1
|
Reguzova A, Müller M, Pagallies F, Burri D, Salomon F, Rziha HJ, Bittner-Schrader Z, Verstrepen BE, Böszörményi KP, Verschoor EJ, Gerhauser I, Elbers K, Esen M, Manenti A, Monti M, Rammensee HG, Derouazi M, Löffler MW, Amann R. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024; 9:191. [PMID: 39414789 PMCID: PMC11484955 DOI: 10.1038/s41541-024-00981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Among the common strategies to design next-generation COVID-19 vaccines is broadening the antigenic repertoire thereby aiming to increase efficacy against emerging variants of concern (VoC). This study describes a new Orf virus-based vector (ORFV) platform to design a multiantigenic vaccine targeting SARS-CoV-2 spike and nucleocapsid antigens. Vaccine candidates were engineered, either expressing spike protein (ORFV-S) alone or co-expressing nucleocapsid protein (ORFV-S/N). Mono- and multiantigenic vaccines elicited comparable levels of spike-specific antibodies and virus neutralization in mice. Results from a SARS-CoV-2 challenge model in hamsters suggest cross-protective properties of the multiantigenic vaccine against VoC, indicating improved viral clearance with ORFV-S/N, as compared to equal doses of ORFV-S. In a nonhuman primate challenge model, vaccination with the ORFV-S/N vaccine resulted in long-term protection against SARS-CoV-2 infection. These results demonstrate the potential of the ORFV platform for prophylactic vaccination and represent a preclinical development program supporting first-in-man studies with the multiantigenic ORFV vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Felix Pagallies
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Dominique Burri
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Ferdinand Salomon
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Zsofia Bittner-Schrader
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Knut Elbers
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
- ViraTherapeutics GmbH, Bundesstraße 27, 6063, Rum, Austria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen; Cluster of Excellence (EXC2124) "Controlling Microbes to Fight Infection", Tübingen, Germany
| | - Alessandro Manenti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Martina Monti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Hans-Georg Rammensee
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Madiha Derouazi
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Markus W Löffler
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
- Centre for Clinical Transfusion Medicine, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Pagallies F, Labisch JJ, Wronska M, Pflanz K, Amann R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024; 18:100474. [PMID: 38523620 PMCID: PMC10958475 DOI: 10.1016/j.jvacx.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
The Orf virus (ORFV) is a promising vector platform for the generation of vaccines against infectious diseases and cancer, highlighted by its progression to clinical testing phases. One of the critical steps during GMP manufacturing is the clarification of crude harvest because of the enveloped nature and large size of ORFV. This study presents the first description of ORFV clarification process from a HEK suspension batch process. We examined various filter materials, membrane pore sizes, harvest timings, and nuclease treatments. Employing the Ambr® crossflow system for high-throughput, small-volume experiments, we identified polypropylene-based Sartopure® PP3 filters as ideal. These filters, used in two consecutive stages with reducing pore sizes, significantly enhanced ORFV recovery and addressed scalability challenges. Moreover, we demonstrated that the time of harvest and the use of a nuclease play a decisive role to increase ORFV yields. With these findings, we were able to establish an efficient and scalable clarification process of ORFV derived from a suspension production process, essential for advancing ORFV vaccine manufacturing.
Collapse
Affiliation(s)
- Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Malgorzata Wronska
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| |
Collapse
|
3
|
do Nascimento GM, de Oliveira PSB, Butt SL, Diel DG. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front Immunol 2024; 15:1322879. [PMID: 38482020 PMCID: PMC10933025 DOI: 10.3389/fimmu.2024.1322879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Sebastian Britto de Oliveira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Salman Latif Butt
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Eilts F, Harsy YMJ, Lothert K, Pagallies F, Amann R, Wolff MW. An investigation of excipients for a stable Orf viral vector formulation. Virus Res 2023; 336:199213. [PMID: 37657509 PMCID: PMC10495626 DOI: 10.1016/j.virusres.2023.199213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany; PRiME Vector Technologies, Herrenberger Straße 24, Tuebingen 72070, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany.
| |
Collapse
|
5
|
Eilts F, Labisch JJ, Orbay S, Harsy YMJ, Steger M, Pagallies F, Amann R, Pflanz K, Wolff MW. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023:S0264-410X(23)00722-3. [PMID: 37353451 DOI: 10.1016/j.vaccine.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Jennifer J Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Lower Saxony, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany; Prime Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| |
Collapse
|
6
|
Rossi L, Tiecco G, Venturini M, Castelli F, Quiros-Roldan E. Human Orf with Immune-Mediated Reactions: A Systematic Review. Microorganisms 2023; 11:1138. [PMID: 37317112 DOI: 10.3390/microorganisms11051138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Background: Orf is a highly contagious zoonosis caused by Orf virus (ORFV), which is endemic in sheep and goats worldwide. Human Orf is usually a self-limiting disease, but potential complications, including immune-mediated reactions, may occur. Methods: We included all articles regarding Orf-associated immunological complications published in peer-reviewed medical journals. We conducted a literature search of the United States National Library of Medicine, PubMed, MEDLINE, PubMed Central, PMC, and the Cochrane Controlled Trials. Results: A total of 16 articles and 44 patients were included, prevalently Caucasian (22, 95.7%) and female (22, 57.9%). The prevailing immunological reaction was erythema multiforme (26, 59.1%), followed by bullous pemphigoid (7, 15.9%). In most cases, the diagnosis was made on the basis of clinical and epidemiological history (29, 65.9%), while a biopsy of secondary lesions was performed in 15 patients (34.1%). A total of 12 (27.3%) patients received a local or systemic treatment for primary lesions. Surgical removal of primary lesion was described in two cases (4.5%). Orf-immune-mediated reactions were treated in 22 cases (50.0%), mostly with topical corticosteroids (12, 70.6%). Clinical improvement was reported for all cases. Conclusions: Orf-related immune reactions can have a varied clinical presentation, and it is important for clinicians to be aware of this in order to make a prompt diagnosis. The main highlight of our work is the presentation of complicated Orf from an infectious diseases specialist's point of view. A better understanding of the disease and its complications is essential to achieve the correct management of cases.
Collapse
Affiliation(s)
- Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia, 25123 Brescia, Italy
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
do Nascimento GM, Bugybayeva D, Patil V, Schrock J, Yadagiri G, Renukaradhya GJ, Diel DG. An Orf-Virus (ORFV)-Based Vector Expressing a Consensus H1 Hemagglutinin Provides Protection against Diverse Swine Influenza Viruses. Viruses 2023; 15:994. [PMID: 37112974 PMCID: PMC10147081 DOI: 10.3390/v15040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza A viruses (IAV-S) belonging to the H1 subtype are endemic in swine worldwide. Antigenic drift and antigenic shift lead to a substantial antigenic diversity in circulating IAV-S strains. As a result, the most commonly used vaccines based on whole inactivated viruses (WIVs) provide low protection against divergent H1 strains due to the mismatch between the vaccine virus strain and the circulating one. Here, a consensus coding sequence of the full-length of HA from H1 subtype was generated in silico after alignment of the sequences from IAV-S isolates obtained from public databases and was delivered to pigs using the Orf virus (ORFV) vector platform. The immunogenicity and protective efficacy of the resulting ORFVΔ121conH1 recombinant virus were evaluated against divergent IAV-S strains in piglets. Virus shedding after intranasal/intratracheal challenge with two IAV-S strains was assessed by real-time RT-PCR and virus titration. Viral genome copies and infectious virus load were reduced in nasal secretions of immunized animals. Flow cytometry analysis showed that the frequency of T helper/memory cells, as well as cytotoxic T lymphocytes (CTLs), were significantly higher in the peripheral blood mononuclear cells (PBMCs) of the vaccinated groups compared to unvaccinated animals when they were challenged with a pandemic strain of IAV H1N1 (CA/09). Interestingly, the percentage of T cells was higher in the bronchoalveolar lavage of vaccinated animals in relation to unvaccinated animals in the groups challenged with a H1N1 from the gamma clade (OH/07). In summary, delivery of the consensus HA from the H1 IAV-S subtype by the parapoxvirus ORFV vector decreased shedding of infectious virus and viral load of IAV-S in nasal secretions and induced cellular protective immunity against divergent influenza viruses in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Dina Bugybayeva
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Veerupaxagouda Patil
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Ganesh Yadagiri
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J. Renukaradhya
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Yu Y, Zhang F, Duan X, Yang C, Cui Y, Yu L. ORFV can carry TRAP gene expression via intracellular CRISPR/Cas9 gene editing technology. J Virol Methods 2023; 312:114652. [PMID: 36493528 DOI: 10.1016/j.jviromet.2022.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Orf is an acute and highly contracted human and animal infection caused by orf virus (ORFV), which mainly affects sheep, goats, and other species. Clinically, opportunistic or conditional pathogens such as Staphylococcus aureus (S. aureus) are often detected in cases of orf, which greatly increases the risk of disease progression and clinical death. It has been reported that TRAP gene products of S. aureus can broadly influence bacterial life and pathogenicity in vivo, and introduction of exogenous TRAP genes may help to inhibit the proliferation of bacteria. In order to achieve the combined control of ORFV and S. aureus, a novel approach to design a S. aureus TRAP gene vaccine using a live attenuated ORFV vector is proposed. In this study, CRISPR/Cas9 gene editing technology was used to disable vascular endothelial growth factor E of ORFV (VEGF-v) and introduced TRAP gene into this position. TRAP gene expression was detected in keratinocytes infected with recombinant virus. The construction and experimental verification of recombinant ORFV (ORFV-v/TRAP) will provide a reference for in-depth studies on the prevention and control of mixed infectious disease.
Collapse
Affiliation(s)
- YongZhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Fan Zhang
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Xuyang Duan
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - ChaoQun Yang
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - YuDong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| |
Collapse
|
9
|
Deletion of gene OV132 attenuates Orf virus more effectively than gene OV112. Appl Microbiol Biotechnol 2023; 107:835-851. [PMID: 36484827 PMCID: PMC9734686 DOI: 10.1007/s00253-022-12323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Orf virus (ORFV), a Parapoxvirus in Poxviridae, infects sheep and goats resulting in contagious pustular dermatitis. ORFV is regarded as a promising viral vector candidate for vaccine development and oncolytic virotherapy. Owing to their potential clinical application, safety concerns have become increasingly important. Deletion of either the OV132 (encoding vascular endothelial growth factor, VEGF) or OV112 (encoding the chemokine binding protein, CBP) genes reduced ORFV infectivity, which has been independently demonstrated in the NZ2 and NZ7 strains, respectively. This study revealed that the VEGF and CBP gene sequences of the local strain (TW/Hoping) shared a similarity of 47.01% with NZ2 and 90.56% with NZ7. Due to the high sequence divergence of these two immunoregulatory genes among orf viral strains, their contribution to the pathogenicity of Taiwanese ORFV isolates was comparatively characterized. Initially, two ORFV recombinants were generated, in which either the VEGF or CBP gene was deleted and replaced with the reporter gene EGFP. In vitro assays indicated that both the VEGF-deletion mutant ORFV-VEGFΔ-EGFP and the CBP deletion mutant ORFV-CBPΔ-EGFP were attenuated in cells. In particular, ORFV-VEGFΔ-EGFP significantly reduced plaque size and virus yield compared to ORFV-CBPΔ-EGFP and the wild-type control. Similarly, in vivo analysis revealed no virus yield in the goat skin biopsy infected by ORFV-VEGFΔ-EGFP, and significantly reduced the virus yield of ORFV-CBPΔ-EGFP relative to the wild-type control. These results confirmed the loss of virulence of both deletion mutants in the Hoping strain, whereas the VEGF-deletion mutant was more attenuated than the CBP deletion strain in both cell and goat models. KEY POINTS: • VEGF and CBP genes are crucial in ORFV pathogenesis in the TW/Hoping strain • The VEGF-deletion mutant virus was severely attenuated in both cell culture and animal models • Deletion mutant viruses are advantageous vectors for the development of vaccines and therapeutic regimens.
Collapse
|
10
|
Müller M, Reguzova A, Löffler MW, Amann R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front Immunol 2022; 13:873351. [PMID: 35615366 PMCID: PMC9124846 DOI: 10.3389/fimmu.2022.873351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Orf virus (ORFV)-based vectors are attractive for vaccine development as they enable the induction of potent immune responses against specific transgenes. Nevertheless, the precise mechanisms of immune activation remain unknown. This study therefore aimed to characterize underlying mechanisms in human immune cells. Methods Peripheral blood mononuclear cells were infected with attenuated ORFV strain D1701-VrV and analyzed for ORFV infection and activation markers. ORFV entry in susceptible cells was examined using established pharmacological inhibitors. Using the THP1-Dual™ reporter cell line, activation of nuclear factor-κB and interferon regulatory factor pathways were simultaneously evaluated. Infection with an ORFV recombinant encoding immunogenic peptides (PepTrio-ORFV) was used to assess the induction of antigen-specific CD8+ T cells. Results ORFV was found to preferentially target professional antigen-presenting cells (APCs) in vitro, with ORFV uptake mediated primarily by macropinocytosis. ORFV-infected APCs exhibited an activated phenotype, required for subsequent lymphocyte activation. Reporter cells revealed that the stimulator of interferon genes pathway is a prerequisite for ORFV-mediated cellular activation. PepTrio-ORFV efficiently induced antigen-specific CD8+ T cell recall responses in a dose-dependent manner. Further, activation and expansion of naïve antigen-specific CD8+ T cells was observed in response. Discussion Our findings confirm that ORFV induces a strong antigen-specific immune response dependent on APC uptake and activation. These data support the notion that ORFV D1701-VrV is a promising vector for vaccine development and the design of innovative immunotherapeutic applications.
Collapse
Affiliation(s)
- Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| |
Collapse
|
11
|
van Vloten JP, Minott JA, McAusland TM, Ingrao JC, Santry LA, McFadden G, Petrik JJ, Bridle BW, Wootton SK. Production and purification of high-titer OrfV for preclinical studies in vaccinology and cancer therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:434-447. [PMID: 34786436 PMCID: PMC8579082 DOI: 10.1016/j.omtm.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Poxviruses have been used extensively as vaccine vectors for human and veterinary medicine and have recently entered the clinical realm as immunotherapies for cancer. We present a comprehensive method for producing high-quality lots of the poxvirus Parapoxvirus ovis (OrfV) for use in preclinical models of vaccinology and cancer therapy. OrfV is produced using a permissive sheep skin-derived cell line and is released from infected cells by repeated freeze-thaw combined with sonication. We present two methods for isolation and purification of bulk virus. Isolated virus is concentrated to high titer using polyethylene glycol to produce the final in vivo-grade product. We also describe methods for quantifying OrfV infectious virions and determining genomic copy number to evaluate virus stocks. The methods herein will provide researchers with the ability to produce high-quality, high-titer OrfV for use in preclinical studies, and support the translation of OrfV-derived technologies into the clinic.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joelle C Ingrao
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Reguzova A, Fischer N, Müller M, Salomon F, Jaenisch T, Amann R. A Novel Orf Virus D1701-VrV-Based Dengue Virus (DENV) Vaccine Candidate Expressing HLA-Specific T Cell Epitopes: A Proof-of-Concept Study. Biomedicines 2021; 9:biomedicines9121862. [PMID: 34944678 PMCID: PMC8698572 DOI: 10.3390/biomedicines9121862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Although dengue virus (DENV) affects almost half of the world’s population there are neither preventive treatments nor any long-lasting and protective vaccines available at this time. The complexity of the protective immune response to DENV is still not fully understood. The most advanced vaccine candidates focus specifically on humoral immune responses and the production of virus-neutralizing antibodies. However, results from several recent studies have revealed the protective role of T cells in the immune response to DENV. Hence, in this study, we generated a novel and potent DENV vaccine candidate based on an Orf virus (ORFV, genus Parapoxvirus) vector platform engineered to encode five highly conserved or cross-reactive DENV human leukocyte antigen (HLA)-A*02- or HLA-B*07-restricted epitopes as minigenes (ORFV-DENV). We showed that ORFV-DENV facilitates the in vitro priming of CD8+ T cells from healthy blood donors based on responses to each of the encoded immunogenic peptides. Moreover, we demonstrated that peripheral blood mononuclear cells isolated from clinically confirmed DENV-positive donors stimulated with ORFV-DENV generate cytotoxic T cell responses to at least three of the expressed DENV peptides. Finally, we showed that ORFV-DENV could activate CD8+ T cells isolated from donors who had recovered from Zika virus (ZIKV) infection. ZIKV belongs to the same virus family (Flaviviridae) and has epitope sequences that are homologous to those of DENV. We found that highly conserved HLA-B*07-restricted ZIKV and DENV epitopes induced functional CD8+ T cell responses in PBMCs isolated from confirmed ZIKV-positive donors. In summary, this proof-of-concept study characterizes a promising new ORFV D1701-VrV-based DENV vaccine candidate that induces broad and functional epitope-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Nico Fischer
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Ferdinand Salomon
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Thomas Jaenisch
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
- Correspondence: ; Tel.: +49-707-1298-7614
| |
Collapse
|
13
|
Joshi LR, Knudsen D, Piñeyro P, Dhakal S, Renukaradhya GJ, Diel DG. Protective Efficacy of an Orf Virus-Vector Encoding the Hemagglutinin and the Nucleoprotein of Influenza A Virus in Swine. Front Immunol 2021; 12:747574. [PMID: 34804030 PMCID: PMC8602839 DOI: 10.3389/fimmu.2021.747574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Swine influenza is a highly contagious respiratory disease of pigs caused by influenza A viruses (IAV-S). IAV-S causes significant economic losses to the swine industry and poses challenges to public health given its zoonotic potential. Thus effective IAV-S vaccines are needed and highly desirable and would benefit both animal and human health. Here, we developed two recombinant orf viruses, expressing the hemagglutinin (HA) gene (OV-HA) or the HA and the nucleoprotein (NP) genes of IAV-S (OV-HA-NP). The immunogenicity and protective efficacy of these two recombinant viruses were evaluated in pigs. Both OV-HA and OV-HA-NP recombinants elicited robust virus neutralizing antibody response in pigs, with higher levels of neutralizing antibodies (NA) being detected in OV-HA-NP-immunized animals pre-challenge infection. Although both recombinant viruses elicited IAV-S-specific T-cell responses, the frequency of IAV-S-specific proliferating CD8+ T cells upon re-stimulation was higher in OV-HA-NP-immunized animals than in the OV-HA group. Importantly, IgG1/IgG2 isotype ELISAs revealed that immunization with OV-HA induced Th2-biased immune responses, whereas immunization with OV-HA-NP virus resulted in a Th1-biased immune response. While pigs immunized with either OV-HA or OV-HA-NP were protected when compared to non-immunized controls, immunization with OV-HA-NP resulted in incremental protection against challenge infection as evidenced by a reduced secondary antibody response (NA and HI antibodies) following IAV-S challenge and reduced virus shedding in nasal secretions (lower viral RNA loads and frequency of animals shedding viral RNA and infectious virus), when compared to animals in the OV-HA group. Interestingly, broader cross neutralization activity was also observed in serum of OV-HA-NP-immunized animals against a panel of contemporary IAV-S isolates representing the major genetic clades circulating in swine. This study demonstrates the potential of ORFV-based vector for control of swine influenza virus in swine.
Collapse
Affiliation(s)
- Lok R Joshi
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - David Knudsen
- Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Santosh Dhakal
- Department of Veterinary Preventive Medicine, Center for Food Animal Health, Ohio State University, Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Department of Veterinary Preventive Medicine, Center for Food Animal Health, Ohio State University, Wooster, OH, United States
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
14
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
15
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
16
|
Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J Virol 2020; 94:JVI.00398-20. [PMID: 32404527 DOI: 10.1128/jvi.00398-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors.IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.
Collapse
|
17
|
Reguzova A, Ghosh M, Müller M, Rziha HJ, Amann R. Orf Virus-Based Vaccine Vector D1701-V Induces Strong CD8+ T Cell Response against the Transgene but Not against ORFV-Derived Epitopes. Vaccines (Basel) 2020; 8:E295. [PMID: 32531997 PMCID: PMC7349966 DOI: 10.3390/vaccines8020295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023] Open
Abstract
The potency of viral vector-based vaccines depends on their ability to induce strong transgene-specific immune response without triggering anti-vector immunity. Previously, Orf virus (ORFV, Parapoxvirus) strain D1701-V was reported as a novel vector mediating protection against viral infections. The short-lived ORFV-specific immune response and the absence of virus neutralizing antibodies enables repeated immunizations and enhancement of humoral immune responses against the inserted antigens. However, only limited information exists about the D1701-V induced cellular immunity. In this study we employed major histocompatibility complex (MHC) ligandomics and immunogenicity analysis to identify ORFV-specific epitopes. Using liquid chromatography-tandem mass spectrometry we detected 36 ORFV-derived MHC I peptides, originating from various proteins. Stimulated splenocytes from ORFV-immunized mice did not exhibit specific CD8+ T cell responses against the tested peptides. In contrast, immunization with ovalbumin-expressing ORFV recombinant elicited strong SIINFEKL-specific CD8+ T lymphocyte response. In conclusion, our data indicate that cellular immunity to the ORFV vector is negligible, while strong CD8+ T cell response is induced against the inserted transgene. These results further emphasize the ORFV strain D1701-V as an attractive vector for vaccine development. Moreover, the presented experiments describe prerequisites for the selection of T cell epitopes exploitable for generation of ORFV-based vaccines by reverse genetics.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.G.); (M.M.); (H.-J.R.)
| |
Collapse
|
18
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
19
|
Wang R, Wang Y, Liu F, Luo S. Orf virus: A promising new therapeutic agent. Rev Med Virol 2018; 29:e2013. [PMID: 30370570 DOI: 10.1002/rmv.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The orf virus (ORFV) is a zoonotic, epitheliotropic, DNA parapoxvirus that infects principally sheep and goats. Exposure of animals to the virus or immunization by an ORFV preparation can accentuate the severity of disease, which has provoked an interest in the underlying cellular, virological, and molecular mechanisms. The identified ORFV virulence genes and the fact that the virus can repeatedly infect a host, owing to its evasive mechanisms, contribute to the development of potent immune modulators in various animal species. ORFV has been developed as a vaccine in veterinary medicine. The unique host immune-evasion ability of ORFV has made it an important candidate for vaccine vectors and biological agents (as an oncolytic virus). Genetic modifications using ORFV to obtain safe and efficient preparations and mechanistic studies are improvements to the currently available methods for disease treatment.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.,Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yong Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
20
|
Hain KS, Joshi LR, Okda F, Nelson J, Singrey A, Lawson S, Martins M, Pillatzki A, Kutish GF, Nelson EA, Flores EF, Diel DG. Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus. J Gen Virol 2016; 97:2719-2731. [PMID: 27558814 DOI: 10.1099/jgv.0.000586] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parapoxvirus Orf virus (ORFV), has long been recognized for its immunomodulatory properties in permissive and non-permissive animal species. Here, a new recombinant ORFV expressing the full-length spike (S) protein of Porcine epidemic diarrhea virus (PEDV) was generated and its immunogenicity and protective efficacy were evaluated in pigs. The PEDV S was inserted into the ORFV121 gene locus, an immunomodulatory gene that inhibits activation of the NF-κB signalling pathway and contributes to ORFV virulence in the natural host. The recombinant ORFV-PEDV-S virus efficiently and stably expressed the PEDV S protein in cell culture in vitro. Three intramuscular (IM) immunizations with the recombinant ORFV-PEDV-S in 3-week-old pigs elicited robust serum IgG, IgA and neutralizing antibody responses against PEDV. Additionally, IM immunization with the recombinant ORFV-PEDV-S virus protected pigs from clinical signs of porcine epidemic diarrhoea (PED) and reduced virus shedding in faeces upon challenge infection. These results demonstrate the suitability of ORFV121 gene locus as an insertion site for heterologous gene expression and delivery by ORFV-based viral vectors. Additionally, the results provide evidence of the potential of ORFV as a vaccine delivery vector for enteric viral diseases of swine. This study may have important implications for future development of ORFV-vectored vaccines for swine.
Collapse
Affiliation(s)
- Kyle S Hain
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lok R Joshi
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Faten Okda
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,National Research Center, Giza, Egypt
| | - Julie Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Aaron Singrey
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Steven Lawson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Mathias Martins
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Gerald F Kutish
- Department of Pathobiology, University of Connecticut, Storrs, CT, USA
| | - Eric A Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Eduardo F Flores
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diego G Diel
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
21
|
Abstract
Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.
Collapse
Affiliation(s)
- Hanns-Joachim Rziha
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany. .,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany.
| | - Jörg Rohde
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany
| | - Ralf Amann
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany.,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany
| |
Collapse
|
22
|
Stellberger T, Stockmar I, Haase M, Meyer H, Zoeller G, Pavlovic M, Büttner M, Konrad R, Lang H, Tischer K, Kaufer BB, Busch U, Baiker A. Multiplex Real-Time PCR Assay for the Detection and Differentiation of Poxviruses and Poxvirus Vectors. APPLIED BIOSAFETY 2015. [DOI: 10.1177/153567601502000405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Iris Stockmar
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Maren Haase
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Hermann Meyer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Melanie Pavlovic
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Mathias Büttner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Heike Lang
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | | | | | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| | - Armin Baiker
- Bavarian Health and Food Safety Authority, Oberschleissheim, Bavaria, Germany
| |
Collapse
|
23
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
24
|
Lin FY, Tseng YY, Chan KW, Kuo ST, Yang CH, Wang CY, Takasu M, Hsu WL, Wong ML. Suppression of influenza virus infection by the orf virus isolated in Taiwan. J Vet Med Sci 2015; 77:1055-62. [PMID: 25855509 PMCID: PMC4591145 DOI: 10.1292/jvms.14-0663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Orf virus (ORFV), a member of parapoxvirus, is an enveloped virus with genome of double-stranded DNA. ORFV causes contagious pustular dermatitis or contagious ecthyma in sheep and goats worldwide. In general, detection of viral DNA and observing ORFV virion in tissues of afflicted animals are two methods commonly used for diagnosis of orf infection; however, isolation of the ORFV in cell culture using virus-containing tissue as inoculum is known to be difficult. In this work, the ORFV (Hoping strain) isolated in central Taiwan was successfully grown in cell culture. We further examined the biochemical characteristic of our isolate, including viral genotyping, viral mRNA and protein expression. By electron microscopy, one unique form of viral particle from ORFV infected cellular lysate was demonstrated in the negative-stained field. Moreover, immunomodulating and anti-influenza virus properties of this ORFV were investigated. ORFV stimulated human monocytes (THP-1) secreting proinflammatory cytokines IL-8 and TNF-α. And, pre-treatment of ORFV-infected cell medium prevents A549 cells from subsequent type A influenza virus (IAV) infection. Similarly, mice infected with ORFV via both intramuscular and subcutaneous routes at two days prior to IAV infection significantly decreased the replication of IAV. In summary, the results of a current study indicated our Hoping strain harbors the immune modulator property; with such a bio-adjuvanticity, we further proved that pre-exposure of ORFV protects animals from subsequent IAV infection.
Collapse
Affiliation(s)
- Fong-Yuan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, Ruan L. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 2014; 468-470:265-273. [PMID: 25213406 DOI: 10.1016/j.virol.2014.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/11/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
The highly conserved internal nucleoprotein (NP) is a promising antigen to develop a universal influenza A virus vaccine. In this study, mice were injected intramuscularly with Escherichia coli-derived NP protein alone or in combination with adjuvant alum (Al(OH)3), CpG or both. The results showed that the NP protein formulated with adjuvant was effective in inducing a protective immune response. Additionally, the adjuvant efficacy of Al(OH)3 was stronger than that of CpG. Optimal immune responses were observed in BALB/c mice immunized with a combination of NP protein plus Al(OH)3 and CpG. These mice also showed maximal resistance following challenge with influenza A virus PR8 strain. Most importantly, 10 µg NP formulated with Al(OH)3 and CpG induced higher protection than did 90 µg NP. These findings indicated that a combination of Al(OH)3 and CpG may be an efficient adjuvant in the NP formulation.
Collapse
Affiliation(s)
- Wenling Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Baoying Huang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Tao Jiang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiuping Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiangrong Qi
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Wenjie Tan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Li Ruan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China.
| |
Collapse
|
26
|
Affiliation(s)
- Colin J. McInnes
- Moredun Research Institute; Pentlands Science Park; Bush Loan Penicuik Midlothian EH26 0PZ UK
| |
Collapse
|