1
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
2
|
Hatch AC, Peloquin D, Kumbar AS, Luxton TP, Clar JG. Transformation of zinc oxide nanoparticles in synthetic lung fluids. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:153. [PMID: 35873670 PMCID: PMC9288259 DOI: 10.1007/s11051-022-05527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Surface coatings, including paints, stains, and sealants, have recently become a focus of "nano-enabled" consumer product engineering. Specifically, zinc oxide (ZnO) nanoparticles (NPs) have been introduced to surface coatings to increase UV resistance. As more "nano-enabled" products are made available for purchase, questions arise regarding their long-term environmental and human health effects. This study tracked the transformation of NP additives commonly added to consumer paints and stains using ZnO NPs as a model system. During product application and use, there is a risk of inhalation of aerosolized ZnO NPs. To investigate the potential chemical interactions and transformations that would occur after inhalation, ZnO NPs were incubated in two synthetic lung fluids (SLFs). Initial studies utilized ZnO NPs dispersed in Milli-Q water (control), or a commercially available deck stain. Additionally, two commercially available products advertising the inclusion of ZnO NP additives were evaluated. Subsamples were taken throughout incubation and analyzed via atomic absorption spectroscopy to determine both the total (including particulate) zinc concentration and dissolved (non-particulate) zinc concentration. Results indicate that the vast majority of ZnO transformation takes place within the first 24 h of incubation and is primarily driven by SLF pH and composition complexity. Significant dissolution of ZnO NPs was observed when incubated in Gamble's solution (between 25 and 68% depending on the matrix. Additionally, all ZnO solutions saw near immediate dissolution (~ 98-100%) within 3 h of incubation in artificial lysosomal fluid. Results illustrate potential for NPs in consumer products to undergo significant transformation during use and exposure over short time periods. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11051-022-05527-y.
Collapse
Affiliation(s)
- Avery C Hatch
- Department of Chemistry, Elon University, Elon, NC 27244 USA
| | - Derek Peloquin
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Research Associate, Oak Ridge, USA
| | - Amar S Kumbar
- Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Todd P Luxton
- Center for Environmental Solutions and Environmental Response, Office of Research and Development, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224 USA
| | - Justin G Clar
- Department of Chemistry, Elon University, Elon, NC 27244 USA
| |
Collapse
|
3
|
Hong H, Adam V, Nowack B. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO 2 , and Nano-ZnO) in European Freshwaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2629-2639. [PMID: 34171135 PMCID: PMC8457094 DOI: 10.1002/etc.5146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
The release of engineered nanomaterials (ENMs) to the environment necessitates an assessment of their environmental risks. The currently available environmental risk assessments (ERA) for ENMs are based on an analysis of the total flows of a specific ENM to the environment and on ecotoxicity studies performed with pristine ENMs. It is known that ENMs undergo transformation during product use and release and in technical systems such as wastewater treatment. The aim of the present study was therefore to perform an ERA of 3 ENMs (nano-Ag, nano-TiO2 , and nano-ZnO) based on a form-specific release model and a form-specific analysis of ecotoxicological data. Predicted environmental concentration values were derived using a form-specific material flow model. Species sensitivity distributions were used to derive predicted-no-effect concentrations (PNECs) for the pristine ENMs and for dissolved and transformed Ag and ZnO. For all ENMs, the matrix-embedded form was included in the assessment. A probabilistic assessment was applied, yielding final probability distributions for the risk characterization ratio (RCR). For nano-Ag, the form-specific assessment resulted in a decrease of the mean RCR from 0.061 for the approach neglecting the different release forms to 0.034 because of the much lower PNEC of transformed Ag. Likewise, for nano-ZnO, the form-specific approach reduced the mean RCR from 1.2 to 0.86. For nano-TiO2 , the form-specific assessment did not change the mean RCR of 0.026. This analysis shows that a form-specific approach can have an influence on the assessment of the environmental risks of ENMs and that, given the availability of form-specific release models, an updated ERA for ENMs can be performed. Environ Toxicol Chem 2021;40:2629-2639. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hyunjoo Hong
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society LaboratorySt. GallenSwitzerland
| | - Véronique Adam
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society LaboratorySt. GallenSwitzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society LaboratorySt. GallenSwitzerland
| |
Collapse
|
4
|
Morka KD, Wernecki M, Kędziora A, Książczyk M, Dudek B, Gerasymchuk Y, Lukowiak A, Bystroń J, Bugla-Płoskońska G. The Impact of Graphite Oxide Nanocomposites on the Antibacterial Activity of Serum. Int J Mol Sci 2021; 22:7386. [PMID: 34299005 PMCID: PMC8304721 DOI: 10.3390/ijms22147386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Nanoparticles can interact with the complement system and modulate the inflammatory response. The effect of these interactions on the complement activity strongly depends on physicochemical properties of nanoparticles. The interactions of silver nanoparticles with serum proteins (particularly with the complement system components) have the potential to significantly affect the antibacterial activity of serum, with serious implications for human health. The aim of the study was to assess the influence of graphite oxide (GO) nanocomposites (GO, GO-PcZr(Lys)2-Ag, GO-Ag, GO-PcZr(Lys)2) on the antibacterial activity of normal human serum (NHS), serum activity against bacteria isolated from alveoli treated with nanocomposites, and nanocomposite sensitivity of bacteria exposed to serum in vitro (using normal human serum). Additionally, the in vivo cytotoxic effect of the GO compounds was determined with application of a Galleria mellonella larvae model. GO-PcZr(Lys)2, without IR irradiation enhance the antimicrobial efficacy of the human serum. IR irradiation enhances bactericidal activity of serum in the case of the GO-PcZr(Lys)2-Ag sample. Bacteria exposed to nanocomposites become more sensitive to the action of serum. Bacteria exposed to serum become more sensitive to the GO-Ag sample. None of the tested GO nanocomposites displayed a cytotoxicity towards larvae.
Collapse
Affiliation(s)
- Katarzyna Dorota Morka
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Maciej Wernecki
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Anna Kędziora
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Marta Książczyk
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Yuriy Gerasymchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wrocław, Poland; (Y.G.); (A.L.)
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wrocław, Poland; (Y.G.); (A.L.)
| | - Jarosław Bystroń
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| |
Collapse
|
5
|
Galúcio JMP, de Souza SGB, Vasconcelos AA, Lima AKO, da Costa KS, de Campos Braga H, Taube PS. Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles. Curr Pharm Biotechnol 2021; 23:420-443. [PMID: 34355680 DOI: 10.2174/1389201022666210521102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1-100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.
Collapse
Affiliation(s)
| | | | | | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
6
|
Sung LP, Chung YF, Goodwin DG, Petersen EJ, Hsueh HC, Stutzman P, Nguyen T, Thomas T. Selection of an Optimal Abrasion Wheel Type for Nano-Coating Wear Studies under Wet or Dry Abrasion Conditions. NANOMATERIALS 2020; 10:nano10081445. [PMID: 32722058 PMCID: PMC7466352 DOI: 10.3390/nano10081445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Nanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel. Potential limitations of different wheels include the release of fragments from the wheel during abrasion, wearing of the wheel from the abrasion process, or not releasing a sufficient number of particles for accurate quantitative analysis. In this study, we evaluated five different wheels, including a typically used silicon oxide-based commercial wheel and four wheels fabricated at the National Institute of Standards and Technology (NIST), for their application in nanocoating abrasion studies. A rapid, nondestructive laser scanning confocal microscopy method was developed and used to identify released particles on the abraded surfaces. NIST fabricated a high performing wheel: a noncorrosive, stainless-steel abrasion wheel containing a deep cross-patch. This wheel worked well under both wet and dry conditions, did not corrode in aqueous media, did not release particles from itself, and yielded higher numbers of released particles. These results can be used to help develop a standardized protocol for surface release of particles from nanoenabled products using a commercial rotary Taber abraser.
Collapse
Affiliation(s)
- Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Yu-Fan Chung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Elijah J. Petersen
- Materials Measurement Laboratory, NIST, Gaithersburg, MD 20899, USA
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Hsiang-Chun Hsueh
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Paul Stutzman
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Tinh Nguyen
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD 20814, USA;
| |
Collapse
|
7
|
Ferdous Z, Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci 2020; 21:E2375. [PMID: 32235542 PMCID: PMC7177798 DOI: 10.3390/ijms21072375] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
| |
Collapse
|
8
|
Salieri B, Kaiser JP, Rösslein M, Nowack B, Hischier R, Wick P. Relative potency factor approach enables the use of in vitro information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment. Nanotoxicology 2020; 14:275-286. [DOI: 10.1080/17435390.2019.1710872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Beatrice Salieri
- Technology and Society Laboratory, Empa, St. Gallen, Switzerland
| | - Jean-Pierre Kaiser
- Particles-Biology Interactions Laboratory, Empa, St. Gallen, Switzerland
| | - Matthias Rösslein
- Particles-Biology Interactions Laboratory, Empa, St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa, St. Gallen, Switzerland
| | - Roland Hischier
- Technology and Society Laboratory, Empa, St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa, St. Gallen, Switzerland
| |
Collapse
|
9
|
Zepp R, Ruggiero E, Acrey B, Davis MJB, Han C, Hsieh HS, Vilsmeier K, Wohlleben W, Sahle-Demessie E. Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1742-1758. [PMID: 33564464 PMCID: PMC7869489 DOI: 10.1039/c9en01360a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.
Collapse
Affiliation(s)
- Richard Zepp
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Brad Acrey
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Mary J B Davis
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Changseok Han
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
- EPA, ORD, Center for Environmental Solutions and Emergency Response (CESER), Cincinnati, OH, USA
- Department of Environmental Engineering, INHA University, Incheon, Korea
| | - Hsin-Se Hsieh
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
10
|
Wohlleben W, Hellack B, Nickel C, Herrchen M, Hund-Rinke K, Kettler K, Riebeling C, Haase A, Funk B, Kühnel D, Göhler D, Stintz M, Schumacher C, Wiemann M, Keller J, Landsiedel R, Broßell D, Pitzko S, Kuhlbusch TAJ. The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. NANOSCALE 2019; 11:17637-17654. [PMID: 31539006 DOI: 10.1039/c9nr03306h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The project nanoGRAVUR (BMBF, 2015-2018) developed a framework for grouping of nanomaterials. Different groups may result for each of the three distinct perspectives of occupational, consumer and environmental safety. The properties, methods and descriptors are harmonised between the three perspectives and are based on: Tier 1 intrinsic physico-chemical properties (what they are) or GHS classification of the non-nano-form (human tox, ecotox, physical hazards); Tier 2 extrinsic physico-chemical properties, release from nano-enabled products, in vitro assays with cells (where they go; what they do); Tier 3 case-specific tests, potentially in vivo studies to substantiate the similarity within groups or application-specific exposure testing. Amongst all properties, dissolution and transformation are least modulated by different nanoforms within one substance, whereas dustiness, dispersion stability, abiotic and especially in vitro surface reactivity vary more often between different nanoforms. The methods developed or selected by nanoGRAVUR fill several gaps highlighted in the ProSafe reviews, and are useful to implement (i) the concept of nanoforms of the European Chemicals Agency (ECHA) and (ii) the concept of discrete forms of the United States Environmental Protection Agency (EPA). One cannot assess the significance of a dissimilarity, if the dynamic range of that property is unknown. Benchmark materials span dynamic ranges that enable us to establish bands, often with order-of-magnitude ranges. In 34 case studies we observed high biological similarity within each substance when we compared different (nano)forms of SiO2, BaSO4, kaolin, CeO2, ZnO, organic pigments, especially when we compared forms that are all untreated on the surface. In contrast, different Fe2O3 or TiO2 (nano)forms differ more significantly. The same nanoforms were also integrated in nano-enabled products (NEPs) for automotive coatings, clinker-reduced cements, cosmetic sunscreen, and lightweight polymers.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Material Physics and Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petersen EJ, Hirsch C, Elliott JT, Krug HF, Aengenheister L, Arif AT, Bogni A, Kinsner-Ovaskainen A, May S, Walser T, Wick P, Roesslein M. Cause-and-Effect Analysis as a Tool To Improve the Reproducibility of Nanobioassays: Four Case Studies. Chem Res Toxicol 2019; 33:1039-1054. [DOI: 10.1021/acs.chemrestox.9b00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elijah J. Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Cordula Hirsch
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland
| | - John T. Elliott
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Harald F. Krug
- NanoCASE GmbH, St. Gallerstr. 58, 9032 Engelburg, Switzerland
| | - Leonie Aengenheister
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Ali Talib Arif
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga, Sulaimani, Iraq
| | - Alessia Bogni
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | - Sarah May
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland
| | | | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Matthias Roesslein
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
12
|
Morphological Transformation of Silver Nanoparticles from Commercial Products: Modeling from Product Incorporation, Weathering through Use Scenarios, and Leaching into Wastewater. NANOMATERIALS 2019; 9:nano9091258. [PMID: 31491889 PMCID: PMC6781014 DOI: 10.3390/nano9091258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/31/2022]
Abstract
There is increasing interest in the environmental fate and effects of engineered nanomaterials due to their ubiquitous use in consumer products. In particular, given the mounting evidence that dramatic transformations can occur to a nanomaterial throughout its product lifecycle, the appropriateness of using pristine nanomaterials in environmental testing is being questioned. Using a combination of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-mass spectrometry (ICP-MS), this work examines the morphological and compositional effects of conditions mimicking a typical lifecycle of a nano-enabled product, from the production of the silver nanoparticle (AgNP)-laden textiles, through its use, laundering, and then finally, its leaching and incubation in the wastewater collection system. These simulated weathering conditions showed evidence for the transformation of AgNPs into AgCl and Ag2S. Incubation in raw wastewater had the most dramatic effect on the AgNPs in terms of transformation, no matter what initial weathering was applied to the NPs prior to incubation. However, despite extensive transformation noted, AgNPs were still present within all the samples after the use scenarios.
Collapse
|
13
|
De Matteis V, Cascione M, Toma CC, Pellegrino P, Rizzello L, Rinaldi R. Tailoring Cell Morphomechanical Perturbations Through Metal Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:109. [PMID: 30923929 PMCID: PMC6439097 DOI: 10.1186/s11671-019-2941-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/14/2019] [Indexed: 05/17/2023]
Abstract
The nowadays growing use of nanoparticles (NPs) in commercial products does not match a comprehensive understanding of their potential harmfulness. More in vitro investigations are required to address how the physicochemical properties of NPs guide their engulfment within cells and their intracellular trafficking, fate, and toxicity. These nano-bio interactions have not been extensively addressed yet, especially from a mechanical viewpoint. Cell mechanic is a critical indicator of cell health because it regulates processes like cell migration, tissue integrity, and differentiation via cytoskeleton rearrangements. Here, we investigated in vitro the elasticity perturbation of Caco-2 and A549 cell lines, in terms of Young's modulus modification induced by SiO2NPS and TiO2NPS. TiO2NPs demonstrated stronger effects on cell elasticity compared to SiO2NPs, as they induced significant morphological and morphometric changes in actin network. TiO2NPS increased the elasticity in Caco-2 cells, while opposite effects have been observed on A549 cells. These results demonstrate the existence of a correlation between the alteration of cell elasticity and NPs toxicity that depends, in turn, on the NPs physicochemical properties and the specific cell tested.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Loris Rizzello
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| |
Collapse
|
14
|
Lahiani MH, Khare S, Cerniglia CE, Boy R, Ivanov IN, Khodakovskaya M. The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. NANOSCALE 2019; 11:3639-3655. [PMID: 30741296 DOI: 10.1039/c8nr08604d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) can positively regulate seed germination and enhance plant growth. However, clarification of the impact of plant organs containing absorbed CNMs on animal and human health is a critical step of risk assessment for new nano-agro-technology. In this study, we have taken a comprehensive approach to studying the effect tomato fruits derived from plants exposed to multi-walled carbon nanotubes (CNTs) have on gastrointestinal epithelial barrier integrity and their impact on the human commensal intestinal microbiota using an in vitro cell culture and batch human fecal suspension models. The effects of CNTs on selected pure cultures of Salmonella enterica Typhimurium and Lactobacillus acidophilus were also evaluated. This study demonstrated that CNT-containing fruits or the corresponding residual level of pure CNTs (0.001 μg ml-1) was not sufficient to initiate a significant change in transepithelial resistance and on gene expression of the model T-84 human intestinal epithelial cells. However, at 10 μg ml-1 concentration CNTs were able to penetrate the cell membrane and change the gene expression profile of exposed cells. Moreover, extracts from CNT-containing fruits had minimal to no effect on human intestinal microbiota as revealed by culture-based analysis and 16S rRNA sequencing.
Collapse
MESH Headings
- Cell Line
- Feces/microbiology
- Fruit/chemistry
- Fruit/metabolism
- Gastrointestinal Microbiome/drug effects
- Humans
- Intestinal Mucosa/cytology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Lactobacillus acidophilus/drug effects
- Lactobacillus acidophilus/genetics
- Solanum lycopersicum/chemistry
- Solanum lycopersicum/metabolism
- Nanotubes, Carbon/chemistry
- Nanotubes, Carbon/toxicity
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Sequence Analysis, DNA
- Spectrum Analysis, Raman
Collapse
Affiliation(s)
- Mohamed H Lahiani
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Amorim MJB, Lin S, Schlich K, Navas JM, Brunelli A, Neubauer N, Vilsmeier K, Costa AL, Gondikas A, Xia T, Galbis L, Badetti E, Marcomini A, Hristozov D, Kammer FVD, Hund-Rinke K, Scott-Fordsmand JJ, Nel A, Wohlleben W. Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1514-1524. [PMID: 29376638 DOI: 10.1021/acs.est.7b04122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al. Meeting the Needs for Released Nanomaterials Required for Further Testing: The SUN Approach. Environmental Science & Technology, 2016 (50), 2747). The NEPs were composed of four matrices (epoxy, polyolefin, polyoxymethylene, and cement) with up to 5% content of three nanomaterials (carbon nanotubes, iron oxide, and organic pigment). Regardless of the type of nanomaterial or matrix used, it was observed that nanomaterials were only partially exposed at the NEP fragment surface, indicating that mostly the intrinsic and extrinsic properties of the matrix drove the NEP fragment toxicity. Ecotoxicity in multiple assays was done covering relevant media from terrestrial to aquatic, including sewage treatment plant (biological activity), soil worms (Enchytraeus crypticus), and fish (zebrafish embryo and larvae and trout cell lines). We designed the studies to explore the possible modulation of ecotoxicity by nanomaterial additives in plastics/polymer/cement, finding none. The results support NEPs grouping by the matrix material regarding ecotoxicological effect during the use phase. Furthermore, control results on nanomaterial-free polymer fragments representing microplastic had no significant adverse effects up to the highest concentration tested.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology and CESAM, University of Aveiro , 3810-193, Aveiro, Portugal
| | - Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai 200092, China
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Karsten Schlich
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - José M Navas
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Centra De la Coruña Km 7.5, E-28040 Madrid, Spain
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Nicole Neubauer
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Klaus Vilsmeier
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Anna L Costa
- National Research Council of Italy, Institute of Science and Technology for Ceramics (CNR-ISTEC) , Via Granarolo, 64, I-48018 Faenza, Italy
| | - Andreas Gondikas
- Department of Environmental Geosciences, University of Vienna , 1090 Vienna, Austria
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Liliana Galbis
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Centra De la Coruña Km 7.5, E-28040 Madrid, Spain
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics (DAIS), University Ca' Foscari of Venice , Via Torino 155, 30170 Venice Mestre, Italy
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna , 1090 Vienna, Austria
| | - Kerstin Hund-Rinke
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | | | - André Nel
- Division of NanoMedicine, Department of Medicine, Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Wendel Wohlleben
- Department of Material Physics, BASF SE , Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
- Department of Experimental Toxicology and Ecology, BASF SE , D-67056 Ludwigshafen, Germany
| |
Collapse
|
16
|
Clar JG, Platten WE, Baumann EJ, Remsen A, Harmon SM, Bennett-Stamper CL, Thomas TA, Luxton TP. Dermal transfer and environmental release of CeO 2 nanoparticles used as UV inhibitors on outdoor surfaces: Implications for human and environmental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:714-723. [PMID: 28938214 PMCID: PMC6738344 DOI: 10.1016/j.scitotenv.2017.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 05/30/2023]
Abstract
A major area of growth for "nano-enabled" consumer products have been surface coatings, including paints stains and sealants. Ceria (CeO2) nanoparticles (NPs) are of interest as they have been used as additives in these these products to increase UV resistance. Currently, there is a lack of detailed information on the potential release, and speciation (i.e., ion vs. particle) of CeO2 NPs used in consumer-available surface coatings during intended use scenarios. In this study, both Micronized-Copper Azole pressure-treated lumber (MCA), and a commercially available composite decking were coated with CeO2 NPs dispersed in Milli-Q water or wood stain. Coated surfaces were divided into two groups. The first was placed outdoors to undergo environmental weathering, while the second was placed indoors to act as experimental controls. Both weathered surfaces and controls were sampled over a period of 6months via simulated dermal contact using methods developed by the Consumer Product Safety Commission (CPSC). The size and speciation of material released was determined through sequential filtration, total metals analysis, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. The total ceria release from MCA coated surfaces was found to be dependent on dispersion matrix with aqueous applications releasing greater quantities of CeO2 than stain based applications, 66±12mg/m2 and 36±7mg/m2, respectively. Additionally, a substantial quantity of CeO2 was reduced to Ce(III), present as Ce(III)-organic complexes, over the 6-month experimental period in aqueous based applications.
Collapse
Affiliation(s)
- Justin G Clar
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education (ORISE), Postdoctoral Research Associate, USA
| | | | | | - Andrew Remsen
- Pegasus Technical Services Inc., Cincinnati, OH, USA
| | - Steve M Harmon
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA
| | - Christina L Bennett-Stamper
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA
| | - Treye A Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, 4330 East West Highway, Bethesda, MD 20814, USA
| | - Todd P Luxton
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA.
| |
Collapse
|
17
|
Pappus SA, Mishra M. A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:311-322. [DOI: 10.1007/978-3-319-72041-8_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
De Matteis V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. TOXICS 2017; 5:toxics5040029. [PMID: 29051461 PMCID: PMC5750557 DOI: 10.3390/toxics5040029] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
The development of different kinds of nanoparticles, showing different physico-chemical properties, has fostered their large use in many fields, including medicine. As a consequence, inorganic nanoparticles (e.g., metals or semiconductors), have raised issues about their potential toxicity. The scientific community is investigating the toxicity mechanisms of these materials, in vitro and in vivo, in order to provide accurate references concerning their use. This review will give the readers a thorough exploration on the entry mechanisms of inorganic nanoparticles in the human body, such as titanium dioxide nanoparticles (TiO₂NPs), silicon dioxide nanoparticles (SiO₂NPs), zinc oxide nanoparticles (ZnONPs), silver nanoparticles (AgNPs), gold nanoparticles (AuNPs) and quantum dots (QDsNPs). In addition, biodistribution, the current trends and novelties of in vitro and in vivo toxicology studies will be discussed, with a particular focus on immune response.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
19
|
Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnology 2017; 15:5. [PMID: 28061858 PMCID: PMC5219688 DOI: 10.1186/s12951-016-0244-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nanosilver shows great promise for use in industrial, consumer or medical products because of its antimicrobial properties. However, the underlying mechanisms of the effects of silver nanoparticles on human cells are still controversial. Therefore, in the present study the influence of the chloride concentration and different serum content of culture media on the cytotoxic effects of nanosilver was systematically evaluated. RESULTS Our results show that nanosilver toxicity was strongly affected by the composition of the culture media. The chloride concentration, as well as the carbon content affected the silver agglomeration and the complex formation. But also the dissolution of nanosilver and the availability of free silver ions (Ag+) were severely affected by the compositions of the culture media. Cells, only exposed to silver particles in suspension and dissolved silver complexes, did not show any effects under all conditions. Nanosilver agglomerates and silver complexes were not very soluble. Thus, cells growing on the bottom of the culture dishes were exposed to sedimented nanosilver agglomerates and precipitated silver complexes. Locally, the concentration of silver on the cell surface was very high, much higher compared the silver concentration in the bulk solution. The cytotoxic effects of nanosilver are therefore a combination of precipitated silver complexes and organic silver compounds rather than free silver ions. CONCLUSIONS Silver coatings are used in health care products due to their bacteriostatic or antibacterial properties. The assessment of the toxicity of a certain compound is mostly done using in vitro assays. Therefore, cytotoxicity studies of nanosilver using human cell cultures have to be undertaken under well controlled and understood cultivations conditions in order to improve the compatibility of different studies. Especially when eukaryotic versus prokaryotic systems are compared for the evaluation of the use of nanosilver as antibacterial coatings for implants in order to prevent bacterial colonization.
Collapse
Affiliation(s)
- Jean-Pierre Kaiser
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Matthias Roesslein
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Liliane Diener
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Adrian Wichser
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
20
|
Schulte PA, Roth G, Hodson LL, Murashov V, Hoover MD, Zumwalde R, Kuempel ED, Geraci CL, Stefaniak AB, Castranova V, Howard J. Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:159. [PMID: 27594804 PMCID: PMC5007006 DOI: 10.1007/s11051-016-3459-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.
Collapse
Affiliation(s)
- P. A. Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - G. Roth
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - L. L. Hodson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - V. Murashov
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - M. D. Hoover
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - R. Zumwalde
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - E. D. Kuempel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - C. L. Geraci
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - A. B. Stefaniak
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - V. Castranova
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - J. Howard
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
21
|
Fröhlich EE, Fröhlich E. Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota. Int J Mol Sci 2016; 17:509. [PMID: 27058534 PMCID: PMC4848965 DOI: 10.3390/ijms17040509] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/15/2023] Open
Abstract
Toxicity of nanoparticles (NPs) upon oral exposure has been studied in animals using physiological changes, behavior, histology, and blood analysis for evaluation. The effects recorded include the combination of the action on cells of the exposed animal and the reaction of the microorganisms that populate the external and internal surfaces of the body. The importance of these microorganisms, collectively termed as microbiota, for the health of the host has been widely recognized. They may also influence toxicity of NPs but these effects are difficult to differentiate from toxicity on cells of the gastrointestinal tract. To estimate the likelihood of preferential damage of the microbiota by NPs the relative sensitivity of enterocytes and bacteria was compared. For this comparison NPs with antimicrobial action present in consumer products were chosen. The comparison of cytotoxicity with Escherichia coli as representative for intestinal bacteria and on gastrointestinal cells revealed that silver NPs damaged bacteria at lower concentrations than enterocytes, while the opposite was true for zinc oxide NPs. These results indicate that silver NPs may cause adverse effects by selectively affecting the gut microbiota. Fecal transplantation from NP-exposed animals to unexposed ones offers the possibility to verify this hypothesis.
Collapse
Affiliation(s)
- Esther E Fröhlich
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz A-8010, Austria.
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, Graz A-8010, Austria.
| |
Collapse
|
22
|
Nowack B, Boldrin A, Caballero A, Hansen SF, Gottschalk F, Heggelund L, Hennig M, Mackevica A, Maes H, Navratilova J, Neubauer N, Peters R, Rose J, Schäffer A, Scifo L, van Leeuwen SV, von der Kammer F, Wohlleben W, Wyrwoll A, Hristozov D. Meeting the Needs for Released Nanomaterials Required for Further Testing-The SUN Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2747-2753. [PMID: 26866387 DOI: 10.1021/acs.est.5b04472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The analysis of the potential risks of engineered nanomaterials (ENM) has so far been almost exclusively focused on the pristine, as-produced particles. However, when considering a life-cycle perspective, it is clear that ENM released from genuine products during manufacturing, use, and disposal is far more relevant. Research on the release of materials from nanoproducts is growing and the next necessary step is to investigate the behavior and effects of these released materials in the environment and on humans. Therefore, sufficient amounts of released materials need to be available for further testing. In addition, ENM-free reference materials are needed since many processes not only release ENM but also nanosized fragments from the ENM-containing matrix that may interfere with further tests. The SUN consortium (Project on "Sustainable Nanotechnologies", EU seventh Framework funding) uses methods to characterize and quantify nanomaterials released from composite samples that are exposed to environmental stressors. Here we describe an approach to provide materials in hundreds of gram quantities mimicking actual released materials from coatings and polymer nanocomposites by producing what is called "fragmented products" (FP). These FP can further be exposed to environmental conditions (e.g., humidity, light) to produce "weathered fragmented products" (WFP) or can be subjected to a further size fractionation to isolate "sieved fragmented products" (SFP) that are representative for inhalation studies. In this perspective we describe the approach, and the used methods to obtain released materials in amounts large enough to be suitable for further fate and (eco)toxicity testing. We present a case study (nanoparticulate organic pigment in polypropylene) to show exemplarily the procedures used to produce the FP. We present some characterization data of the FP and discuss critically the further potential and the usefulness of the approach we developed.
Collapse
Affiliation(s)
- Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Alessio Boldrin
- Technical University of Denmark , Department of Environmental Engineering, 2800 Kgs. Lyngby, Denmark
| | - Alejandro Caballero
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Steffen Foss Hansen
- Technical University of Denmark , Department of Environmental Engineering, 2800 Kgs. Lyngby, Denmark
| | | | - Laura Heggelund
- Technical University of Denmark , Department of Environmental Engineering, 2800 Kgs. Lyngby, Denmark
| | - Michael Hennig
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Aiga Mackevica
- Technical University of Denmark , Department of Environmental Engineering, 2800 Kgs. Lyngby, Denmark
| | - Hanna Maes
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Jana Navratilova
- University of Vienna , Department of Environmental Geosciences, A-1090 Vienna, Austria
| | | | - Ruud Peters
- RIKILT, Wageningen University and Research Centre , Wageningen, Netherlands
| | - Jerome Rose
- CEREGE CNRS - IRD - Aix Marseille Université, 13545 Aix-en-Provence, France
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Lorette Scifo
- CEREGE CNRS - IRD - Aix Marseille Université, 13545 Aix-en-Provence, France
| | | | - Frank von der Kammer
- University of Vienna , Department of Environmental Geosciences, A-1090 Vienna, Austria
| | | | - Anne Wyrwoll
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice , Venice, Italy
| |
Collapse
|
23
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
24
|
Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles. Toxicol In Vitro 2015. [DOI: 10.1016/j.tiv.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Smulders S, Larue C, Sarret G, Castillo-Michel H, Vanoirbeek J, Hoet PH. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett 2015; 238:1-6. [DOI: 10.1016/j.toxlet.2015.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022]
|
26
|
Hincapié I, Caballero-Guzman A, Hiltbrunner D, Nowack B. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 43:398-406. [PMID: 26164852 DOI: 10.1016/j.wasman.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
One sector where the use of engineered nanomaterials (ENMs) is supposed to offer novel or improved functionalities is the construction industry. During the renovation or demolition of buildings, ENMs contained in former construction materials will enter recycling systems or become construction waste. Currently, information about ENM flows in these processes is insufficient. The potential for the release of ENMs from this waste into the environment is unknown, as are the environmental impacts. To evaluate whether there is currently any nano-relevant construction and demolition waste (C&DW) originating from buildings, we evaluated the sources and flows of ENMs in C&DW and identified their potential exposure pathways. A survey of business representatives of Swiss companies in this sector found that ENMs are mainly used in paints and cement. The most frequently used ENMs in the Swiss housing construction industry are nano-TiO2, nano-SiO2, nano-ZnO, and nano-Ag. Using a bottom-up, semi-quantitative approach, we estimated the flows of ENMs contained in paints along the product's life cycle from buildings to recycling and landfill. The flows of ENMs are determined by their associated flows of building materials. We estimated an annual amount of ENMs used in paints of 14t of TiO2, 12t of SiO2, 5t of ZnO, and 0.2t of Ag. The majority of ENMs contained in paints in Switzerland enter recycling systems (23t/y), a smaller amount is disposed directly in landfills (7t/y), and a tiny fraction of ENM waste is incinerated (0.01t/y). Our results allow a qualitative determination of the potential release of ENMs into technical or environmental compartments, with the highest potential release expected during recycling.
Collapse
Affiliation(s)
- Ingrid Hincapié
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Alejandro Caballero-Guzman
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - David Hiltbrunner
- FOEN, Swiss Federal Office for the Environment, Waste and Resources Division, Worblentalstrasse 68, CH-3063 Ittigen, Switzerland
| | - Bernd Nowack
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
27
|
Arts JHE, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 2015; 71:S1-27. [PMID: 25818068 DOI: 10.1016/j.yrtph.2015.03.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources.
Collapse
Affiliation(s)
- Josje H E Arts
- AkzoNobel, Technology and Engineering, Arnhem, Netherlands
| | - Mackenzie Hadi
- Shell Health, Shell International B.V., The Hague, Netherlands
| | | | | | | | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - David Warheit
- DuPont Haskell Global Centers for HES, Newark, DE, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Eberle AL, Mikula S, Schalek R, Lichtman J, Tate MLK, Zeidler D. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J Microsc 2015; 259:114-120. [PMID: 25627873 PMCID: PMC4670696 DOI: 10.1111/jmi.12224] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 01/25/2023]
Abstract
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers.
Collapse
Affiliation(s)
- A L Eberle
- Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| | - S Mikula
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - R Schalek
- Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts, U.S.A
| | - J Lichtman
- Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts, U.S.A
| | - M L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - D Zeidler
- Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| |
Collapse
|
30
|
Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S, Arroyo Y, Golanski L, Nowack B. Characterization of materials released into water from paint containing nano-SiO2. CHEMOSPHERE 2015; 119:1314-1321. [PMID: 24630447 DOI: 10.1016/j.chemosphere.2014.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 05/29/2023]
Abstract
In order to assess the possible risks of applications containing engineered nanomaterials, it is essential to generate more data about their release and exposure, so far largely overlooked areas of research. The aim of this work was to study the characterization of the materials released from paint containing nano-SiO2 during weathering and exposure to water. Panels coated with nano-SiO2 containing paint and a nano-free reference paint were exposed to accelerated weathering cycles in a climate chamber. The total release of 89 six-hour cycles of UV-illumination and precipitation was 2.3% of the total SiO2 contained in the paint. Additional tests with powdered and aged paint showed that the majority of the released Si was present in dissolved form and that only a small percentage was present in particulate and nano-particulate form. TEM imaging of the leachates indicated that the majority of the particulate Si was contained in composites together with Ca, representing the paint matrix, and only few single dispersed SiO2-NPs were detected. The results suggest that toxicological and ecotoxicological studies need to consider that the released particles may have been transformed or are embedded in a matrix.
Collapse
Affiliation(s)
- Ahmed Al-Kattan
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland; Empa, Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Adrian Wichser
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roger Vonbank
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Building Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Samuel Brunner
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Building Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Andrea Ulrich
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Stefano Zuin
- Venice Research Consortium, Via della Libertà 12, c/o VEGA Park, 30175 Venice, Italy
| | - Yadira Arroyo
- Empa, Swiss Federal Laboratories for Material Science and Technology, Electron Microscopy Center, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Luana Golanski
- CEA Commissariat à l'Energie Atomique et aux Energies Alternatives, rue des Martyrs 17, 38000 Grenoble, France
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
31
|
Smulders S, Luyts K, Brabants G, Golanski L, Martens J, Vanoirbeek J, Hoet PH. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicol Lett 2015; 232:333-9. [DOI: 10.1016/j.toxlet.2014.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 11/08/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|