1
|
Tarras ES, Singh I, Kreiger J, Joseph P. Exercise Pulmonary Hypertension and Beyond: Insights in Exercise Pathophysiology in Pulmonary Arterial Hypertension (PAH) from Invasive Cardiopulmonary Exercise Testing. J Clin Med 2025; 14:804. [PMID: 39941482 PMCID: PMC11818252 DOI: 10.3390/jcm14030804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive disease of the pulmonary vasculature that is associated with pulmonary vascular remodeling and right heart failure. While there have been recent advances both in understanding pathobiology and in diagnosis and therapeutic options, PAH remains a disease with significant delays in diagnosis and high morbidity and mortality. Information from invasive cardiopulmonary exercise testing (iCPET) presents an important opportunity to evaluate the dynamic interactions within and between the right heart circulatory system and the skeletal muscle during different loading conditions to enhance early diagnosis, phenotype disease subtypes, and personalize treatment in PAH given the shortcomings of contemporary diagnostic and therapeutic approaches. The purpose of this review is to present the current applications of iCPET in PAH and to discuss future applications of the testing methodology.
Collapse
Affiliation(s)
- Elizabeth S. Tarras
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (I.S.)
| | | | | | | |
Collapse
|
2
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
3
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
4
|
O’Reilly J, Ono‐Moore KD, Chintapalli SV, Rutkowsky JM, Tolentino T, Lloyd KCK, Olfert IM, Adams SH. Sex differences in skeletal muscle revealed through fiber type, capillarity, and transcriptomics profiling in mice. Physiol Rep 2021; 9:e15031. [PMID: 34545692 PMCID: PMC8453262 DOI: 10.14814/phy2.15031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle anatomy and physiology are sexually dimorphic but molecular underpinnings and muscle-specificity are not well-established. Variances in metabolic health, fitness level, sedentary behavior, genetics, and age make it difficult to discern inherent sex effects in humans. Therefore, mice under well-controlled conditions were used to determine female and male (n = 19/sex) skeletal muscle fiber type/size and capillarity in superficial and deep gastrocnemius (GA-s, GA-d), soleus (SOL), extensor digitorum longus (EDL), and plantaris (PLT), and transcriptome patterns were also determined (GA, SOL). Summed muscle weight strongly correlated with lean body mass (r2 = 0.67, p < 0.0001, both sexes). Other phenotypes were muscle-specific: e.g., capillarity (higher density, male GA-s), myofiber size (higher, male EDL), and fiber type (higher, lower type I and type II prevalences, respectively, in female SOL). There were broad differences in transcriptomics, with >6000 (GA) and >4000 (SOL) mRNAs differentially-expressed by sex; only a minority of these were shared across GA and SOL. Pathway analyses revealed differences in ribosome biology, transcription, and RNA processing. Curation of sexually dimorphic muscle transcripts shared in GA and SOL, and literature datasets from mice and humans, identified 11 genes that we propose are canonical to innate sex differences in muscle: Xist, Kdm6a, Grb10, Oas2, Rps4x (higher, females) and Ddx3y, Kdm5d, Irx3, Wwp1, Aldh1a1, Cd24a (higher, males). These genes and those with the highest "sex-biased" expression in our study do not contain estrogen-response elements (exception, Greb1), but a subset are proposed to be regulated through androgen response elements. We hypothesize that innate muscle sexual dimorphism in mice and humans is triggered and then maintained by classic X inactivation (Xist, females) and Y activation (Ddx3y, males), with coincident engagement of X encoded (Kdm6a) and Y encoded (Kdm5d) demethylase epigenetic regulators that are complemented by modulation at some regions of the genome that respond to androgen.
Collapse
Affiliation(s)
- Juliana O’Reilly
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | | | - Sree V. Chintapalli
- Arkansas Children’s Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jennifer M. Rutkowsky
- Department of Molecular Biosciences, University of California Davis School of Veterinary MedicineDavisCaliforniaUSA
- Mouse Metabolic Phenotyping CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Todd Tolentino
- Mouse Metabolic Phenotyping CenterUniversity of CaliforniaDavisCaliforniaUSA
- Mouse Biology ProgramUniversity of CaliforniaDavisCaliforniaUSA
| | - K. C. Kent Lloyd
- Mouse Metabolic Phenotyping CenterUniversity of CaliforniaDavisCaliforniaUSA
- Mouse Biology ProgramUniversity of CaliforniaDavisCaliforniaUSA
- Department of SurgeryUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - I. Mark Olfert
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Sean H. Adams
- Department of SurgeryUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
- Center for Alimentary and Metabolic ScienceUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| |
Collapse
|
5
|
Deres F, Schwartz S, Kappes-Horn K, Kornblum C, Reimann J. Early Changes in Skeletal Muscle of Young C22 Mice, A Model of Charcot-Marie-Tooth 1A. J Neuromuscul Dis 2021; 8:S283-S299. [PMID: 34459411 PMCID: PMC8673495 DOI: 10.3233/jnd-210681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The C22 mouse is a Charcot-Marie-Tooth 1A transgenic model with minimal axonal loss. Objective: To analyse early skeletal muscle changes resulting from this dysmyelinating neuropathy. Methods: Histology of tibialis anterior muscles of C22 mice and wild type litter mate controls for morphometric analysis and (immuno-)histochemistry for known denervation markers and candidate proteins identified by representational difference analysis (RDA) based on mRNA from the same muscles; quantitative PCR and Western blotting for confirmation of RDA findings. Results: At age 10 days, morphometry was not different between groups, while at 21 days, C22 showed significantly more small diameter fibres, indicating the onset of atrophy at an age when weakness becomes detectable. Neither (immuno-)histochemistry nor RDA detected extrajunctional expression of acetylcholine receptors by age 10 and 21 days, respectively. RDA identified some mRNA up-regulated in C22 muscles, among them at 10 days, prior to detectable weakness or atrophy, integral membrane protein 2a (Itm2a), eukaryotic initiation factor 2, subunit 2 (Eif2s2) and cytoplasmic phosphatidylinositol transfer protein 1 (Pitpnc1). However, qPCR failed to measure significant differences. In contrast, Itm2a and Eif2s2 mRNA were significantly down-regulated comparing 21 versus 10 days of age in both groups, C22 and controls. Western blotting confirmed significant down-regulation of ITM2A protein in C22 only. Conclusion: Denervation-like changes in this model develop slowly with onset of atrophy and weakness at about three weeks of age, before detection of extrajunctional acetylcholine receptors. Altered Itm2a expression seems to begin early as an increase, but becomes distinct as a decrease later.
Collapse
Affiliation(s)
- Friederike Deres
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Stephanie Schwartz
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Karin Kappes-Horn
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany.,Centre for Rare Diseases, University Hospital Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| |
Collapse
|
6
|
Ono-Moore KD, Olfert IM, Rutkowsky JM, Chintapalli SV, Willis BJ, Blackburn ML, Williams DK, O'Reilly J, Tolentino T, Lloyd KCK, Adams SH. Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E63-E79. [PMID: 33969704 PMCID: PMC8321820 DOI: 10.1152/ajpendo.00624.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myoglobin (Mb) is a regulator of O2 bioavailability in type I muscle and heart, at least when tissue O2 levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb-/-) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males (n = 10/genotype) and females (n = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At ∼18 and ∼19 wk of age, female Mb-/- adiposity was ∼42%-48% higher versus WT females (P = 0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb-/-, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb-/- mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.NEW & NOTEWORTHY The roles of myoglobin remain to be elaborated. We address sexual dimorphism in terms of outcomes in response to the loss of myoglobin in knockout mice and perform, for the first time, a series of comprehensive metabolic studies under conditions in which fat is mobilized (high-fat diet, cold). The results highlight that myoglobin is not necessary and sufficient for maintaining oxidative metabolism and point to alternative roles for this protein in muscle and heart.
Collapse
Affiliation(s)
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - D Keith Williams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Juliana O'Reilly
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
7
|
Nielsen JL, Frandsen U, Jensen KY, Prokhorova TA, Dalgaard LB, Bech RD, Nygaard T, Suetta C, Aagaard P. Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training-Exercise-Induced Adaptations and Signs of Perivascular Stress. Front Physiol 2020; 11:556. [PMID: 32595516 PMCID: PMC7303802 DOI: 10.3389/fphys.2020.00556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization. Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression. Results: Capillary per myofiber and capillary area (CA) increased 21–24 and 25–34%, respectively, in response to BFRE (P < 0.05–0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15–16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05–0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON. Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress.
Collapse
Affiliation(s)
- Jakob L Nielsen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kasper Y Jensen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Tatyana A Prokhorova
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Line B Dalgaard
- Section for Sports Science, Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Rune D Bech
- Department of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Nygaard
- Department of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Matsumoto T, Tanaka M, Ikeji T, Maeshige N, Sakai Y, Akisue T, Kondo H, Ishihara A, Fujino H. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. J Physiol Sci 2019; 69:317-326. [PMID: 30478742 PMCID: PMC10717691 DOI: 10.1007/s12576-018-0648-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
Abstract
The purpose of the present study was to determine the effects of transcutaneous CO2 application on the blood flow and capillary architecture of the soleus muscle in rats with streptozotocin (STZ)-induced hyperglycemia. Wistar rats were randomly divided into four groups: control, control + CO2-treated, STZ-induced hyperglycemia, and STZ-induced hyperglycemia + CO2-treated groups. Blood flow in soleus muscle increased during the transcutaneous CO2 exposure, and continued to increase for 30 min after the treatment. In addition, the transcutaneous CO2 attenuated a decrease in capillary and the expression level of eNOS and VEGF protein, and an increase in the expression level of MDM-2 and TSP-1 protein of soleus muscle due to STZ-induced hyperglycemia. These results indicate that the application of transcutaneous CO2 could improve capillary regression via the change of pro- and anti-angiogenesis factors, which might be induced by an increase in blood flow.
Collapse
Affiliation(s)
- Tomohiro Matsumoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu, Osaka, 566-8501, Japan
| | - Takuya Ikeji
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 4-21 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
9
|
Delforce SJ, Lumbers ER, Morosin SK, Wang Y, Pringle KG. The Angiotensin II type 1 receptor mediates the effects of low oxygen on early placental angiogenesis. Placenta 2018; 75:54-61. [PMID: 30712667 DOI: 10.1016/j.placenta.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Placental development occurs in a low oxygen environment, which stimulates angiogenesis by upregulating vascular endothelial growth factor A (VEGFA), plasminogen activator inhibitor-1 (SERPINE1) and the angiopoietin-2/-1 ratio (ANGPT2/1). At this time, Angiotensin II type 1 receptor (AT1R) is highly expressed. We postulated that the early gestation placental oxygen milieu, by stimulating the angiotensin (Ang) II/AT1R pathway, increases expression of proliferative/angiogenic factors. METHODS HTR-8/SVneo cells were cultured in 1%, 5% or 20% O2 with the AT1R antagonist (losartan) for 48 h. mRNA and protein levels of angiogenic factors were determined by qPCR and ELISA. Angiogenesis and cell viability were assessed by HUVEC tube formation and resazurin assay. RESULTS Culture in low oxygen (1%) increased angiogenic VEGFA, SERPINE1 and placental growth factor (PGF) mRNA and VEGFA and SERPINE1 protein levels, and reduced anti-angiogenic ANGPT1, endoglin (ENG) and soluble fms-like tyrosine kinase-e15a (sFlt-e15a) mRNA (all P = 0.0001). At 1% oxygen, losartan significantly reduced intracellular VEGFA and SERPINE1 levels and secreted VEGF levels (P = 0.008, 0.0001 and 0.0001). HUVEC tube formation was increased in cells grown in HTR-8/SVneo conditioned medium from 1 to 5% cultures (all P = 0.0001). HUVECs cultured in medium from losartan treated HTR-8/SVneo cells had a reduced number of meshes, branching points and total branching length (P = 0.004, 0.003 and 0.0002). At 1% oxygen, losartan partially inhibited the oxygen-induced increase in cell viability (P = 0.0001). DISCUSSION Thus, AT1R blockade antagonised the low oxygen induced increase in pro-angiogenic factor expression and cell viability. Our findings highlight a role for an oxygen-sensitive Ang II/AT1R pathway during placentation.
Collapse
Affiliation(s)
- Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Sciences, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Sciences, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Sciences, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Yu Wang
- Obstetrics and Gynecology, Department of Perinatology, Oregon Health and Science University, Portland, OR, USA
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Sciences, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
10
|
Angiotensin II Attenuates the Bioactivities of Human Endothelial Progenitor Cells via Downregulation of β2-Adrenergic Receptor. Stem Cells Int 2018; 2018:7453161. [PMID: 30510587 PMCID: PMC6231359 DOI: 10.1155/2018/7453161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Cross talks between the renin-angiotensin system (RAS), sympathetic nervous system, and vascular homeostasis are tightly coordinated in hypertension. Angiotensin II (Ang II), a key factor in RAS, when abnormally activated, affects the number and bioactivity of circulating human endothelial progenitor cells (hEPCs) in hypertensive patients. In this study, we investigated how the augmentation of Ang II regulates adrenergic receptor-mediated signaling and angiogenic bioactivities of hEPCs. Interestingly, the short-term treatment of hEPCs with Ang II drastically attenuated the expression of beta-2 adrenergic receptor (ADRB2), but did not alter the expression of beta-1 adrenergic receptor (ADRB1) and Ang II type 1 receptor (AT1R). EPC functional assay clearly demonstrated that the treatment with ADRB2 agonists significantly increased EPC bioactivities including cell proliferation, migration, and tube formation abilities. However, EPC bioactivities were decreased dramatically when treated with Ang II. Importantly, the attenuation of EPC bioactivities by Ang II was restored by treatment with an AT1R antagonist (telmisartan; TERT). We found that AT1R binds to ADRB2 in physiological conditions, but this binding is significantly decreased in the presence of Ang II. Furthermore, TERT, an Ang II-AT1R interaction blocker, restored the interaction between AT1R and ADRB2, suggesting that Ang II might induce the dysfunction of EPCs via downregulation of ADRB2, and an AT1R blocker could prevent Ang II-mediated ADRB2 depletion in EPCs. Taken together, our report provides novel insights into potential therapeutic approaches for hypertension-related cardiovascular diseases.
Collapse
|
11
|
Nwadozi E, Ng A, Strömberg A, Liu HY, Olsson K, Gustafsson T, Haas TL. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis 2018; 22:103-115. [DOI: 10.1007/s10456-018-9641-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
|
12
|
Hotta K, Behnke BJ, Masamoto K, Shimotsu R, Onodera N, Yamaguchi A, Poole DC, Kano Y. Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy. J Appl Physiol (1985) 2018; 125:369-380. [DOI: 10.1152/japplphysiol.00046.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Via modulation of endothelial integrity and vascular permeability in response to damage, skeletal muscle microvessels play a crucial permissive role in tissue leukocyte invasion. However, direct visual evidence of altered microvascular permeability of skeletal muscle has not been technically feasible, impairing mechanistic understanding of these responses. Two-photon laser scanning microscopy (TPLSM) allows three-dimensional in vivo imaging of skeletal muscle microcirculation. We hypothesized that the regulation of microvascular permeability in vivo is temporally related to acute inflammatory and regenerative processes following muscle injury. To test our hypothesis, tibialis anterior muscles of anesthetized male Wistar rats were subjected to eccentric contractions (ECCs) via electrical stimulation. The skeletal muscle microcirculation was imaged by an intravenously infused fluorescent dye (rhodamine B isothiocyanate-dextran) to assess microvascular permeability via TPLSM 1, 3, and 7 days after ECC. Immunohistochemistry on serial muscle sections was performed to determine the proportion of VEGF-A-positive muscle fibers in the damaged muscle. Compared with control rats, the volumetrically determined interstitial leakage of fluorescent dye (5.1 ± 1.4, 5.3 ± 1.2 vs. 0.51 ± 0.14 μm3 × 106; P < 0.05, days 1 and 3, respectively, vs. control) and percentage of VEGF-A-positive fibers in the damaged muscle (10 ± 0.4%, 22 ± 1.1% vs. 0%; days 1 and 3, respectively, vs. control) were significantly higher on days 1 and 3 after ECC. The interstitial leakage volume returned to control by day 7. These results suggest that microvascular hyperpermeability assessed by in vivo TPLSM imaging is associated with ECC-induced muscle damage and increased VEGF expression. NEW & NOTEWORTHY This investigation employed a novel in vivo imaging technique for skeletal muscle microcirculation using two-photon laser scanning microscopy that enabled microvascular permeability to be assessed by four-dimensional image analysis. By combining in vivo imaging and histological analysis, we found the temporal profile of microvascular hyperpermeability to be related to that of eccentric contraction-induced skeletal muscle injury and pronounced novel myocyte VEGF expression.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Bradley Jon Behnke
- Department of Kinesiology, Kansas State University College of Human Ecology, Manhattan, Kansas
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Rie Shimotsu
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoya Onodera
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa Ishikari-Tobetsu, Hokkaido, Japan
| | - David C. Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
13
|
Trejo-Moreno C, Castro-Martínez G, Méndez-Martínez M, Jiménez-Ferrer JE, Pedraza-Chaverri J, Arrellín G, Zamilpa A, Medina-Campos ON, Lombardo-Earl G, Barrita-Cruz GJ, Hernández B, Ramírez CC, Santana MA, Fragoso G, Rosas G. Acetone fraction from Sechium edule (Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:75-86. [PMID: 29501845 DOI: 10.1016/j.jep.2018.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. AIM OF THE STUDY To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. MATERIALS AND METHODS Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1β, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFβ levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. RESULTS The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. IN CONCLUSION this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Gabriela Castro-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Marisol Méndez-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Jesús Enrique Jiménez-Ferrer
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gerardo Arrellín
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico; Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México CP 03920, Mexico
| | - Alejandro Zamilpa
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Galia Lombardo-Earl
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Gerardo Joel Barrita-Cruz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Beatriz Hernández
- Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Christian Carlos Ramírez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos CP 62209, Mexico
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico.
| |
Collapse
|
14
|
Valdivieso P, Franchi MV, Gerber C, Flück M. Does a Better Perfusion of Deconditioned Muscle Tissue Release Chronic Low Back Pain? Front Med (Lausanne) 2018; 5:77. [PMID: 29616222 PMCID: PMC5869187 DOI: 10.3389/fmed.2018.00077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Non-specific chronic low back pain (nsCLBP) is a multifactorial condition of unknown etiology and pathogenesis. Physical and genetic factors may influence the predisposition of individuals to CLBP, which in many instances share a musculoskeletal origin. A reduced pain level in low back pain patients that participate in exercise therapy highlights that disuse-related muscle deconditioning may predispose individuals to nsCLBP. In this context, musculoskeletal pain may be the consequence of capillary rarefaction in inactive muscle as this would lower local tissue drainage and washing out of toxic waste. Muscle activity is translated into an angio-adaptative process, which implicates angiogenic-gene expression and individual response differences due to heritable modifications of such genes (gene polymorphisms). The pathophysiologic mechanism underlying nsCLBP is still largely unaddressed. We hypothesize that capillary rarefaction due to a deconditioning of dorsal muscle groups exacerbates nsCLBP by increasing noxious sensation, reducing muscle strength and fatigue resistance by initiating a downward spiral of local deconditioning of back muscles which diminishes their load-bearing capacity. We address the idea that specific factors such as angiotensin-converting enzyme and Tenascin-C might play an important role in altering susceptibility to nsCLBP via their effects on microvascular perfusion and vascular remodeling of skeletal muscle, inflammation, and pain sensation. The genetic profile may help to explain the individual predisposition to nsCLBP, thus identifying subgroups of patients, which could benefit from ad hoc treatment types. Future therapeutic approaches aimed at relieving the pain associated with nsCLBP should be based on the verification of mechanistic processes of activity-induced angio-adaptation and muscle-perfusion.
Collapse
Affiliation(s)
- Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zürich, Switzerland.,Interdisciplinary Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, Zürich, Switzerland
| | - Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Christian Gerber
- Orthopedics Department, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
15
|
Stilhano RS, Samoto VY, Silva LM, Pereira GJ, Erustes AG, Smaili SS, Won Han S. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS One 2017; 12:e0186719. [PMID: 29059221 PMCID: PMC5653346 DOI: 10.1371/journal.pone.0186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
Regeneration of injured skeletal muscles is affected by fibrosis, which can be improved by the administration of angiotensin II (AngII) receptor (ATR) blockers in normotensive animals. However, the role of ATR in skeletal muscle fibrosis in hypertensive organisms has not been investigated yet. The tibialis anterior (TA) muscle of spontaneously hypertensive (SHR) and Wistar rats (WR) were lacerated and a lentivector encoding a microRNA targeting AngII receptor type 1 (At1) (Lv-mirAT1a) or control (Lv-mirCTL) was injected. The TA muscles were collected after 30 days to evaluate fibrosis by histology and gene expression by real-time quantitative PCR (RT-qPCR) and Western blot. SHR's myoblasts were analyzed by RT-qPCR, 48 h after transduction. In the SHR's TA, AT1 protein expression was 23.5-fold higher than in WR without injury, but no difference was observed in the angiotensin II receptor type 2 (AT2) protein expression. TA laceration followed by suture (LS) produced fibrosis in the SHR (23.3±8.5%) and WR (7.9±1.5%). Lv-mirAT1 treatment decreased At1 gene expression in 50% and reduced fibrosis to 7% 30 days after. RT-qPCR showed that reduction in At1 expression is due to downregulation of the At1a but not of the At1b. RT-qPCR of myoblasts from SHR transduced with Lv-mirAT1a showed downregulation of the Tgf-b1, Tgf-b2, Smad3, Col1a1, and Col3a1 genes by mirAT1a. In vivo and in vitro studies indicate that hypertension overproduces skeletal muscle fibrosis, and AngII-AT1a signaling is the main pathway of fibrosis in SHR. Moreover, muscle fibrosis can be treated specifically by in loco injection of Lv-mirAT1a without affecting other organs.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vivian Yochiko Samoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Leonardo Martins Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Gustavo José Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Baum O, Jentsch L, Odriozola A, Tschanz SA, Olfert IM. Ultrastructure of Skeletal Muscles in Mice Lacking Muscle‐Specific VEGF Expression. Anat Rec (Hoboken) 2017; 300:2239-2249. [DOI: 10.1002/ar.23644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/11/2017] [Accepted: 04/30/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité‐Universitätsmedizin BerlinBerlin Germany
| | - Lena Jentsch
- Institute of Anatomy, University of BernBern Switzerland
| | | | | | - I. Mark Olfert
- West Virginia Clinical and Translational Institute, Department of Exercise PhysiologyWest Virginia University School of MedicineMorgantown West Virginia
| |
Collapse
|
17
|
Alkadhi KA. Exercise as a Positive Modulator of Brain Function. Mol Neurobiol 2017; 55:3112-3130. [PMID: 28466271 DOI: 10.1007/s12035-017-0516-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Various forms of exercise have been shown to prevent, restore, or ameliorate a variety of brain disorders including dementias, Parkinson's disease, chronic stress, thyroid disorders, and sleep deprivation, some of which are discussed here. In this review, the effects on brain function of various forms of exercise and exercise mimetics in humans and animal experiments are compared and discussed. Possible mechanisms of the beneficial effects of exercise including the role of neurotrophic factors and others are also discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
18
|
|
19
|
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 2016; 310:H326-36. [PMID: 26608338 PMCID: PMC4796623 DOI: 10.1152/ajpheart.00635.2015] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis.
Collapse
Affiliation(s)
- I Mark Olfert
- Center for Cardiovascular and Respiratory Sciences and Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia;
| | - Oliver Baum
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Olfert IM. Physiological Capillary Regression is not Dependent on Reducing VEGF Expression. Microcirculation 2016; 23:146-56. [PMID: 26660949 PMCID: PMC4744091 DOI: 10.1111/micc.12263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Investigations into physiologically controlled capillary regression report the provocative finding that microvessel regression occurs in the face of persistent elevation of skeletal muscle VEGF expression. TSP-1, a negative angiogenic regulator, is increasingly being observed to temporally correlate with capillary regression, suggesting that increased TSP-1 (and not reduction in VEGF per se) is needed to initiate, and likely regulate, capillary regression. Based on evidence being gleaned from physiologically mediated regression of capillaries, it needs to be recognized that capillary regression (and perhaps capillary rarefaction with disease) is not simply the reversal of factors used to stimulate angiogenesis. Rather, the conceptual understanding that angiogenesis and capillary regression each have specific and unique requirements that are biologically constrained to opposite sides of the balance between positive and negative angioregulatory factors may shed light on why anti-VEGF therapies have not lived up to the promise in reversing angiogenesis and providing the cure that many had hoped toward fighting cancer. Emerging evidence from physiological controlled angiogenesis suggest that cases involving excessive or uncontrolled capillary expansion may be best treated by therapies designed to increase expression of negative angiogenic regulators, whereas those involving capillary rarefaction may benefit from inhibiting negative regulators (like TSP-1).
Collapse
Affiliation(s)
- I Mark Olfert
- Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Mary Babb Randolph Cancer Center, West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor. J Immunol Res 2016; 2016:1858252. [PMID: 27057554 PMCID: PMC4745622 DOI: 10.1155/2016/1858252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/27/2015] [Indexed: 02/06/2023] Open
Abstract
The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases.
Collapse
|
22
|
Smythe G. Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:161-83. [PMID: 27003400 DOI: 10.1007/978-3-319-27511-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle.
Collapse
Affiliation(s)
- Gayle Smythe
- Faculty of Science, Charles Sturt University, Albury, NSW, 789, 2640, Australia.
| |
Collapse
|
23
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
24
|
Huey KA, Smith SA, Sulaeman A, Breen EC. Skeletal myofiber VEGF is necessary for myogenic and contractile adaptations to functional overload of the plantaris in adult mice. J Appl Physiol (1985) 2015; 120:188-95. [PMID: 26542520 DOI: 10.1152/japplphysiol.00638.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
The ability to enhance muscle size and function is important for overall health. In this study, skeletal myofiber vascular endothelial growth factor (VEGF) was hypothesized to regulate hypertrophy, capillarity, and contractile function in response to functional overload (FO). Adult myofiber-specific VEGF gene-ablated mice (skmVEGF(-/-)) and wild-type (WT) littermates underwent plantaris FO or sham surgery (SHAM). Mass, morphology, in vivo function, IGF-1, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and Akt were measured at 7, 14, and 30 days. FO resulted in hypertrophy in both genotypes, but fiber sizes were 13% and 23% smaller after 14 and 30 days, respectively, and mass 15% less after 30 days in skmVEGF(-/-) than WT. FO increased isometric force after 30 days in WT and decreased in skmVEGF(-/-) after 7 and 14 days. FO also resulted in a reduction in specific force and this differed between genotypes at 14 days. Fatigue resistance improved only in 14-day WT mice. Capillary density was decreased by FO in both genotypes. However, capillary-to-fiber ratios were 19% and 15% lower in skmVEGF(-/-) than WT at the 14- and 30-day time points, respectively. IGF-1 was increased by FO at all time points and was 45% and 40% greater in skmVEGF(-/-) than WT after 7 and 14 days, respectively. bFGF, HGF, total Akt, and phospho-Akt, independent of VEGF expression, and VEGF levels in WT were increased after 7 days of FO. These findings suggest VEGF-dependent capillary maintenance supports muscle growth and function in overloaded muscle and is not rescued by compensatory IGF-1 expression.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Sophia A Smith
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Alexis Sulaeman
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
25
|
Uchida C, Nwadozi E, Hasanee A, Olenich S, Olfert IM, Haas TL. Muscle-derived vascular endothelial growth factor regulates microvascular remodelling in response to increased shear stress in mice. Acta Physiol (Oxf) 2015; 214:349-60. [PMID: 25659833 DOI: 10.1111/apha.12463] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/04/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
AIM The source of vascular endothelial growth factor-A (VEGF-A) may influence vascular function. Exercise-induced vascular growth has been attributed to elevated metabolic demand and to increased blood flow, involving the production of VEGF-A by skeletal muscle and by endothelial cells respectively. We hypothesized that muscle-derived VEGF-A is not required for vascular adaptations to blood flow in skeletal muscle, as this remodelling stimulus originates within the capillary. METHODS Myocyte-specific VEGF-A (mVEGF(-/-) ) deleted mice were treated for 7-21 days with the vasodilator prazosin to produce a sustained increase in skeletal muscle blood flow. RESULTS Capillary number increased in the extensor digitorum longus (EDL) muscle in response to prazosin in wild type but not mVEGF(-/-) mice. Prazosin increased the number of smooth muscle actin-positive blood vessels in the EDL of wild-type but not mVEGF(-/-) mice. The average size of smooth muscle actin-positive blood vessels also was smaller in knockout mice after prazosin treatment. In response to prazosin treatment, VEGF-A mRNA was elevated within the EDL of wild-type but not mVEGF(-/-) mice. Ex vivo incubation of wild-type EDL with a nitric oxide donor increased VEGF-A mRNA. Likewise, we demonstrated that nitric oxide donor treatment of cultured myoblasts stimulated an increase in VEGF-A mRNA and protein. CONCLUSION These results suggest a link through which flow-mediated endothelial-derived signals may promote myocyte production of VEGF-A. In turn, myocyte-derived VEGF-A is required for appropriate flow-mediated microvascular remodelling. This highlights the importance of the local environment and paracrine interactions in the regulation of tissue perfusion.
Collapse
Affiliation(s)
- C. Uchida
- School of Kinesiology and Health Science; Angiogenesis Research Group; York University; Toronto ON Canada
| | - E. Nwadozi
- School of Kinesiology and Health Science; Angiogenesis Research Group; York University; Toronto ON Canada
| | - A. Hasanee
- School of Kinesiology and Health Science; Angiogenesis Research Group; York University; Toronto ON Canada
| | - S. Olenich
- Division of Exercise Physiology & Center for Cardiovascular and Respiratory Sciences; West Virginia University; Morgantown WV USA
| | - I. M. Olfert
- Division of Exercise Physiology & Center for Cardiovascular and Respiratory Sciences; West Virginia University; Morgantown WV USA
| | - T. L. Haas
- School of Kinesiology and Health Science; Angiogenesis Research Group; York University; Toronto ON Canada
| |
Collapse
|
26
|
Manders E, Rain S, Bogaard HJ, Handoko ML, Stienen GJM, Vonk-Noordegraaf A, Ottenheijm CAC, de Man FS. The striated muscles in pulmonary arterial hypertension: adaptations beyond the right ventricle. Eur Respir J 2015; 46:832-42. [PMID: 26113677 DOI: 10.1183/13993003.02052-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/19/2015] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart failure. However, an increasing number of studies reveal that the impact of the PAH reaches further than the pulmonary circulation. Striated muscles other than the right ventricle are affected in PAH, such as the left ventricle, the diaphragm and peripheral skeletal muscles. Alterations in these striated muscles are associated with exercise intolerance and reduced quality of life. In this Back to Basics article on striated muscle function in PAH, we provide insight into the pathophysiological mechanisms causing muscle dysfunction in PAH and discuss potential new therapeutic strategies to restore muscle dysfunction.
Collapse
Affiliation(s)
- Emmy Manders
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Silvia Rain
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - M Louis Handoko
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Cardiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Ger J M Stienen
- Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Coen A C Ottenheijm
- Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Frances S de Man
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Matsuo Y, Gleitsmann K, Mangner N, Werner S, Fischer T, Bowen TS, Kricke A, Matsumoto Y, Kurabayashi M, Schuler G, Linke A, Adams V. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle 2015; 6:62-72. [PMID: 26136413 PMCID: PMC4435098 DOI: 10.1002/jcsm.12006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is commonly associated with muscle atrophy and increased inflammation. Irisin, a myokine proteolytically processed by the fibronectin type III domain containing 5 (FNDC5) gene and suggested to be Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α activated, modulates the browning of adipocytes and is related to muscle mass. Therefore, we investigated whether skeletal muscle FNDC5 expression in CHF was reduced and if this was mediated by inflammatory cytokines and/or angiotensin II (Ang-II). METHODS Skeletal muscle FNDC5 mRNA/protein and PGC-1α mRNA expression (arbitrary units) were analysed in: (i) rats with ischemic cardiomyopathy; (ii) mice injected with tumour necrosis factor-α (TNF-α) (24 h); (iii) mice infused with Ang-II (4 weeks); and (iv) C2C12 myotubes exposed to recombinant cytokines or Ang-II. Circulating TNF-α, Ang-II, and irisin was measured by ELISA. RESULTS Ischemic cardiomyopathy reduced significantly FNDC5 protein (1.3 ± 0.2 vs. 0.5 ± 0.1) and PGC-1α mRNA expression (8.2 ± 1.5 vs. 4.7 ± 0.7). In vivo TNF-α and Ang-II reduced FNDC5 protein expression by 28% and 45%, respectively. Incubation of myotubes with TNF-α, interleukin-1ß, or TNF-α/interleukin-1ß reduced FNDC5 protein expression by 47%, 37%, or 57%, respectively, whereas Ang-II had no effect. PGC-1α was linearly correlated to FNDC5 in all conditions. In CHF, animals circulating TNF-α and Ang-II were significantly increased, whereas irisin was significantly reduced. A negative correlation between circulating TNF-α and irisin was evident. CONCLUSION A reduced expression of skeletal muscle FNDC5 in ischemic cardiomyopathy is likely modulated by inflammatory cytokines and/or Ang-II via the down-regulation of PGC-1α. This may act as a protective mechanism either by slowing the browning of adipocytes and preserving energy homeostasis or by regulating muscle atrophy.
Collapse
Affiliation(s)
- Yae Matsuo
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany.,Department of Cardiology, Gunma University School of Medicine, Maebashi, Japan
| | - Konstanze Gleitsmann
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Norman Mangner
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Tina Fischer
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - T Scott Bowen
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Angela Kricke
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Gerhard Schuler
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Axel Linke
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| | - Volker Adams
- Department of Cardiology, University Leipzig - Heart Center Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Liu L, Hou L, Gu S, Zuo X, Meng D, Luo M, Zhang X, Huang S, Zhao X. Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol Rep 2014; 33:297-303. [PMID: 25333353 DOI: 10.3892/or.2014.3555] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/22/2014] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, has been shown to inhibit proliferation in various types of tumors. However, few studies concerning the role and mechanism of EGCG in esophageal squamous cell carcinoma are available. Therefore, the antitumor mechanism of EGCG needs to be investigated. The present study aimed to examine the antitumor effect of EGCG on the human esophageal squamous cell carcinoma cell lines, Eca-109 and Te-1, in vitro and in vivo. Cell viability was assessed using the MTT assay and tumor formation and growth in murine xenograft models with or without EGCG treatment. Cell cycle analysis and levels of reactive oxygen species (ROS) were detected using flow cytometry. Apoptosis was measured by Annexin/propidium iodide staining. Caspase-3 cleavage and vascular endothelial growth factor (VEGF) expression were detected using western blot analysis and immunohistochemistry in tumor cell lines and tumor xenografts, respectively. The results showed that EGCG inhibited proliferation in the Eca-109 and Te-1 cells in a time- and dose-dependent manner. Tumor cells were arrested in the G1 phase and apoptosis was accompanied by ROS production and caspase-3 cleavage. In a mouse model, EGCG significantly inhibited the growth of Eca-109 tumors by increasing the expression of cleaved-caspase-3 and decreasing VEGF protein levels. Taken together, the results suggest that EGCG inhibits proliferation and induces apoptosis through ROS production, caspase-3 activation, and a decrease in VEGF expression in vitro and in vivo. Furthermore, EGCG may have future clinical applications for novel approaches to treat esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Hou
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Shanzhi Gu
- Department of Forensic Medicine, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoxiao Zuo
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Du Meng
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Minna Luo
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaojin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shangke Huang
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Olenich SA, Audet GN, Roberts KA, Olfert IM. Effects of detraining on the temporal expression of positive and negative angioregulatory proteins in skeletal muscle of mice. J Physiol 2014; 592:3325-38. [PMID: 24951625 PMCID: PMC4146378 DOI: 10.1113/jphysiol.2014.271213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022] Open
Abstract
Temporal expression of positive and negative angiogenic factors in response to detraining is poorly understood. We report the protein expression of anti-angiogenic peptides (thrombospondin-1, TSP-1; and endostatin) as well as pro-angiogenic factors (vascular endothelial growth factor, VEGF; matrix metalloproteinases-2 and -9), and nucleolin (a nuclear protein involved with synthesis and maturation of ribosomes) in response to detraining in triceps surae muscles of C57BL/6 mice. Male mice were allowed to exercise voluntarily for 21 days, and then basal and acute response to exercise were evaluated at 1, 7, 14 and 28 days detraining (D1, D7, D14, D28, respectively, n = 12/group). As seen in the D1 mice, training resulted in the increased muscle capillary-to-fibre ratio (C/F), increased maximal running time and elevated basal expression of VEGF and matrix metalloproteinase-9 (P < 0.05). After 7 days of detraining (D7), C/F levels were similar to control levels, but both basal VEGF and TSP-1 were elevated (P < 0.05). At D14 and D28, TSP-1 protein was not different compared to baseline levels; however, VEGF was elevated in gastrocnemius (GA), but not the soleus (SOL) or plantaris (PLT) muscles, of D14 mice. Endostatin tended to decrease in D14 and D28 compared to controls. Timing of nucleolin protein expression differed between muscle groups, with increases at D1, D7 and D14 in the PLT, SOL and GA muscles, respectively. The response of VEGF and nucleolin to acute exercise was blunted with training, and remained blunted in the PLT and SOL even after 28 days of detraining, at a time point long after muscle capillarization was observed to be similar to pre-training levels. These data suggest that TSP-1 may be a mediator of capillary regression with detraining, even in the face of elevated VEGF, suggesting that pro-angiogenic regulators may not be able to prevent the regression of skeletal muscle capillaries under physiological conditions. The responses of matrix metalloproteinases, endostatin and nucleolin poorly correlated with detraining-induced capillary regression.
Collapse
Affiliation(s)
- Sara A Olenich
- Division of Exercise Physiology, West Virginia University School of Medicine, One Medical Center Dr., Morgantown, WV, 26506, USA
| | - Gerald N Audet
- Division of Exercise Physiology, West Virginia University School of Medicine, One Medical Center Dr., Morgantown, WV, 26506, USA
| | - Kathleen A Roberts
- Division of Exercise Physiology, West Virginia University School of Medicine, One Medical Center Dr., Morgantown, WV, 26506, USA West Virginia Wesleyan College, 59 College Avenue, Buckhannon, WV, 26201, USA
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, One Medical Center Dr., Morgantown, WV, 26506, USA Center for Cardiovascular and Respiratory Sciences, and Mary Babb Randolph Cancer Center, West Virginia University School of Medicine
| |
Collapse
|