like conditions. The modulation of TRESK channels may therefore be an attractive alternative strategy to relieve migraine pain.
Collapse
Affiliation(s)
- Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Yasemin Baranoglu Kilinc
- Department of Pediatrics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye.
| | - Fatma Töre
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, Istanbul, Türkiye
| |
Collapse
|
2
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
3
|
David ET, Yousuf MS, Mei HR, Jain A, Krishnagiri S, Elahi H, Venkatesan R, Srikanth KD, Dussor G, Dalva MB, Price TJ. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. Pharmacol Res 2024; 206:107284. [PMID: 38925462 DOI: 10.1016/j.phrs.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Collapse
Affiliation(s)
- Eric T David
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Muhammad Saad Yousuf
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hao-Ruei Mei
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Ashita Jain
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Sharada Krishnagiri
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hajira Elahi
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Rupali Venkatesan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Kolluru D Srikanth
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Matthew B Dalva
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA.
| |
Collapse
|
4
|
Sotelo-Hitschfeld P, Bernal L, Nazeri M, Renthal W, Brauchi S, Roza C, Zimmermann K. Comparative Gene Signature of Nociceptors Innervating Mouse Molar Teeth, Cranial Meninges, and Cornea. Anesth Analg 2024; 139:226-234. [PMID: 38236765 DOI: 10.1213/ane.0000000000006816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
BACKGROUND The trigeminal ganglion (TG) collects afferent sensory information from various tissues. Recent large-scale RNA sequencing of neurons of the TG and dorsal root ganglion has revealed a variety of functionally distinct neuronal subpopulations, but organ-specific information is lacking. METHODS To link transcriptomic and tissue-specific information, we labeled small-diameter neurons of 3 specific subpopulations of the TG by local application of lipophilic carbocyanine dyes to their innervation site in the dental pulp, cornea, and meninges (dura mater). We then collected mRNA-sequencing data from fluorescent neurons. Differentially expressed genes (DEGs) were analyzed and subjected to downstream gene set enrichment analysis (GSEA), and ion channel profiling was performed. RESULTS A total of 10,903 genes were mapped to the mouse genome (>500 reads). DEG analysis revealed 18 and 81 genes with differential expression (log 2 fold change > 2, Padj < .05) in primary afferent neurons innervating the dental pulp (dental primary afferent neurons [DPAN]) compared to those innervating the meninges (meningeal primary afferent neurons [MPAN]) and the cornea (corneal primary afferent neurons [CPAN]). We found 250 and 292 genes differentially expressed in MPAN as compared to DPAN and to CPAN, and 21 and 12 in CPAN as compared to DPAN and MPAN. Scn2b had the highest log 2 fold change when comparing DPAN versus MPAN and Mmp12 was the most prominent DEG when comparing DPAN versus CPAN and, CPAN versus MPAN. GSEA revealed genes of the immune and mitochondrial oxidative phosphorylation system for the DPAN versus MPAN comparison, cilium- and ribosome-related genes for the CPAN versus DPAN comparison, and respirasome, immune cell- and ribosome-related gene sets for the CPAN versus MPAN comparison. DEG analysis for ion channels revealed no significant differences between the neurons set except for the sodium voltage-gated channel beta subunit 2, Scn2b . However, in each tissue a few ion channels turned up with robust number of reads. In DPAN, these were Cacna1b , Trpv2 , Cnga4 , Hcn1 , and Hcn3 , in CPAN Trpa1 , Trpv1 , Cacna1a , and Kcnk13 and in MPAN Trpv2 and Scn11a . CONCLUSIONS Our study uncovers previously unknown differences in gene expression between sensory neuron subpopulations from the dental pulp, cornea, and dura mater and provides the basis for functional studies, including the investigation of ion channel function and their suitability as targets for tissue-specific analgesia.
Collapse
Affiliation(s)
- Pamela Sotelo-Hitschfeld
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de Chile, Valdivia, Chile
| | - Laura Bernal
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Masoud Nazeri
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sebastian Brauchi
- Institute of Physiology and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Katharina Zimmermann
- From the Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Rees TA, Tasma Z, Garelja ML, O'Carroll SJ, Walker CS, Hay DL. Calcitonin receptor, calcitonin gene-related peptide and amylin distribution in C1/2 dorsal root ganglia. J Headache Pain 2024; 25:36. [PMID: 38481170 PMCID: PMC10938748 DOI: 10.1186/s10194-024-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Michael L Garelja
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand.
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
6
|
Ruffinatti FA, Scarpellino G, Chinigò G, Visentin L, Munaron L. The Emerging Concept of Transportome: State of the Art. Physiology (Bethesda) 2023; 38:0. [PMID: 37668550 DOI: 10.1152/physiol.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Visentin
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Pató A, Bölcskei K, Donkó Á, Kaszás D, Boros M, Bodrogi L, Várady G, Pape VFS, Roux BT, Enyedi B, Helyes Z, Watt FM, Sirokmány G, Geiszt M. Hydrogen peroxide production by epidermal dual oxidase 1 regulates nociceptive sensory signals. Redox Biol 2023; 62:102670. [PMID: 36958249 PMCID: PMC10038790 DOI: 10.1016/j.redox.2023.102670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Keratinocytes of the mammalian skin provide not only mechanical protection for the tissues, but also transmit mechanical, chemical, and thermal stimuli from the external environment to the sensory nerve terminals. Sensory nerve fibers penetrate the epidermal basement membrane and function in the tight intercellular space among keratinocytes. Here we show that epidermal keratinocytes produce hydrogen peroxide upon the activation of the NADPH oxidase dual oxidase 1 (DUOX1). This enzyme can be activated by increasing cytosolic calcium levels. Using DUOX1 knockout animals as a model system we found an increased sensitivity towards certain noxious stimuli in DUOX1-deficient animals, which is not due to structural changes in the skin as evidenced by detailed immunohistochemical and electron-microscopic analysis of epidermal tissue. We show that DUOX1 is expressed in keratinocytes but not in the neural sensory pathway. The release of hydrogen peroxide by activated DUOX1 alters both the activity of neuronal TRPA1 and redox-sensitive potassium channels expressed in dorsal root ganglia primary sensory neurons. We describe hydrogen peroxide, produced by DUOX1 as a paracrine mediator of nociceptive signal transmission. Our results indicate that a novel, hitherto unknown redox mechanism modulates noxious sensory signals.
Collapse
Affiliation(s)
- Anna Pató
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Hungary
| | - Ágnes Donkó
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary
| | - Diána Kaszás
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary; MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary; HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Melinda Boros
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Hungary
| | - Lilla Bodrogi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, H-1117, Budapest, Hungary
| | - Veronika F S Pape
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary
| | - Benoit T Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary; MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary; HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary; MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary; HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Fiona M Watt
- European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Gábor Sirokmány
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary.
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1094, Budapest, Hungary.
| |
Collapse
|
9
|
Li S, Feng X, Bian H. Optogenetics: Emerging strategies for neuropathic pain treatment. Front Neurol 2022; 13:982223. [PMID: 36536805 PMCID: PMC9758006 DOI: 10.3389/fneur.2022.982223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/10/2022] [Indexed: 10/13/2023] Open
Abstract
Neuropathic pain (NP) is a chronic health condition that presents a significant burden on patients, society, and even healthcare systems. However, in recent years, an emerging field in the treatment of neuropathic pain - optogenetic technology has dawned, heralding a new era in the field of medicine, and which has brought with it unlimited possibilities for studying the mechanism of NP and the treatment of research. Optogenetics is a new and growing field that uses the combination of light and molecular genetics for the first time ever. This rare combination is used to control the activity of living cells by expressing photosensitive proteins to visualize signaling events and manipulate cell activity. The treatments for NP are limited and have hardly achieved the desirable efficacy. NP differs from other types of pain, such as nociceptive pain, in that the treatments for NP are far more complex and highly challenging for clinical practice. This review presents the background of optogenetics, current applications in various fields, and the findings of optogenetics in NP. It also elaborates on the basic concepts of neuropathy, therapeutic applications, and the potential of optogenetics from the bench to the bedside in the near future.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Feng
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui Bian
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
11
|
Pohóczky K, Kun J, Szentes N, Aczél T, Urbán P, Gyenesei A, Bölcskei K, Szőke É, Sensi S, Dénes Á, Goebel A, Tékus V, Helyes Z. Discovery of novel targets in a complex regional pain syndrome mouse model by transcriptomics: TNF and JAK-STAT pathways. Pharmacol Res 2022; 182:106347. [PMID: 35820612 DOI: 10.1016/j.phrs.2022.106347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.
Collapse
Affiliation(s)
- Krisztina Pohóczky
- Faculty of Pharmacy, Department of Pharmacology, University of Pécs, H-7624 Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Urbán
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Serena Sensi
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Andreas Goebel
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Faculty of Health Sciences, Department of Laboratory Diagnostics, University of Pécs, H-7624 Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; PharmInVivo Ltd., H-7629 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
12
|
Rees TA, Russo AF, O’Carroll SJ, Hay DL, Walker CS. CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Front Physiol 2022; 13:860037. [PMID: 35620595 PMCID: PMC9128745 DOI: 10.3389/fphys.2022.860037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30–40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78–80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| |
Collapse
|
13
|
Beeraka NM, Vikram PRH, Greeshma MV, Uthaiah CA, Huria T, Liu J, Kumar P, Nikolenko VN, Bulygin KV, Sinelnikov MY, Sukocheva O, Fan R. Recent Investigations on Neurotransmitters' Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies-Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 2022; 59:2009-2026. [PMID: 35041139 DOI: 10.1007/s12035-021-02700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - P R Hemanth Vikram
- Department of Pharmaceutical Chemistry, JSS Pharmacy College, Mysuru, Karnataka, India
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Tahani Huria
- Faculty of Medicine, Benghazi University, Benghazi, Libya
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), SilaKatamur (Halugurisuk), Changsari, Kamrup, 781101, Assam, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
14
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
15
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
16
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
17
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
18
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
19
|
Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain. J Neurosci 2021; 41:8991-9007. [PMID: 34446571 DOI: 10.1523/jneurosci.0547-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Different peripheral nerve injuries cause neuropathic pain through distinct mechanisms. Even the site of injury may impact underlying mechanisms, as indicated by the clinical finding that the antiseizure drug carbamazepine (CBZ) relieves pain because of compression injuries of trigeminal but not somatic nerves. We leveraged this observation in the present study hypothesizing that because CBZ blocks voltage-gated sodium channels (VGSCs), its therapeutic selectivity reflects differences between trigeminal and somatic nerves with respect to injury-induced changes in VGSCs. CBZ diminished ongoing and evoked pain behavior in rats with chronic constriction injury (CCI) to the infraorbital nerve (ION) but had minimal effect in rats with sciatic nerve CCI. This difference in behavior was associated with a selective increase in the potency of CBZ-induced inhibition of compound action potentials in the ION, an effect mirrored in human trigeminal versus somatic nerves. The increase in potency was associated with a selective increase in the efficacy of the NaV1.1 channel blocker ICA-121431 and NaV1.1 protein in the ION, but no change in NaV1.1 mRNA in trigeminal ganglia. Importantly, local ICA-121431 administration reversed ION CCI-induced hypersensitivity. Our results suggest a novel therapeutic target for the treatment of trigeminal neuropathic pain.SIGNIFICANCE STATEMENT This study is based on evidence of differences in pain and its treatment depending on whether the pain is above (trigeminal) or below (somatic) the neck, as well as evidence that voltage-gated sodium channels (VGSCs) may contribute to these differences. The focus of the present study was on channels underlying action potential propagation in peripheral nerves. There were differences between somatic and trigeminal nerves in VGSC subtypes underlying action potential propagation both in the absence and presence of injury. Importantly, because the local block of NaV1.1 in the trigeminal nerve reverses nerve injury-induced mechanical hypersensitivity, the selective upregulation of NaV1.1 in trigeminal nerves suggests a novel therapeutic target for the treatment of pain associated with trigeminal nerve injury.
Collapse
|
20
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
21
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
22
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
23
|
Hovhannisyan AH, Son H, Mecklenburg J, Barba-Escobedo PA, Tram M, Gomez R, Shannonhouse J, Zou Y, Weldon K, Ruparel S, Lai Z, Tumanov AV, Kim YS, Akopian AN. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci Rep 2021; 11:17813. [PMID: 34497285 PMCID: PMC8426369 DOI: 10.1038/s41598-021-97084-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Hyeonwi Son
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Priscilla Ann Barba-Escobedo
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Ruben Gomez
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - John Shannonhouse
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology and Molecular Genetics, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yu Shin Kim
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
25
|
Gucy2d selectively marks inhibitory dynorphin neurons in the spinal dorsal horn but is dispensable for pain and itch sensitivity. Pain Rep 2021; 6:e947. [PMID: 34296052 PMCID: PMC8291471 DOI: 10.1097/pr9.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Inhibitory neurons in the spinal dorsal horn can be classified based on expression of neurochemical marker genes. However, these marker genes are often expressed throughout the central nervous system, which poses challenges for manipulating genetically identified spinal neurons without undesired off-target effects. Objectives We investigated whether Gucy2d, previously identified as a highly selective marker of dynorphin-lineage neurons in the dorsal horn, is expressed in other locations within the adult mouse spinal cord, dorsal root ganglia (DRG), or brain. In addition, we sought to molecularly characterize Gucy2d-expressing dorsal horn neurons and investigate whether the disruption of Gucy2d gene expression affects sensitivity to itch or pain. Methods In situ hybridization experiments assessed Gucy2d mRNA expression in the adult mouse spinal cord, DRG, and brain, and its colocalization with Pax2, Bhlhb5, and Pde2a in dorsal horn neurons. Knockout mice lacking Gucy2d expression were compared with littermate controls to assess sensitivity to chloroquine-induced itch and dry skin-mediated chronic itch, as well as heat, cold, or mechanical stimuli. Results Gucy2d is selectively expressed in dynorphin-lineage neurons in lamina I-III of the adult mouse spinal cord but not in the brain or DRG. Spinal Gucy2d-expressing neurons are inhibitory neurons that also express the transcription factor Bhlhb5 and the cGMP-dependent phosphodiesterase Pde2a. Gucy2d knockout mice did not exhibit altered responses to itch or pain. Conclusions The selective expression of Gucy2d within a subpopulation of inhibitory dorsal horn neurons may yield a means to selectively manipulate inhibitory signaling at the level of the spinal cord without effects on the brain.
Collapse
|
26
|
Kuburas A, Mason BN, Hing B, Wattiez AS, Reis AS, Sowers LP, Moldovan Loomis C, Garcia-Martinez LF, Russo AF. PACAP Induces Light Aversion in Mice by an Inheritable Mechanism Independent of CGRP. J Neurosci 2021; 41:4697-4715. [PMID: 33846231 PMCID: PMC8260237 DOI: 10.1523/jneurosci.2200-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 01/18/2023] Open
Abstract
The neuropeptides CGRP (calcitonin gene-related peptide) and PACAP (pituitary adenylate cyclase-activating polypeptide) have emerged as mediators of migraine, yet the potential overlap of their mechanisms remains unknown. Infusion of PACAP, like CGRP, can cause migraine in people, and both peptides share similar vasodilatory and nociceptive functions. In this study, we have used light aversion in mice as a surrogate for migraine-like photophobia to compare CGRP and PACAP and ask whether CGRP or PACAP actions were dependent on each other. Similar to CGRP, PACAP induced light aversion in outbred CD-1 mice. The light aversion was accompanied by increased resting in the dark, but not anxiety in a light-independent open field assay. Unexpectedly, about one-third of the CD-1 mice did not respond to PACAP, which was not seen with CGRP. The responder and nonresponder phenotypes were stable, inheritable, and not sex linked, although there was a trend for greater responses among male mice. RNA-sequencing analysis of trigeminal ganglia yielded hierarchical clustering of responder and nonresponder mice and revealed a number of candidate genes, including greater expression of the Trpc5 and Kcnk12 ion channels and glycoprotein hormones and receptors in a subset of male responder mice. Importantly, an anti-PACAP monoclonal antibody could block PACAP-induced light aversion but not CGRP-induced light aversion. Conversely, an anti-CGRP antibody could not block PACAP-induced light aversion. Thus, we propose that CGRP and PACAP act by independent convergent pathways that cause a migraine-like symptom in mice.SIGNIFICANCE STATEMENT The relationship between the neuropeptides CGRP (calcitonin gene-related peptide) and PACAP (pituitary adenylate cyclase-activating polypeptide) in migraine is relevant given that both peptides can induce migraine in people, yet to date only drugs that target CGRP are available. Using an outbred strain of mice, we were able to show that most, but not all, mice respond to PACAP in a preclinical photophobia assay. Our finding that CGRP and PACAP monoclonal antibodies do not cross-inhibit the other peptide indicates that CGRP and PACAP actions are independent and suggests that PACAP-targeted drugs may be effective in patients who do not respond to CGRP-based therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Bianca N Mason
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242
| | - Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Alyssa S Reis
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Levi P Sowers
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Health Care System, Iowa City, Iowa 52246
| | | | | | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa, Iowa City, Iowa 52242
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Health Care System, Iowa City, Iowa 52246
| |
Collapse
|
27
|
Differential impact of keratinocytes and fibroblasts on nociceptor degeneration and sensitization in small fiber neuropathy. Pain 2021; 162:1262-1272. [PMID: 33196576 DOI: 10.1097/j.pain.0000000000002122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Peripheral denervation and pain are hallmarks of small fiber neuropathy (SFN). We investigated the contribution of skin cells on nociceptor degeneration and sensitization. We recruited 56 patients with SFN and 31 healthy controls and collected skin punch biopsies for immunohistochemical and immunocytochemical analysis of netrin-1 (NTN1) and proinflammatory and anti-inflammatory cytokine expression patterns. We further applied coculture systems with murine dorsal root ganglion (DRG) neurons for skin cell-nerve interaction studies and patch-clamp analysis. Human keratinocytes attract murine DRG neuron neurites, and the gene expression of the axon guidance cue NTN1 is higher in keratinocytes of patients with SFN than in controls. NTN1 slows and reduces murine sensory neurite outgrowth in vitro, but does not alter keratinocyte cytokine expression. In the naive state, keratinocytes of patients with SFN show a higher expression of transforming growth factor-β1 (P < 0.05), while fibroblasts display higher expression of the algesic cytokines interleukin (IL)-6 (P < 0.01) and IL-8 (P < 0.05). IL-6 incubation of murine DRG neurons leads to an increase in action potential firing rates compared with baseline (P < 0.01). Our data provide evidence for a differential effect of keratinocytes and fibroblasts on nociceptor degeneration and sensitization in SFN compared with healthy controls and further supports the concept of cutaneous nociception.
Collapse
|
28
|
Lengyel M, Hajdu D, Dobolyi A, Rosta J, Czirják G, Dux M, Enyedi P. TRESK background potassium channel modifies the TRPV1-mediated nociceptor excitability in sensory neurons. Cephalalgia 2021; 41:827-838. [PMID: 33525904 DOI: 10.1177/0333102421989261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND TWIK-related spinal cord potassium channel (TRESK) background potassium channels have a key role in controlling resting membrane potential and excitability of sensory neurons. A frameshift mutation leading to complete loss of TRESK function has been identified in members of a family suffering from migraine with aura. In the present study, we examined the role of TRESK channels on nociceptor function in mice. METHODS Calcium imaging was used to investigate the role of TRESK channels in the modulation of the response evoked by transient receptor potential vanilloid 1 (TRPV1) receptor stimulation in dorsal root ganglion neurons. Release of calcitonin gene-related peptide from trigeminal afferents and changes in meningeal blood flow were also measured. Experiments were performed on wild-type and TRESK knockout animals. RESULTS Inhibition of TRESK increased the TRPV1-mediated calcium signal in dorsal root ganglion neurons and potentiated capsaicin-induced increases in calcitonin gene-related peptide release and meningeal blood flow. Activation of TRESK decreased the capsaicin sensitivity of sensory neurons, leading to an attenuation of capsaicin-induced increase in meningeal blood flow. In TRESK knockout animals, TRPV1-mediated nociceptive reactions were unaffected by pretreatment with TRESK modulators. CONCLUSIONS Pharmacological manipulation of TRESK channels influences the TRPV1-mediated functions of nociceptors. Altered TRESK function might contribute to trigeminal nociceptor sensitization in migraine patients.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dominika Hajdu
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Rosta
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Dux
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
30
|
Sapio MR, Vazquez FA, Loydpierson AJ, Maric D, Kim JJ, LaPaglia DM, Puhl HL, Lu VB, Ikeda SR, Mannes AJ, Iadarola MJ. Comparative Analysis of Dorsal Root, Nodose and Sympathetic Ganglia for the Development of New Analgesics. Front Neurosci 2021; 14:615362. [PMID: 33424545 PMCID: PMC7793666 DOI: 10.3389/fnins.2020.615362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Interoceptive and exteroceptive signals, and the corresponding coordinated control of internal organs and sensory functions, including pain, are received and orchestrated by multiple neurons within the peripheral, central and autonomic nervous systems. A central aim of the present report is to obtain a molecularly informed basis for analgesic drug development aimed at peripheral rather than central targets. We compare three key peripheral ganglia: nodose, sympathetic (superior cervical), and dorsal root ganglia in the rat, and focus on their molecular composition using next-gen RNA-Seq, as well as their neuroanatomy using immunocytochemistry and in situ hybridization. We obtained quantitative and anatomical assessments of transmitters, receptors, enzymes and signaling pathways mediating ganglion-specific functions. Distinct ganglionic patterns of expression were observed spanning ion channels, neurotransmitters, neuropeptides, G-protein coupled receptors (GPCRs), transporters, and biosynthetic enzymes. The relationship between ganglionic transcript levels and the corresponding protein was examined using immunohistochemistry for select, highly expressed, ganglion-specific genes. Transcriptomic analyses of spinal dorsal horn and intermediolateral cell column (IML), which form the termination of primary afferent neurons and the origin of preganglionic innervation to the SCG, respectively, disclosed pre- and post-ganglionic molecular-level circuits. These multimodal investigations provide insight into autonomic regulation, nodose transcripts related to pain and satiety, and DRG-spinal cord and IML-SCG communication. Multiple neurobiological and pharmacological contexts can be addressed, such as discriminating drug targets and predicting potential side effects, in analgesic drug development efforts directed at the peripheral nervous system.
Collapse
Affiliation(s)
- Matthew R Sapio
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Fernando A Vazquez
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Amelia J Loydpierson
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jenny J Kim
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Danielle M LaPaglia
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Henry L Puhl
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Van B Lu
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Stephen R Ikeda
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
31
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
33
|
The Background K + Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020; 21:ijms21155206. [PMID: 32717813 PMCID: PMC7432782 DOI: 10.3390/ijms21155206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
TRESK belongs to the K2P family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity. Here, we review the different evidence available that involves the channel in pain and sensory perception, from studies knocking out the channel or overexpressing it to identified mutations that link the channel to migraine pain. In addition, the therapeutic possibilities are discussed, as targeting the channel seems an interesting therapeutic approach to reduce nociceptor activation and to decrease pain.
Collapse
|
34
|
Haanes KA, Edvinsson L. Hyperpolarization through ATP-sensitive potassium channels; relevance to migraine pathology. Brain 2020; 143:e13. [PMID: 31999332 DOI: 10.1093/brain/awaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
35
|
Bogaert S, Van Crombruggen K, Holtappels G, De Ruyck N, Suchonos N, Park JJH, Bachert C. Chronic rhinosinusitis: assessment of changes in nociceptive neurons. Int Forum Allergy Rhinol 2020; 10:1165-1172. [PMID: 32506798 DOI: 10.1002/alr.22603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pain is a major symptom of chronic rhinosinusitis (CRS). It is mainly associated with CRS without nasal polyps (CRSsNP) and has a major impact in the decision to move on to surgery. Patients with CRS with nasal polyps (CRSwNP) are characterized by trigeminal hypoesthesia and suffer from less pain. The aim of this study was to investigate whether CRS induces alterations in the peripheral nociceptive neurons, mainly focusing on quantitative changes. METHODS Sinus mucosa and inferior turbinate (IT) samples were obtained from patients with CRS, and IT tissue of healthy patients served as controls. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed for neuronal markers including CNTNAP2, FAM19A1, GFRA2, NEFH, NTRK1, PLXNC1, RET, SCN10A, SCN11A, TRPV1, and PGP 9.5; enzyme-linked immunosorbent assay (ELISA) was performed for KCNK18, SCN10A, MRGPRD, and MAP2. For PGP 9.5, immunohistochemistry was additionally used to analyze tissue slides. RESULTS We included 35 patients with CRSsNP, 47 patients with CRSwNP, and 18 control patients. No differences in expression of the neuronal markers were observed between CRSsNP, CRSwNP, and controls. SCN10A was the only marker exclusively expressed on nociceptive neurons in sinus tissue. No histological difference in nerve fibers was observed between sinus mucosa of both phenotypes. CONCLUSION Our results indicate that the nociceptive nerve density in CRSwNP is not lower than in CRSsNP, as was assumed previously. The nociceptive neurons in sinonasal mucosa cannot be classified into subtypes due to the lack of specificity of the respective marker genes. Our findings question the generally accepted claim that nasal polyp tissue does not contain any nerves.
Collapse
Affiliation(s)
- Stijn Bogaert
- Department of Head and Skin, Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Koen Van Crombruggen
- Department of Head and Skin, Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Department of Head and Skin, Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Department of Head and Skin, Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Nicole Suchonos
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jonas Jae-Hyun Park
- Department of Otorhinolaryngology, Head and Neck Surgery, Witten/Herdecke University, Hagen, Germany
| | - Claus Bachert
- Department of Head and Skin, Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent University, Ghent, Belgium.,Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Hornung RS, Benton WL, Tongkhuya S, Uphouse L, Kramer PR, Averitt DL. Progesterone and Allopregnanolone Rapidly Attenuate Estrogen-Associated Mechanical Allodynia in Rats with Persistent Temporomandibular Joint Inflammation. Front Integr Neurosci 2020; 14:26. [PMID: 32457584 PMCID: PMC7225267 DOI: 10.3389/fnint.2020.00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Temporomandibular joint disorder (TMD) is associated with pain in the joint (temporomandibular joint, TMJ) and muscles involved in mastication. TMD pain dissipates following menopause but returns in some women undergoing estrogen replacement therapy. Progesterone has both anti-inflammatory and antinociceptive properties, while estrogen's effects on nociception are variable and highly dependent on both natural hormone fluctuations and estrogen dosage during pharmacological treatments, with high doses increasing pain. Allopregnanolone, a progesterone metabolite and positive allosteric modulator of the GABAA receptor, also has antinociceptive properties. While progesterone and allopregnanolone are antinociceptive, their effect on estrogen-exacerbated TMD pain has not been determined. We hypothesized that removing the source of endogenous ovarian hormones would reduce inflammatory allodynia in the TMJ of rats and both progesterone and allopregnanolone would attenuate the estrogen-provoked return of allodynia. Baseline mechanical sensitivity was measured in female Sprague-Dawley rats (150-175 g) using the von Frey filament method followed by a unilateral injection of complete Freund's adjuvant (CFA) into the TMJ. Mechanical allodynia was confirmed 24 h later; then rats were ovariectomized or received sham surgery. Two weeks later, allodynia was reassessed and rats received one of the following subcutaneous hormone treatments over 5 days: a daily pharmacological dose of estradiol benzoate (E2; 50 μg/kg), daily E2 and pharmacological to sub-physiological doses of progesterone (P4; 16 mg/kg, 16 μg/kg, or 16 ng/kg), E2 daily and interrupted P4 given every other day, daily P4, or daily vehicle control. A separate group of animals received allopregnanolone (0.16 mg/kg) instead of P4. Allodynia was reassessed 1 h following injections. Here, we report that CFA-evoked mechanical allodynia was attenuated following ovariectomy and daily high E2 treatment triggered the return of allodynia, which was rapidly attenuated when P4 was also administered either daily or every other day. Allopregnanolone treatment, whether daily or every other day, also attenuated estrogen-exacerbated allodynia within 1 h of treatment, but only on the first treatment day. These data indicate that when gonadal hormone levels have diminished, treatment with a lower dose of progesterone may be effective at rapidly reducing the estrogen-evoked recurrence of inflammatory mechanical allodynia in the TMJ.
Collapse
Affiliation(s)
- Rebecca S. Hornung
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - William L. Benton
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Sirima Tongkhuya
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Lynda Uphouse
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Dayna Loyd Averitt
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| |
Collapse
|
37
|
Korczeniewska OA, Katzmann Rider G, Gajra S, Narra V, Ramavajla V, Chang YJ, Tao Y, Soteropoulos P, Husain S, Khan J, Eliav E, Benoliel R. Differential gene expression changes in the dorsal root versus trigeminal ganglia following peripheral nerve injury in rats. Eur J Pain 2020; 24:967-982. [PMID: 32100907 DOI: 10.1002/ejp.1546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dorsal root (DRG) and trigeminal (TG) ganglia contain cell bodies of sensory neurons of spinal and trigeminal systems, respectively. They are homologs of each other; however, differences in how the two systems respond to injury exist. Trigeminal nerve injuries rarely result in chronic neuropathic pain (NP). To date, no genes involved in the differential response to nerve injury between the two systems have been identified. We examined transcriptional changes involved in the development of trigeminal and spinal NP. METHODS Trigeminal and spinal mononueropathies were induced by chronic constriction injury to the infraorbital or sciatic nerve. Expression levels of 84 genes in the TG and DRG at 4, 8 and 21 days post-injury were measured using real-time PCR. RESULTS We found time-dependent and ganglion-specific transcriptional regulation that may contribute to the development of corresponding neuropathies. Among genes significantly regulated in both ganglia Cnr2, Grm5, Htr1a, Il10, Oprd1, Pdyn, Prok2 and Tacr1 were up-regulated in the TG but down-regulated in the DRG at 4 days post-injury; at 21 days post-injury, Adora1, Cd200, Comt, Maob, Mapk3, P2rx4, Ptger1, Tnf and Slc6a2 were significantly up-regulated in the TG but down-regulated in the DRG. CONCLUSIONS Our findings suggest that spinal and trigeminal neuropathies due to trauma are differentially regulated. Subtle but important differences between the two ganglia may affect NP development. SIGNIFICANCE We present distinct transcriptional alterations in the TG and DRG that may contribute to differences observed in the corresponding mononeuropathies. Since the trigeminal system seems more resistant to developing NP following trauma our findings lay ground for future research to detect genes and pathways that may act in a protective or facilitatory manner. These may be novel and important therapeutic targets.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Giannina Katzmann Rider
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sheetal Gajra
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vivek Narra
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vaishnavi Ramavajla
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuanxiang Tao
- Center for Pain Medicine Research, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Patricia Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Seema Husain
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Junad Khan
- Eastman Institute of Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Eli Eliav
- Eastman Institute of Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Rafael Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
38
|
Identification of a Sacral, Visceral Sensory Transcriptome in Embryonic and Adult Mice. eNeuro 2020; 7:ENEURO.0397-19.2019. [PMID: 31996391 PMCID: PMC7036621 DOI: 10.1523/eneuro.0397-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/08/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Visceral sensory neurons encode distinct sensations from healthy organs and initiate pain states that are resistant to common analgesics. Transcriptome analysis is transforming our understanding of sensory neuron subtypes but has generally focused on somatic sensory neurons or the total population of neurons in which visceral neurons form the minority. Our aim was to define transcripts specifically expressed by sacral visceral sensory neurons, as a step towards understanding the unique biology of these neurons and potentially leading to identification of new analgesic targets for pelvic visceral pain. Our strategy was to identify genes differentially expressed between sacral dorsal root ganglia (DRG) that include somatic neurons and sacral visceral neurons, and adjacent lumbar DRG that comprise exclusively of somatic sensory neurons. This was performed in adult and E18.5 male and female mice. By developing a method to restrict analyses to nociceptive Trpv1 neurons, a larger group of genes were detected as differentially expressed between spinal levels. We identified many novel genes that had not previously been associated with pelvic visceral sensation or nociception. Limited sex differences were detected across the transcriptome of sensory ganglia, but more were revealed in sacral levels and especially in Trpv1 nociceptive neurons. These data will facilitate development of new tools to modify mature and developing sensory neurons and nociceptive pathways.
Collapse
|
39
|
Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N, Gasull X. TRESK background K + channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 2020; 598:1017-1038. [PMID: 31919847 DOI: 10.1113/jp279203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS TRESK background K+ channel is expressed in sensory neurons and acts as a brake to reduce neuronal activation. Deletion of the channel enhances the excitability of nociceptors. Skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation in TRESK knockout animals. Channel deletion selectively enhances mechanical and cold sensitivity in mice, without altering sensitivity to heat. These results indicate that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing. ABSTRACT Background potassium-permeable ion channels play a critical role in tuning the excitability of nociceptors, yet the precise role played by different subsets of channels is not fully understood. Decreases in TRESK (TWIK-related spinal cord K+ channel) expression/function enhance excitability of sensory neurons, but its role in somatosensory perception and nociception is poorly understood. Here, we used a TRESK knockout (KO) mouse to address these questions. We show that TRESK regulates the sensitivity of sensory neurons in a modality-specific manner, contributing to mechanical and cold sensitivity but without any effect on heat sensitivity. Nociceptive neurons isolated from TRESK KO mice show a decreased threshold for activation and skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation that was also observed in behavioural tests in vivo. TRESK is also involved in osmotic pain and in early phases of formalin-induced inflammatory pain, but not in the development of mechanical and heat hyperalgesia during chronic pain. In contrast, mice lacking TRESK present cold allodynia that is not further enhanced by oxaliplatin. In summary, genetic removal of TRESK uncovers enhanced mechanical and cold sensitivity, indicating that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing, acting as a brake to prevent activation by innocuous stimuli.
Collapse
Affiliation(s)
- Aida Castellanos
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Anna Pujol-Coma
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Andres-Bilbe
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ahmed Negm
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Jacques Noël
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Nuria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| |
Collapse
|
40
|
Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep 2020; 10:1880. [PMID: 32024965 PMCID: PMC7002571 DOI: 10.1038/s41598-020-58261-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
FRMD6, a member of the group of FERM-domain proteins, is involved both in communication between cells, interactions with extracellular matrix, cellular apoptotic and regenerative mechanisms. FRMD6 was first discovered in the rodent sciatic nerve, and in the present immunohistochemical study we investigated the distribution of FRMD6 in the dorsal root ganglia (DRGs), sciatic nerve and spinal cord following sciatic nerve injury. FRMD6-immunoreactivity was found in the cytoplasm, nucleus or both, and in a majority of DRG neurons. FRMD6-immunoreactivity co-existed with several well-known neuronal markers, including calcitonin gene-related peptide, isolectin B4 and neurofilament 200 in mouse DRGs. After peripheral nerve injury, the FRMD6 mRNA levels and the overall percentage of FRMD6-positive neuron profiles (NPs) were decreased in ipsilateral lumbar DRGs, the latter mainly affecting small size neurons with cytoplasmic localization. Conversely, the proportion of NPs with nuclear FRMD6-immunoreactivity was significantly increased. In the sciatic nerve, FRMD6-immunoreactivity was observed in non-neuronal cells and in axons, and accumulated proximally to a ligation of the nerve. In the spinal cord FRMD6-immunoreactivity was detected in neurons in both dorsal and ventral horns, and was upregulated in ipsilateral dorsal horn after peripheral nerve axotomy. Our results demonstrate that FRMD6 is strictly regulated by peripheral nerve injury at the spinal level.
Collapse
|
41
|
Edvinsson L, Haanes KA. Views on migraine pathophysiology: Where does it start? ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Sciences Division of Experimental Vascular Research Lund University Lund Sweden
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| |
Collapse
|
42
|
Liu K, Wang L. Optogenetics: Therapeutic spark in neuropathic pain. Bosn J Basic Med Sci 2019; 19:321-327. [PMID: 30995901 DOI: 10.17305/bjbms.2019.4114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 01/14/2023] Open
Abstract
Optogenetics is an emerging field, which uses light and molecular genetics to manipulate the activity of live cells by expressing light-sensitive proteins. With the discovery of bacteriorhodopsin, a light-sensitive bacterial protein, in 1971 Oesterhelt and Stoeckenius laid the pavement of optogenetics. However, the cross-integration of different disciplines is a little more than a decade old. The toolbox contains fluorescent sensors and optogenetic actuators that enable visualization of signaling events and manipulation of cellular activities, respectively. Neuropathic pain is pain caused either by damage or disease that affects the somatosensory system. The exact mechanism for neuropathic pain is not known, however proposed mechanisms include immune reactions, ion channel expressions, and inflammation. Current regimen for the disease provides about 50% relief for only 40-60% of patients. Recent in vivo and in vitro studies demonstrate the potential therapeutic applications of optogenetics by manipulating the activity of neurons. This review summarizes the basic concept, therapeutic applications for neuropathy, and potential of optogenetics to reach from bench to bedside in the near future.
Collapse
Affiliation(s)
- Kang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | | |
Collapse
|
43
|
Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. J Neurosci 2019; 39:6829-6847. [PMID: 31253755 DOI: 10.1523/jneurosci.2663-18.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Nociceptors located in the trigeminal ganglion (TG) and DRG are the primary sensors of damaging or potentially damaging stimuli for the head and body, respectively, and are key drivers of chronic pain states. While nociceptors in these two tissues show a high degree of functional similarity, there are important differences in their development lineages, their functional connections to the CNS, and recent genome-wide analyses of gene expression suggest that they possess some unique genomic signatures. Here, we used translating ribosome affinity purification to comprehensively characterize and compare mRNA translation in Scn10a-positive nociceptors in the TG and DRG of male and female mice. This unbiased method independently confirms several findings of differences between TG and DRG nociceptors described in the literature but also suggests preferential utilization of key signaling pathways. Most prominently, we provide evidence that translational efficiency in mechanistic target of rapamycin (mTOR)-related genes is higher in the TG compared with DRG, whereas several genes associated with the negative regulator of mTOR, AMP-activated protein kinase, have higher translational efficiency in DRG nociceptors. Using capsaicin as a sensitizing stimulus, we show that behavioral responses are greater in the TG region and this effect is completely reversible with mTOR inhibition. These findings have implications for the relative capacity of these nociceptors to be sensitized upon injury. Together, our data provide a comprehensive, comparative view of transcriptome and translatome activity in TG and DRG nociceptors that enhances our understanding of nociceptor biology.SIGNIFICANCE STATEMENT The DRG and trigeminal ganglion (TG) provide sensory information from the body and head, respectively. Nociceptors in these tissues are critical first neurons in the pain pathway. Injury to peripheral neurons in these tissues can cause chronic pain. Interestingly, clinical and preclinical findings support the conclusion that injury to TG neurons is more likely to cause chronic pain and chronic pain in the TG area is more intense and more difficult to treat. We used translating ribosome affinity purification technology to gain new insight into potential differences in the translatomes of DRG and TG neurons. Our findings demonstrate previously unrecognized differences between TG and DRG nociceptors that provide new insight into how injury may differentially drive plasticity states in nociceptors in these two tissues.
Collapse
|
44
|
Abstract
Migraine is a strongly disabling disease characterized by a unilateral throbbing headache lasting for up to 72 h for each individual attack. There have been many theories on the pathophysiology of migraine throughout the years. Currently, the neurovascular theory dominates, suggesting clear involvement of the trigeminovascular system. The most recent data show that a migraine attack most likely originates in the hypothalamus and activates the trigeminal nucleus caudalis (TNC). Although the mechanisms are unknown, activation of the TNC leads to peripheral release of calcitonin gene-related protein (CGRP), most likely from C-fibers. During the past year monoclonal antibodies against CGRP or the CGRP receptor have emerged as the most promising targets for migraine therapy, and at the same time established the strong involvement of CGRP in the pathophysiology of migraine. The viewpoint presented here focuses further on the activation of the CGRP receptor on the sensory Aδ-fiber, leading to the sensation of pain. The CGRP receptor activates adenylate cyclase, which leads to an increase in cyclic adenosine monophosphate (cAMP). We hypothesize that cAMP activates the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, triggering an action potential sensed as pain. The mechanisms behind migraine pain on a molecular level, particularly their importance to cAMP, provide clues to potential new anti-migraine targets. In this article we focus on the development of targets related to the CGRP system, and further include novel targets such as the pituitary adenylate cyclase-activating peptide (PACAP) system, the serotonin 5-HT1F receptor, purinergic receptors, HCN channels, adenosine triphosphate-sensitive potassium channels (KATP), and the glutaminergic system.
Collapse
|
45
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
46
|
Spray DC, Iglesias R, Shraer N, Suadicani SO, Belzer V, Hanstein R, Hanani M. Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia. Glia 2019; 67:791-801. [PMID: 30715764 DOI: 10.1002/glia.23554] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023]
Abstract
Peripheral sensory ganglia contain the somata of neurons mediating mechanical, thermal, and painful sensations from somatic, visceral, and oro-facial organs. Each neuronal cell body is closely surrounded by satellite glial cells (SGCs) that have properties and functions similar to those of central astrocytes, including expression of gap junction proteins and functional dye coupling. As shown in other pain models, after systemic pain induction by intra-peritoneal injection of lipopolysaccharide, dye coupling among SGCs in intact trigeminal ganglion was enhanced. Moreover, neuron-neuron and neuron-SGC coupling was also detected. To verify the presence of gap junction-mediated coupling between SGCs and sensory neurons, we performed dual whole cell patch clamp recordings from both freshly isolated and short term cultured cell pairs dissociated from mouse trigeminal ganglia. Bidirectional gap junction mediated electrical responses were frequently recorded between SGCs, between neurons and between neurons and SGCs. Polarization of SGC altered neuronal excitability, providing evidence that gap junction-mediated interactions between neurons and glia within sensory ganglia may contribute to integration of peripheral sensory responses, and to the modulation and coordinaton of neuronal activity.
Collapse
Affiliation(s)
- David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Rodolfo Iglesias
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Nathanael Shraer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Sylvia O Suadicani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.,Department of Urology, Albert Einstein College of Medicine, Bronx, New York
| | - Vitali Belzer
- Laboratory of Experimental Surgery, Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Hanstein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
47
|
Megat S, Ray PR, Moy JK, Lou TF, Barragán-Iglesias P, Li Y, Pradhan G, Wanghzou A, Ahmad A, Burton MD, North RY, Dougherty PM, Khoutorsky A, Sonenberg N, Webster KR, Dussor G, Campbell ZT, Price TJ. Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. J Neurosci 2019; 39:393-411. [PMID: 30459229 PMCID: PMC6335757 DOI: 10.1523/jneurosci.2661-18.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase (MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, a GTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.SIGNIFICANCE STATEMENT Neuropathic pain affects up to 10% of the population, but its underlying mechanisms are incompletely understood, leading to poor treatment outcomes. We used translating ribosome affinity purification technology to create a comprehensive translational profile of DRG nociceptors in naive mice and at the peak of neuropathic pain induced by paclitaxel treatment. We reveal new insight into how mechanistic target of rapamycin complex 1 is activated in neuropathic pain pointing to a key role of MNK1-eIF4E-mediated translation of a complex of mRNAs that control mechanistic target of rapamycin complex 1 signaling at the surface of the lysosome. We validate this finding using genetic and pharmacological techniques. Our work strongly suggests that MNK1-eIF4E signaling drives CIPN and that a drug in human clinical trials, eFT508, may be a new therapeutic for neuropathic pain.
Collapse
Affiliation(s)
- Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Jamie K Moy
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Paulino Barragán-Iglesias
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Yan Li
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Grishma Pradhan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Ayesha Ahmad
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Michael D Burton
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Robert Y North
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Patrick M Dougherty
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Arkady Khoutorsky
- McGill University, Department of Anesthesia, 001 Boulevard Décarie C05.2000, Montréal, QC H4A 3J1, Canada
| | - Nahum Sonenberg
- McGill University, Goodman Cancer Research Center, Department of Biochemistry, 1160 Pine Ave W, Montreal, QC H3A 1A3, Canada, and
| | - Kevin R Webster
- eFFECTOR Therapeutics, 11180 Roselle St, San Diego, CA 92121
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Zachary T Campbell
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
48
|
Danaher RJ, Zhang L, Donley CJ, Laungani NA, Hui SE, Miller CS, Westlund KN. Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol Pain 2019; 14:1744806918796763. [PMID: 30178698 PMCID: PMC6124181 DOI: 10.1177/1744806918796763] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chronic orofacial pain is a significant health problem requiring identification
of regulating processes. Involvement of epigenetic modifications that is
reported for hindlimb neuropathic pain experimental models, however, is less
well studied in cranial nerve pain models. Three independent observations
reported here are the (1) epigenetic profile in mouse trigeminal ganglia (TG)
after trigeminal inflammatory compression (TIC) nerve injury mouse model
determined by gene expression microarray, (2) H3K9 acetylation pattern in TG by
immunohistochemistry, and (3) efficacy of histone deacetylase (HDAC) inhibitors
to attenuate development of hypersensitivity. After TIC injury, ipsilateral
whisker pad mechanical sensitization develops by day 3 and persists well beyond
day 21 in contrast to sham surgery. Global acetylation of H3K9 decreases at day
21 in ipsilateral TG . Thirty-four genes are significantly
(p < 0.05) overexpressed in the ipsilateral TG by at least
two-fold at either 3 or 21 days post-trigeminal inflammatory compression injury.
The three genes most overexpressed three days post-trigeminal inflammatory
compression nerve injury are nerve regeneration-associated gene ATF3, up
6.8-fold, and two of its regeneration-associated gene effector genes, Sprr1a and
Gal, up 174- and 25-fold, respectively. Although transcription levels of 25 of
32 genes significantly overexpressed three days post-trigeminal inflammatory
compression return to constitutive levels by day 21, these three
regeneration-associated genes remain significantly overexpressed at the later
time point. On day 21, when tissues are healed, other differentially expressed
genes include 39 of the top 50 upregulated and downregulated genes. Remarkably,
preemptive manipulation of gene expression with two HDAC inhibitors (HDACi's),
suberanilohydroxamic acid (SAHA) and MS-275, reduces the magnitude and duration
of whisker pad mechanical hypersensitivity and prevents the development of a
persistent pain state. These findings suggest that trigeminal nerve injury leads
to epigenetic modifications favoring overexpression of genes involved in nerve
regeneration and that maintaining transcriptional homeostasis with epigenetic
modifying drugs could help prevent the development of persistent pain.
Collapse
Affiliation(s)
- Robert J Danaher
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Liping Zhang
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA.,2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Connor J Donley
- 2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nashwin A Laungani
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - S Elise Hui
- 3 Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Craig S Miller
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Karin N Westlund
- 2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,3 Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
49
|
Stötzner P, Spahn V, Celik MÖ, Labuz D, Machelska H. Mu-Opioid Receptor Agonist Induces Kir3 Currents in Mouse Peripheral Sensory Neurons - Effects of Nerve Injury. Front Pharmacol 2018; 9:1478. [PMID: 30618766 PMCID: PMC6305728 DOI: 10.3389/fphar.2018.01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain often arises from damage to peripheral nerves and is difficult to treat. Activation of opioid receptors in peripheral sensory neurons is devoid of respiratory depression, sedation, nausea, and addiction mediated in the brain, and ameliorates neuropathic pain in animal models. Mechanisms of peripheral opioid analgesia have therefore gained interest, but the role of G protein-coupled inwardly rectifying potassium (Kir3) channels, important regulators of neuronal excitability, remains unclear. Whereas functional Kir3 channels have been detected in dorsal root ganglion (DRG) neurons in rats, some studies question their contribution to opioid analgesia in inflammatory pain models in mice. However, neuropathic pain can be diminished by activation of peripheral opioid receptors in mouse models. Therefore, here we investigated effects of the selective μ-opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) on potassium conductance in DRG neurons upon a chronic constriction injury (CCI) of the sciatic nerve in mice. For verification, we also tested human embryonic kidney (HEK) 293 cells transfected with MOR and Kir3.2. Using patch clamp, we recorded currents at -80 mV and applied voltage ramps in high extracellular potassium concentrations, which are a highly sensitive measures of Kir3 channel activity. We found a significantly higher rate of HEK cells responding with potassium channel blocker barium-sensitive inward current (233 ± 51 pA) to DAMGO application in transfected than in untransfected group, which confirms successful recordings of inward currents through Kir3.2 channels. Interestingly, DAMGO induced similar inward currents (178 ± 36-207 ± 56 pA) in 15-20% of recorded DRG neurons from naïve mice and in 4-27% of DRG neurons from mice exposed to CCI, measured in voltage clamp or voltage ramp modes. DAMGO-induced currents in naïve and CCI groups were reversed by barium and a more selective Kir3 channel blocker tertiapin-Q. These data indicate the coupling of Kir3 channels with MOR in mouse peripheral sensory neuron cell bodies, which was unchanged after CCI. A comparative analysis of opioid-induced potassium conductance at the axonal injury site and peripheral terminals of DRG neurons could clarify the role of Kir3 channel-MOR interactions in peripheral nerve injury and opioid analgesia.
Collapse
Affiliation(s)
- Philip Stötzner
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viola Spahn
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
50
|
Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 2018; 171:72-89. [PMID: 30273635 DOI: 10.1016/j.pneurobio.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Shi
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Peng Feng
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|