1
|
Yang C, Wei M, Zhao Y, Yang Z, Song M, Mi J, Yang X, Tian G. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol 2023; 11:1217189. [PMID: 37601108 PMCID: PMC10436566 DOI: 10.3389/fcell.2023.1217189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post-translational modification (PTM) has a significant impact on cellular signaling and function regulation. In pancreatic β cells, PTMs are involved in insulin secretion, cell development, and viability. The dysregulation of PTM in β cells is clinically associated with the development of diabetes mellitus. Here, we summarized current findings on major PTMs occurring in β cells and their roles in insulin secretion. Our work provides comprehensive insight into understanding the mechanisms of insulin secretion and potential therapeutic targets for diabetes from the perspective of protein PTMs.
Collapse
Affiliation(s)
- Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Yanpu Zhao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Zhanyi Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengyao Song
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyong Yang
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Ko J, Fonseca VA, Wu H. Pax4 in Health and Diabetes. Int J Mol Sci 2023; 24:ijms24098283. [PMID: 37175989 PMCID: PMC10179455 DOI: 10.3390/ijms24098283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Paired box 4 (Pax4) is a key transcription factor involved in the embryonic development of the pancreatic islets of Langerhans. Consisting of a conserved paired box domain and a homeodomain, this transcription factor plays an essential role in early endocrine progenitor cells, where it is necessary for cell-fate commitment towards the insulin-secreting β cell lineage. Knockout of Pax4 in animal models leads to the absence of β cells, which is accompanied by a significant increase in glucagon-producing α cells, and typically results in lethality within days after birth. Mutations in Pax4 that cause an impaired Pax4 function are associated with diabetes pathogenesis in humans. In adulthood, Pax4 expression is limited to a distinct subset of β cells that possess the ability to proliferate in response to heightened metabolic needs. Upregulation of Pax4 expression is known to promote β cell survival and proliferation. Additionally, ectopic expression of Pax4 in pancreatic islet α cells or δ cells has been found to generate functional β-like cells that can improve blood glucose regulation in experimental diabetes models. Therefore, Pax4 represents a promising therapeutic target for the protection and regeneration of β cells in the treatment of diabetes. The purpose of this review is to provide a thorough and up-to-date overview of the role of Pax4 in pancreatic β cells and its potential as a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Jenna Ko
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Vivian A Fonseca
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Hongju Wu
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Narayan G, Ronima K R, Thummer RP. Direct Reprogramming of Somatic Cells into Induced β-Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:171-189. [PMID: 36515866 DOI: 10.1007/5584_2022_756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The persistent shortage of insulin-producing islet mass or β-cells for transplantation in the ever-growing diabetic population worldwide is a matter of concern. To date, permanent cure to this medical complication is not available and soon after the establishment of lineage-specific reprogramming, direct β-cell reprogramming became a viable alternative for β-cell regeneration. Direct reprogramming is a straightforward and powerful technique that can provide an unlimited supply of cells by transdifferentiating terminally differentiated cells toward the desired cell type. This approach has been extensively used by multiple groups to reprogram non-β-cells toward insulin-producing β-cells. The β-cell identity has been achieved by various studies via ectopic expression of one or more pancreatic-specific transcription factors in somatic cells, bypassing the pluripotent state. This work highlights the importance of the direct reprogramming approaches (both integrative and non-integrative) in generating autologous β-cells for various applications. An in-depth understanding of the strategies and cell sources could prove beneficial for the efficient generation of integration-free functional insulin-producing β-cells for diabetic patients lacking endogenous β-cells.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
6
|
Har-Zahav A, Lixandru D, Cheishvili D, Matei IV, Florea IR, Aspritoiu VM, Blus-Kadosh I, Meivar-Levy I, Serban AM, Popescu I, Szyf M, Ferber S, Dima SO. The role of DNA demethylation in liver to pancreas transdifferentiation. STEM CELL RESEARCH & THERAPY 2022; 13:476. [PMID: 36114514 PMCID: PMC9482206 DOI: 10.1186/s13287-022-03159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Background Insulin producing cells generated by liver cell transdifferentiation, could serve as an attractive source for regenerative medicine. The present study assesses the relationship between DNA methylation pTFs induced liver to pancreas transdifferentiation. Results The transdifferentiation process is associated with DNA demethylation, mainly at gene regulatory sites, and with increased expression of these genes. Active inhibition of DNA methylation promotes the pancreatic transcription factor-induced transdifferentiation process, supporting a causal role for DNA demethylation in this process. Conclusions Transdifferentiation is associated with global DNA hypomethylation, and with increased expression of specific demethylated genes. A combination of epigenetic modulators may be used to increase chromatin accessibility of the pancreatic transcription factors, thus promoting the efficiency of the developmental process. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03159-6.
Collapse
|
7
|
Karimova MV, Gvazava IG, Vorotelyak EA. Overcoming the Limitations of Stem Cell-Derived Beta Cells. Biomolecules 2022; 12:biom12060810. [PMID: 35740935 PMCID: PMC9221417 DOI: 10.3390/biom12060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Great advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro. The most promising approach is the generation of stem cell-derived beta cells that could provide an unlimited source of insulin-secreting cells. Recent studies provide methods to produce beta-like cell clusters that display glucose-stimulated insulin secretion—one of the key characteristics of the beta cell. However, in comparison with native beta cells, stem cell-derived beta cells do not undergo full functional maturation. In this paper we review the development and current state of various protocols, consider advantages, and propose ways to improve them. We examine molecular pathways, epigenetic modifications, intracellular components, and the microenvironment as a possible leverage to promote beta cell functional maturation. A possibility to create islet organoids from stem cell-derived components, as well as their encapsulation and further transplantation, is also examined. We try to combine modern research on beta cells and their crosstalk to create a holistic overview of developing insulin-secreting systems.
Collapse
Affiliation(s)
- Mariana V. Karimova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Inessa G. Gvazava
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Ali M, Ribeiro MM, Del Sol A. Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods Mol Biol 2022; 2471:83-109. [PMID: 35175592 DOI: 10.1007/978-1-0716-2193-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Wang YC, Wang ZJ, Zhang C, Ning BF. Cell reprogramming in liver with potential clinical correlations. J Dig Dis 2022; 23:13-21. [PMID: 34921720 DOI: 10.1111/1751-2980.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
The theory of cell reprogramming has developed rapidly during the past decades. Cell reprogramming has been widely used in the construction of experimental models and cytotherapy for certain diseases. Hepatocyte-like cells that are important for the treatment of end-stage liver disease can now be obtained with a variety of reprogramming techniques. However, improving the differentiation status and physiological function of these cells remains challenging. Hepatocytes can transdifferentiate into other types of cells directly, whereas other types of cells can also transdifferentiate into hepatocyte-like cells both in vitro and in vivo. Moreover, cell reprogramming is to some extent similar to malignant cell transformation. During the initiation and progression of liver cancer, cell reprogramming is always associated with cancer metastasis and chemoresistance. In this review, we summarized the research related to cell reprogramming in liver and highlighted the potential effects of cell reprogramming in the pathogenesis and treatment of liver diseases.
Collapse
Affiliation(s)
- Yi Chuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Zhi Jie Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Cheng Zhang
- Department of Gastroenterology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Bei Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
REST Inhibits Direct Reprogramming of Pancreatic Exocrine to Endocrine Cells by Preventing PDX1-Mediated Activation of Endocrine Genes. Cell Rep 2021; 31:107591. [PMID: 32375045 DOI: 10.1016/j.celrep.2020.107591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The emerging appreciation of plasticity among pancreatic lineages has created interest in harnessing cellular reprogramming for β cell replacement therapy of diabetes. Current reprogramming methodologies are inefficient, largely because of a limited understanding of the underlying mechanisms. Using an in vitro reprogramming system, we reveal the transcriptional repressor RE-1 silencing transcription factor (REST) as a barrier for β cell gene expression in the reprogramming of pancreatic exocrine cells. We observe that REST-bound loci lie adjacent to the binding sites of multiple key β cell transcription factors, including PDX1. Accordingly, a loss of REST function combined with PDX1 expression results in the synergistic activation of endocrine genes. This is accompanied by increased histone acetylation and PDX1 binding at endocrine gene loci. Collectively, our data identify a mechanism for REST activity involving the prevention of PDX1-mediated activation of endocrine genes and uncover REST downregulation and the resulting chromatin alterations as key events in β cell reprogramming.
Collapse
|
11
|
Molecular mechanisms of transcription factor mediated cell reprogramming: conversion of liver to pancreas. Biochem Soc Trans 2021; 49:579-590. [PMID: 33666218 PMCID: PMC8106502 DOI: 10.1042/bst20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic β-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to β-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate β-cells.
Collapse
|
12
|
Iacob R, Herlea V, Savu L, R Florea I, M Ilie V, Terinte-Balcan G, Gherghiceanu M, Uta M, Popa C, Iacob S, V Matei I, Jardan C, Lixandru D, Dima S, Meivar-Levy I, Ferber S, Popescu I. Phenotypic assessment of liver-derived cell cultures during in vitro expansion. Regen Med 2021; 16:33-46. [PMID: 33533664 DOI: 10.2217/rme-2020-0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Liver cells represent an attractive source of cells for autologous regenerative medicine. The present study assesses the liver cells' stability during in vitro expansion, as a prerequisite for therapeutic use. Results: The human liver cell cultures in this study were propagated efficiently in vitro for at least 12 passages. No significant changes in morphology, intracellular ultrastructures and characteristic markers expression were found during in vitro expansion of cells from all analyzed donors. However, expanded cells derived from male donors of >60 years old, lost the Y chromosome. Conclusion: Liver-derived cell cultures adopt a proliferative, stable mesenchymal phenotype, through an epithelial to mesenchymal transition process. The molecular and phenotypic changes of the cells during propagation are uniform, despite the heterogeneity of the different donors. Loss of Y chromosome occurs after cells' propagation in elder male donors.
Collapse
Affiliation(s)
- Razvan Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Center for Digestive Diseases & Liver Transplantation, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Department of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine & Pharmacy Bucharest, Bucharest, 020021, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Center for Digestive Diseases & Liver Transplantation, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania
| | - Lorand Savu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania
| | - Ioana R Florea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania.,Faculty of Biology, University of Bucharest, Bucharest, 030018, Romania
| | - Veronica M Ilie
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania.,Faculty of Biology, University of Bucharest, Bucharest, 030018, Romania
| | - George Terinte-Balcan
- Laboratory of Ultrastructural Pathology, 'Victor Babes' National Institute of Pathology, Bucharest, 050096, Romania
| | - Mihaela Gherghiceanu
- Laboratory of Ultrastructural Pathology, 'Victor Babes' National Institute of Pathology, Bucharest, 050096, Romania
| | - Mihaela Uta
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania
| | - Codruta Popa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Department of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine & Pharmacy Bucharest, Bucharest, 020021, Romania
| | - Speranta Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Center for Digestive Diseases & Liver Transplantation, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Department of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine & Pharmacy Bucharest, Bucharest, 020021, Romania
| | - Ioan V Matei
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania
| | - Cerasela Jardan
- Department of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine & Pharmacy Bucharest, Bucharest, 020021, Romania
| | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Department of Cellular and Molecular Biology and Histology, 'Carol Davila' University of Medicine & Pharmacy Bucharest, Bucharest, 020021, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Center for Digestive Diseases & Liver Transplantation, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania
| | - Irit Meivar-Levy
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania.,The Sheba Regenerative Medicine, Stem Cell & Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, 52621, Israel.,Orgenesis Ltd, Ness Ziona, 7414002, Israel
| | - Sarah Ferber
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania.,The Sheba Regenerative Medicine, Stem Cell & Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, 52621, Israel.,Orgenesis Ltd, Ness Ziona, 7414002, Israel.,Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Irinel Popescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Center for Digestive Diseases & Liver Transplantation, Fundeni Clinical Institute, Bucharest, 022328, Romania.,Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, Bucharest, 040441, Romania
| |
Collapse
|
13
|
Lee YN, Yi HJ, Seo EH, Oh J, Lee S, Ferber S, Okano T, Shim IK, Kim SC. Improvement of the therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet. Stem Cell Res Ther 2021; 12:3. [PMID: 33407888 PMCID: PMC7786992 DOI: 10.1186/s13287-020-02080-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheet formation could improve differentiation efficiency and graft survival. METHODS Liver cells were expanded in vitro and trans-differentiated to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1, and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency was confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPC suspension was injected by portal vein (PV), and IPC sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation, and hepatotoxicity with IPC injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging. RESULTS Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. Immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin at 1, 2, and 4 weeks after IPC transplantation. CONCLUSIONS In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.
Collapse
Affiliation(s)
- Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Yi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Seo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyun Oh
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Song Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sarah Ferber
- Sheba Regenerative Medicine, Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.,Cell Sheet Tissue Engineering Center, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Song Cheol Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Matei IV, Meivar-Levy I, Lixandru D, Dima S, Florea IR, Ilie VM, Albulescu R, Popescu I, Ferber S. The effect of liver donors' age, gender and metabolic state on pancreatic lineage activation. Regen Med 2021; 16:19-31. [PMID: 33527839 DOI: 10.2217/rme-2020-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autologous cells replacement therapy by liver to pancreas transdifferentiation (TD) allows diabetic patients to be also the donors of their own therapeutic tissue. Aim: To analyze whether the efficiency of the process is affected by liver donors' heterogeneity with regard to age, gender and the metabolic state. Materials & methods: TD of liver cells derived from nondiabetic and diabetic donors at different ages was characterized at molecular and cellular levels, in vitro. Results: Neither liver cells proliferation nor the propagated cells TD efficiency directly correlate with the age (3-60 years), gender or the metabolic state of the donors. Conclusion: Human liver cells derived from a wide array of ages and metabolic states can be used for autologous cells therapies for diabetics.
Collapse
Affiliation(s)
- Ioan V Matei
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
| | - Irit Meivar-Levy
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- The Sheba Regenerative Medicine, Stem Cell & Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, 5262100, Israel
- Orgenesis Ltd, Ness Ziona, 7414002, Israel
| | - Daniela Lixandru
- Fundeni Clinical Institute, Bucharest, 022328, Romania
- University of Medicine & Pharmacy 'Carol Davila', Bucharest, 050474, Romania
| | - Simona Dima
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- Fundeni Clinical Institute, Bucharest, 022328, Romania
| | - Ioana R Florea
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- Fundeni Clinical Institute, Bucharest, 022328, Romania
- University of Bucharest, Faculty of Biology, Bucharest, 050663, Romania
| | - Veronica M Ilie
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- Fundeni Clinical Institute, Bucharest, 022328, Romania
- University of Bucharest, Faculty of Biology, Bucharest, 050663, Romania
| | - Radu Albulescu
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- National Institute for Chemical Pharmaceutical R&D, Bucharest,031299, Romania
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Irinel Popescu
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- Fundeni Clinical Institute, Bucharest, 022328, Romania
| | - Sarah Ferber
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University Bucharest, 040441, Romania
- The Sheba Regenerative Medicine, Stem Cell & Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, 5262100, Israel
- Orgenesis Ltd, Ness Ziona, 7414002, Israel
- ,Department of Human Genetics, Tel Aviv University, Sackler School of Medicine, Tel Aviv, 6997801, Israel
| |
Collapse
|
15
|
Lee YN, Yi HJ, Goh H, Park JY, Ferber S, Shim IK, Kim SC. Spheroid Fabrication Using Concave Microwells Enhances the Differentiation Efficacy and Function of Insulin-Producing Cells via Cytoskeletal Changes. Cells 2020; 9:cells9122551. [PMID: 33261076 PMCID: PMC7768489 DOI: 10.3390/cells9122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
Pancreatic islet transplantation is the fundamental treatment for insulin-dependent diabetes; however, donor shortage is a major hurdle in its use as a standard treatment. Accordingly, differentiated insulin-producing cells (DIPCs) are being developed as a new islet source. Differentiation efficiency could be enhanced if the spheroid structure of the natural islets could be recapitulated. Here, we fabricated DIPC spheroids using concave microwells, which enabled large-scale production of spheroids of the desired size. We prepared DIPCs from human liver cells by trans-differentiation using transcription factor gene transduction. Islet-related gene expression and insulin secretion levels were higher in spheroids compared to those in single-cell DIPCs, whereas actin–myosin interactions significantly decreased. We verified actin–myosin-dependent insulin expression in single-cell DIPCs by using actin–myosin interaction inhibitors. Upon transplanting cells into the kidney capsule of diabetic mouse, blood glucose levels decreased to 200 mg/dL in spheroid-transplanted mice but not in single cell-transplanted mice. Spheroid-transplanted mice showed high engraftment efficiency in in vivo fluorescence imaging. These results demonstrated that spheroids fabricated using concave microwells enhanced the engraftment and functions of DIPCs via actin–myosin-mediated cytoskeletal changes. Our strategy potentially extends the clinical application of DIPCs for improved differentiation, glycemic control, and transplantation efficiency of islets.
Collapse
Affiliation(s)
- Yu Na Lee
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye Jin Yi
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hanse Goh
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
| | - Ji Yoon Park
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Department of Chemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Sarah Ferber
- Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel;
- Dia-Cure, Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 022328 Bucharest, Romania
- Orgenesis Ltd., Ness-Ziona 7403631, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - In Kyong Shim
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: or (I.K.S.); (S.C.K.); Tel.: +82-2-3010-4173 (I.K.S.); +82-2-3010-3936 (S.C.K.)
| | - Song Cheol Kim
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.L.); (H.J.Y.); (H.G.); (J.Y.P.)
- Asan Medical Center, Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: or (I.K.S.); (S.C.K.); Tel.: +82-2-3010-4173 (I.K.S.); +82-2-3010-3936 (S.C.K.)
| |
Collapse
|
16
|
Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020; 16:506-518. [PMID: 32587391 PMCID: PMC9188823 DOI: 10.1038/s41574-020-0375-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic 'cells' or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.
Collapse
Affiliation(s)
- Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel S Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Elhanani O, Walker MD. Protocol for Studying Reprogramming of Mouse Pancreatic Acinar Cells to β-like Cells. STAR Protoc 2020; 1:100096. [PMID: 33111125 PMCID: PMC7580220 DOI: 10.1016/j.xpro.2020.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The potential of reprogrammed β cells derived from pancreatic exocrine cells to treat diabetes has been demonstrated in animal models. However, the precise mechanisms and regulators involved in this process are not clear. Here, we describe a method that allows mechanistic studies of this process in primary exocrine cultures using adenoviral expression vectors. This rapid 5-day protocol, provides the researcher with a highly controlled experimental system in which the effects of different compounds or genetic manipulations can be studied. For complete details on the use and execution of this protocol, please refer to Elhanani et al. (2020).
Collapse
Affiliation(s)
- Ofer Elhanani
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D Walker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Del Sol A, Jung S. The Importance of Computational Modeling in Stem Cell Research. Trends Biotechnol 2020; 39:126-136. [PMID: 32800604 DOI: 10.1016/j.tibtech.2020.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
The generation of large amounts of omics data is increasingly enabling not only the processing and analysis of large data sets but also the development of computational models in the field of stem cell research. Although computational models have been proposed in recent decades, we believe that the stem cell community is not fully aware of the potentiality of computational modeling in guiding their experimental research. In this regard, we discuss how single-cell technologies provide the right framework for computational modeling at different scales of biological organization in order to address challenges in the stem cell field and to guide experimentalists in the design of new strategies for stem cell therapies and treatment of congenital disorders.
Collapse
Affiliation(s)
- Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-sur-Alzette, L-4367 Belvaux, Luxembourg; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.
| | - Sascha Jung
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
| |
Collapse
|
19
|
Ma S, Yang M, Zhou W, Dai L, Ding Y, Guo X, Yuan Y, Tang J, Li D, Wang X. An Efficient and Footprint-Free Protocol for the Transdifferentiation of Hepatocytes Into Insulin-Producing Cells With IVT mRNAs. Front Genet 2020; 11:575. [PMID: 32655618 PMCID: PMC7325981 DOI: 10.3389/fgene.2020.00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Direct transdifferentiation of adult somatic cells into insulin-producing cells (IPCs) is a promising approach for cell-based therapies for type 1 diabetes mellitus. Liver cells are an ideal source for generating IPCs because they have regenerative ability and a developmental process similar to that of the pancreas. Pancreas versus liver fate is regulated by TALE homeoprotein (TGIF2) during development. Here, we wanted to investigate whether TGIF2 could enhance the efficiency of transdifferentiation of hepatocytes into IPCs induced by three pancreatic transcription factors (pTFs), i.e., Pdx1, NeuroD, and Mafa, which are crucial for pancreatic development in the embryo. Methods The in vitro transcribed (IVT) mRNAs of TGIF2 and the three pTFs were synthesized in vitro and sequentially supplemented in hepatocytes. On day 6, the expression of transcription factors was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), and insulin expression was detected by immunofluorescence. Glucose-stimulated insulin secretion was assessed by enzyme-linked immunosorbent assay (ELISA). The key genes controlling cell polarity and the Wnt/PCP signaling pathway were assayed by qRT-PCR, and the level of JNK protein phosphorylation, which regulates the Wnt/PCP signaling pathway, was detected by western blotting. Results IVT mRNAs could be efficiently transfected into hepatocytes. Quantitative real-time polymerase chain reaction results revealed that compared with ectopic expression of the three pTFs alone, ectopic expression of the three pTFs plus TGIF2 could strongly reduce hepatic gene expression and subsequently improve the induction of a set of pancreatic genes. Immunofluorescence analysis showed that TGIF2 expression could double the transdifferentiation yield; 30% of the cells were insulin positive if induced by TGIF2 plus the 3 pTFs, while only 15% of the cells were insulin positive if induced by the three pTFs alone. ELISA analysis confirmed that glucose-stimulated insulin secretion was less efficient after transfection with the three pTFs alone. The differentiated cells derived from the addition of TGIF2 mRNA could form islet-like clusters. By contrast, the cells differentiated with the three pTFs did not form clusters under the same conditions. Tgif2 induced transdifferentiation more efficiently by remodeling the expression of genes in the Wnt/PCP pathway. Overexpression of TGIF2 in hepatocytes could activate the expression of key genes controlling cell polarity and genes in the Wnt/PCP signaling pathway, increasing the level of JNK protein phosphorylation. Conclusions Our study established a novel footprint-free protocol for efficient transdifferentiation of hepatocytes into IPCs using IVT mRNAs of TGIF2 and 3 pTFs, which paved the way toward a clinical application.
Collapse
Affiliation(s)
- Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengjie Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Medical, Southeast University, Nanjing, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
20
|
LncRNA MALAT1 induces the dysfunction of β cells via reducing the histone acetylation of the PDX-1 promoter in type 1 diabetes. Exp Mol Pathol 2020; 114:104432. [DOI: 10.1016/j.yexmp.2020.104432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/27/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
|
21
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW Here, we review recent findings in the field of generating insulin-producing cells by pancreatic transcription factor (pTF)-induced liver transdifferentiation (TD). TD is the direct conversion of functional cell types from one lineage to another without passing through an intermediate stage of pluripotency. We address potential reasons for the restricted efficiency of TD and suggest modalities to overcome these challenges, to bring TD closer to its clinical implementation in autologous cell replacement therapy for insulin-dependent diabetes. RECENT FINDINGS Liver to pancreas TD is restricted to cells that are a priori predisposed to undergo the developmental process. In vivo, the predisposition of liver cells is affected by liver zonation and hepatic regeneration. The TD propensity of liver cells is related to permissive epigenome which could be extended to TD-resistant cells by specific soluble factors. An obligatory role for active Wnt signaling in continuously maintaining a "permissive" epigenome is suggested. Moreover, the restoration of the pancreatic niche and vasculature promotes the maturation of TD cells along the β cell function. Future studies on liver to pancreas TD should include the maturation of TD cells by 3D culture, the restoration of vasculature and the pancreatic niche, and the extension of TD propensity to TD-resistant cells by epigenetic modifications. Liver to pancreas TD is expected to result in the generation of custom-made "self" surrogate β cells for curing diabetes.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, 56261, Tel-Hashomer, Israel
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania
| | - Sarah Ferber
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, 56261, Tel-Hashomer, Israel.
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Meivar-Levy I, Zoabi F, Nardini G, Manevitz-Mendelson E, Leichner GS, Zadok O, Gurevich M, Mor E, Dima S, Popescu I, Barzilai A, Ferber S, Greenberger S. The role of the vasculature niche on insulin-producing cells generated by transdifferentiation of adult human liver cells. Stem Cell Res Ther 2019; 10:53. [PMID: 30760321 PMCID: PMC6373031 DOI: 10.1186/s13287-019-1157-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Insulin-dependent diabetes is a multifactorial disorder that could be theoretically cured by functional pancreatic islets and insulin-producing cell (IPC) implantation. Regenerative medicine approaches include the potential for growing tissues and organs in the laboratory and transplanting them when the body cannot heal itself. However, several obstacles remain to be overcome in order to bring regenerative medicine approach for diabetes closer to its clinical implementation; the cells generated in vitro are typically of heterogenic and immature nature and the site of implantation should be readily vascularized for the implanted cells to survive in vivo. The present study addresses these two limitations by analyzing the effect of co-implanting IPCs with vasculature promoting cells in an accessible site such as subcutaneous. Secondly, it analyzes the effects of reconstituting the in vivo environment in vitro on the maturation and function of insulin-producing cells. Methods IPCs that are generated by the transdifferentiation of human liver cells are exposed to the paracrine effects of endothelial colony-forming cells (ECFCs) and human bone marrow mesenchymal stem cells (MSCs), which are the “building blocks” of the blood vessels. The role of the vasculature on IPC function is analyzed upon subcutaneous implantation in vivo in immune-deficient rodents. The paracrine effects of vasculature on IPC maturation are analyzed in culture. Results Co-implantation of MSCs and ECFCs with IPCs led to doubling the survival rates and a threefold increase in insulin production, in vivo. ECFC and MSC co-culture as well as conditioned media of co-cultures resulted in a significant increased expression of pancreatic-specific genes and an increase in glucose-regulated insulin secretion, compared with IPCs alone. Mechanistically, we demonstrate that ECFC and MSC co-culture increases the expression of CTGF and ACTIVINβα, which play a key role in pancreatic differentiation. Conclusions Vasculature is an important player in generating regenerative medicine approaches for diabetes. Vasculature displays a paracrine effect on the maturation of insulin-producing cells and their survival upon implantation. The reconstitution of the in vivo niche is expected to promote the liver-to-pancreas transdifferentiation and bringing this cell therapy approach closer to its clinical implementation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1157-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel Hashomer, Israel. .,Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.
| | - Fatima Zoabi
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Nardini
- Department of Plastic Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Gil S Leichner
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Oranit Zadok
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Eytan Mor
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Simona Dima
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.,Center of Excellence in Translational Medicine - Fundeni Clinical Institute, Bucharest, Romania.,Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Irinel Popescu
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.,Center of Excellence in Translational Medicine - Fundeni Clinical Institute, Bucharest, Romania.,Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Aviv Barzilai
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sarah Ferber
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel Hashomer, Israel.,Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Greenberger
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
24
|
Ouyang JF, Kamaraj US, Polo JM, Gough J, Rackham OJL. Molecular Interaction Networks to Select Factors for Cell Conversion. Methods Mol Biol 2019; 1975:333-361. [PMID: 31062318 DOI: 10.1007/978-1-4939-9224-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The process of identifying sets of transcription factors that can induce a cell conversion can be time-consuming and expensive. To help alleviate this, a number of computational tools have been developed which integrate gene expression data with molecular interaction networks in order to predict these factors. One such approach is Mogrify, an algorithm which ranks transcriptions factors based on their regulatory influence in different cell types and tissues. These ranks are then used to identify a nonredundant set of transcription factors to promote cell conversion between any two cell types/tissues. Here we summarize the important concepts and data sources that were used in the implementation of this approach. Furthermore, we describe how the associated web resource ( www.mogrify.net ) can be used to tailor predictions to specific experimental scenarios, for instance, limiting the set of possible transcription factors and including domain knowledge. Finally, we describe important considerations for the effective selection of reprogramming factors. We envision that such data-driven approaches will become commonplace in the field, rapidly accelerating the progress in stem cell biology.
Collapse
Affiliation(s)
- John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Uma S Kamaraj
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Julian Gough
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
25
|
Cohen H, Barash H, Meivar-Levy I, Molakandov K, Ben-Shimon M, Gurevich M, Zoabi F, Har-Zahav A, Gebhardt R, Gaunitz F, Gurevich M, Mor E, Ravassard P, Greenberger S, Ferber S. The Wnt/β-catenin pathway determines the predisposition and efficiency of liver-to-pancreas reprogramming. Hepatology 2018; 68:1589-1603. [PMID: 29394503 DOI: 10.1002/hep.29827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/30/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
UNLABELLED Transdifferentiation (TD) is the direct reprogramming of adult cells into cells of alternate fate and function. We have previously shown that liver cells can be transdifferentiated into beta-like, insulin-producing cells through ectopic expression of pancreatic transcription factors (pTFs). However, the efficiency of the process was consistently limited to <15% of the human liver cells treated in culture. The data in the current study suggest that liver-to-pancreas TD is restricted to a specific population of liver cells that is predisposed to undergo reprogramming. We isolated TD-predisposed subpopulation of liver cells from >15 human donors using a lineage tracing system based on the Wnt response element, part of the pericentral-specific promoter of glutamine synthetase. The cells, that were propagated separately, consistently exhibited efficient fate switch and insulin production and secretion in >60% of the cells upon pTF expression. The rest of the cells, which originated from 85% of the culture, resisted TD. Both populations expressed the ectopic pTFs with similar efficiencies, followed by similar repression of hepatic genes. Our data suggest that the TD-predisposed cells originate from a distinct population of liver cells that are enriched for Wnt signaling, which is obligatory for efficient TD. In TD-resistant populations, Wnt induction is insufficient to induce TD. An additional step of chromatin opening enables TD of these cells. CONCLUSION Liver-to-pancreas TD occurs in defined predisposed cells. These cells' predisposition is maintained by Wnt signaling that endows the cells with the plasticity needed to alter their transcriptional program and developmental fate when triggered by ectopic pTFs. These results may have clinical implications by drastically increasing the efficacy of TD in future clinical uses. (Hepatology 2018).
Collapse
Affiliation(s)
- Helit Cohen
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hila Barash
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Meivar-Levy
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Kfir Molakandov
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Ben-Shimon
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Gurevich
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fatima Zoabi
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Eytan Mor
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Philippe Ravassard
- Biotechnology and Biotherapy Group, Centre de Recherche, Institut du Cerveau et de la Moelle CNRS UMR7225, INSERM UMRS795, Université Pierre et Marie Curie, Paris, France
| | - Shoshana Greenberger
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sarah Ferber
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Association of PAX4 gene R192H polymorphisms in Chinese Han type 2 diabetes. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Yang MX, Coates RF, Ambaye A, Cortright V, Mitchell JM, Buskey AM, Zubarik R, Liu JG, Ades S, Barry MM. NKX2.2, PDX-1 and CDX-2 as potential biomarkers to differentiate well-differentiated neuroendocrine tumors. Biomark Res 2018; 6:15. [PMID: 29713473 PMCID: PMC5907358 DOI: 10.1186/s40364-018-0129-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Well-differentiated neuroendocrine tumors (NET) most frequently arise from the gastrointestinal tract (GI), pancreas, and lung. Patients often present as metastasis with an unknown primary, and the clinical management and outcome depend on multiple factors, including the accurate diagnosis with the tumor primary site. Determining the site of the NET with unknown primary remains challenging. Many biomarkers have been investigated in primary NETs and metastatic NETs, with heterogeneous sensitivity and specificity observed. Methods We used high-throughput tissue microarray (TMA) and immunohistochemistry (IHC) with antibodies against a panel of transcriptional factors including NKX2.2, PDX-1, PTF1A, and CDX-2 on archived formalin-fixed paraffin-embedded NETs, and investigated the protein expression pattern of these transcription factors in 109 primary GI (N = 81), pancreatic (N = 17), and lung (N = 11) NETs. Results Differential expression pattern of these markers was observed. In the GI and pancreatic NETs (N = 98), NKX2.2, PDX-1, and CDX-2 were immunoreactive in 82 (84%), 14 (14%), and 52 (52%) cases, respectively. PDX-1 was expressed mainly in the small intestinal and appendiceal NETs, occasionally in the pancreatic NETs, and not in the colorectal NETs. All three biomarkers including NKX2.2, PDX-1, and CDX-2 were completely negative in lung NETs. PTF1A was expressed in all normal and neuroendocrine tumor cells. Conclusions Our findings suggest that NKX2.2 was a sensitive and specific biomarker for the GI and pancreatic neuroendocrine tumors. We proposed that a panel of immunostains including NKX2.2, PDX-1, and CDX-2 may show diagnostic utility for the most common NETs.
Collapse
Affiliation(s)
- Michelle X Yang
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Ryan F Coates
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Abiy Ambaye
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Valerie Cortright
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Jeannette M Mitchell
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Alexa M Buskey
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Richard Zubarik
- 2Gastroenterology, University of Vermont Medical Center, Burlington, VT USA
| | - James G Liu
- Applied Pathology Systems, Worcester, MA USA
| | - Steven Ades
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| | - Maura M Barry
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| |
Collapse
|
28
|
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 2018; 7:R114-R125. [PMID: 29555660 PMCID: PMC5861368 DOI: 10.1530/ec-18-0012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of β cells are strongly required. In this review, we make an overview of the most promising and advanced β cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new β cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation.
Collapse
Affiliation(s)
- Monia Cito
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Valeria Sordi
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Abstract
INTRODUCTION The etiology of diabetes is mainly attributed to insulin deficiency due to the lack of β cells (type 1), or to insulin resistance that eventually results in β cell dysfunction (type 2). Therefore, an ultimate cure for diabetes requires the ability to replace the lost insulin-secreting β cells. Strategies for regenerating β cells are under extensive investigation. AREAS COVERED Herein, the authors first summarize the mechanisms underlying embryonic β cell development and spontaneous adult β cell regeneration, which forms the basis for developing β cell regeneration strategies. Then the rationale and progress of each β cell regeneration strategy is reviewed. Current β cell regeneration strategies can be classified into two main categories: in vitro β cell regeneration using pluripotent stem cells and in vivo reprogramming of non-β cells into β cells. Each has its own advantages and disadvantages. EXPERT OPINION Regenerating β cells has shown its potential as a cure for the treatment of insulin-deficient diabetes. Much progress has been made, and β cell regeneration therapy is getting closer to a clinical reality. Nevertheless, more hurdles need to be overcome before any of the strategies suggested can be fully translated from bench to bedside.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry & Molecular Biology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Hongju Wu
- Department of Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
30
|
A Promising Antiprion Trimethoxychalcone Binds to the Globular Domain of the Cellular Prion Protein and Changes Its Cellular Location. Antimicrob Agents Chemother 2018; 62:AAC.01441-17. [PMID: 29133563 DOI: 10.1128/aac.01441-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/02/2017] [Indexed: 12/28/2022] Open
Abstract
The search for antiprion compounds has been encouraged by the fact that transmissible spongiform encephalopathies (TSEs) share molecular mechanisms with more prevalent neurodegenerative pathologies, such as Parkinson's and Alzheimer's diseases. Cellular prion protein (PrPC) conversion into protease-resistant forms (protease-resistant PrP [PrPRes] or the scrapie form of PrP [PrPSc]) is a critical step in the development of TSEs and is thus one of the main targets in the screening for antiprion compounds. In this work, three trimethoxychalcones (compounds J1, J8, and J20) and one oxadiazole (compound Y17), previously identified in vitro to be potential antiprion compounds, were evaluated through different approaches in order to gain inferences about their mechanisms of action. None of them changed PrPC mRNA levels in N2a cells, as shown by reverse transcription-quantitative real-time PCR. Among them, J8 and Y17 were effective in real-time quaking-induced conversion reactions using rodent recombinant PrP (rPrP) from residues 23 to 231 (rPrP23-231) as the substrate and PrPSc seeds from hamster and human brain. However, when rPrP from residues 90 to 231 (rPrP90-231), which lacks the N-terminal domain, was used as the substrate, only J8 remained effective, indicating that this region is important for Y17 activity, while J8 seems to interact with the PrPC globular domain. J8 also reduced the fibrillation of mouse rPrP23-231 seeded with in vitro-produced fibrils. Furthermore, most of the compounds decreased the amount of PrPC on the N2a cell surface by trapping this protein in the endoplasmic reticulum. On the basis of these results, we hypothesize that J8, a nontoxic compound previously shown to be a promising antiprion agent, may act by different mechanisms, since its efficacy is attributable not only to PrP conversion inhibition but also to a reduction of the PrPC content on the cell surface.
Collapse
|
31
|
Chaimov D, Baruch L, Krishtul S, Meivar-levy I, Ferber S, Machluf M. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. J Control Release 2017; 257:91-101. [DOI: 10.1016/j.jconrel.2016.07.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/11/2023]
|
32
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
33
|
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2016; 349:182-196. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| |
Collapse
|
34
|
Chang FP, Cho CHH, Shen CR, Chien CY, Ting LW, Lee HS, Shen CN. PDGF Facilitates Direct Lineage Reprogramming of Hepatocytes to Functional β-Like Cells Induced by Pdx1 and Ngn3. Cell Transplant 2016; 25:1893-1909. [DOI: 10.3727/096368916x691439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Islet transplantation has been proven to be an effective treatment for patients with type 1 diabetes, but a lack of islet donors limits the use of transplantation therapies. It has been previously demonstrated that hepatocytes can be converted into insulin-producing β-like cells by introducing pancreatic transcription factors, indicating that direct hepatocyte reprogramming holds potential as a treatment for diabetes. However, the efficiency at which functional β-cells can be derived from hepatocyte reprogramming remains low. Here we demonstrated that the combination of Pdx1 and Ngn3 can trigger reprogramming of mouse and human liver cells to insulin-producing cells that exhibit the characteristics of pancreatic β-cells. Treatment with PDGF-AA was found to facilitate Pdx1 and Ngn3-induced reprogramming of hepatocytes to β-like cells with the ability to secrete insulin in response to glucose stimulus. Importantly, this reprogramming strategy could be applied to adult mouse primary hepatocytes, and the transplantation of β-like cells derived from primary hepatocyte reprogramming could ameliorate hyperglycemia in diabetic mice. These findings support the possibility of developing transplantation therapies for type 1 diabetes through the use of β-like cells derived from autologous hepatocyte reprogramming.
Collapse
Affiliation(s)
- Fang-Pei Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Chiao-Yun Chien
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ling-Wen Ting
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Ning Shen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
35
|
Vieira A, Courtney M, Druelle N, Avolio F, Napolitano T, Hadzic B, Navarro-Sanz S, Ben-Othman N, Collombat P. β-Cell replacement as a treatment for type 1 diabetes: an overview of possible cell sources and current axes of research. Diabetes Obes Metab 2016; 18 Suppl 1:137-43. [PMID: 27615143 DOI: 10.1111/dom.12721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 01/09/2023]
Abstract
To efficiently treat type 1 diabetes, exogenous insulin injections currently represent the main approach to counter chronic hyperglycaemia. Unfortunately, such a therapeutic approach does not allow for perfectly maintained glucose homeostasis and, in time, cardiovascular complications may arise. Therefore, seeking alternative/improved treatments has become a major health concern as an increasing proportion of type 2 diabetes patients also require insulin supplementation. Towards this goal, numerous laboratories have focused their research on β-cell replacement therapies. Herein, we will review the current state of this research area and describe the cell sources that could potentially be used to replenish the depleted β-cell mass in diabetic patients.
Collapse
Affiliation(s)
- A Vieira
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - M Courtney
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - N Druelle
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - F Avolio
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - T Napolitano
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - B Hadzic
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | | - N Ben-Othman
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - P Collombat
- Université Côte d'Azur, CNRS, Inserm, iBV, France.
| |
Collapse
|
36
|
Corritore E, Lee YS, Pasquale V, Liberati D, Hsu MJ, Lombard CA, Van Der Smissen P, Vetere A, Bonner-Weir S, Piemonti L, Sokal E, Lysy PA. V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Transl Med 2016; 5:1525-1537. [PMID: 27405779 DOI: 10.5966/sctm.2015-0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes. SIGNIFICANCE β-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of β-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce β-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with the potential to reverse diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentina Pasquale
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Mei-Ju Hsu
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Anne Lombard
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Amedeo Vetere
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Etienne Sokal
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe A Lysy
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N, Mohan V, Radha V. Structure-function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet 2016; 90:486-495. [PMID: 26853433 DOI: 10.1111/cge.12757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/30/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of diabetes characterized by onset of diabetes below 25 years of age, autosomal dominant mode of inheritance and primary defect in insulin secretion. Mutations in the gene (HNF1A) encoding transcription factor hepatocyte nuclear factor 1A (HNF-1A) results in one of the most common forms of MODY (MODY3). HNF-1A is mainly enriched in pancreatic β-cells and hepatocytes and important for organ development and normal pancreatic function. We here report on the functional interrogation of eight missense HNF1A mutations associated with MODY3 in South Indian subjects, and the contributing effect of common variant (S487N) within HNF1A. Of the eight mutations, three mutations (p.R171G, p.G245R and p.R263H), in particular, affected HNF-1A function in transfected HeLa cells by reducing both transcriptional activity and nuclear localization, possibly due to disruption of the integrity of the three dimensional structure. The common variant p.S487N contributed further to the loss-of-function of p.R271Q (p.R271Q+p.S487N double mutant), in vitro, on both activity and localization. Our data on the first functional study of HNF1A mutations in South India subjects confers that the defect of the HNF-1A mutant proteins are responsible for MODY3 diabetes in these patients.
Collapse
Affiliation(s)
- K Balamurugan
- Department of Molecular genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - L Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - S Mahajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - S Kanthimathi
- Department of Molecular genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - P R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - V Mohan
- Department of Molecular genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - V Radha
- Department of Molecular genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| |
Collapse
|
38
|
Abstract
Tissue replacement is a promising direction for the treatment of diabetes, which will become widely available only when islets or insulin-producing cells that will not be rejected by the diabetic recipients are available in unlimited amounts. The present review addresses the research in the field of generating functional insulin-producing cells by transdifferentiation of adult liver cells both in vitro and in vivo. It presents recent knowledge of the mechanisms which underlie the process and assesses the challenges which should be addressed for its efficient implementation as a cell based replacement therapy for diabetics.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- Sheba Regenerative Medicine, Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | - Sarah Ferber
- Sheba Regenerative Medicine, Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, 69978, Israel.
| |
Collapse
|
39
|
Zulewski H. From substitution of insulin to replacement of insulin producing cells: New therapeutic opportunities from research on pancreas development and stem cell differentiation. Best Pract Res Clin Endocrinol Metab 2015; 29:815-20. [PMID: 26696511 DOI: 10.1016/j.beem.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henryk Zulewski
- Division of Endocrinology and Diabetes, Stadtspital Triemli Zürich, Birmensdorferstrasse 497, 8063 Zürich, Switzerland; Department of Biosystems Science and Engineering at the Swiss Federal Institute of Technology Zurich (ETH Zürich), Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Switzerland.
| |
Collapse
|
40
|
Abstract
One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.
Collapse
Affiliation(s)
- Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
41
|
Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development. Differentiation 2015; 90:77-90. [DOI: 10.1016/j.diff.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023]
|
42
|
PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Mol Ther 2015; 24:251-260. [PMID: 26435408 DOI: 10.1038/mt.2015.181] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The transcription factor Pax4 plays a critical role in the determination of α- versus β-cell lineage during endocrine pancreas development. In this study, we explored whether Pax4 gene transfer into α-cells could convert them into functional β-cells and thus provide therapeutic benefits for insulin-deficient diabetes. We found that Pax4 delivered by adenoviral vector, Ad5.Pax4, induced insulin expression and reduced glucagon expression in αTC1.9 cells. More importantly, these cells exhibited glucose-stimulated insulin secretion, a key feature of functional β-cells. When injected into streptozotocin-induced diabetic mice, Pax4-treated αTC1.9 cells significantly reduced blood glucose, and the mice showed better glucose tolerance, supporting that Pax4 gene transfer into αTC1.9 cells resulted in the formation of functional β-cells. Furthermore, treatment of primary human islets with Ad5.Pax4 resulted in significantly improved β-cell function. Detection of glucagon(+)/Pax4(+)/Insulin(+) cells argued for Pax4-induced α-to-β cell transitioning. This was further supported by quantification of glucagon and insulin bi-hormonal cells, which was significantly higher in Pax4-treated islets than in controls. Finally, direct administration of Ad5.Pax4 into the pancreas of insulin-deficient mice ameliorated hyperglycemia. Taken together, our data demonstrate that manipulating Pax4 gene expression represents a viable therapeutic strategy for the treatment of insulin deficient diabetes.
Collapse
|
43
|
Yu ZY, Sun ZQ, Zhang M, Wang B, Lu W, Zheng SS. Hepatolithiasis associated with intrahepatic heterotopic pancreas: a case report and literature review. Diagn Pathol 2015; 10:76. [PMID: 26099217 PMCID: PMC4477297 DOI: 10.1186/s13000-015-0319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/10/2015] [Indexed: 01/17/2023] Open
Abstract
Abstract Intrahepatic heterotopic pancreas is rarely reported in the literature. Here, we report a case of a 39-year-old male with intrahepatic heterotopic pancreas associated with primary cholesterol hepatolithiasis. Computed tomography (CT) scans revealed multiple cholesterol stones in intrahepatic bile ducts of the left lobe concomitant with intrahepatic cholangiectases. These observations were confirmed by magnetic resonance cholangiopaneretography (MRCP). The patient underwent transabdominal left hepatic lobectomy. Postoperative histological examination of the resected specimen showed pancreatic tissues distributed along the wall of the bile duct and composed of acinar cells and duct elements without islets of Langerhans, therefore strongly suggesting that the heterotopic pancreas occurred in response to chronic injury due to the primary cholesterol hepatolithiasis and was derived from the biliary epithelial cells. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1461819267158980.
Collapse
Affiliation(s)
- Zhi-Yong Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejing University School of Medicine, Hangzhou, 310003, Zhejing Province, China.
| | - Zhong-Quan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejing University School of Medicine, Hangzhou, 310003, Zhejing Province, China.
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejing University School of Medicine, Hangzhou, 310003, Zhejing Province, China.
| | - Bei Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejing University School of Medicine, Hangzhou, 310003, Zhejing Province, China.
| | - Wen Lu
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310012, Zhejing Province, China.
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejing University School of Medicine, Hangzhou, 310003, Zhejing Province, China.
| |
Collapse
|
44
|
Cavelti-Weder C, Li W, Zumsteg A, Stemann M, Yamada T, Bonner-Weir S, Weir G, Zhou Q. Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes. CURRENT PATHOBIOLOGY REPORTS 2015; 3:57-65. [PMID: 26998407 DOI: 10.1007/s40139-015-0068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Direct reprogramming is a promising approach for regenerative medicine whereby one cell type is directly converted into another without going through a multipotent or pluripotent stage. This reprogramming approach has been extensively explored for the generation of functional insulin-secreting cells from non-beta-cells with the aim of developing novel cell therapies for the treatment of people with diabetes lacking sufficient endogenous beta-cells. A common approach for such conversion studies is the introduction of key regulators that are important in controlling beta-cell development and maintenance. In this review, we will summarize the recent advances in the field of beta-cell reprogramming and discuss the challenges of creating functional and long-lasting beta-cells.
Collapse
Affiliation(s)
- Claudia Cavelti-Weder
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Weida Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Adrian Zumsteg
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Marianne Stemann
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Takatsugu Yamada
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Susan Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Gordon Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Aathira R, Jain V. Advances in management of type 1 diabetes mellitus. World J Diabetes 2014; 5:689-696. [PMID: 25317246 PMCID: PMC4138592 DOI: 10.4239/wjd.v5.i5.689] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
Treatment of type 1 diabetes mellitus has always posed a challenge to balance hyperglycemia control with hypoglycemia episodes. The quest for newer therapies is continuing and this review attempts to outline the recent developments. The insulin molecule itself has got moulded into different analogues by minor changes in its structure to ensure well controlled delivery, stable half-lives and lesser side effects. Insulin delivery systems have also consistently undergone advances from subcutaneous injections to continuous infusion to trials of inhalational delivery. Continuous glucose monitoring systems are also becoming more accurate and user friendly. Smartphones have also made their entry into therapy of diabetes by integrating blood glucose levels and food intake with calculated adequate insulin required. Artificial pancreas has enabled to a certain extent to close the loop between blood glucose level and insulin delivery with devices armed with meal and exercise announcements, dual hormone delivery and pramlintide infusion. Islet, pancreas-kidney and stem cells transplants are also being attempted though complete success is still a far way off. Incorporating insulin gene and secretary apparatus is another ambitious leap to achieve insulin independence though the search for the ideal vector and target cell is still continuing. Finally to stand up to the statement, prevention is better than cure, immunological methods are being investigated to be used as vaccine to prevent the onset of diabetes mellitus.
Collapse
|