1
|
Iigaya K, Larsen T, Fong T, O'Doherty JP. Computational and Neural Evidence for Altered Fast and Slow Learning from Losses in Problem Gambling. J Neurosci 2025; 45:e0080242024. [PMID: 39557579 DOI: 10.1523/jneurosci.0080-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Learning occurs across multiple timescales, with fast learning crucial for adapting to sudden environmental changes, and slow learning beneficial for extracting robust knowledge from multiple events. Here, we asked if miscalibrated fast vs slow learning can lead to maladaptive decision-making in individuals with problem gambling. We recruited participants with problem gambling (PG; N = 20; 9 female and 11 male) and a recreational gambling control group without any symptoms associated with PG (N = 20; 10 female and 10 male) from the community in Los Angeles, CA. Participants performed a decision-making task involving reward-learning and loss-avoidance while being scanned with fMRI. Using computational model fitting, we found that individuals in the PG group showed evidence for an excessive dependence on slow timescales and a reduced reliance on fast timescales during learning. fMRI data implicated the putamen, an area associated with habit, and medial prefrontal cortex (PFC) in slow loss-value encoding, with significantly more robust encoding in medial PFC in the PG group compared to controls. The PG group also exhibited stronger loss prediction error encoding in the insular cortex. These findings suggest that individuals with PG have an impaired ability to adjust their predictions following losses, manifested by a stronger influence of slow value learning. This impairment could contribute to the behavioral inflexibility of problem gamblers, particularly the persistence in gambling behavior typically observed in those individuals after incurring loss outcomes.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- Center for Theoretical Neuroscience and Zuckerman Institute, Columbia University, New York, New York 10027
- New York State Psychiatric Institute, New York, New York 10032
| | - Tobias Larsen
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| | - Timothy Fong
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90024
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
2
|
Zhu F, Kanda H, Neyama H, Wu Y, Kato S, Hu D, Duan S, Noguchi K, Watanabe Y, Kobayashi K, Dai Y, Cui Y. Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell. Neurosci Bull 2024; 40:1826-1842. [PMID: 38850386 PMCID: PMC11625037 DOI: 10.1007/s12264-024-01230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 06/10/2024] Open
Abstract
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hirosato Kanda
- School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Hiroyuki Neyama
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Yuping Wu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Di Hu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shaoqi Duan
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yilong Cui
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
3
|
Bellmunt-Gil A, Vorobyev V, Parkkola R, Lötjönen J, Joutsa J, Kaasinen V. Frontal white and gray matter abnormality in gambling disorder: A multimodal MRI study. J Behav Addict 2024; 13:576-586. [PMID: 38935433 PMCID: PMC11220815 DOI: 10.1556/2006.2024.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
Background Changes in brain structural connections appear to be important in the pathophysiology of substance use disorders, but their role in behavioral addictions, such as gambling disorder (GD), is unclear. GD also offers a model to study addiction mechanisms without pharmacological confounding factors. Here, we used multimodal MRI data to examine the integrity of white matter connections in individuals with GD. We hypothesized that the affected areas would be in the fronto-striatal-thalamic circuit. Methods Twenty individuals with GD (mean age: 64 years, GD duration: 15.7 years) and 40 age- and sex-matched healthy controls (HCs) underwent detailed clinical examinations together with brain 3T MRI scans (T1, T2, FLAIR and DWI). White matter (WM) analysis involved fractional anisotropy and lesion load, while gray matter (GM) analysis included voxel- and surface-based morphometry. These measures were compared between groups, and correlations with GD-related behavioral characteristics were examined. Results Individuals with GD showed reduced WM integrity in the left and right frontal parts of the corona radiata and corpus callosum (pFWE < 0.05). WM gambling symptom severity (SOGS score) was negatively associated to WM integrity in these areas within the left hemisphere (p < 0.05). Individuals with GD also exhibited higher WM lesion load in the left anterior corona radiata (pFWE < 0.05). GM volume in the left thalamus and GM thickness in the left orbitofrontal cortex were reduced in the GD group (pFWE < 0.05). Conclusions Similar to substance addictions, the fronto-striatal-thalamic circuit is also affected in GD, suggesting that this circuitry may have a crucial role in addictions, independent of pharmacological substances.
Collapse
Affiliation(s)
- Albert Bellmunt-Gil
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Victor Vorobyev
- Department of Radiology, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
| | | | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Zhou M, Gao G, Rong B, Zhao H, Huang J, Tu N, Bu L, Xiao L, Wang G. Sex differences of neural connectivity in internet gaming disorder and its association with sleep quality: an exploratory fMRI study. Front Psychiatry 2024; 15:1379259. [PMID: 38873537 PMCID: PMC11169786 DOI: 10.3389/fpsyt.2024.1379259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Sex-specific differences in internet gaming disorder (IGD) neurophysiology remain underexplored. Here we investigated sex-related variability in regional homogeneity (ReHo) and functional connectivity (FC) in IGD and their correlations with sleep quality. Methods Resting-state functional magnetic resonance imaging (fMRI) scans were performed on 52 subjects with IGD and 50 healthy controls (HCs). Two-way ANOVA was used to examine sex and diagnosis interactions in ReHo and FC, followed by post-hoc analyses to explore FC biomarkers for different sexes. Results In ReHo analysis, the four groups showed significant sex and diagnosis interactions in the right middle frontal gyrus (rMFG). FC analysis with rMFG as the seed region revealed a significant sex and diagnosis interaction effect in FC of the rMFG with the bilateral postcentral gyrus (PoCG). In male IGD group, FC between the rMFG and the bilateral PoCG correlates strongly with daytime dysfunction score and the Pittsburgh sleep quality inventory (PSQI) total score. Conclusion These findings emphasize the importance of considering sexual dimorphism in the neurobiology of IGD, which might influence subsequent treatment strategies.
Collapse
Affiliation(s)
- Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Rong
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Tu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihong Bu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Antons S, Yip SW, Lacadie CM, Dadashkarimi J, Scheinost D, Brand M, Potenza MN. Connectome-based prediction of craving in gambling disorder and cocaine use disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2023; 25:33-42. [PMID: 37190759 PMCID: PMC10190201 DOI: 10.1080/19585969.2023.2208586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Craving, involving intense and urgent desires to engage in specific behaviours, is a feature of addictions. Multiple studies implicate regions of salience/limbic networks and basal ganglia, fronto-parietal, medial frontal regions in craving in addictions. However, prior studies have not identified common neural networks that reliably predict craving across substance and behavioural addictions. METHODS Functional magnetic resonance imaging during an audiovisual cue-reactivity task and connectome-based predictive modelling (CPM), a data-driven method for generating brain-behavioural models, were used to study individuals with cocaine-use disorder and gambling disorder. Functions of nodes and networks relevant to craving were identified and interpreted based on meta-analytic data. RESULTS Craving was predicted by neural connectivity across disorders. The highest degree nodes were mostly located in the prefrontal cortex. Overall, the prediction model included complex networks including motor/sensory, fronto-parietal, and default-mode networks. The decoding revealed high functional associations with components of memory, valence ratings, physiological responses, and finger movement/motor imagery. CONCLUSIONS Craving could be predicted across substance and behavioural addictions. The model may reflect general neural mechanisms of craving despite specificities of individual disorders. Prefrontal regions associated with working memory and autobiographical memory seem important in predicting craving. For further validation, the model should be tested in diverse samples and contexts.
Collapse
Affiliation(s)
- Stephanie Antons
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Sarah W. Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cheryl M. Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Bellmunt-Gil A, Majuri J, Arponen E, Kaasinen V, Joutsa J. Abnormal frontostriatal connectivity and serotonin function in gambling disorder: A preliminary exploratory study. J Behav Addict 2023; 12:670-681. [PMID: 37561637 PMCID: PMC10562820 DOI: 10.1556/2006.2023.00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Background The neurobiological mechanisms of gambling disorder are not yet fully characterized, limiting the development of treatments. Defects in frontostriatal connections have been shown to play a major role in substance use disorders, but data on behavioral addictions, such as gambling disorder, are scarce. The aim of this study was to 1) investigate whether gambling disorder is associated with abnormal frontostriatal connectivity and 2) characterize the key neurotransmitter systems underlying the connectivity abnormalities. Methods Fifteen individuals with gambling disorder and 17 matched healthy controls were studied with resting-state functional connectivity MRI and three brain positron emission tomography scans, investigating dopamine (18F-FDOPA), opioid (11C-carfentanil) and serotonin (11C-MADAM) function. Frontostriatal connectivity was investigated using striatal seed-to-voxel connectivity and compared between the groups. Neurotransmitter systems underlying the identified connectivity differences were investigated using region-of-interest and voxelwise approaches. Results Individuals with gambling disorder showed loss of functional connectivity between the right nucleus accumbens (NAcc) and a region in the right dorsolateral prefrontal cortex (DLPFC) (PFWE <0.05). Similarly, there was a significant Group x right NAcc interaction in right DLPFC 11C-MADAM binding (p = 0.03) but not in 18F-FDOPA uptake or 11C-carfentanil binding. This was confirmed in voxelwise analyses showing a widespread Group x right NAcc interaction in the prefrontal cortex 11C-MADAM binding (PFWE <0.05). Right NAcc 11C-MADAM binding potential correlated with attentional impulsivity in individuals with gambling disorder (r = -0.73, p = 0.005). Discussion Gambling disorder is associated with right hemisphere abnormal frontostriatal connectivity and serotonergic function. These findings will contribute to understanding the neurobiological mechanism and may help identify potential treatment targets for gambling disorder.
Collapse
Affiliation(s)
- Albert Bellmunt-Gil
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Joonas Majuri
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Valtteri Kaasinen
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Chen YY, Yim H, Lee TH. Negative impact of daily screen use on inhibitory control network in preadolescence: A two-year follow-up study. Dev Cogn Neurosci 2023; 60:101218. [PMID: 36821878 PMCID: PMC9933860 DOI: 10.1016/j.dcn.2023.101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic has made an unprecedented shift in children's daily lives. Children are increasingly spending time with screens to learn and connect with others. As the online environment rapidly substitutes in-person experience, understanding children's neuropsychological trajectories associated with screen experiences is important. Previous findings suggest that excessive screen use can lead children to prefer more immediate rewards over delayed outcomes. We hypothesized that increased screen time delays a child's development of inhibitory control system in the brain (i.e., fronto-striatal circuitry). By analyzing neuropsychological data from 8324 children (9-11ys) from the ABCD Study, we found that children who had more screen time showed a higher reward orientation and weaker fronto-striatal connectivity. Importantly, we found that the daily screen exposure mediated the effect of reward sensitivity on the development of the inhibitory control system in the brain over a two year period. These findings suggest possible negative long-term impacts of increased daily screen time on children's neuropsychological development. The results further demonstrated that screen time influences dorsal striatum connectivity, which suggests that the effect of daily screen use is a habitual seeking behavior. The study provides neural and behavioral evidence for the negative impact of daily screen use on developing children.
Collapse
Affiliation(s)
- Ya-Yun Chen
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Hyungwook Yim
- Department of Cognitive Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Mestre-Bach G, Potenza MN. Potential Biological Markers and Treatment Implications for Binge Eating Disorder and Behavioral Addictions. Nutrients 2023; 15:827. [PMID: 36839185 PMCID: PMC9962023 DOI: 10.3390/nu15040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
The reward system is highly relevant to behavioral addictions such as gambling disorder (GD), internet gaming disorder (IGD), and food addiction/binge eating disorder (FA/BED). Among other brain regions, the ventral striatum (VS) has been implicated in reward processing. The main objective of the present state-of-the-art review was to explore in depth the specific role of the VS in GD, IGD and FA/BED, understanding it as a possible biomarker of these conditions. Studies analyzing brain changes following interventions for these disorders, and especially those that had explored possible treatment-related changes in VS, are discussed. More evidence is needed on how existing treatments (both pharmacological and psychobehavioral) for behavioral addictions affect the activation of the VS and related circuitry.
Collapse
Affiliation(s)
- Gemma Mestre-Bach
- Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, 26006 Logroño, Spain
| | - Marc N. Potenza
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT 06510, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Zhou H, He Y, Yuan Z, Zhou Y, Yin J, Chark R, Fong DKC, Fong LHN, Wu AMS. Altered hierarchical organization between empathy and gambling networks in disordered gamblers. Front Psychiatry 2023; 14:1083465. [PMID: 36846215 PMCID: PMC9947716 DOI: 10.3389/fpsyt.2023.1083465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Despite the demonstrated association between empathy and gambling at the behavioral level, limited neuroimaging research on empathy and gambling disorder (GD) has been conducted. Whether and how the brain network of empathy and that of gambling interact in disordered gamblers has not been investigated. This study aimed to address this research gap by examining the hierarchical organizational patterns, in which the differences of causal interactions of these networks between disordered gamblers and healthy controls were revealed. METHODS Resting-state functional magnetic resonance imaging (fMRI) data of 32 disordered gamblers and 56 healthy controls were included in the formal analysis. Dynamic causal modeling was used to examine the effective connectivity within and between empathy and gambling networks among all participants. RESULTS All participants showed significant effective connectivity within and between empathy and gambling networks. However, compared with healthy controls, disordered gamblers displayed more excitatory effective connectivity within the gambling network, the tendency to display more excitatory effective connectivity from the empathy network to the gambling network, and reduced inhibitory effective connectivity from the gambling network to the empathy network. CONCLUSION The exploratory study was the first to examine the effective connectivity within and between empathy and gambling networks among disordered gamblers and healthy controls. These results provided insights into the causal relationship between empathy and gambling from the neuroscientific perspective and further confirmed that disordered gamblers show altered effective connectivity within and between these two brain networks, which may be considered to be a potential neural index for GD identification. In addition, the altered interactions between empathy and gambling networks may also indicate the potential targets for the neuro-stimulation intervention approach (e.g., transcranial magnetic stimulation).
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| | - Yuwen He
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Bioimaging Core, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Bioimaging Core, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Yin
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| | - Robin Chark
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Davis Ka Chio Fong
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Lawrence Hoc Nang Fong
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Anise M S Wu
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
10
|
García-Castro J, Cancela A, Cárdaba MAM. Neural cue-reactivity in pathological gambling as evidence for behavioral addiction: a systematic review. CURRENT PSYCHOLOGY 2022; 42:1-12. [PMID: 36373116 PMCID: PMC9638381 DOI: 10.1007/s12144-022-03915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Increasing incidence of problem gambling has led to prioritizing the problem from the point of view of public health. Additionally, gambling disorder has been recently classified as a behavioral addiction, with implications for both its diagnosis and treatment. However, the shared neural substrate of addictions, to substances and behavioral, is still discussed. Thus, this systematic review aims to provide up-to-date knowledge from the past five years (2017-2022) concerning the neural correlates of gambling related stimuli (cue-reactivity) on the basis of a previous review (Brevers et al., Cognitive, Affective and Behavioral Neuroscience 18:718-729, 2019). A total of five studies were included in the review. Activation of brain areas related to memory, reward and executive functions could be the underlying mechanism of this behavioral addiction. Specifically, nucleus accumbens and striatum (ventral and dorsal), parahippocampal regions, the right amygdala and several prefrontal cortex regions have systematically been found more active in those subjects exposed to gambling-related cues. Also, the insula could play a pivotal role connecting these three systems in a highly integrated neural network with several implications for reward processing modulation, associative learning and top-down attentional regulation to improve saliency of addiction-related cues. These results are consistent with previous findings on other substance addictions, such as alcohol, tobacco, marijuana or cocaine. The study of neural reactivity to stimuli related to addiction could be useful as a biomarker of the severity of the disorder, the efficacy of the treatment, the risk of relapse, in addition to being an objective criterion to measure the effectiveness of prevention campaigns.
Collapse
Affiliation(s)
| | - Ana Cancela
- Universidad Villanueva, C/Costa Brava, 6 28034, Madrid, Spain
| | | |
Collapse
|
11
|
Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:179. [PMID: 36048256 DOI: 10.1007/s12032-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score - 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.
Collapse
Affiliation(s)
- Ravinder Doneti
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Mahendran Botlagunta
- School of Biosciences Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, 466114, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | | | - Smita C Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
12
|
Inhibitory framing in hypersexual patients with Parkinson's disease. An fMRI pilot study. Exp Brain Res 2022; 240:2097-2107. [PMID: 35763033 PMCID: PMC9288360 DOI: 10.1007/s00221-022-06397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Hypersexuality in medicated patients with PD is caused by an increased influence of motivational drive areas and a decreased influence of inhibitory control areas due to dopaminergic medication. In this pilot study, we test a newly developed paradigm investigating the influence of dopaminergic medication on brain activation elicited by sexual pictures with and without inhibitory contextual framing. Twenty PD patients with and without hypersexuality were examined with fMRI either OFF or ON standardized dopaminergic medication. The paradigm consisted of a priming phase where either a neutral context or an inhibitory context was presented. This priming phase was either followed by a sexual or a neutral target. Sexual, compared to neutral pictures resulted in a BOLD activation of various brain regions implicated in sexual processing. Hypersexual PD patients showed increased activity compared to PD controls in these regions. There was no relevant effect of medication between the two groups. The inhibitory context elicited less activation in inhibition-related areas in hypersexual PD, but had no influence on the perception of sexual cues. The paradigm partially worked: reactivity of motivational brain areas to sexual cues was increased in hypersexual PD and inhibitory contextual framing lead to decreased activation of inhibitory control areas in PD. We could not find a medication effect and the length of the inhibitory stimulus was not optimal to suppress reactivity to sexual cues. Our data provide new insights into the mechanisms of hypersexuality and warrant a replication with a greater cohort and an optimized stimulus length in the future.
Collapse
|
13
|
Takeuchi H, Yahata N, Lisi G, Tsurumi K, Yoshihara Y, Kawada R, Murao T, Mizuta H, Yokomoto T, Miyagi T, Nakagami Y, Yoshioka T, Yoshimoto J, Kawato M, Murai T, Morimoto J, Takahashi H. Development of a classifier for gambling disorder based on functional connections between brain regions. Psychiatry Clin Neurosci 2022; 76:260-267. [PMID: 35279904 PMCID: PMC9322453 DOI: 10.1111/pcn.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
AIM Recently, a machine-learning (ML) technique has been used to create generalizable classifiers for psychiatric disorders based on information of functional connections (FCs) between brain regions at resting state. These classifiers predict diagnostic labels by a weighted linear sum (WLS) of the correlation values of a small number of selected FCs. We aimed to develop a generalizable classifier for gambling disorder (GD) from the information of FCs using the ML technique and examine relationships between WLS and clinical data. METHODS As a training dataset for ML, data from 71 GD patients and 90 healthy controls (HCs) were obtained from two magnetic resonance imaging sites. We used an ML algorithm consisting of a cascade of an L1-regularized sparse canonical correlation analysis and a sparse logistic regression to create the classifier. The generalizability of the classifier was verified using an external dataset. This external dataset consisted of six GD patients and 14 HCs, and was collected at a different site from the sites of the training dataset. Correlations between WLS and South Oaks Gambling Screen (SOGS) and duration of illness were examined. RESULTS The classifier distinguished between the GD patients and HCs with high accuracy in leave-one-out cross-validation (area under curve (AUC = 0.89)). This performance was confirmed in the external dataset (AUC = 0.81). There was no correlation between WLS, and SOGS and duration of illness in the GD patients. CONCLUSION We developed a generalizable classifier for GD based on information of functional connections between brain regions at resting state.
Collapse
Affiliation(s)
- Hideaki Takeuchi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Kyoto, Japan
| | - Giuseppe Lisi
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Kyoto, Japan.,Nagoya Institute of Technology, Nagoya, Japan
| | - Kosuke Tsurumi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosaku Kawada
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuro Murao
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroto Mizuta
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsunori Yokomoto
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Miyagi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Toshinori Yoshioka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Kyoto, Japan
| | - Junichiro Yoshimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Kyoto, Japan.,Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Mitsuo Kawato
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Tolomeo S, Yu R. Brain network dysfunctions in addiction: a meta-analysis of resting-state functional connectivity. Transl Psychiatry 2022; 12:41. [PMID: 35091540 PMCID: PMC8799706 DOI: 10.1038/s41398-022-01792-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional connectivity (rsFC) provides novel insights into variabilities in neural networks associated with the use of addictive drugs or with addictive behavioral repertoire. However, given the broad mix of inconsistent findings across studies, identifying specific consistent patterns of network abnormalities is warranted. Here we aimed at integrating rsFC abnormalities and systematically searching for large-scale functional brain networks in substance use disorder (SUD) and behavioral addictions (BA), through a coordinate-based meta-analysis of seed-based rsFC studies. A total of fifty-two studies are eligible in the meta-analysis, including 1911 SUD and BA patients and 1580 healthy controls. In addition, we performed multilevel kernel density analysis (MKDA) for the brain regions reliably involved in hyperconnectivity and hypoconnectivity in SUD and BA. Data from fifty-two studies showed that SUD was associated with putamen, caudate and middle frontal gyrus hyperconnectivity relative to healthy controls. Eight BA studies showed hyperconnectivity clusters within the putamen and medio-temporal lobe relative to healthy controls. Altered connectivity in salience or emotion-processing areas may be related to dysregulated affective and cognitive control-related networks, such as deficits in regulating elevated sensitivity to drug-related stimuli. These findings confirm that SUD and BA might be characterized by dysfunctions in specific brain networks, particularly those implicated in the core cognitive and affective functions. These findings might provide insight into the development of neural mechanistic biomarkers for SUD and BA.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
- Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
15
|
Dolatshahi M, Ashraf-Ganjouei A, Wu IW, Zhang Y, Aarabi MH, Tosun D. White matter changes in drug-naïve Parkinson's disease patients with impulse control & probable REM sleep behavior disorders. J Neurol Sci 2021; 430:120032. [PMID: 34688191 DOI: 10.1016/j.jns.2021.120032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND According to epidemiological studies, Parkinson's disease (PD) patients with probable REM sleep behavior disorder (pRBD) are more prone to develop impulse control disorders (ICDs), which is shown to be present in drug-naïve PD patients, and vice versa. OBJECTIVES To investigate white-matter integrity differences, with and without comorbid pRBD and ICDs. METHODS 149 de-novo PD patients and 30 age- and gender-matched controls from the Parkinson's Progression Markers Initiative were studied. PD subjects were categorized into four groups with and without these comorbidities. We investigated the white matter integrity differences between these groups. RESULTS PDs with only ICDs manifested greater fractional anisotropy (FA) and lower mean diffusivity (MD) in ipsilateral cerebellar connections when compared to controls and to Parkinson's with both comorbid disorders. In contrast, significantly lower FA and higher MD in the ipsilateral fornix-stria-terminalis was observed in PDs with only pRBD compared to controls and to PDs without either comorbid disorder. Also, PDs with only pRBD manifested greater FA in contralateral putamen when compared to controls. CONCLUSIONS Our results suggest the presence of an underlying neural network in PDs with ICDs, particularly involving cerebellar connections, which makes the subjects susceptible to pRBD. Lower white-matter integrity in the fornix of PDs with only pRBD suggests a neuropathological pathway specific to sleep behavior disorder, independent of impulse control disorders. Greater white-matter integrity observed in PDs without comorbid ICDs, regardless of their comorbid pRBD status, might reflect compensatory mechanisms. Targeted therapies for this particular neuropathology may help prevent these comorbidities.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - I-Wei Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yu Zhang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.
| | | |
Collapse
|
16
|
Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021; 131:229-247. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests that the cerebellum could play a role in the higher cognitive processes involved in addiction as the cerebellum contains anatomical and functional pathways to circuitry controlling motivation and saliency. In addition, the cerebellum exhibits a widespread presence of receptors, including opioid receptors which are known to play a prominent role in synaptic and circuit mechanisms of plasticity associated with drug use and development of addiction to opioids and other drugs of abuse. Further, the presence of perineural nets (PNNs) in the cerebellum which contain proteins known to alter synaptic plasticity could contribute to addiction. The role the cerebellum plays in processes of addiction is likely complex, and could depend on the particular drug of abuse, the pattern of use, and the stage of the user within the addiction cycle. In this review, we discuss functional and structural modifications shown to be produced in the cerebellum by opioids that exhibit dependency-inducing properties which provide support for the conclusion that the cerebellum plays a role in addiction.
Collapse
|
17
|
Calluso C, Pettorruso M, Tosoni A, Carenti ML, Cannito L, Martinotti G, di Giannantonio M, Committeri G. Cognitive dynamics of intertemporal choice in gambling disorder. Addict Behav 2020; 109:106463. [PMID: 32454227 DOI: 10.1016/j.addbeh.2020.106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/10/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Gambling Disorder (GD) is a behavioral addiction characterized by the persistence of recurrent gambling behaviors despite serious adverse consequences. One of the key features of GD is a marked inability to delay gratification and an overall impairment of decision-making mechanisms. Indeed, in intertemporal choice (ITC) tasks, GD patients usually display a marked tendency to prefer smaller-sooner over larger-later rewards (temporal discounting, TD). However, ITC represents a highly verbal/explicit measure, and as such it might not be sensitive to implicit decision biases. Here we sought to uncover the implicit mechanisms underlying the ITC impairment in GD by employing the process-tracing method of mouse kinematics. To this aim, we collected and analyzed ITCs and kinematics measures from 24 GD patients and 23 matched healthy control participants (HC). In line with the relevant literature, the results showed that GD patients discounted future rewards more steeply compared to HCs. Additionally, the results of kinematics analyses showed that patients were characterized by a strong bias toward the immediate option, which was associated with straight-line trajectories. Conversely, the delayed option was selected with edge-curved trajectories, indicating a bias toward the immediate option which was revised in later stages of processing. Interestingly, kinematics indices were also found to be predictive of individual discounting preferences (i.e., discount rates) across the two groups. Taken together, these results suggest that kinematics indices, by revealing hidden and implicit patterns of attraction toward the unselected choice option, may represent reliable behavioral markers of TD in gambling disorder.
Collapse
|
18
|
Piccoli T, Maniaci G, Collura G, Gagliardo C, Brancato A, La Tona G, Gangitano M, La Cascia C, Picone F, Marrale M, Cannizzaro C. Increased functional connectivity in gambling disorder correlates with behavioural and emotional dysregulation: Evidence of a role for the cerebellum. Behav Brain Res 2020; 390:112668. [PMID: 32434751 DOI: 10.1016/j.bbr.2020.112668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Gambling disorder (GD) is a psychiatric disease that has been recently classified as a behavioural addiction. So far, a very few studies have investigated the alteration of functional connectivity in GD patients, thus the concrete interplay between relevant function-dependent circuitries in such disease has not been comprehensively assessed. The aim of this research was to investigate resting-state functional connectivity in GD patients, searching for a correlation with GD symptoms severity. GD patients were assessed for gambling behaviour, impulsivity, cognitive distortions, anxiety and depression, in comparison with healthy controls (HC). Afterwards, they were assessed for resting-state functional magnetic resonance imaging; functional connectivity was assessed through a data-driven approach, by using independent component analysis. The correlation between gambling severity and the strength of specific resting-state networks was also investigated. Our results show that GD patients displayed higher emotional and behavioural impairment than HC, together with an increased resting state functional connectivity in the network including anterior cingulate cortex, the caudate nucleus and nucleus accumbens, and within the cerebellum, in comparison with the control group. Moreover, a significant correlation between behavioural parameters and the strength of the resting-state cerebellar network was found. Overall, the functional alterations in brain connectivity involving the cerebellum observed in this study underpin the emotional and behavioural impairment recorded in GD patients. This evidence suggests the employment of novel neuromodulatory therapeutic approaches involving specific and salient targets such as the cerebellum in addictive disorders.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Neurology, University of Palermo, Palermo, Italy
| | - Giuseppe Maniaci
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Giorgio Collura
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, and Istituto Nazionale di Fisica Nucleare, Sezione of Catania, Catania, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Radiological Sciences, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe La Tona
- Department of Pathological Addiction, ASP Palermo, Palermo, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Neurology, University of Palermo, Palermo, Italy
| | - Caterina La Cascia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Francesca Picone
- Department of Pathological Addiction, ASP Palermo, Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, and Istituto Nazionale di Fisica Nucleare, Sezione of Catania, Catania, Italy.
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Qin K, Zhang F, Chen T, Li L, Li W, Suo X, Lei D, Kemp GJ, Gong Q. Shared gray matter alterations in individuals with diverse behavioral addictions: A voxel-wise meta-analysis. J Behav Addict 2020; 9:44-57. [PMID: 32359230 PMCID: PMC8935193 DOI: 10.1556/2006.2020.00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Numerous studies on behavioral addictions (BAs) have reported gray matter (GM) alterations in multiple brain regions by using voxel-based morphometry (VBM). However, findings are poorly replicated and it remains elusive whether distinct addictive behaviors are underpinned by shared abnormalities. In this meta-analysis, we integrated VBM studies on different BAs to investigate common GM abnormalities in individuals with BAs. METHODS Numerous studies on behavioral addictions (BAs) have reported gray matter (GM) alterations in multiple brain regions by using voxel-based morphometry (VBM). However, findings are poorly replicated and it remains elusive whether distinct addictive behaviors are underpinned by shared abnormalities. In this meta-analysis, we integrated VBM studies on different BAs to investigate common GM abnormalities in individuals with BAs. RESULTS Twenty studies including 505 individuals with BAs and 564 healthy controls met the inclusion criteria. Compared with healthy controls, individuals with BAs showed GM atrophy in the left anterior cingulate (extending to the left medial superior frontal gyrus and bilateral orbitofrontal gyrus), right putamen and right supplementary motor area. Subgroup analysis found heterogeneity in gender and subtypes of BAs. Meta-regression revealed that GM decreases in the left anterior cingulate and right supplementary motor area were positively correlated with addictive severity. Higher impulsivity was associated with smaller volume of the left anterior cingulate. DISCUSSION AND CONCLUSIONS Our findings on BAs were mainly derived from internet gaming disorder (IGD) and pathological gambling (PG) studies, preliminarily suggesting that GM atrophy in the prefrontal and striatal areas might be a common structural biomarker of BAs.
Collapse
Affiliation(s)
- Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Corresponding author. Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson St., Suite 3326, Cincinnati, OH, USA. E-mail:
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Corresponding author. Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China. E-mail:
| |
Collapse
|
20
|
Mohammadi B, Szycik GR, Te Wildt B, Heldmann M, Samii A, Münte TF. Structural brain changes in young males addicted to video-gaming. Brain Cogn 2020; 139:105518. [PMID: 31954233 DOI: 10.1016/j.bandc.2020.105518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/23/2022]
Abstract
Excessive video gaming has a number of psychological and social consequences. In this study, we looked at possible changes in gray and white matter and asked whether these changes are correlated to psychological measures. Twentynine players of violent videogames (mean daily playing time 4.7 h) and age matched controls were subjected to a battery of questionnaires assessing aggression, empathy, hostility, internet addiction and psychological well-being. Diffusion tensor and 3D T1-weighted MR images were obtained to examine gray (via voxel-based morphometry) and white (via tract-based spatial statistics) matter changes. Widespread regions of decreased gray matter in the players were found but no region showed increased intensity of gray matter. Density of gray matter showed a negative correlation with the total length of playing in years in the right posterior cingulate gyrus, left pre- and postcentral gyrus, right thalamus, among others. Furthermore, fractional anisotropy, a marker for white matter structure, was decreased in the left and right cingulum in the players. Both, gray and white matter changes correlated with measures of aggression, hostility, self esteem, and the degree of internet addiction. This study thus shows profound changes of brain structure as a function of excessive playing of violent video games.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Dept. of Neurology, University of Lübeck, Lübeck, Germany; CNS-lab, International Neuroscience Institute, Hannover, Germany
| | - Gregor R Szycik
- Dept. of Psychiatry, Hannover Medical School, Hannover, Germany
| | | | - Marcus Heldmann
- Dept. of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Amir Samii
- CNS-lab, International Neuroscience Institute, Hannover, Germany
| | - Thomas F Münte
- Dept. of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Neural correlates of visual aesthetic appreciation: insights from non-invasive brain stimulation. Exp Brain Res 2019; 238:1-16. [PMID: 31768577 PMCID: PMC6957540 DOI: 10.1007/s00221-019-05685-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
During the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. Here, I review studies that have employed transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to investigate neurocognitive mechanisms mediating visual aesthetic appreciation for different stimuli categories (faces, bodies, paintings). The review first considers studies that have assessed the possible causal contribution of cortical regions in mediating aesthetic appreciation along the visual ventral and dorsal pathways (i.e., the extrastriate body area, the motion-sensitive region V5/MT+ , the lateral occipital complex and the posterior parietal cortex). It then considers TMS and tDCS studies that have targeted premotor and motor regions, as well as other areas involved in body and facial expression processing (such as the superior temporal sulcus and the somatosensory cortex) to assess their role in aesthetic evaluation. Finally, it discusses studies that have targeted medial and dorsolateral prefrontal regions leading to significant changes in aesthetic appreciation for both biological stimuli (faces and bodies) and artworks. Possible mechanisms mediating stimulation effects on aesthetic judgments are discussed. A final section considers both methodological limitations of the reviewed studies (including levels of statistical power and the need for further replication) and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.
Collapse
|
22
|
Parkes L, Tiego J, Aquino K, Braganza L, Chamberlain SR, Fontenelle LF, Harrison BJ, Lorenzetti V, Paton B, Razi A, Fornito A, Yücel M. Transdiagnostic variations in impulsivity and compulsivity in obsessive-compulsive disorder and gambling disorder correlate with effective connectivity in cortical-striatal-thalamic-cortical circuits. Neuroimage 2019; 202:116070. [PMID: 31382045 DOI: 10.1016/j.neuroimage.2019.116070] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Individual differences in impulsivity and compulsivity is thought to underlie vulnerability to a broad range of disorders and are closely tied to cortical-striatal-thalamic-cortical function. However, whether impulsivity and compulsivity in clinical disorders is continuous with the healthy population and explains cortical-striatal-thalamic-cortical dysfunction across different disorders remains unclear. Here, we characterized the relationship between cortical-striatal-thalamic-cortical effective connectivity, estimated using dynamic causal modelling of resting-state functional magnetic resonance imaging data, and dimensional phenotypes of impulsivity and compulsivity in two symptomatically distinct but phenotypically related disorders, obsessive-compulsive disorder and gambling disorder. 487 online participants provided data for modelling of dimensional phenotypes. These data were combined with 34 obsessive-compulsive disorder patients, 22 gambling disorder patients, and 39 healthy controls, who underwent functional magnetic resonance imaging. Three core dimensions were identified: disinhibition, impulsivity, and compulsivity. Patients' scores on these dimensions were continuously distributed with the healthy participants, supporting a continuum model of psychopathology. Across all participants, higher disinhibition correlated with lower bottom-up connectivity in the dorsal circuit and greater bottom-up connectivity in the ventral circuit, and higher compulsivity correlated with lower bottom-up connectivity in the dorsal circuit. In patients, higher clinical severity was also linked to lower bottom-up connectivity in the dorsal circuit, but these findings were independent of phenotypic variation, demonstrating convergence towards behaviourally and clinically relevant changes in brain dynamics. Effective connectivity did not differ as a function of traditional diagnostic labels and only weak associations were observed for functional connectivity measures. Together, our results demonstrate that cortical-striatal-thalamic-cortical dysfunction across obsessive-compulsive disorder and gambling disorder may be better characterized by dimensional phenotypes than diagnostic comparisons, supporting investigation of quantitative liability phenotypes.
Collapse
Affiliation(s)
- Linden Parkes
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia.
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Kevin Aquino
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Leah Braganza
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge and Cambridge Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Leonardo F Fontenelle
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro & D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Valentina Lorenzetti
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; School of Psychology, Faculty of Health, Australian Catholic University, Fitzroy, Australia
| | - Bryan Paton
- School of Psychology, Faculty of Science, University of Newcastle, Newcastle, Australia; Cognition & Philosophy Lab, Monash University, Melbourne, Australia
| | - Adeel Razi
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, United Kingdom; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Murat Yücel
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| |
Collapse
|
23
|
Hung CC, Zhang S, Chen CM, Duann JR, Lin CP, Lee TSH, Li CSR. Striatal functional connectivity in chronic ketamine users: a pilot study. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 46:31-43. [DOI: 10.1080/00952990.2019.1624764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chia-Chun Hung
- Bali Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
- Institute of Brain Science, National Yang Ming University, Taipei, Taiwan
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Ching-Po Lin
- Institute of Brain Science, National Yang Ming University, Taipei, Taiwan
| | - Tony Szu-Hsien Lee
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan
| | | |
Collapse
|
24
|
Popa T, Morris LS, Hunt R, Deng ZD, Horovitz S, Mente K, Shitara H, Baek K, Hallett M, Voon V. Modulation of Resting Connectivity Between the Mesial Frontal Cortex and Basal Ganglia. Front Neurol 2019; 10:587. [PMID: 31275221 PMCID: PMC6593304 DOI: 10.3389/fneur.2019.00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The mesial prefrontal cortex, cingulate cortex, and the ventral striatum are key nodes of the human mesial fronto-striatal circuit involved in decision-making and executive function and pathological disorders. Here we ask whether deep wide-field repetitive transcranial magnetic stimulation (rTMS) targeting the mesial prefrontal cortex (MPFC) influences resting state functional connectivity. Methods: In Study 1, we examined functional connectivity using resting state multi-echo and independent components analysis in 154 healthy subjects to characterize default connectivity in the MPFC and mid-cingulate cortex (MCC). In Study 2, we used inhibitory, 1 Hz deep rTMS with the H7-coil targeting MPFC and dorsal anterior cingulate (dACC) in a separate group of 20 healthy volunteers and examined pre- and post-TMS functional connectivity using seed-based and independent components analysis. Results: In Study 1, we show that MPFC and MCC have distinct patterns of functional connectivity with MPFC-ventral striatum showing negative, whereas MCC-ventral striatum showing positive functional connectivity. Low-frequency rTMS decreased functional connectivity of MPFC and dACC with the ventral striatum. We further showed enhanced connectivity between MCC and ventral striatum. Conclusions: These findings emphasize how deep inhibitory rTMS using the H7-coil can influence underlying network functional connectivity by decreasing connectivity of the targeted MPFC regions, thus potentially enhancing response inhibition and decreasing drug-cue reactivity processes relevant to addictions. The unexpected finding of enhanced default connectivity between MCC and ventral striatum may be related to the decreased influence and connectivity between the MPFC and MCC. These findings are highly relevant to the treatment of disorders relying on the mesio-prefrontal-cingulo-striatal circuit.
Collapse
Affiliation(s)
- Traian Popa
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Hunt
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Zhi-De Deng
- Non-Invasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Silvina Horovitz
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Karin Mente
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Hitoshi Shitara
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
26
|
Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in Gambling disorder: an integrative review. Mol Psychiatry 2019; 24:674-693. [PMID: 30214041 DOI: 10.1038/s41380-018-0230-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Gambling disorder (GD) was reclassified as a behavioral addiction in the DSM-5 and shares clinical and behavioral features with substance use disorders (SUDs). Neuroimaging studies of GD hold promise in isolating core features of the addiction syndrome, avoiding confounding effects of drug neurotoxicity. At the same time, a neurobiologically-grounded theory of how behaviors like gambling can become addictive remains lacking, posing a significant hurdle for ongoing decisions in addiction nosology. This article integrates research on reward-related brain activity (functional MRI) and neurotransmitter function (PET) in GD, alongside the consideration of structural MRI data as to whether these signals more likely reflect pre-existing vulnerability or neuroadaptive change. Where possible, we point to qualitative similarities and differences with established markers for SUDs. Structural MRI studies indicate modest changes in regional gray matter volume and diffuse reductions in white matter integrity in GD, contrasting with clear structural deterioration in SUDs. Functional MRI studies consistently identify dysregulation in reward-related circuitry (primarily ventral striatum and medial prefrontal cortex), but evidence is mixed as to the direction of these effects. The need for further parsing of reward sub-processes is emphasized, including anticipation vs outcome, gains vs. losses, and disorder-relevant cues vs natural rewards. Neurotransmitter PET studies indicate amplified dopamine (DA) release in GD, in the context of minimal differences in baseline DA D2 receptor binding, highlighting a distinct profile from SUDs. Preliminary work has investigated further contributions of opioids, GABA and serotonin. Neuroimaging data increasingly highlight divergent profiles in GD vs. SUDs. The ability of gambling to perpetually activate DA (via maximal uncertainty) may contribute to neuroimaging similarities between GD and SUDs, whereas the supra-physiological DA effects of drugs may partly explain differences in the neuroimaging profile of the two syndromes. Coupled with consistent observations of correlations with gambling severity and related clinical variables within GD samples, the overall pattern of effects is interpreted as a likely combination of shared vulnerability markers across GD and SUDs, but with further experience-dependent neuroadaptive processes in GD.
Collapse
Affiliation(s)
- Luke Clark
- Centre for Gambling Research, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Vivian M. Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Addictions Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Martin Zack
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Clinical Neuroscience Program, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada. .,Department of Public Health Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Zhang H, Wang B, Li K, Wang X, Li X, Zhu J, Zhao Q, Yang Y, Lv L, Zhang M, Zhang H. Altered Functional Connectivity Between the Cerebellum and the Cortico-Striato-Thalamo-Cortical Circuit in Obsessive-Compulsive Disorder. Front Psychiatry 2019; 10:522. [PMID: 31396115 PMCID: PMC6667674 DOI: 10.3389/fpsyt.2019.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Altered resting-state functional connectivity of the cerebellum in obsessive-compulsive disorder (OCD) has been previously reported. However, the previous study investigating cerebellar-cerebral functional connectivity relied on a priori-defined seeds from specific networks. In this study, we aimed to explore the connectivity alterations of the cerebellum in OCD under resting-state conditions with a hypothesis-free approach. Methods: Thirty patients with OCD and 26 healthy controls (HCs) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Regional cerebral function was evaluated by measuring the fraction of amplitude of low-frequency fluctuation (fALFF). Regions with mean fALFF (mfALFF) alterations were used as seeds in seed correlation analysis (SCA). An independent samples t test was used to compare the differences in mfALFF and functional connection (FC) between the two groups. Pearson correlation analysis was performed to identify the association between functional neural correlates and OCD symptom severity evaluated using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Results: Compared with the HC group, the OCD group showed significantly increased mfALFF values in bilateral cerebellar. The results of FC analysis showed weakened connectivity among the left Crus II, lobule VIII, and right striatum and between the right lobule VIII and the right striatum, and cingulate in the OCD group compared with the HC group. Some of the abovementioned results were associated with symptom severity. Conclusions: OCD patients showed abnormal spontaneous cerebellar activity and weakened functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical (CSTC) circuit (striatum and cingulate), suggesting that the cerebellum may play an essential role in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Haisan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Bi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Kun Li
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Xiaoyue Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Xianrui Li
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Jianli Zhu
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Qingjiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Psychology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
28
|
Verger A, Klesse E, Chawki MB, Witjas T, Azulay J, Eusebio A, Guedj E. Brain PET substrate of impulse control disorders in Parkinson's disease: A metabolic connectivity study. Hum Brain Mapp 2018; 39:3178-3186. [PMID: 29635851 PMCID: PMC6866256 DOI: 10.1002/hbm.24068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Impulse control disorders (ICDs) have received increased attention in Parkinson's disease (PD) because of potentially dramatic consequences. Their physiopathology, however, remains incompletely understood. An overstimulation of the mesocorticolimbic system has been reported, while a larger network has recently been suggested. The aim of this study is to specifically describe the metabolic PET substrate and related connectivity changes in PD patients with ICDs. Eighteen PD patients with ICDs and 18 PD patients without ICDs were evaluated using cerebral 18F-fluorodeoxyglucose positron emission tomography. SPM-T maps comparisons were performed between groups and metabolic connectivity was evaluated by interregional correlation analysis (IRCA; p < .005, uncorrected; k > 130) and by graph theory (p < .05). PD patients with ICDs had relative increased metabolism in the right middle and inferior temporal gyri compared to those without ICDs. The connectivity of this area was increased mostly with the mesocorticolimbic system, positively with the orbitofrontal region, and negatively with both the right parahippocampus and the left caudate (IRCA). Moreover, the betweenness centrality of this area with the mesocorticolimbic system was lost in patients with ICDs (graph analysis). ICDs are associated in PD with the dysfunction of a network exceeding the mesocorticolimbic system, and especially the caudate, the parahippocampus, and the orbitofrontal cortex, remotely including the right middle and inferior temporal gyri. This latest area loses its central place with the mesocorticolimbic system through a connectivity dysregulation.
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear MedicineAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Department of Nuclear Medicine & Nancyclotep Imaging platformCHRU NancyNancyF‐54000France
- Université de Lorraine, INSERM, IADINancyF‐54000France
| | - Elsa Klesse
- Department of Neurology and Movement DisordersAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
| | - Mohammad B. Chawki
- Department of Nuclear Medicine & Nancyclotep Imaging platformCHRU NancyNancyF‐54000France
| | - Tatiana Witjas
- Department of Neurology and Movement DisordersAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
| | - Jean‐Philippe Azulay
- Department of Neurology and Movement DisordersAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
| | - Alexandre Eusebio
- Department of Neurology and Movement DisordersAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
| | - Eric Guedj
- Department of Nuclear MedicineAssistance Publique‐Hôpitaux de Marseille, Aix‐Marseille Université, Timone University HospitalProvence‐Alpes‐Côte d'AzurFrance
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance
- CERIMED, Aix‐Marseille UniversitéMarseilleFrance
| |
Collapse
|
29
|
Moreno-Rius J. The cerebellum in fear and anxiety-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:23-32. [PMID: 29627508 DOI: 10.1016/j.pnpbp.2018.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
Fear and anxiety-related disorders are highly prevalent psychiatric conditions characterized by avoidant and fearful reactions towards specific stimuli or situations, which are disproportionate given the real threat such stimuli entail. These conditions comprise the most common mental disorder group. There are a high proportion of patients who fail to achieve remission and the presence of high relapse rates indicate the therapeutic options available are far from being fully efficient. Despite an increased understanding the neural circuits underlying fear and anxiety-related behaviors in the last decades, a factor that could be partially contributing to the lack of adequate therapies may be an insufficient understanding of the core features of the disorders and their associated neurobiology. Interestingly, the cerebellum shows connections with fear and anxiety-related brain areas and functional involvement in such processes, but explanations for its role in anxiety disorders are lacking. Therefore, the aims of this review are to provide an overview of the neural circuitry of fear and anxiety and its connections to the cerebellum, and of the animal studies that directly assess an involvement of the cerebellum in these processes. Then, the studies performed in patients suffering from anxiety disorders that explore the cerebellum will be discussed. Finally, we'll propose a function for the cerebellum in these disorders, which could guide future experimental approaches to the topic and lead to a better understanding of the neurobiology of anxiety-related disorders, ultimately helping to develop more effective treatments for these conditions.
Collapse
Affiliation(s)
- Josep Moreno-Rius
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
30
|
Dong G, Li H, Wang Y, Potenza MN. Individual differences in self-reported reward-approach tendencies relate to resting-state and reward-task-based fMRI measures. Int J Psychophysiol 2018; 128:31-39. [DOI: 10.1016/j.ijpsycho.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/27/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022]
|
31
|
Zois E, Kiefer F, Vollstädt-Klein S, Lemenager T, Mann K, Fauth-Bühler M. Amygdala grey matter volume increase in gambling disorder with depression symptoms of clinical relevance: a voxel-based morphometry study. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1452276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Evangelos Zois
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Tagrid Lemenager
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Karl Mann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Mira Fauth-Bühler
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
- iwp Institute for Economic Psychology, FOM University of Applied Sciences for Economics and Management , Essen, Germany
| |
Collapse
|
32
|
van Timmeren T, Zhutovsky P, van Holst RJ, Goudriaan AE. Connectivity networks in gambling disorder: a resting-state fMRI study. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1449884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim van Timmeren
- Department of Psychiatry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
- Amsterdam Institute for Addiction Research (AIAR) , Amsterdam, The Netherlands
| | - Paul Zhutovsky
- Department of Psychiatry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ruth J. van Holst
- Department of Psychiatry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
- Amsterdam Institute for Addiction Research (AIAR) , Amsterdam, The Netherlands
- Donders Institute for Cognition, Brain and Behaviour, Radboud University , Nijmegen, The Netherlands
| | - Anna E. Goudriaan
- Department of Psychiatry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
- Amsterdam Institute for Addiction Research (AIAR) , Amsterdam, The Netherlands
- Arkin , Amsterdam, The Netherlands
| |
Collapse
|
33
|
Marshall NA, Marusak HA, Sala-Hamrick KJ, Crespo LM, Rabinak CA, Thomason ME. Socioeconomic disadvantage and altered corticostriatal circuitry in urban youth. Hum Brain Mapp 2018; 39:1982-1994. [PMID: 29359526 DOI: 10.1002/hbm.23978] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
Socioeconomic disadvantage (SED) experienced in early life is linked to a range of risk behaviors and diseases. Neuroimaging research indicates that this association is mediated by functional changes in corticostriatal reward systems that modulate goal-directed behavior, reward evaluation, and affective processing. Existing research has focused largely on adults and within-household measures as an index of SED, despite evidence that broader community-level SED (e.g., neighborhood poverty levels) has significant and sometimes distinct effects on development and health outcomes. Here, we test effects of both household- and community-level SED on resting-state functional connectivity (rsFC) of the ventral striatum (VS) in 100 racially and economically diverse children and adolescents (ages 6-17). We observed unique effects of household income and community SED on VS circuitry such that higher community SED was associated with reduced rsFC between the VS and an anterior region of the medial prefrontal cortex (mPFC), whereas lower household income was associated with increased rsFC between the VS and the cerebellum, inferior temporal lobe, and lateral prefrontal cortex. Lower VS-mPFC rsFC was also associated with higher self-reported anxiety symptomology, and rsFC mediated the link between community SED and anxiety. These results indicate unique effects of community-level SED on corticostriatal reward circuitry that can be detected in early life, which carries implications for future interventions and targeted therapies. In addition, our findings raise intriguing questions about the distinct pathways through which specific sources of SED can affect brain and emotional development.
Collapse
Affiliation(s)
- Narcis A Marshall
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University School of Medicine, Detroit, Michigan
| | - Kelsey J Sala-Hamrick
- Department of Psychology, University of Southern California, Los Angeles, California.,Department of Psychology, Wayne State University, Detroit, Michigan
| | - Laura M Crespo
- Department of Psychology, University of Southern California, Los Angeles, California.,Department of Psychology, Wayne State University, Detroit, Michigan
| | - Christine A Rabinak
- Department of Pharmacy Practice, Wayne State University School of Medicine, Detroit, Michigan
| | - Moriah E Thomason
- Department of Pediatrics Wayne State University School of Medicine, Detroit, Michigan.,Merrill Palmer Skillman Institute for Child and Family Development Wayne State University, Detroit, Michigan.,Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, Bethesda, Maryland
| |
Collapse
|
34
|
Zhang JT, Ma SS, Li CSR, Liu L, Xia CC, Lan J, Wang LJ, Liu B, Yao YW, Fang XY. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum. Addict Biol 2018; 23:337-346. [PMID: 27894158 DOI: 10.1111/adb.12474] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders.
Collapse
Affiliation(s)
- Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
- Center for Collaboration and Innovation in Brain and Learning Sciences; Beijing Normal University; Beijing China
| | - Shan-Shan Ma
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Chiang-Shan R. Li
- Department of Psychiatry and Neuroscience; Yale University School of Medicine; New Haven CT USA
| | - Lu Liu
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| | - Cui-Cui Xia
- Students Counselling Center; Beijing Normal University; Beijing China
| | - Jing Lan
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| | - Ling-Jiao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Ben Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Yuan-Wei Yao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research; Beijing Normal University; Beijing China
| | - Xiao-Yi Fang
- Institute of Developmental Psychology; Beijing Normal University; Beijing China
| |
Collapse
|
35
|
Bae S, Han DH, Jung J, Nam KC, Renshaw PF. Comparison of brain connectivity between Internet gambling disorder and Internet gaming disorder: A preliminary study. J Behav Addict 2017; 6:505-515. [PMID: 29039224 PMCID: PMC6034957 DOI: 10.1556/2006.6.2017.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and aims Given the similarities in clinical symptoms, Internet gaming disorder (IGD) is thought to be diagnostically similar to Internet-based gambling disorder (ibGD). However, cognitive enhancement and educational use of Internet gaming suggest that the two disorders derive from different neurobiological mechanisms. The goal of this study was to compare subjects with ibGD to those with IGD. Methods Fifteen patients with IGD, 14 patients with ibGD, and 15 healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging data for all participants were acquired using a 3.0 Tesla MRI scanner (Philips, Eindhoven, The Netherlands). Seed-based analyses, the three brain networks of default mode, cognitive control, and reward circuitry, were performed. Results Both IGD and ibGD groups demonstrated decreased functional connectivity (FC) within the default-mode network (DMN) (family-wise error p < .001) compared with healthy control subjects. However, the IGD group demonstrated increased FC within the cognitive network compared with both the ibGD (p < .01) and healthy control groups (p < .01). In contrast, the ibGD group demonstrated increased FC within the reward circuitry compared with both IGD (p < .01) and healthy control subjects (p < .01). Discussion and conclusions The IGD and ibGD groups shared the characteristic of decreased FC in the DMN. However, the IGD group demonstrated increased FC within the cognitive network compared with both ibGD and healthy comparison groups.
Collapse
Affiliation(s)
- Sujin Bae
- Industry Academic Cooperation Foundation, Chung-Ang University, Seoul, South Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, South Korea,Corresponding author: Doug Hyun Han, MD, PhD; Department of Psychiatry, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea; Phone: +82 2 6299 3132; Fax: +82 2 6298 1508; E-mail:
| | - Jaebum Jung
- Ntelligentgames Inc., Seoul, South Korea,Wisdom Science Center, Korea University, Seoul, South Korea
| | - Ki Chun Nam
- Department of Psychology, Korea University, Seoul, South Korea
| | | |
Collapse
|
36
|
Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev 2017; 78:104-116. [DOI: 10.1016/j.neubiorev.2017.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022]
|
37
|
Parkes L, Fulcher BD, Yücel M, Fornito A. Transcriptional signatures of connectomic subregions of the human striatum. GENES BRAIN AND BEHAVIOR 2017; 16:647-663. [DOI: 10.1111/gbb.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023]
Affiliation(s)
- L. Parkes
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - B. D. Fulcher
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - M. Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - A. Fornito
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| |
Collapse
|
38
|
Moreno-Rius J, Miquel M. The cerebellum in drug craving. Drug Alcohol Depend 2017; 173:151-158. [PMID: 28259088 DOI: 10.1016/j.drugalcdep.2016.12.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 01/18/2023]
Abstract
Craving has been considered one of the core features of addiction. It can be defined as the urge or conscious desire to use a drug elicited by the drug itself, drug-associated cues or stressors. Craving plays a major role in relapse, even after prolonged periods of abstinence, as well as in the maintenance of drug seeking in non-abstinent addicts. The circuitry of craving includes medial parts of the prefrontal cortex, ventral striatal zones, ventral tegmental area, ventral pallidum, and limbic regions. Interestingly, the cerebellum shows reciprocal loops with many of these areas. The cerebellum has been linked traditionally to motor functions but increasing evidence indicates that this part of the brain is also involved in functions related to cognition, prediction, learning, and memory. Moreover, the functional neuroimaging studies that have addressed the study of craving in humans repeatedly demonstrate cerebellar activation when craving is elicited by the presentation of drug-related cues. However, the role of cerebellar activity in these craving episodes remains unknown. Therefore, the main goal of this review is to provide a brief update on craving studies and the traditional neural basis of this phenomenon, and then discuss and propose a hypothesis for the function of the cerebellum in craving episodes.
Collapse
Affiliation(s)
| | - Marta Miquel
- Psychobiology, Universitat Jaume I, Castellon de la Plana, Spain.
| |
Collapse
|
39
|
Bargeron AH, Hormes JM. Psychosocial correlates of internet gaming disorder: Psychopathology, life satisfaction, and impulsivity. COMPUTERS IN HUMAN BEHAVIOR 2017. [DOI: 10.1016/j.chb.2016.11.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Nakagawa Y. Psycho-Behavioral Spiral of Disturbances in Prosocial Behavior, Stress Response, and Self-Regulation inSubstance-Related and Addictive Disorders. ACTA ACUST UNITED AC 2017. [DOI: 10.4303/jdar/236017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Peters SK, Dunlop K, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front Syst Neurosci 2016; 10:104. [PMID: 28082874 PMCID: PMC5187454 DOI: 10.3389/fnsys.2016.00104] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Sarah K Peters
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Katharine Dunlop
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada; Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada; MRI-Guided rTMS Clinic, University Health NetworkToronto, ON, Canada
| |
Collapse
|
42
|
Imperatori C, Fabbricatore M, Innamorati M, Farina B, Quintiliani MI, Lamis DA, Mazzucchi E, Contardi A, Vollono C, Della Marca G. Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: An eLORETA study. Brain Imaging Behav 2016; 9:703-16. [PMID: 25332109 DOI: 10.1007/s11682-014-9324-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.
Collapse
Affiliation(s)
- Claudio Imperatori
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163, Rome, Italy.
| | | | - Marco Innamorati
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163, Rome, Italy
| | - Benedetto Farina
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163, Rome, Italy
| | - Maria Isabella Quintiliani
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163, Rome, Italy
| | - Dorian A Lamis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anna Contardi
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163, Rome, Italy
| | | | | |
Collapse
|
43
|
Abstract
Neuroimaging studies examining the neurobiological basis of gambling disorder (GD) have increased over the past decade. Functional magnetic resonance imaging studies during appetitive cue and reward processing tasks demonstrate altered functioning in frontostriatal brain areas, including the ventral striatum and the ventromedial prefrontal cortex. Findings suggest differences in how the anticipation and outcome of rewards are processed in individuals with GD. Future research requires larger sample sizes and should include appropriate clinical reference groups. Overall, studies to date highlight a common pathophysiology between substance-based addictions and GD, the latter offering a unique condition in which to examine nonchemical factors in addiction.
Collapse
Affiliation(s)
- I M Balodis
- Yale University, New Haven, CT, United States
| | - M N Potenza
- Yale University, New Haven, CT, United States.
| |
Collapse
|
44
|
Duquette LL, Mattiace F, Blum K, Waite RL, Boland T, McLaughlin T, Dushaj K, Febo M, Badgaiyan RD. Neurobiology of KB220Z-Glutaminergic-Dopaminergic Optimization Complex [GDOC] as a Liquid Nano: Clinical Activation of Brain in a Highly Functional Clinician Improving Focus, Motivation and Overall Sensory Input Following Chronic Intake. ACTA ACUST UNITED AC 2016; 3. [PMID: 29214221 PMCID: PMC5714519 DOI: 10.23937/2378-3656/1410104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background With neurogenetic and epigenetic tools utilized in research and neuroimaging, we are unraveling the mysteries of brain function, especially as it relates to Reward Deficiency (RDS). We encourage the development of pharmaceuticals or nutraceuticals that promote a reduction in dopamine resistance and balance brain neurochemistry, leading to dopamine homeostasis. We disclose self-assessment of a highly functional professional under work-related stress following KB220Z use, a liquid (aqua) nano glutaminergic-dopaminergic optimization complex (GDOC). Case presentation Subject took GDOC for one month. Subject self-administered GDOC using one-half-ounce twice a day. During first three days, unique brain activation occurred; resembling white noise after 30 minutes and sensation was strong for 45 minutes and then dissipated. He described effect as if his eyesight improved slightly and pointed out that his sense of smell and sleep greatly improved. Subject experienced a calming effect similar to meditation that could be linked to dopamine release. He also reported control of going over the edge after a hard day’s work, which was coupled with a slight increase in energy, increased motivation to work, increased focus and multi-tasking, with clearer purpose of task at hand. Subject felt less inhibited in a social setting and suggested Syndrome that GDOC increased his Behavior Activating System (reward), while having a decrease in the Behavior Inhibition System (caution). Conclusion These results and other related studies reveal an improved mood, work-related focus, and sleep. These effects as a subjective feeling of brain activation maybe due to direct or indirect dopaminergic interaction. While this case is encouraging, we must await more research in a larger randomized placebo-controlled study to map the role of GDOC, especially in a nano-sized product, to determine the possible effects on circuit inhibitory control and memory banks and the induction of dopamine homeostasis independent of either hypo- or hyper-dopaminergic traits/states.
Collapse
Affiliation(s)
- Lucien L Duquette
- New Pathway Counseling Services Inc., Paramus, NJ, USA.,Behavior Wellness Center, Englewood, NJ, USA
| | | | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, RI, USA.,Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA.,Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.,Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA.,Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA.,Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - Roger L Waite
- Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA
| | | | | | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
45
|
Contreras-Rodríguez O, Albein-Urios N, Vilar-López R, Perales JC, Martínez-Gonzalez JM, Fernández-Serrano MJ, Lozano-Rojas O, Clark L, Verdejo-García A. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity. Addict Biol 2016; 21:709-18. [PMID: 25818325 DOI: 10.1111/adb.12242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect.
Collapse
Affiliation(s)
- Oren Contreras-Rodríguez
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Institute of Neuroscience F. Oloriz; Universidad de Granada; Spain
| | | | - Raquel Vilar-López
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Mind, Brain and Behavior Research Center; Universidad de Granada; Spain
| | - Jose C. Perales
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Mind, Brain and Behavior Research Center; Universidad de Granada; Spain
| | - Jose M. Martínez-Gonzalez
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Centro Provincial de Drogodependencias; Diputación de Granada; Spain
| | - Maria J. Fernández-Serrano
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Department of Psychology; Universidad de Jaén; Spain
| | - Oscar Lozano-Rojas
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Department of Psychology; Universidad de Huelva; Spain
| | - Luke Clark
- Centre for Gambling Research at UBC; Department of Psychology; University of British Columbia; Canada
| | - Antonio Verdejo-García
- Red de Trastornos Adictivos; Universidad de Granada; Spain
- Institute of Neuroscience F. Oloriz; Universidad de Granada; Spain
- School of Psychological Sciences; Monash University; Australia
| |
Collapse
|
46
|
Brand M, Snagowski J, Laier C, Maderwald S. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction. Neuroimage 2016; 129:224-232. [DOI: 10.1016/j.neuroimage.2016.01.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
|
47
|
Resting state functional connectivity analysis for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 224:155-73. [DOI: 10.1016/bs.pbr.2015.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Contreras-Rodríguez O, Albein-Urios N, Perales JC, Martínez-Gonzalez JM, Vilar-López R, Fernández-Serrano MJ, Lozano-Rojas O, Verdejo-García A. Cocaine-specific neuroplasticity in the ventral striatum network is linked to delay discounting and drug relapse. Addiction 2015. [PMID: 26212416 DOI: 10.1111/add.13076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. DESIGN Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. SETTING AND PARTICIPANTS CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). MEASUREMENTS Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. FINDINGS CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). CONCLUSIONS Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse.
Collapse
Affiliation(s)
- Oren Contreras-Rodríguez
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | | | - José C Perales
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain
| | - José M Martínez-Gonzalez
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Centro Provincial de Drogodependencias, Diputación de Granada, Granada, Spain
| | | | - María J Fernández-Serrano
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Department of Psychology, Universidad de Jaén, Jaén, Spain
| | - Oscar Lozano-Rojas
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,School of Psychology, Universidad de Huelva, Huelva, Spain
| | - Antonio Verdejo-García
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain.,School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
49
|
Lemieux A, al'Absi M. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions. PROGRESS IN BRAIN RESEARCH 2015; 223:43-62. [PMID: 26806770 DOI: 10.1016/bs.pbr.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process.
Collapse
Affiliation(s)
| | - Mustafa al'Absi
- University of Minnesota School of Medicine, Duluth, MN, USA.
| |
Collapse
|
50
|
Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 2015; 60:1-11. [PMID: 26602022 DOI: 10.1016/j.neubiorev.2015.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder.
Collapse
|