1
|
Viana MC, Alves-Pereira A, Oliveira MAP, Valença-Barbosa C, Folly-Ramos E, Souza AP, Takiya DM, Almeida CE. Population genetics and genomics of Triatoma brasiliensis (Hemiptera, Reduviidae) in an area of high pressure of domiciliary infestation in Northeastern Brazil. Acta Trop 2024; 252:107144. [PMID: 38336343 DOI: 10.1016/j.actatropica.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Coordenação de Prevenção e Vigilância do Câncer (CONPREV), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Marcelo A P Oliveira
- Programa de Pós-Graduação em Genética- IB, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Carolina Valença-Barbosa
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Fiocruz, Brazil
| | | | | | | | - Carlos E Almeida
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Laboratorio de Entomologia, Instituto de Biologia, UFRJ.
| |
Collapse
|
2
|
Piccinali RV, Gaspe MS, Nattero J, Gürtler RE. Population structure and migration in Triatoma infestans (Hemiptera: Reduviidae) from the Argentine Chaco: An integration of genetic and morphometric data. Acta Trop 2023; 247:107010. [PMID: 37666351 DOI: 10.1016/j.actatropica.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Genetic and morphological structure of vector populations are useful to identify panmictic groups, reinfestation sources and minimal units for control interventions. Currently, no studies have integrated genetic and morphometric data in Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Trypanosoma cruzi. We characterized the genetic and phenotypic structure of T. infestans at a small spatial scale (2-8 km), identified potential migrants and compared flight-related traits among genetic groups and between migrant and non-migrant insects in a well-defined area without insecticide spraying in the previous 12 years. We obtained microsatellite genotypes (N = 303), wing shape and size (N = 164) and body weight-to-length ratios (N = 188) in T. infestans from 11 houses in Pampa del Indio, Argentine Chaco. The uppermost level of genetic structuring partially agreed with the morphological groups, showing high degrees of substructuring. The genetic structure showed a clear spatial pattern around Route 3 and one genetic group overlapped with an area of persistent infestation and insecticide resistance. Females harboured more microsatellite alleles than males, which showed signs of isolation-by-distance. Wing shape discriminant analyses of genetic groups revealed low reclassification scores whereas wing size differed among genetic groups for both sexes. Potential migrants (8%) did not differ from non-migrants in sex, ecotope, wing shape and size. However, male migrants had lower W/L than non-migrants suggesting poorer nutritional state. Our findings may contribute to the understanding of population characteristics, dispersal dynamics and ongoing elimination efforts of T. infestans.
Collapse
Affiliation(s)
- Romina V Piccinali
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - M Sol Gaspe
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Julieta Nattero
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| |
Collapse
|
3
|
Ferreira FC, Diotaiuti LG, Belisário CJ. Dynamics of Panstrongylus megistus infestation,the primary vector of Trypanosoma cruzi in Minas Gerais,Brazil. Acta Trop 2022; 235:106658. [PMID: 35988822 DOI: 10.1016/j.actatropica.2022.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
Panstrongylus megistus is considered one of the primary species of epidemiological importance for the transmission of Chagas disease in Brazil due to its wide geographical distribution throughout the national territory, good ability to invade and colonize houses, and high rates of natural infection by the Trypanosoma cruzi. The importance of this species in Minas Gerais has been recognized since the 80s. It is responsible for the high prevalence rates of Chagas disease in the west of the state. Studies conducted in the municipality of Jaboticatubas show that P. megistus is still the most captured vector in the region, even after 40 years of uninterrupted actions of the Chagas Disease Control Program in the municipality. Despite the importance of the species, its population dynamics is little studied. Consequently, crucial genetic information such as genetic diversity and gene flow among environments have not been well characterized yet. In this context, this work presents a population genetic analysis at the microgeographic level using microsatellite markers in samples of P. megistus obtained from Jaboticatubas to better understand the infestation dynamics of the primary vector species of T. cruzi in the region. The observed and expected heterozygosity ranged from 0.26 to 0.47 and 0.47 to 0.65, respectively. Most loci presented Hardy-Weinberg disequilibrium due to the excess of homozygotes. The pairwise Fst ranged from 0.05 to 0.35, with the p-value significant for all comparisons, indicating the absence of gene flow between them. The values of Fis found ranged from 0.25 to 0.52, all values of p ≤ 0.05, probably due to structured populations, inbreeding, or null alleles. The results suggest an extended stay of this species in the colonized environments, with rare dispersal to other locations. Such results differ from that observed for Triatoma brasiliensis and Triatoma dimidiata, species that present constant movement, even after colonization of the artificial environment, and are similar to the behavior of Triatoma infestans. Thus, the study reinforces the importance of continuous entomological surveillance in the areas of occurrence of P. megistus to avoid the installation and formation of new foci of household infestation in the region.
Collapse
Affiliation(s)
- Flávio Campos Ferreira
- Laboratório de Triatomíneos - Instituto René Rachou / FIOCRUZ MG, 1715 Augusto de Lima Ave., 30190-009 Belo Horizonte, MG, Brazil.
| | - Lileia Gonçalves Diotaiuti
- Laboratório de Triatomíneos - Instituto René Rachou / FIOCRUZ MG, 1715 Augusto de Lima Ave., 30190-009 Belo Horizonte, MG, Brazil.
| | - Carlota Josefovicz Belisário
- Laboratório de Triatomíneos - Instituto René Rachou / FIOCRUZ MG, 1715 Augusto de Lima Ave., 30190-009 Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Gysin G, Urbano P, Brandner-Garrod L, Begum S, Kristan M, Walker T, Hernández C, Ramírez JD, Messenger LA. Towards environmental detection of Chagas disease vectors and pathogen. Sci Rep 2022; 12:9849. [PMID: 35701602 PMCID: PMC9194887 DOI: 10.1038/s41598-022-14051-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Chagas disease vector control relies on prompt, accurate identification of houses infested with triatomine bugs for targeted insecticide spraying. However, most current detection methods are laborious, lack standardization, have substantial operational costs and limited sensitivity, especially when triatomine bug densities are low or highly focal. We evaluated the use of FTA cards or cotton-tipped swabs to develop a low-technology, non-invasive method of detecting environmental DNA (eDNA) from both triatomine bugs and Trypanosoma cruzi for use in household surveillance in eastern Colombia, an endemic region for Chagas disease. Study findings demonstrated that Rhodnius prolixus eDNA, collected on FTA cards, can be detected at temperatures between 21 and 32 °C, when deposited by individual, recently blood-fed nymphs. Additionally, cotton-tipped swabs are a feasible tool for field sampling of both T. cruzi and R. prolixus eDNA in infested households and may be preferable due to their lower cost. eDNA detection should not yet replace current surveillance tools, but instead be evaluated in parallel as a more sensitive, higher-throughput, lower cost alternative. eDNA collection requires virtually no skills or resources in situ and therefore has the potential to be implemented in endemic communities as part of citizen science initiatives to control Chagas disease transmission.
Collapse
Affiliation(s)
- Grace Gysin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Plutarco Urbano
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Luke Brandner-Garrod
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Shahida Begum
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
5
|
Gorla DE, Xiao-Nong Z, Diotaiuti L, Khoa PT, Waleckx E, de Souza RDCM, Qin L, Lam TX, Freilij H. Different profiles and epidemiological scenarios: past, present and future. Mem Inst Oswaldo Cruz 2022; 117:e200409. [PMID: 35613154 PMCID: PMC9126320 DOI: 10.1590/0074-02760200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
The multiplicity of epidemiological scenarios shown by Chagas Disease, derived from multiple transmission routes of the aetiological agent, occurring on multiple geo-ecobiosocial settings determines the complexity of the disease and reveal the difficulties for its control. From the first description of the link between the parasite, the vector and its domestic habitat and the disease that Carlos Chagas made in 1909, the epidemiological scenarios of the American Trypanosomiasis has shown a dynamic increasing complexity. These scenarios changed with time and geography because of new understandings of the disease from multiple studies, because of policies change at the national and international levels and because human movements brought the parasite and vectors to new geographies. Paradigms that seemed solid at a time were broken down, and we learnt about the global dispersion of Trypanosoma cruzi infection, the multiplicity of transmission routes, that the infection can be cured, and that triatomines are not only a health threat in Latin America. We consider the multiple epidemiological scenarios through the different T. cruzi transmission routes, with or without the participation of a Triatominae vector. We then consider the scenario of regions with vectors without the parasite, to finish with the consideration of future prospects.
Collapse
Affiliation(s)
- David E Gorla
- Universidad Nacional de Córdoba, Instituto de Diversidad y Ecología Animal, CONICET, Córdoba, Argentina
| | - Zhou Xiao-Nong
- Shanghai Jiao Tong University, Chinese Centre for Tropical Diseases Research, National Institute of Parasitic Diseases, One Health Centre, Shanghai, China
| | - Lileia Diotaiuti
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Pham Thi Khoa
- Science Services of Insect Joint Stock Company, Nam Tu Liem district, Ha Noi, Viet Nam
| | - Etienne Waleckx
- Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche, Interactions in the Neglected Tropical Diseases due to Trypanosomatids, Montpellier, France
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales Hideyo Noguchi, Mérida, Yucatán, México
| | | | - Liu Qin
- Shanghai Jiao Tong University, Chinese Centre for Tropical Diseases Research, National Institute of Parasitic Diseases, One Health Centre, Shanghai, China
| | - Truong Xuan Lam
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Hector Freilij
- Hospital de Niños Ricardo Gutiérrez, Servicio de Parasitología y Chagas, Buenos Aires, Argentina
| |
Collapse
|
6
|
Rojas de Arias A, Messenger LA, Rolon M, Vega MC, Acosta N, Villalba C, Marcet PL. Dynamics of Triatoma infestans populations in the Paraguayan Chaco: Population genetic analysis of household reinfestation following vector control. PLoS One 2022; 17:e0263465. [PMID: 35143523 PMCID: PMC8830694 DOI: 10.1371/journal.pone.0263465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Although domestic infestations by Triatoma infestans have been successfully controlled across Latin America, in areas of the Gran Chaco region, recurrent post-spraying house colonization continues to be a significant challenge, jeopardizing Chagas disease vector control and maintaining active Trypanosoma cruzi transmission. Methodology/Principal findings To investigate the dynamics of triatomine reinfestation in a rural area of the Paraguayan Chaco, genetic characterization (based on 10 microsatellite loci and cytochrome B sequence polymorphisms) was performed on baseline and reinfestant T. infestans (n = 138) from four indigenous communities and adjacent sylvatic sites. House quality and basic economic activities were assessed across the four communities. Significant genetic differentiation was detected among all baseline triatomine populations. Faster reinfestation was observed in the communities with higher infestation rates pre-spraying. Baseline and reinfestant populations from the same communities were not genetically different, but two potentially distinct processes of reinfestation were evident. In Campo Largo, the reinfestant population was likely founded by domestic survivor foci, with reduced genetic diversity relative to the baseline population. However, in 12 de Junio, reinfestant bugs were likely derived from different sources, including survivors from the pre-spraying population and sympatric sylvatic bugs, indicative of gene-flow between these habitats, likely driven by high human mobility and economic activities in adjacent sylvatic areas. Conclusions/Significance Our results demonstrate that sylvatic T. infestans threatens vector control strategies, either as a reinfestation source or by providing a temporary refuge during insecticide spraying. Passive anthropogenic importation of T. infestans and active human interactions with neighboring forested areas also played a role in recolonization. Optimization of spraying, integrated community development and close monitoring of sylvatic areas should be considered when implementing vector control activities in the Gran Chaco.
Collapse
Affiliation(s)
- Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
- * E-mail:
| | - Louisa Alexandra Messenger
- Division of Parasitic Diseases and Malaria (DPDM), Centers for Diseases Control and Prevention (CDC), Entomology Branch, Atlanta, GA, United States of America
- American Society for Microbiology, NW Washington, DC, United States of America
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
| | - María Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
| | - Nidia Acosta
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, UNA, Asuncion, Paraguay
| | - Cesia Villalba
- Programa Nacional de Control de la Enfermedad de Chagas (SENEPA), Asunción, Paraguay
| | - Paula L. Marcet
- Division of Parasitic Diseases and Malaria (DPDM), Centers for Diseases Control and Prevention (CDC), Entomology Branch, Atlanta, GA, United States of America
| |
Collapse
|
7
|
Ferreira FC, Gonçalves LO, Ruiz JC, Koerich LB, Pais FSM, Diotaiuti LG, Belisário CJ. Identification and characterization of microsatellite markers for population genetic studies of Panstrongylus megistus (Burmeister, 1835) (Triatominae: Reduviidae). Parasit Vectors 2021; 14:273. [PMID: 34022931 PMCID: PMC8140489 DOI: 10.1186/s13071-021-04771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Background Panstrongylus megistus is the most important vector of Chagas disease in Brazil. Studies show that the principal factor hindering the control of triatomines is reinfestation of houses previously treated with insecticides. Studies at the microgeographic level are therefore necessary to better understand these events. However, an efficient molecular marker is not yet available for carrying out such analyses in this species. The aim of the present study was to identify and characterize microsatellite loci for future population genetic studies of P. megistus. Methods This study work consisted of five stages: (i) sequencing of genomic DNA; (ii) assembly and selection of contigs containing microsatellites; (iii) validation of amplification and evaluation of polymorphic loci; (iv) standardization of the polymorphic loci; and (v) verification of cross-amplification with other triatomine species. Results Sequencing of males and females generated 7,908,463 contigs with a total length of 2,043,422,613 bp. A total of 2,043,690 regions with microsatellites in 1,441,091 contigs were obtained, with mononucleotide repeats being the most abundant class. From a panel of 96 loci it was possible to visualize polymorphisms in 64.55% of the loci. Of the 20 loci genotyped, the number of alleles varied from two to nine with an average of 4.9. Cross-amplification with other species of triatomines was observed in 13 of the loci. Conclusions Due to the high number of alleles encountered, polymorphism and the capacity to amplify from geographically distant populations, the microsatellites described here show promise for utilization in population genetic studies of P. megistus. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04771-w.
Collapse
Affiliation(s)
| | | | | | - Leonardo Barbosa Koerich
- Laboratory of Hematophagous Insect Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
8
|
Abad-Franch F, Monteiro FA, Pavan MG, Patterson JS, Bargues MD, Zuriaga MÁ, Aguilar M, Beard CB, Mas-Coma S, Miles MA. Under pressure: phenotypic divergence and convergence associated with microhabitat adaptations in Triatominae. Parasit Vectors 2021; 14:195. [PMID: 33832518 PMCID: PMC8034103 DOI: 10.1186/s13071-021-04647-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Triatomine bugs, the vectors of Chagas disease, associate with vertebrate hosts in highly diverse ecotopes. It has been proposed that occupation of new microhabitats may trigger selection for distinct phenotypic variants in these blood-sucking bugs. Although understanding phenotypic variation is key to the study of adaptive evolution and central to phenotype-based taxonomy, the drivers of phenotypic change and diversity in triatomines remain poorly understood. Methods/results We combined a detailed phenotypic appraisal (including morphology and morphometrics) with mitochondrial cytb and nuclear ITS2 DNA sequence analyses to study Rhodnius ecuadoriensis populations from across the species’ range. We found three major, naked-eye phenotypic variants. Southern-Andean bugs primarily from vertebrate-nest microhabitats (Ecuador/Peru) are typical, light-colored, small bugs with short heads/wings. Northern-Andean bugs from wet-forest palms (Ecuador) are dark, large bugs with long heads/wings. Finally, northern-lowland bugs primarily from dry-forest palms (Ecuador) are light-colored and medium-sized. Wing and (size-free) head shapes are similar across Ecuadorian populations, regardless of habitat or phenotype, but distinct in Peruvian bugs. Bayesian phylogenetic and multispecies-coalescent DNA sequence analyses strongly suggest that Ecuadorian and Peruvian populations are two independently evolving lineages, with little within-lineage phylogeographic structuring or differentiation. Conclusions We report sharp naked-eye phenotypic divergence of genetically similar Ecuadorian R. ecuadoriensis (nest-dwelling southern-Andean vs palm-dwelling northern bugs; and palm-dwelling Andean vs lowland), and sharp naked-eye phenotypic similarity of typical, yet genetically distinct, southern-Andean bugs primarily from vertebrate-nest (but not palm) microhabitats. This remarkable phenotypic diversity within a single nominal species likely stems from microhabitat adaptations possibly involving predator-driven selection (yielding substrate-matching camouflage coloration) and a shift from palm-crown to vertebrate-nest microhabitats (yielding smaller bodies and shorter and stouter heads). These findings shed new light on the origins of phenotypic diversity in triatomines, warn against excess reliance on phenotype-based triatomine-bug taxonomy, and confirm the Triatominae as an informative model system for the study of phenotypic change under ecological pressure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04647-z.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Fernando A Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil. .,Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, USA.
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - James S Patterson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - M Ángeles Zuriaga
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Marcelo Aguilar
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador.,Instituto Juan César García, Quito, Ecuador
| | - Charles B Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, USA
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Insights into the evolution and dispersion of pyrethroid resistance among sylvatic Andean Triatoma infestans from Bolivia. INFECTION GENETICS AND EVOLUTION 2021; 90:104759. [PMID: 33556557 DOI: 10.1016/j.meegid.2021.104759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
Sylvatic populations of Triatoma infestans represent a challenge to Chagas disease control as they are not targeted by vector control activities and may play a key role in post-spraying house re-infestation. Understanding sylvatic foci distribution and gene flow between sylvatic and domestic populations is crucial to optimize vector control interventions and elucidate the development and spread of insecticide resistance. Herein, the genetic profiles of five Andean T. infestans populations from Bolivia with distinct insecticide susceptibility profiles were compared. Multilocus genotypes based on eight microsatellites and the DNA sequence of a fragment of the cytochrome B (cytB) gene were obtained for 92 individuals. CytB haplotypes were analyzed with previously reported Bolivian T. infestans haplotypes to evaluate putative historical gene flow among populations. Each specimen was also screened for two nucleotide mutations in the sodium channel gene (kdr), related to pyrethroid resistance (L1014 and L9251). Significant genetic differentiation was observed among all populations, although individuals of admixed origin were detected in four of them. Notably, the genetic profiles of adjacent domestic and sylvatic populations of Mataral, characterized by higher levels of insecticide resistance, support their common ancestry. Only one sylvatic individual from Mataral carried the kdr mutation L1014, suggesting that this mechanism is unlikely to cause the altered insecticide susceptibility observed in these populations. However, as the resistance mutation is present in the area, it has the potential to be selected under insecticidal pressure. Genetic comparisons of these populations suggest that insecticide resistance is likely conferred by ancient trait(s) in T. infestans sylvatic populations, which are capable of invading domiciles. These results emphasize the need for stronger entomological surveillance in the region, including early detection of house invasion, particularly post-spraying, monitoring for resistance to pyrethroids and the design of integrative control actions that consider sylvatic foci around domestic settings and their dispersion dynamics.
Collapse
|
10
|
Bezerra CM, Belisário CJ, D'Ávilla Pessoa GC, Rosa ACL, Barezani CP, Ferreira FC, Ramos AN, Gürtler RE, Diotaiuti L. Microsatellite variation revealed panmictic pattern for Triatoma brasiliensis (Triatominae: Reduviidae) in rural northeastern Brazil: the control measures implications. BMC Genet 2020; 21:92. [PMID: 32854614 PMCID: PMC7457261 DOI: 10.1186/s12863-020-00903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Background Triatoma brasiliensis Neiva, 1911 is the main vector of Trypanosoma cruzi in the caatinga of Northeastern Brazil. Despite of its epidemiological relevance, there are few studies on its genetic variability. Using microsatellite markers, we characterized the variability and dynamics of infestation and reinfestation of T. brasiliensis after residual insecticide spraying in five surveys conducted in a well-defined rural area located in the municipality of Tauá, Ceará, between 2009 and 2015. We evaluated: (1) general variability among local of captures; (2) variability along the time analysis (2009, 2010 and 2015); (3) and reinfestation process. Results On the analysis (1) global and pairwise FST values suggested absence of clusters among the area. AMOVA indicated that total variation is mainly represented by individual differences. Absence of clustering indicates a panmitic unit, with free gene flow. For (2), Pairwise FST indicated alterations in the genetic profile of the triatomines along the time. (3) Analysis of the reinfestation process showed that the domiciliary units investigated had different sources of infestation despite of its proximity. Conclusions Observed homogeneity can be explained by the great dispersal capacity of T. brasiliensis, overlapping the different environments. Persistent house infestation in Tauá may be attributed to the occurrence of postspraying residual foci and the invasion of triatomines from their natural habitats.
Collapse
Affiliation(s)
- Claudia Mendonça Bezerra
- Departamento de Saúde Comunitária. Rua Professor Costa Mendes 1608 - Bloco Didático 5° andar - Rodolfo Teófilo, Universidade Federal do Ceará, Faculdade de Medicina, Fortaleza, Ceará, CEP: 60430-140, Brazil. .,Secretaria da Saúde do Estado do Ceará, Fortaleza, CE, Brazil.
| | - Carlota Josefovicz Belisário
- Grupo de Pesquisa em Triatomíneos e Epidemiologia da Doença de Chagas, Instituto René Rachou / FIOCRUZ - MG, Belo Horizonte, MG, Brazil
| | | | - Aline Cristine Luiz Rosa
- Grupo de Pesquisa em Triatomíneos e Epidemiologia da Doença de Chagas, Instituto René Rachou / FIOCRUZ - MG, Belo Horizonte, MG, Brazil
| | - Carla Patrícia Barezani
- Grupo de Pesquisa em Triatomíneos e Epidemiologia da Doença de Chagas, Instituto René Rachou / FIOCRUZ - MG, Belo Horizonte, MG, Brazil
| | - Flávio Campos Ferreira
- Grupo de Pesquisa em Triatomíneos e Epidemiologia da Doença de Chagas, Instituto René Rachou / FIOCRUZ - MG, Belo Horizonte, MG, Brazil
| | - Alberto Novaes Ramos
- Departamento de Saúde Comunitária. Rua Professor Costa Mendes 1608 - Bloco Didático 5° andar - Rodolfo Teófilo, Universidade Federal do Ceará, Faculdade de Medicina, Fortaleza, Ceará, CEP: 60430-140, Brazil
| | - Ricardo Esteban Gürtler
- Laboratory of Eco-Epidemiology, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA). Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Large-scale genetic admixture suggests high dispersal in an insect pest, the apple fruit moth. PLoS One 2020; 15:e0236509. [PMID: 32785243 PMCID: PMC7423104 DOI: 10.1371/journal.pone.0236509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Knowledge about population genetic structure and dispersal capabilities is important for the development of targeted management strategies for agricultural pest species. The apple fruit moth, Argyresthia conjugella (Lepidoptera, Yponomeutidae), is a pre-dispersal seed predator. Larvae feed on rowanberries (Sorbus aucuparia), and when rowanberry seed production is low (i.e., inter-masting), the moth switches from laying eggs in rowanberries to apples (Malus domestica), resulting in devastating losses in apple crops. Using genetic methods, we investigated if this small moth expresses any local genetic structure, or alternatively if gene flow may be high within the Scandinavian Peninsula (~850.000 km2, 55o - 69o N). Genetic diversity was found to be high (n = 669, mean He = 0.71). For three out of ten tetranucleotide STRs, we detected heterozygote deficiency caused by null alleles, but tests showed little impact on the overall results. Genetic differentiation between the 28 sampling locations was very low (average FST = 0.016, P < 0.000). Surprisingly, we found that all individuals could be assigned to one of two non-geographic genetic clusters, and that a third, geographic cluster was found to be associated with 30% of the sampling locations, with weak but significant signals of isolation-by-distance. Conclusively, our findings suggest wind-aided dispersal and spatial synchrony of both sexes of the apple fruit moth over large areas and across very different climatic zones. We speculate that the species may recently have had two separate genetic origins caused by a genetic bottleneck after inter-masting, followed by rapid dispersal and homogenization of the gene pool across the landscape. We suggest further investigations of spatial genetic similarities and differences of the apple fruit moth at larger geographical scales, through life-stages, across inter-masting, and during attacks by the parasitoid wasp (Microgaster politus).
Collapse
|
12
|
Kieran TJ, Bayona-Vásquez NJ, Varian CP, Saldaña A, Samudio F, Calzada JE, Gottdenker NL, Glenn TC. Population genetics of two chromatic morphs of the Chagas disease vector Rhodnius pallescens Barber, 1932 in Panamá. INFECTION GENETICS AND EVOLUTION 2020; 84:104369. [PMID: 32442632 DOI: 10.1016/j.meegid.2020.104369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022]
Abstract
Rhodnius pallescens is the principal vector of Chagas disease in Panama. Recently a dark chromatic morph has been discovered in the highlands of Veraguas Province. Limited genetic studies have been conducted with regards to the population structure and dispersal potential of Triatominae vectors, particularly in R. pallescens. Next generation sequencing methods such as RADseq and complete mitochondrial DNA (mtDNA) genome sequencing have great potential for examining vector biology across space and time. Here we utilize a RADseq method (3RAD), along with complete mtDNA sequencing, to examine the population structure of the two chromatic morpho types of R. pallescens in Panama. We sequenced 105 R. pallescens samples from five localities in Panama. We generated a 2216 SNP dataset and 6 complete mtDNA genomes. RADseq showed significant differentiation among the five localities (FCT = 0.695; P = .004), but most of this was between localities with the dark vs. light chromatic morphs (Veraguas vs. Panama Oeste). The mtDNA genomes showed a 97-98% similarity between dark and light chromatic morphs across all genes and a 502 bp insert in light morphs. Thus, both the RADseq and mtDNA data showed highly differentiated clades with essentially no gene flow between the dark and light chromatic morphs from Veraguas and central Panama respectively. We discuss the growing evidence showing clear distinctions between these two morpho types with the possibility that these are separate species, an area of research that requires further investigation. Finally, we discuss the cost-effectiveness of 3RAD which is a third of the cost compared to other RADseq methods used recently in Chagas disease vector research.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama; Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama
| | - Franklyn Samudio
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Nicole L Gottdenker
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA; Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Pérez-Cascales E, Sossa-Soruco VM, Brenière SF, Depickère S. Reinfestation with Triatoma infestans despite vigilance efforts in the municipality of Saipina, Santa Cruz, Bolivia: Situational description two months after fumigation. Acta Trop 2020; 203:105292. [PMID: 31816321 DOI: 10.1016/j.actatropica.2019.105292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Chagas disease is still a major public health problem in Bolivia mostly due to the recurrent reinfestation of houses by Triatoma infestans. The current study evaluated the danger of reinfesting bugs by determining their infection rate, the genetic group (discrete typing unit, DTU) of Trypanosoma cruzi that infect them, and the possible association of recurrent infestation with environmental variables. In the municipality of Saipina, 254 km from Santa Cruz de la Sierra, 57 dwellings with reinfestation background and the latest fumigation 1 or 2 months before were actively searched for triatomines. The infection of the bugs and the DTUs of T. cruzi were determined with PCR methods. Microenvironmental variables were estimated surfaces of the different ground covers around each dwelling. Principal component analysis (PCA) and logistic regression were applied to the data set. Among the houses visited, 54.4% were still infested with T. infestans, and 201 T. infestans were captured, 56% indoors and 43.8% outdoors. The infection rate with T. cruzi was 24%. The TcII/TcV/TcVI group of DTUs was 80%, while TcI and TcIII/TcIV had equal values of 10%. No significant differences of DTU distribution were found between nymphs and adults, females and males, nor between intradomicile and peridomicile areas. PCA identified urban and nonurban dwellings: the former was associated with intradomicile reinfestation by nymphs. From the logistic regression analyses, the intradomicile reinfestation tended to be associated with the peridomicile around dwellings. In contrast, peridomicile infestation was more associated with sylvatic areas. Interestingly, the presence of fields (pasture, crops) around the dwelling might have a protective role regarding reinfestation. The results show that vector control actions fail, and the inhabitants of the municipality of Saipina continue to be exposed to T. cruzi transmission risk.
Collapse
|
14
|
Lobbia PA, Rodríguez C, Mougabure-Cueto G. Effect of nutritional state and dispersal on the reproductive efficiency in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Trop 2019; 191:228-238. [PMID: 30653943 DOI: 10.1016/j.actatropica.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/15/2022]
Abstract
The dispersal of insects is determinant in the colonization of new areas and the propagation of insecticide resistance. Nutritional status and reproductive characteristics determine the colonization capacity after the dispersal event. Studies about of the effects of dispersal on reproduction in triatomines are few and none in resistant insects. The aim was to determine the effects of nutritional state and dispersal on the subsequent reproductive potential in Triatoma infestans (Klug, 1834) susceptible and resistant to deltamethrin. Three nutritional states were obtained with the number of feeds (NF) offered (0, 1 or 2). The resistant females were evaluated only with NF1. The experimental arena was 10 m long and contained two shelters. Groups of 30 virgin females of each NF were released in one of the shelters and were able to move during 3 days/nights. Females without possibility of dispersal were the controls. The reproductive parameters were determined on the couples between the experimental females and males from the breeding. The results showed that most of the females dispersed by walking. The dispersal had effects on the reproduction of the deltamethrin-susceptible females and this depended on the number of feeds. Fecundity, fertility and the proportion of females that oviposited were higher in females dispersed with two feeds but was lower in females dispersed with less feeds. In addition, the effect of the dispersal on the reproduction and the life time also depended of the toxicological phenotype. The resistant insect oviposited in higher proportion and showed greater fecundity and more weeks of life when they dispersed that when they did not do it, and was opposite to that observed in susceptible ones. Finally, the resistance to insecticide had an effect on the reproduction and the life span and this effect depended on whether the insects dispersed or not.
Collapse
Affiliation(s)
- P A Lobbia
- Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe)-Programa Nacional de Chagas-Ministerio de Salud de la Nación, Santa María de Punilla, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - C Rodríguez
- Cátedra de Introducción a la Biología-Instituto de Investigaciones Biológicas y Tecnológicas-Facultad de Ciencias Exactas, Físicas y Naturales-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Mougabure-Cueto
- Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe)-Programa Nacional de Chagas-Ministerio de Salud de la Nación, Santa María de Punilla, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
15
|
Cecere MC, Rodríguez-Planes LI, Vazquez-Prokopec GM, Kitron U, Gürtler RE. Community-based surveillance and control of chagas disease vectors in remote rural areas of the Argentine Chaco: A five-year follow-up. Acta Trop 2019; 191:108-115. [PMID: 30593817 DOI: 10.1016/j.actatropica.2018.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022]
Abstract
Prevention of Chagas disease vector-borne transmission mostly relies on the residual application of pyrethroid insecticide. Persistent or recurrent house infestation after insecticide spraying remains a serious challenge in remote, resource-poor rural areas where public health services face substantial constraints. Here we use generalized estimating equations and multimodel inference to model the fine-scale, time-lagged effects of a community-based vector surveillance-and-response strategy on house infestation and abundance of Triatoma infestans in four rural communities of the Argentine Chaco over a five-year period. Householders and community leaders were trained to detect triatomines and spray with insecticides their premises if infested. House infestation and vector abundance were consistently higher in peridomestic habitats than in human habitations (domiciles). Householders supplemented with sensor boxes detected infested domiciles (67%) more frequently than timed-manual searches (49%). Of all houses ever found to be infested by timed-manual searches, 76% were sprayed within six months upon detection. Domestic triatomine abundance was significantly related to house-level insecticide spraying during the previous year (inversely) and current peridomestic abundance (positively). Peridomestic triatomine abundance significantly increased with current domestic bug abundance and maximum peridomestic abundance during the previous year, and was unaffected by insecticide spraying. Our study provides new empirical evidence of the interconnection and flow between domestic and peridomestic populations of T. infestans under recurrent insecticide treatments, and supports targeting both habitats with appropriate tactics for longer-lasting, improved vector control. Community-directed efforts succeeded in controlling domestic infestations and interrupting domestic transmission, whereas persistent peridomestic infestations demand sustained control efforts to address domestic reinvasions.
Collapse
Affiliation(s)
- María C Cecere
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Lucía I Rodríguez-Planes
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Ricardo E Gürtler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
16
|
Travi BL. Considering Dogs as Complementary Targets of Chagas Disease Control. Vector Borne Zoonotic Dis 2018; 19:90-94. [PMID: 30102585 DOI: 10.1089/vbz.2018.2325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review describes the role that dogs play in Latin American countries where Chagas disease is endemic. Multiple studies determined the high frequency with which canine populations are infected with Trypanosoma cruzi. The infection prevalence of dogs is greater than that of humans and the presence of infected dogs in households is associated with a higher risk of human infection. Dog infectiousness to triatomine vectors is several-fold higher than that of humans, thereby underscoring their major role in the domestic transmission of T. cruzi. Insecticide spraying of houses is in most cases efficacious but the lack of sustainability hinders this vector-focused strategy. Multi-pronged approaches have been adopted to improve control measures but dog intervention was never included. Experimental evaluation of systemic insecticides or deltamethrin-impregnated collars suggested that dog intervention leading to triatomine killing could curb domestic transmission of T. cruzi. Larger field studies are required to determine its applicability and efficacy. However, the implementation of dog intervention could complement other control measures currently in place, mostly in periods when vector spraying has been interrupted.
Collapse
Affiliation(s)
- Bruno L Travi
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
17
|
Piccinali RV, Gaunt MW, Gürtler RE. A Microsatellite-Based Analysis of House Infestation With Triatoma Infestans (Hemiptera: Reduviidae) After Insecticide Spraying in the Argentine Chaco. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:609-619. [PMID: 29385501 DOI: 10.1093/jme/tjx256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Prevention of vector-borne transmission of Chagas disease mainly relies on residual insecticide spraying. Despite significant success at a regional scale, house infestation with Triatoma infestans (Klug) (Hemiptera: Reduviidae) still persists in the Gran Chaco ecoregion. One key aspect is the identification of the sources of reinfestant triatomines. After detecting fine-scale genetic structure in two rural villages of Pampa del Indio, Argentine Chaco, we tested hypotheses on the putative origins of the triatomines collected at 4, 8, and 12 mo after insecticide house spraying. We genotyped 10 microsatellite loci in 262 baseline and 83 postspraying triatomines from different houses. Genetic variability was similar between baseline and postspraying populations, but 13 low-frequency alleles were not detected at postspraying. FSTs were not significant between insects collected before and after insecticide spraying at the same house in all but one case, and they clustered together in a neighbor-joining tree. A clustering algorithm detected seven genetic groups, four of them mainly composed of baseline and postspraying insects from the same house. Assignment tests suggested multiple putative sources (including the house of collection) for most postspraying insects but excluded a house located more than 9 km from the study area. The origin of three triatomines was attributed to immigration from other unaccounted sources. Our study is compatible with the hypothesis that house reinfestations in the Argentine Chaco are mostly related to residual foci (i.e., survival of insects within the same community), in agreement with field observations, spatial analysis, and morphometric studies previously published.
Collapse
Affiliation(s)
- Romina V Piccinali
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Michael W Gaunt
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Laboratorio de Eco-Epidemiología Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Barnabé C, Brenière SF, Guégan JF, Blanchet D, Aznar C. Molecular characterization of Rhodnius robustus specimens, potential vectors for Chagas disease in French Guiana, South America. INFECTION GENETICS AND EVOLUTION 2018; 59:28-31. [DOI: 10.1016/j.meegid.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/28/2023]
|
19
|
Flores-Ferrer A, Marcou O, Waleckx E, Dumonteil E, Gourbière S. Evolutionary ecology of Chagas disease; what do we know and what do we need? Evol Appl 2017; 11:470-487. [PMID: 29636800 PMCID: PMC5891055 DOI: 10.1111/eva.12582] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen afflicting most populations of Latin America. This vectorborne parasite is transmitted by haematophageous triatomines, whose control by large‐scale insecticide spraying has been the main strategy to limit the impact of the disease for over 25 years. While those international initiatives have been successful in highly endemic areas, this systematic approach is now challenged by the emergence of insecticide resistance and by its low efficacy in controlling species that are only partially adapted to human habitat. In this contribution, we review evidences that Chagas disease control shall now be entering a second stage that will rely on a better understanding of triatomines adaptive potential, which requires promoting microevolutionary studies and –omic approaches. Concomitantly, we show that our knowledge of the determinants of the evolution of T. cruzi high diversity and low virulence remains too limiting to design evolution‐proof strategies, while such attributes may be part of the future of Chagas disease control after the 2020 WHO's target of regional elimination of intradomiciliary transmission has been reached. We should then aim at developing a theory of T. cruzi virulence evolution that we anticipate to provide an interesting enrichment of the general theory according to the specificities of transmission of this very generalist stercorarian trypanosome. We stress that many ecological data required to better understand selective pressures acting on vector and parasite populations are already available as they have been meticulously accumulated in the last century of field research. Although more specific information will surely be needed, an effective research strategy would be to integrate data into the conceptual and theoretical framework of evolutionary ecology and life‐history evolution that provide the quantitative backgrounds necessary to understand and possibly anticipate adaptive responses to public health interventions.
Collapse
Affiliation(s)
- Alheli Flores-Ferrer
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| | - Olivier Marcou
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán Mérida Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine School of Public Health and Tropical Medicine Tulane University New Orleans LA USA
| | - Sébastien Gourbière
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| |
Collapse
|
20
|
Brenière SF, Buitrago R, Waleckx E, Depickère S, Sosa V, Barnabé C, Gorla D. Wild populations of Triatoma infestans: Compilation of positive sites and comparison of their ecological niche with domestic population niche. Acta Trop 2017; 176:228-235. [PMID: 28818626 DOI: 10.1016/j.actatropica.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/26/2017] [Accepted: 08/10/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND For several years, the wild populations of Triatoma infestans, main vector of Trypanosoma cruzi causing Chagas disease, have been considered or suspected of being a source of reinfestation of villages. The number of sites reported for the presence of wild T. infestans, often close to human habitats, has greatly increased, but these data are scattered in several publications, and others obtained by our team in Bolivia have not been published yet. METHODOLOGY/PRINCIPAL FINDINGS Herein is compiled the largest number of wild sites explored for the presence of T. infestans collected with two methods The standardized methods aimed to determine the relationship between wild T. infestans and the ecoregion, and the directed method help to confirm the presence/absence of triatomines in the ecoregions. Entomological indices were compared between ecoregions and an environmental niche modelling approach, based on bioclimatic variables, was applied. The active search for wild T. infestans in Bolivia suggests a discontinuous distribution from the Andean valleys to the lowlands (Chaco), while the models used suggest a continuous distribution between the two regions and very large areas where wild populations remain to be discovered. The results compile the description of different habitats where these populations were found, and we demonstrate that the environmental niches of wild and domestic populations, defined by climatic variables, are similar but not equivalent, showing that during domestication, T. infestans has conquered new spaces with wider ranges of temperature and precipitation. CONCLUSIONS/SIGNIFICANCE The great diversity of wild T. infestans habitats and the comparison of their ecological niches with that of domestic populations confirm the behavioural plasticity of the species that increase the possibility of contact with humans. The result of the geographical distribution model of the wild populations calls for more entomological vigilance in the corresponding areas in the Southern Cone countries and in Bolivia. The current presentation is the most comprehensive inventory of wild T. infestans-positive sites that can be used as a reference for further entomological vigilance in inhabited areas.
Collapse
Affiliation(s)
- Simone Frédérique Brenière
- INTERTRYP, CIRAD, IRD, TA A-17/G, International Campus in Baillarguet, Montpellier, France; Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador (PUCE), Av. 12 de Octubre 1076 y Roca, Campus Nayón, Quito, Ecuador.
| | - Rosio Buitrago
- INTERTRYP, CIRAD, IRD, TA A-17/G, International Campus in Baillarguet, Montpellier, France; Instituto Nacional de Laboratorios de Salud (INLASA), Laboratorio de Entomología Médica, Rafael Zubieta #1889, Miraflores, Casilla M-10019, La Paz, Bolivia
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Stéphanie Depickère
- INTERTRYP, CIRAD, IRD, TA A-17/G, International Campus in Baillarguet, Montpellier, France; Instituto Nacional de Laboratorios de Salud (INLASA), Laboratorio de Entomología Médica, Rafael Zubieta #1889, Miraflores, Casilla M-10019, La Paz, Bolivia; Grupo de Sistemas Complejos, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Victor Sosa
- INTERTRYP, CIRAD, IRD, TA A-17/G, International Campus in Baillarguet, Montpellier, France; Dirección de Recursos Naturales, Secretaria de Desarrollo Sostenible y Medio Ambiente, Gobierno Autónomo Departamental de Santa Cruz, Av. Fransisco Mora 3er Anillo interno, Zona Polanco, Mexico
| | - Christian Barnabé
- INTERTRYP, CIRAD, IRD, TA A-17/G, International Campus in Baillarguet, Montpellier, France
| | - David Gorla
- Instituto Altos Estudios Espaciales Mario Gulich, Universidad Nacional Córdoba-CONAE, Ruta C45 Km 8, Falda del Cañete, 5187 Córdoba, Argentina
| |
Collapse
|
21
|
Brito RN, Gorla DE, Diotaiuti L, Gomes ACF, Souza RCM, Abad-Franch F. Drivers of house invasion by sylvatic Chagas disease vectors in the Amazon-Cerrado transition: A multi-year, state-wide assessment of municipality-aggregated surveillance data. PLoS Negl Trop Dis 2017; 11:e0006035. [PMID: 29145405 PMCID: PMC5689836 DOI: 10.1371/journal.pntd.0006035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Insecticide spraying efficiently controls house infestation by triatomine bugs, the vectors of Trypanosoma cruzi. The strategy, however, is ineffective against sylvatic triatomines, which can transmit Chagas disease by invading (without colonizing) man-made structures. Despite growing awareness of the relevance of these transmission dynamics, the drivers of house invasion by sylvatic triatomines remain poorly understood. Methods/Findings About 12,000 sylvatic triatomines were caught during routine surveillance in houses of Tocantins state, Brazil, in 2005–2013. Using negative binomial regression, information-theoretic model evaluation/averaging, and external model validation, we investigated the effects of regional (Amazon/Cerrado), landscape (preservation/disturbance), and climate covariates (temperature, rainfall) on the municipality-aggregated numbers of house-invading Rhodnius pictipes, R. robustus, R. neglectus, and Panstrongylus geniculatus. House invasion by R. pictipes and R. robustus was overall more frequent in the Amazon biome, tended to increase in municipalities with more well-preserved land, and decreased in rainier municipalities. Across species, invasion decreased with higher landscape-disturbance levels and in hotter-day municipalities. Invasion by R. neglectus and P. geniculatus increased somewhat with more land at intermediate disturbance and peaked in average-rainfall municipalities. Temperature effects were more pronounced on P. geniculatus than on Rhodnius spp. Conclusions We report widespread, frequent house invasion by sylvatic triatomines in the Amazon–Cerrado transition. Our analyses indicate that readily available environmental metrics may help predict the risk of contact between sylvatic triatomines and humans at coarse geographic scales, and hint at specific hypotheses about climate and deforestation effects on those vectors–with some taxon-specific responses and some seemingly general trends. Thus, our focal species appear to be quite sensitive to higher temperatures, and might be less common in more heavily-disturbed than in better-preserved environments. This study illustrates, in sum, how entomological routine-surveillance data can be efficiently used for Chagas disease risk prediction and stratification when house-colonizing vectors are absent. Triatomine bugs are the vectors of Chagas disease, still a key public health concern in the Americas. Insecticide spraying efficiently controls house infestation by triatomines, but is useless against sylvatic bugs–which can transmit the disease by simply invading human residences. Although this behavior is common, the drivers of house invasion by wild triatomines remain poorly understood. Using municipality-aggregated data from routine surveillance, we investigated whether and how some major environmental factors affect house invasion by four triatomine species across the transition between Amazon rainforests and Cerrado savannahs in Brazil. We found that house invasion (i) is widespread, (ii) varies by region for some species, (iii) is overall less frequent in areas with higher levels of landscape disturbance, and (iv) is less common in hotter and in rainier sites. Although the effects of landscape disturbance and climate differed somewhat among bug species, the general approach we describe here may help advance Chagas disease risk assessment when house-colonizing vectors are absent.
Collapse
Affiliation(s)
- Raíssa N. Brito
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Gorla
- Laboratorio de Eco-Epidemiología Espacial de Enfermedades Transmitidas por Vectores, Instituto de Altos Estudios Espaciales Mario Gulich–CONAE / Universidad Nacional de Córdoba–CONICET, Falda del Cañete, Córdoba, Argentina
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anália C. F. Gomes
- Coordenação de Vigilância de Doenças Vetoriais e Zoonoses, Secretaria Estadual de Saúde do Tocantins, Palmas, Tocantins, Brazil
| | - Rita C. M. Souza
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Abad-Franch
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: ,
| |
Collapse
|
22
|
de Arias AR, Carbajal de la Fuente AL, Gómez A, Cecere MC, Rolón M, Gómez MCV, Villalba C. Morphometric Wings Similarity among Sylvatic and Domestic Populations of Triatoma infestans (Hemiptera: Reduviidae) from the Gran Chaco Region of Paraguay. Am J Trop Med Hyg 2017; 97:481-488. [PMID: 28829725 PMCID: PMC5544089 DOI: 10.4269/ajtmh.16-1013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/14/2017] [Indexed: 12/03/2022] Open
Abstract
Despite sustained efforts for eliminating Triatoma infestans, reinfestation still persists in large part of the endemic area of Chagas disease from the Gran Chaco region. Sylvatic T. infestans populations seem to threat success of control programs of domestic T. infestans. In this study, we analyze whether T. infestans collected after a community-wide spraying were survivors or were immigrants from elsewhere using geometric morphometric tools. We used 101 right wings of female T. infestans captured before and after intervention program carried out in 12 de Junio and Casuarina, villages from Paraguayan Chaco, and in Puerto Casado during presprayed collection. There were no significant differences in wing size of domestic T. infestans between pre- and postspraying populations, and between domestic and sylvatic ones. When shape variables originating from postintervention individuals from 12 de Junio were introduced one by one into a discriminant analysis, the greatest weight (53%) was allocated to the sylvatic group. Furthermore, from the prespraying population, 25% were reallocated as postintervention individuals. Only 11% of the insects were reassigned to other groups Puerto Casado and Casuarina. These results suggest that postspraying individuals appear to have different origins. Half of the postspraying individuals from 12 de Junio were similar to the sylvatic ones and 25% of these were similar to those captured in the prespraying period. This remarkable morphometric wings similarity between sylvatic and domestic populations is new evidence suggesting that they could be highly related to each other in the Paraguayan Chaco; human-fed bugs from sylvatic area also support this.
Collapse
Affiliation(s)
- Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Diaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - Ana Laura Carbajal de la Fuente
- Laboratorio de Eco-Epidemiología, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Gómez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Diaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - María Carla Cecere
- Laboratorio de Eco-Epidemiología, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Diaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - María Celeste Vega Gómez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Diaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - Cesia Villalba
- Programa Nacional de Control de la Enfermedad de Chagas, SENEPA, Asunción, Paraguay
| |
Collapse
|
23
|
Villacís AG, Marcet PL, Yumiseva CA, Dotson EM, Tibayrenc M, Brenière SF, Grijalva MJ. Pioneer study of population genetics of Rhodnius ecuadoriensis (Hemiptera: Reduviidae) from the central coastand southern Andean regions of Ecuador. INFECTION GENETICS AND EVOLUTION 2017; 53:116-127. [PMID: 28546079 DOI: 10.1016/j.meegid.2017.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
Effective control of Chagas disease vector populations requires a good understanding of the epidemiological components, including a reliable analysis of the genetic structure of vector populations. Rhodnius ecuadoriensis is the most widespread vector of Chagas disease in Ecuador, occupying domestic, peridomestic and sylvatic habitats. It is widely distributed in the central coast and southern highlands regions of Ecuador, two very different regions in terms of bio-geographical characteristics. To evaluate the genetic relationship among R. ecuadoriensis populations in these two regions, we analyzed genetic variability at two microsatellite loci for 326 specimens (n=122 in Manabí and n=204 in Loja) and the mitochondrial cytochrome b gene (Cyt b) sequences for 174 individuals collected in the two provinces (n=73 and=101 in Manabí and Loja respectively). The individual samples were grouped in populations according to their community of origin. A few populations presented positive FIS, possible due to Wahlund effect. Significant pairwise differentiation was detected between populations within each province for both genetic markers, and the isolation by distance model was significant for these populations. Microsatellite markers showed significant genetic differentiation between the populations of the two provinces. The partial sequences of the Cyt b gene (578bp) identified a total of 34 haplotypes among 174 specimens sequenced, which translated into high haplotype diversity (Hd=0.929). The haplotype distribution differed among provinces (significant Fisher's exact test). Overall, the genetic differentiation of R. ecuadoriensis between provinces detected in this study is consistent with the biological and phenotypic differences previously observed between Manabí and Loja populations. The current phylogenetic analysis evidenced the monophyly of the populations of R. ecuadoriensis within the R. pallescens species complex; R. pallescens and R. colombiensis were more closely related than they were to R. ecuadoriensis.
Collapse
Affiliation(s)
- Anita G Villacís
- Center for Research on Health in Latin America (CISeAL), School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Paula L Marcet
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - César A Yumiseva
- Center for Research on Health in Latin America (CISeAL), School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Ellen M Dotson
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Michel Tibayrenc
- IRD, UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, IRD Center, 911, avenue Agropolis, Montpellier, France
| | - Simone Frédérique Brenière
- Center for Research on Health in Latin America (CISeAL), School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador; IRD, UMR INTERTRYP (IRD-CIRAD), Interactions hosts-vectors-parasites-environment in the tropical neglected disease due to trypanosomatids, TA A-17/G, Campus international de Baillarguet, Montpellier, France
| | - Mario J Grijalva
- Center for Research on Health in Latin America (CISeAL), School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador; Infectious and Tropical Disease Institute, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall, Athens, OH 45701, United States.
| |
Collapse
|
24
|
Provecho YM, Gaspe MS, Fernández MDP, Gürtler RE. House Reinfestation With Triatoma infestans (Hemiptera: Reduviidae) After Community-Wide Spraying With Insecticides in the Argentine Chaco: A Multifactorial Process. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:646-657. [PMID: 28399199 DOI: 10.1093/jme/tjw224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 06/07/2023]
Abstract
We investigated the dynamics and underlying causes of house (re)infestation with Triatoma infestans (Klug 1834) after a community-wide residual spraying with pyrethroids in a well-defined rural section of Pampa del Indio municipality (northeastern Argentina) over a 4-yr period. House infestation was assessed by timed manual searches, during insecticide applications, and by opportunistic householders' bug collections. All reinfested houses were selectively re-sprayed with insecticides. The resident population comprised Qom (66.6%) and Creole (33.4%) households, whose sociodemographic profiles differed substantially. The prevalence of house infestation dropped, less than expected, from 20.5% at baseline to 5.0% at 14 months postspraying (MPS), and then fluctuated between 0.8 and 4.2% over 21-51 MPS. Postspraying house infestation was positively and highly significantly associated with prespraying infestation. Most of the foci detected over 14-21 MPS were considered persistent (residual), some of which were moderately resistant to pyrethroids and were suppressed with malathion. Infestation patterns over 27-51 MPS suggested bug invasion from internal or external foci, but the sources of most findings were unaccounted for. Local spatial analysis identified two hotspots of postspraying house infestation. Using multimodel inference with model averaging, we corroborated that baseline domestic infestation was closely related to refuge availability, housing quality, and occurrence of peridomestic infestation. The diminished effectiveness of single pyrethroid treatments, partly attributable to moderate resistance compounded with rather insensitive vector detection methods and poor housing conditions, contributed to vector persistence. Improved control strategies combined with broad social participation are needed for the sustainable elimination of vector-borne human Chagas disease from the Gran Chaco.
Collapse
Affiliation(s)
- Yael M Provecho
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; )
| | - M Sol Gaspe
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; )
| | - M Del Pilar Fernández
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; )
| | - Ricardo E Gürtler
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; )
| |
Collapse
|
25
|
Genetic characterization of residual Triatoma infestans populations from Brazil by microsatellite. Genetica 2017; 145:105-114. [PMID: 28120213 DOI: 10.1007/s10709-017-9949-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
In spite of long-term efforts to eliminate Triatoma infestans (Klug 1834) from Brazil, residual foci still persist in the states of Bahia and Rio Grande do Sul. Data on the genetic variability and structuring of these populations are however lacking. Using nine microsatellite loci, we characterized one residual T. infestans population from Bahia and four from Rio Grande do Sul, and compared them with bugs originally from an older focus in São Paulo; 224 bugs were genotyped. The number of alleles per locus ranged from 5 to 11. Observed and expected heterozygosities per locus ranged, respectively, from 0 to 0.786 and from 0 to 0.764. Significant departures from Hardy-Weinberg equilibrium, mainly due to heterozygote deficits, were detected in all loci and in most populations. Global indices estimated by AMOVA were: Fis was 0.37; Fst was 0.28; and Fit was 0.55; overall indices with p = 0.00 indicated substantial differentiation. Inter-population Fst ranged from 0.118 to 0.562, suggesting strong genetic structuring and little to no gene flow among populations. Intra-population Fis ranged from 0.301 to 0.307. Inbreeding was apparent in all populations except that from Bahia-which might be either linked by gene flow to nearby unsampled populations or part of a relatively large local population. The overall pattern of strong genetic structuring among pyrethroid-susceptible residual T. infestans populations suggests that their persistence is probably due to operational control failures. Detection and elimination of such residual foci is technically feasible and must become a public health priority in Brazil.
Collapse
|
26
|
Buitrago R, Bosseno MF, Depickère S, Waleckx E, Salas R, Aliaga C, Barnabé C, Brenière SF. Blood meal sources of wild and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia: connectivity between cycles of transmission of Trypanosoma cruzi. Parasit Vectors 2016; 9:214. [PMID: 27090297 PMCID: PMC4835887 DOI: 10.1186/s13071-016-1499-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/06/2016] [Indexed: 12/05/2022] Open
Abstract
Background Chagas disease is a major public health problem in Latin America. Its etiologic agent, Trypanosoma cruzi, is mainly transmitted through the contaminated faeces of blood-sucking insects called triatomines. Triatoma infestans is the main vector in various countries in South America and recently, several foci of wild populations of this species have been described in Bolivia and other countries. These wild populations are suspected of affecting the success of insecticide control campaigns being carried out in South America. To assess the risk that these T. infestans populations pose to human health, it is helpful to determine blood meal sources. Methods In the present work, blood meals were identified in various Bolivian wild T. infestans populations and in three specific areas, in both wild and intra-peridomestic populations to assess the links between wild and domestic cycles of T. cruzi transmission. PCR-HDA and sequencing of Cytb gene were used to identify these blood meal sources. Results and discussion Fourteen vertebrate species were identified as wild blood meal sources. Of those, the most prevalent species were two Andean endemic rodents, Octodontomys gliroides (36 %) and Galea musteloides (30 %), while humans were the third most prevalent source (18.7 %). Of 163 blood meals from peridomestic areas, more than half were chickens, and the others were generally domestic animals or humans. Interestingly, blood from wild animals was identified in triatomines captured in the peridomestic and domestic environment, and blood from domestic animals was found in triatomines captured in the wild, revealing links between wild and domestic cycles of T. cruzi transmission. Conclusion The current study suggests that wild T. infestans attack humans in the wild, but is also able to bite humans in domestic settings before going back to its natural environment. These results support the risk to human health posed by wild populations of T. infestans.
Collapse
Affiliation(s)
- Rosio Buitrago
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP, (IRD-CIRAD), Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatidés, 911 Av. Agropolis, Montpellier, cédex 5, 34394, France.
| | - Marie-France Bosseno
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP, (IRD-CIRAD), Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatidés, 911 Av. Agropolis, Montpellier, cédex 5, 34394, France
| | - Stéphanie Depickère
- Instituto Nacional de Laboratorios de Salud (INLASA), Laboratorio de Entomología Médica, Rafael Zubieta #1889, Miraflores, Casilla M-10019, La Paz, Bolivia
| | - Etienne Waleckx
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP, (IRD-CIRAD), Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatidés, 911 Av. Agropolis, Montpellier, cédex 5, 34394, France
| | - Renata Salas
- Instituto Nacional de Laboratorios de Salud (INLASA), Laboratorio de Entomología Médica, Rafael Zubieta #1889, Miraflores, Casilla M-10019, La Paz, Bolivia
| | - Claudia Aliaga
- Instituto Nacional de Laboratorios de Salud (INLASA), Laboratorio de Entomología Médica, Rafael Zubieta #1889, Miraflores, Casilla M-10019, La Paz, Bolivia
| | - Christian Barnabé
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP, (IRD-CIRAD), Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatidés, 911 Av. Agropolis, Montpellier, cédex 5, 34394, France
| | - Simone Frédérique Brenière
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP, (IRD-CIRAD), Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatidés, 911 Av. Agropolis, Montpellier, cédex 5, 34394, France
| |
Collapse
|
27
|
Wong YY, Sornosa Macias KJ, Guale Martínez D, Solorzano LF, Ramirez-Sierra MJ, Herrera C, Dumonteil E. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador. INFECTION GENETICS AND EVOLUTION 2016; 41:207-212. [PMID: 27079265 DOI: 10.1016/j.meegid.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 11/17/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying.
Collapse
Affiliation(s)
- Yim Yan Wong
- Centro de Referencia Nacional de Parasitología, Instituto Nacional de Investigación en Salud Pública Leopoldo Izquieta Perez (INSPI), Guayaquil, Ecuador
| | - Karen Jeniffer Sornosa Macias
- Centro de Referencia Nacional de Parasitología, Instituto Nacional de Investigación en Salud Pública Leopoldo Izquieta Perez (INSPI), Guayaquil, Ecuador
| | - Doris Guale Martínez
- Centro de Referencia Nacional de Parasitología, Instituto Nacional de Investigación en Salud Pública Leopoldo Izquieta Perez (INSPI), Guayaquil, Ecuador
| | - Luis F Solorzano
- Centro de Referencia Nacional de Parasitología, Instituto Nacional de Investigación en Salud Pública Leopoldo Izquieta Perez (INSPI), Guayaquil, Ecuador
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Hideyo Noguchi", Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico
| | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne Infection Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Centro de Referencia Nacional de Parasitología, Instituto Nacional de Investigación en Salud Pública Leopoldo Izquieta Perez (INSPI), Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Hideyo Noguchi", Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico; Department of Tropical Medicine, Vector-Borne Infection Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
28
|
Grijalva MJ, Villacis AG, Ocaña-Mayorga S, Yumiseva CA, Moncayo AL, Baus EG. Comprehensive Survey of Domiciliary Triatomine Species Capable of Transmitting Chagas Disease in Southern Ecuador. PLoS Negl Trop Dis 2015; 9:e0004142. [PMID: 26441260 PMCID: PMC4595344 DOI: 10.1371/journal.pntd.0004142] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is endemic to the southern Andean region of Ecuador, an area with one of the highest poverty rates in the country. However, few studies have looked into the epidemiology, vectors and transmission risks in this region. In this study we describe the triatomine household infestation in Loja province, determine the rate of Trypanosoma cruzi infection in triatomines and study the risk factors associated with infestation. METHODOLOGY/PRINCIPAL FINDINGS An entomological survey found four triatomine species (Rhodnius ecuadoriensis, Triatoma carrioni, Panstrongylus chinai, and P. rufotuberculatus) infesting domiciles in 68% of the 92 rural communities examined. Nine percent of domiciles were infested, and nymphs were observed in 80% of the infested domiciles. Triatomines were found in all ecological regions below 2,200 masl. We found R. ecuadoriensis (275 to 1948 masl) and T. carrioni (831 to 2242 masl) mostly in bedrooms within the domicile, and they were abundant in chicken coops near the domicile. Established colonies of P. chinai (175 to 2003 masl) and P. rufotuberculatus (404 to 1613 masl) also were found in the domicile. Triatomine infestation was associated with surrogate poverty indicators, such as poor sanitary infrastructure (lack of latrine/toilet [w = 0.95], sewage to environment [w = 1.0]). Vegetation type was a determinant of infestation [w = 1.0] and vector control program insecticide spraying was a protective factor [w = 1.0]. Of the 754 triatomines analyzed, 11% were infected with Trypanosoma cruzi and 2% were infected with T. rangeli. CONCLUSIONS/SIGNIFICANCE To date, only limited vector control efforts have been implemented. Together with recent reports of widespread sylvatic triatomine infestation and frequent post-intervention reinfestation, these results show that an estimated 100,000 people living in rural areas of southern Ecuador are at high risk for T. cruzi infection. Therefore, there is a need for a systematic, sustained, and monitored vector control intervention that is coupled with improvement of socio-economic conditions.
Collapse
Affiliation(s)
- Mario J. Grijalva
- Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
- * E-mail:
| | - Anita G. Villacis
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Sofia Ocaña-Mayorga
- Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Cesar A. Yumiseva
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Ana L. Moncayo
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Esteban G. Baus
- Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| |
Collapse
|
29
|
Piccinali RV, Gürtler RE. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco. INFECTION GENETICS AND EVOLUTION 2015; 34:143-52. [DOI: 10.1016/j.meegid.2015.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
30
|
Waleckx E, Gourbière S, Dumonteil E. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Mem Inst Oswaldo Cruz 2015; 110:324-38. [PMID: 25993504 PMCID: PMC4489470 DOI: 10.1590/0074-02760140409] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/09/2015] [Indexed: 11/22/2022] Open
Abstract
Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions.
Collapse
Affiliation(s)
- Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr
Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Sébastien Gourbière
- Institut de Modélisation et d’Analyses en Géo-Environnement et Santé,
Université de Perpignan Via Domitia, Perpignan, France
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr
Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
31
|
Gaspe MS, Provecho YM, Piccinali RV, Gürtler RE. Where do these bugs come from? Phenotypic structure of Triatoma infestans populations after control interventions in the Argentine Chaco. Mem Inst Oswaldo Cruz 2015; 110:310-8. [PMID: 25946158 PMCID: PMC4489468 DOI: 10.1590/0074-02760140376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
House re-invasion by native triatomines after insecticide-based control campaigns
represents a major threat for Chagas disease vector control. We conducted a
longitudinal intervention study in a rural section (Area III, 407 houses) of Pampa
del Indio, northeastern Argentina, and used wing geometric morphometry to compare
pre-spray and post-spray (re-infestant bugs) Triatoma infestans
populations. The community-wide spraying with pyrethroids reduced the prevalence of
house infestation by T. infestans from 31.9% to < 1% during a
four-year follow-up, unlike our previous studies in the neighbouring Area I. Two
groups of bug collection sites differing in wing shape variables before interventions
(including 221 adults from 11 domiciles) were used as a reference for assigning 44
post-spray adults. Wing shape variables from post-spray, high-density bug colonies
and pre-spray groups were significantly different, suggesting that re-infestant
insects had an external origin. Insects from one house differed strongly in wing
shape variables from all other specimens. A further comparison between insects from
both areas supported the existence of independent re-infestation processes within the
same district. These results point to local heterogeneities in house re-infestation
dynamics and emphasise the need to expand the geographic coverage of vector
surveillance and control operations to the affected region.
Collapse
Affiliation(s)
- María Sol Gaspe
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Mariana Provecho
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Valeria Piccinali
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Brémond P, Salas R, Waleckx E, Buitrago R, Aliaga C, Barnabé C, Depickère S, Dangles O, Brenière SF. Variations in time and space of an Andean wild population of T. infestans at a microgeographic scale. Parasit Vectors 2014; 7:164. [PMID: 24708673 PMCID: PMC3992151 DOI: 10.1186/1756-3305-7-164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/21/2014] [Indexed: 11/13/2022] Open
Abstract
Background Wild populations of Triatoma infestans are now believed to be the source of reinfestation of dwellings in some Andean areas and could impede the full achievement of vector control campaigns in this region. Given the poor knowledge of these populations in natural conditions, their basic biology traits, such as monthly demographic variations and movements of individuals, were explored. Methods A previously identified wild population of T. infestans in a field adjacent to a group of isolated houses in an Andean valley (department of La Paz, Bolivia) was explored using regular capture assays over 13 months in 50 sites selected at the beginning of the study. The capture-mark-recapture method was applied monthly using mouse-baited adhesive traps for captures and fingernail polish of different colors for the marking. Results The monthly capture assays did not show significant differences between rainy and dry seasons, showing evidence for a certain stability of the wild T. infestans population with only the nymph population tending to decline during the middle of the rainy season when rain is more intensive. Throughout the study, the monthly average number of bugs was 51.1 ± 25.3 per assay, 91.1% were nymphs, and they were found at 30 of the 50 sites (60%). The number of times a site was positive varied from one to 13. Site infestation was associated with the underground position of the traps, and rocks around and in the surroundings of the traps. The recaptures after marking were successful (138 recaptures over the study). The marking made it possible to detect for 14.5% of the recaptures significant movements of adults (up to 168 m) and nymphs (up to 34 m). Some bugs (nymphs and females) were recaptured after 5 months. For adults, recaptures (46 in total) mostly occurred between September and March. Females were recaptured twice as frequently as males. Conclusion The Andean wild populations of T. infestans showed a strong spatial and temporal stability during the year-long study. Dispersal may occur mainly during the rainy season. The capture-mark-recapture method was successful and the longevity of the bugs and the distances covered by nymphs and adults were recorded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Simone Frédérique Brenière
- IRD, Institut de Recherche pour le Développement, UMR INTERTRYP (IRD-CIRAD), Interactions hôtes-vecteurs-parasites dans les infections par trypanosomatidae), 911 Av, Agropolis, 34394 Montpellier, cédex 5, France.
| |
Collapse
|
33
|
Espinoza N, Borrás R, Abad-Franch F. Chagas disease vector control in a hyperendemic setting: the first 11 years of intervention in Cochabamba, Bolivia. PLoS Negl Trop Dis 2014; 8:e2782. [PMID: 24699407 PMCID: PMC3974664 DOI: 10.1371/journal.pntd.0002782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background Chagas disease has historically been hyperendemic in the Bolivian Department of Cochabamba. In the early 2000s, an extensive vector control program was implemented; 1.34 million dwelling inspections were conducted to ascertain infestation (2000–2001/2003–2011), with blanket insecticide spraying in 2003–2005 and subsequent survey-spraying cycles targeting residual infestation foci. Here, we assess the effects of this program on dwelling infestation rates (DIRs). Methodology/Principal Findings Program records were used to calculate annual, municipality-level aggregate DIRs (39 municipalities); very high values in 2000–2001 (median: 0.77–0.69) dropped to ∼0.03 from 2004 on. A linear mixed model (with municipality as a random factor) suggested that infestation odds decreased, on average, by ∼28% (95% confidence interval [CI95] 6–44%) with each 10-fold increase in control effort. A second, better-fitting mixed model including year as an ordinal predictor disclosed large DIR reductions in 2001–2003 (odds ratio [OR] 0.11, CI95 0.06–0.19) and 2003–2004 (OR 0.22, CI95 0.14–0.34). Except for a moderate decrease in 2005–2006, no significant changes were detected afterwards. In both models, municipality-level DIRs correlated positively with previous-year DIRs and with the extent of municipal territory originally covered by montane dry forests. Conclusions/Significance Insecticide-spraying campaigns had very strong, long-lasting effects on DIRs in Cochabamba. However, post-intervention surveys consistently detected infestation in ∼3% of dwellings, underscoring the need for continuous surveillance; higher DIRs were recorded in the capital city and, more generally, in municipalities dominated by montane dry forest – an eco-region where wild Triatoma infestans are widespread. Traditional strategies combining insecticide spraying and longitudinal surveillance are thus confirmed as very effective means for area-wide Chagas disease vector control; they will be particularly beneficial in highly-endemic settings, but should also be implemented or maintained in other parts of Latin America where domestic infestation by triatomines is still commonplace. Chagas disease is among the most serious public health problems in Latin America; the highest prevalence of infection by its causative agent, the parasite Trypanosoma cruzi, has historically been recorded in some parts of Bolivia. In the early 2000s, a massive insecticide-spraying program was set up to control dwelling infestation by the blood-sucking bugs that transmit the disease. Here we provide a detailed assessment of the effects of this program in the Department of Cochabamba, one of the most highly-endemic settings worldwide. Our analyses show that municipality-level dwelling infestation rates plummeted from over 70–80% in 2001–2003 to about 2–3% in 2004–2011. This residual infestation was higher in the capital city and, more generally, in municipalities where montane dry forests dominate – probably because wild populations of the main vector, Triatoma infestans, are common in that eco-region. Despite the impressive early achievements of the program, with about 0.5 million people protected from contagion, sustained disease control will require fully operational long-term surveillance systems.
Collapse
Affiliation(s)
- Natalisisy Espinoza
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de València, Valencia, Spain
| | - Rafael Borrás
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de València, Valencia, Spain
| | | |
Collapse
|