1
|
Ruder S, Ricaurte-Fajardo A, Sun M, Castellanos SH, Osborne JR, Tagawa ST. Advances in PSMA-Targeted Radionuclide Therapeutics. Curr Treat Options Oncol 2025; 26:291-301. [PMID: 40138150 DOI: 10.1007/s11864-025-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/29/2025]
Abstract
OPINION STATEMENT Prostate-specific membrane antigen targeted radionuclide therapies (PSMA-TRT) such as 177Lu-PSMA-617 hold great promise in improving clinical outcomes at various stages of prostate cancer. The FDA approval of 177Lu-PSMA-617 represents a significant advancement in the treatment of metastatic castration-resistant prostate cancer (mCRPC). The VISION trial demonstrated improved radiographic progression-free survival (rPFS) and overall survival (OS) with 177Lu-PSMA-617 in patients with mCRPC who had already receive androgen receptor pathway inhibitor (ARPI) and taxane chemotherapy. Exploration of 177Lu-PSMA-617 in earlier stages of prostate cancer, such as in the PSMAfore trial for patients who have not received chemotherapy, holds great promise for improving long-term outcomes and delaying exposure to chemotherapy. Combining 177Lu-PSMA-617 with other therapies, including chemotherapy, PARP inhibitors, and immunotherapy, is an area of active investigation. This review will also discuss alternative radionuclides (such as actininum-225 and terbium-161) and delivery vehicles (such as PSMA-I&T), which we find promising. Predictive biomarkers and dosimetry will be crucial for identifying patients most likely to benefit from PSMA-TRT. Continued research and refinement of these therapies will lead to PSMA-targeted treatments becoming an integral part of prostate cancer management.
Collapse
Affiliation(s)
- Samuel Ruder
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center, 520 East 70th Street, Starr Pavilion, NY, NY, 10065, USA.
| | - Andres Ricaurte-Fajardo
- Department of Radiology, Division of Molecular Imaging and Therapeutics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sun
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center, 520 East 70th Street, Starr Pavilion, NY, NY, 10065, USA
| | - Sandra Huicochea Castellanos
- Department of Radiology, Division of Molecular Imaging and Therapeutics, Weill Cornell Medicine, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, Division of Molecular Imaging and Therapeutics, Weill Cornell Medicine, New York, NY, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center, 520 East 70th Street, Starr Pavilion, NY, NY, 10065, USA.
| |
Collapse
|
2
|
Mapanao AK, Busslinger SD, Mehta A, Kegler K, Favaretto C, Grundler PV, Talip Z, Köster U, Johnston K, Schibli R, van der Meulen NP, Müller C. Preclinical investigation of [ 149Tb]Tb-DOTATATE and [ 149Tb]Tb-DOTA-LM3 for tumor-targeted alpha therapy. Eur J Nucl Med Mol Imaging 2025; 52:1383-1398. [PMID: 39743617 DOI: 10.1007/s00259-024-07035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Terbium-149 is a short-lived α-particle emitter, potentially useful for tumor-targeted therapy. The aim of this study was to investigate terbium-149 in combination with the somatostatin receptor (SSTR) agonist DOTATATE and the SSTR antagonist DOTA-LM3. The radiopeptides were evaluated to compare their therapeutic efficacy in vitro and in vivo. METHODS Terbium-149 was produced at ISOLDE/CERN and chemically purified at the Paul Scherrer Institute. Radiolabeling of somatostatin analogues with [149Tb]TbCl3 was performed under standard labeling conditions at pH 4.5. Cell viability (MTT) and survival assays (colony forming) assays were performed after 16-18 h exposure of SSTR-positive AR42J rat pancreatic tumor cells to various activity concentrations of [149Tb]Tb-DOTATATE and [149Tb]Tb-DOTA-LM3. DNA double-strand breaks were determined using immunofluorescence imaging of γ-H2A.X and 53BP1. Therapy studies were performed with AR42J tumor-bearing mice injected with 1 × 5 MBq or 2 × 5 MBq of the respective radiopeptide. The tolerability of up to 40 MBq [149Tb]Tb-DOTATATE or 40 MBq [149Tb]Tb-DOTA-LM3 was assessed with regard to undesired effects to the bone marrow and kidneys in immunocompetent mice without tumors. RESULTS The radiolabeling of peptides was achieved at molar activities of up to 20 MBq/nmol at ≥ 98% radiochemical purity. AR42J cell viability was reduced in an activity-dependent manner, with [149Tb]Tb-DOTA-LM3 being slightly more potent than [149Tb]Tb-DOTATATE (EC50: 0.5 vs. 1.2 kBq/mL). Both radiopeptides induced a similar number of γ-H2A.X and 53BP1 foci per nuclei, which indicated DNA damage in AR42J tumor cells. Injection of tumor-bearing mice with 1 × 5 MBq radiopeptide resulted in median survival times of 16.5 days and 19 days for [149Tb]Tb-DOTATATE and [149Tb]Tb-DOTA-LM3, respectively, as compared to only 8 days for untreated control mice. Application of 2 × 5 MBq of the radiopeptides further extended the median survival times to 30 days and 29 days, respectively. The blood cell counts and values for blood plasma biomarkers of treated mice without tumors were similar to those of untreated controls. Renal accumulation of [99mTc]Tc-DMSA was similar in all mice, indicating normal kidney function. CONCLUSION 149Tb-based radiopeptides effectively reduced the viability of tumor cells in vitro as well as the tumor growth in mice without causing relevant adverse events, irrespective of whether the SSTR agonist or antagonist was employed. These data encourage further preclinical application of terbium-149 to evaluate its potential in combination with other tumor-targeting agents.
Collapse
Affiliation(s)
- Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Sarah D Busslinger
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Avni Mehta
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | | | - Chiara Favaretto
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, 4031, Switzerland
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Laboratory of Radiochemistry, PSI Center for Nuclear Engineering and Sciences, Villigen-PSI, 5232, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, 38042, France
| | - Karl Johnston
- Physics Department, ISOLDE/CERN, Geneva, 1211, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Laboratory of Radiochemistry, PSI Center for Nuclear Engineering and Sciences, Villigen-PSI, 5232, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
3
|
Njotu FN, Pougoue Ketchemen J, Babeker H, Henning N, Tikum AF, Nwangele E, Monzer A, Hassani N, Gray BD, Pak KY, Torlakovic EE, Uppalapati M, Fonge H. Preclinical safety and effectiveness of a long-acting somatostatin analogue [ 225Ac]Ac-EBTATE against small cell lung cancer and pancreatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2025; 52:1305-1320. [PMID: 39627348 DOI: 10.1007/s00259-024-07011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/24/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE We report the preclinical evaluation of potent long-acting [225Ac]Ac-EBTATE against SSTR2-positive small cell lung cancer (SCLC) and pancreatic neuroendocrine tumors (pan-NETs). METHODS The pharmacokinetic, biodistribution, and safety studies were evaluated in healthy female and/or male BALB/c mice after intravenous injections of [225Ac]Ac-EBTATE. Further biodistribution and radioligand therapy were investigated in female athymic BALB/c nude mice bearing high or low SSTR2-expressing subcutaneous SCLC models NCI-H524 or NCI-H727, respectively, and in a pan-NET model QGP1.SSTR2. RESULTS Pharmacokinetics confirmed a prolonged clearance half-life (40.27 ± 9.23 h) while biodistribution in healthy male and female BALB/c mice was similar, with prolonged blood circulation that peaked at 6 h. Biodistribution in subcutaneous xenograft models of NCI-H524 and NCI-H727 showed consistent tumor-uptake with SSTR2-overexpression while the projected human effective doses for males and females were 61.7 and 83.7 millisievert/megabecquerel, respectively. 2 × 34 kBq of [225Ac]Ac-EBTATE administered 10 days (d) apart, was generally tolerated for 28 days in healthy BALB/c mice as revealed by blood biochemistry, complete blood count, and histopathological examination of H&E-stained organs. Targeted alpha therapy at 2 × 30 kBq of [225Ac]Ac-EBTATE, injected 10 days apart, resulted in 100% survivals and 80% and 20% complete remissions for NCI-H524 and QGP1.SSTR2 models, respectively. Additionally, [225Ac]Ac-EBTATE had a dose-dependent response in the NCI-H727 model, with median survivals for 2 × 30 kBq and 2 × 15 kBq groups being 63 d (p < 0.0007), and 47 d (p = 0.0148), respectively. CONCLUSIONS [225Ac]Ac-EBTATE is safe and effective against SCLC and pan-NET and therefore warrants clinical investigation.
Collapse
Affiliation(s)
- Fabrice N Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Anjong F Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nava Hassani
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Emina E Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Department of Pathology, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada.
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada.
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
4
|
Pretze M, Wendrich J, Hartmann H, Freudenberg R, Bundschuh RA, Kotzerke J, Michler E. Comparison of ZnS(Ag) Scintillator and Proportional Counter Tube for Alpha Detection in Thin-Layer Chromatography. Pharmaceuticals (Basel) 2024; 18:26. [PMID: 39861089 PMCID: PMC11769574 DOI: 10.3390/ph18010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
(1) Background: Targeted alpha therapy is an emerging field in nuclear medicine driven by two advantages: overcoming resistance in cancer-suffering patients to beta therapies and the practical application of lower activities of 212Pb- and 225Ac-labelled peptides to achieve the same doses compared to beta therapy due to the highly cytotoxic nature of alpha particles. However, quality control of the 212Pb/225Ac-radiopharmaceuticals remains a challenge due to the low activity levels used for therapy (100 kBq/kg) and the formation of several free daughter nuclides immediately after the formulation of patient doses; (2) Methods: The routine alpha detection on thin-layer chromatograms (TLC) of 212Pb- and 225Ac-labelled peptides using a MiniScanPRO+ scanner combined with an alpha detector head was compared with detection using an AR-2000 scanner equipped with an open proportional counter tube. Measurement time, resolution and validity were compared for both scanners; (3) Results: For 225Ac, the quality control values of the radiochemical purity (RCP) were within the acceptance criteria 2 h after TLC development, regardless of when the TLC probe was taken. That is, if the TLC probe was taken 24 h after radiosynthesis, the true value of the RCP was not measured until 5 h after TLC development. For 212Pb-labelled peptides, the probe sampling did not have a high impact on the value of the RCP for the MiniScanPRO+ and AR-2000. A difference was observed when measuring TLC with the AR-2000 in different modes; (4) Conclusions: The MiniScanPRO+ is fast, does not require additional equipment and can also measure the gamma spectrum, which may be important for some radiopharmaceutical production sites and regulatory authorities. The AR-2000 has a better signal-to-noise ratio, and this eliminates the need for additional waiting time after TLC development.
Collapse
Affiliation(s)
- Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| | - Jan Wendrich
- Eckert & Ziegler Eurotope, 13125 Berlin, Germany;
| | - Holger Hartmann
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| | - Ralph A. Bundschuh
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (H.H.); (R.F.); (R.A.B.); (J.K.); (E.M.)
| |
Collapse
|
5
|
Levy OI, Altaras A, Binyamini L, Sagi-Assif O, Izraely S, Cooks T, Kobiler O, Gerlic M, Kelson I, Witz IP, Keisari Y. Melanoma Cells from Different Patients Differ in Their Sensitivity to Alpha Radiation-Mediated Killing, Sensitivity Which Correlates with Cell Nuclei Area and Double Strand Breaks. Cancers (Basel) 2024; 16:3804. [PMID: 39594759 PMCID: PMC11592378 DOI: 10.3390/cancers16223804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: In this study, for the first time, we examined and compared the sensitivity of four patient-derived cutaneous melanoma cell lines to alpha radiation in vitro and analyzed it in view of cell nucleus area and the formation of double-strand breaks (DSB). Melanoma cells sensitivity to alpha radiation was compared to photon radiation effects. Furthermore, we compared the sensitivity of the melanoma cells to squamous cell carcinoma. Methods: Human melanoma cell lines YDFR.C, DP.C, M12.C, and M16.C, and the squamous cell carcinoma cell line, CAL 27, were irradiated in vitro using Americium-241 as alpha-particle source. Cells were irradiated with doses of 0 to 2.8 gray (Gy). Cell viability, DNA DSB, and nuclear size were measured. Results: 1. Alpha radiation caused death and proliferation arrest of all four melanoma cell lines, but inter-tumor heterogeneity was observed. 2. The most sensitive cell line (DP.C) had a significantly larger nucleus area (408 µm2) and the highest mean number of DSB per cell (9.61) compared to more resistant cells. 3. The most resistant cell, M16.C, had a much lower nucleus area (236.99 µm2) and DSB per cell (6.9). 4. Alpha radiation was more lethal than photon radiation for all melanoma cells. 5. The SCC cell, CAL 27, was more sensitive to alpha radiation than all melanoma cells but had a similar number of DSB (6.67) and nucleus size (175.49 µm2) as the more resistant cells. 6. The cytotoxic effect of alpha radiation was not affected by proliferation arrest after serum starvation. 7. Killing of cells by alpha radiation was marginally elevated by ATR or topoisomerase 1 inhibition. Conclusions: This study demonstrates that various human melanoma cells can be killed by alpha radiation but exhibit variance in sensitivity to alpha radiation. Alpha radiation applied using the Intra-tumoral Diffusing alpha-emitters Radiation Therapy (Alpha DaRT) methodology may serve as an efficient treatment for human melanoma.
Collapse
Affiliation(s)
- Or I. Levy
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Anat Altaras
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Lior Binyamini
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Itzhak Kelson
- Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| |
Collapse
|
6
|
Kairemo K, Kgatle M, Bruchertseifer F, Morgernstern A, Sathekge MM. Design of 225Ac-PSMA for targeted alpha therapy in prostate cancer. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:67. [PMID: 39118950 PMCID: PMC11304416 DOI: 10.21037/atm-23-1842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/26/2023] [Indexed: 08/10/2024]
Abstract
The first alpha emitting radiopharmaceutical, 223RaCl2, radium dichloride, was approved 10 years ago into the clinical armament of treating bone metastases in metastatic castration-resistant prostate cancer (mCRPC). In addition to this, the first beta-emitting radionuclide Lu-177 chelated with a prostate-specific membrane antigen (PSMA) compound, got last year its marketing approval for the third line treatment of mCRPC. Therefore, there is great excitement about combining alpha-emitters and prostate cancer targeting PSMA compounds. This review describes the clinical history of alpha-emitting PSMA in treating mCRPC. Here, we present the potential, current status, and opportunities for 225Ac-PSMA therapy. The work reviews the basic concepts, current treatment outcome, and toxicity, and areas requiring further investigations such as dosimetric aspects in clinical studies covering more than 400 patients. In general, approximately two-thirds of the patients benefit from this third-line therapy. There is also successful evidence of using 225Ac-PSMA in the second-line of prostate cancer management. The future potential of 225Ac-PSMA therapy and targeted alpha therapy (TAT) of cancer in general is enormous. According to our overview the clinical experience with 225Ac-PSMA therapy to date has shown great benefit and physicians dedicated to theragnostics are anxiously waiting for new applications. Hopefully, this review helps in deeper understanding of the strengths and limitations of TAT and may help in creating effective therapy protocols.
Collapse
Affiliation(s)
- Kalevi Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, Helsinki, Finland
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | | | - Alfred Morgernstern
- European Commission, Joint Research Centre, Karlsruhe, Germany
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
7
|
Bhimaniya S, Shah H, Jacene HA. Alpha-emitter Peptide Receptor Radionuclide Therapy in Neuroendocrine Tumors. PET Clin 2024; 19:341-349. [PMID: 38658229 DOI: 10.1016/j.cpet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) has become mainstream therapy of metastatic neuroendocrine tumors not controlled by somatostatin analog therapy. Currently, beta particle-emitting radiopharmaceuticals are the mainstay of PRRT. Alpha particle-emitting radiopharmaceuticals have a theoretic advantage over beta emitters in terms of improved therapeutic efficacy due to higher cancer cell death and lower nontarget tissue radiation-induced adverse events due to shorter path length of alpha particles. We discuss the available evidence for and the role of alpha particle PRRT.
Collapse
Affiliation(s)
- Sudhir Bhimaniya
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Hina Shah
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Heather A Jacene
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Lapi SE, Scott PJH, Scott AM, Windhorst AD, Zeglis BM, Abdel-Wahab M, Baum RP, Buatti JM, Giammarile F, Kiess AP, Jalilian A, Knoll P, Korde A, Kunikowska J, Lee ST, Paez D, Urbain JL, Zhang J, Lewis JS. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology. Lancet Oncol 2024; 25:e236-e249. [PMID: 38821098 PMCID: PMC11340123 DOI: 10.1016/s1470-2045(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 06/02/2024]
Abstract
This paper is the first of a Series on theranostics that summarises the current landscape of the radiopharmaceutical sciences as they pertain to oncology. In this Series paper, we describe exciting developments in radiochemistry and the production of radionuclides, the development and translation of theranostics, and the application of artificial intelligence to our field. These developments are catalysing growth in the use of radiopharmaceuticals to the benefit of patients worldwide. We also highlight some of the key issues to be addressed in the coming years to realise the full potential of radiopharmaceuticals to treat cancer.
Collapse
Affiliation(s)
- Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands; Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York City, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Richard P Baum
- Deutsche Klinik für Diagnostik (DKD Helios Klinik) Wiesbaden, Curanosticum MVZ Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Germany
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria; Centre Leon Bérard, Lyon, France
| | - Ana P Kiess
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amirreza Jalilian
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jean-Luc Urbain
- Department of Radiology-Nuclear Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jingjing Zhang
- Department of Diagnostic Radiology, National University of Singapore, Singapore; Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
9
|
Arbuznikova D, Klotsotyra A, Uhlmann L, Domogalla LC, Steinacker N, Mix M, Niedermann G, Spohn SK, Freitag MT, Grosu AL, Meyer PT, Gratzke C, Eder M, Zamboglou C, Eder AC. Exploring the role of combined external beam radiotherapy and targeted radioligand therapy with [ 177Lu]Lu-PSMA-617 for prostate cancer - from bench to bedside. Theranostics 2024; 14:2560-2572. [PMID: 38646643 PMCID: PMC11024848 DOI: 10.7150/thno.93249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/02/2024] [Indexed: 04/23/2024] Open
Abstract
Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aikaterini Klotsotyra
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Uhlmann
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the German Cancer Research Center and Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the German Cancer Research Center and Medical Center - University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin T. Freitag
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
El Fakiri M, Ayada N, Müller M, Hvass L, Gamzov TH, Clausen AS, Geis NM, Steinacker N, Hansson E, Lindegren S, Aneheim E, Jensen H, Eder AC, Jensen AI, Poulie CBM, Kjaer A, Eder M, Herth MM. Development and Preclinical Evaluation of [ 211At]PSAt-3-Ga: An Inhibitor for Targeted α-Therapy of Prostate Cancer. J Nucl Med 2024; 65:593-599. [PMID: 38423784 DOI: 10.2967/jnumed.123.267043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to β--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marius Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teodor H Gamzov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas M Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Sture Lindegren
- Atley Solutions AB, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Emma Aneheim
- Atley Solutions AB, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Holger Jensen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Andreas I Jensen
- Center for Nanomedicine and Theranostics, DTU Health Technology, DTU, Lyngby, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Pijeira MSO, Gomes-da-Silva NC, Ricci-Junior E, Alencar LMR, İlem-Özdemir D, Cavalcanti ADS, Machado DE, Perini JA, Santos-Oliveira R. Micellar solution of [ 223Ra]RaCl 2: Reaching renal excretion, potent efficacy in osteoblastic osteosarcoma in PDX model, biochemistry alterations and pharmacokinetics. Int J Pharm 2024; 652:123765. [PMID: 38195032 DOI: 10.1016/j.ijpharm.2023.123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/27/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Despite the successful use of the radiopharmaceutical radium-223 dichloride ([223Ra]RaCl2) for targeted alpha therapy of castration-resistant prostate cancer patients with bone metastases, some short-term side effects, such as diarrhea and vomiting, have been documented, causing patient discomfort. Hence, we prepared a nanosized micellar solution of [223Ra]RaCl2 and evaluated its biodistribution, pharmacokinetics, and induced biochemical changes in healthy mice up to 96 h after intraperitoneal administration as an alternative to overcome the previous limitations. In addition, we evaluated the bone specificity of micellar [223Ra]RaCl2 in patient-derived xenografts in the osteosarcoma model. The biodistribution studies revealed the high bone-targeting properties of the micellar [223Ra]RaCl2. Interestingly, the liver uptake remained significantly low (%ID/g = 0.1-0.02) from 24 to 96 h after administration. In addition, the micellar [223Ra]RaCl2 exhibited a significantly higher uptake in left (%ID/g = 0.85-0.23) and right (%ID/g = 0.76-0.24) kidneys than in small (%ID/g = 0.43-0.06) and large intestines (%ID/g = 0.24-0.09) over time, suggesting its excretion pathway is primarily through the kidneys into the urine, in contrast to the non-micellar [223Ra]RaCl2. The micellar [223Ra]RaCl2 also had low distribution volume (0.055 ± 0.003 L) and longer elimination half-life (28 ± 12 days). This nanosystem was unable to change the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, gamma GT, glucose, and liquiform lipase in the treated mice. Finally, microscopic examination of the animals' osteosarcoma tumors treated with micellar [223Ra]RaCl2 indicated regression of the tumor, with large areas of necrosis. In contrast, in the control group, we observed tumor cellularity and cell anaplasia, mitotic figures and formation of neoplastic extracellular bone matrix, which are typical features of osteosarcoma. Therefore, our findings demonstrated the efficiency and safety of nanosized micellar formulations to minimize the gastrointestinal excretion pathway of the clinical radiopharmaceutical [223Ra]RaCl2, in addition to promoting regression of the osteosarcoma. Further studies must be performed to assess dose-response outcomes and organ/tissue dosimetry for clinical translation.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, DEFARMED, Rio de Janeiro Federal University, Rio de Janeiro 21941900, Brazil
| | | | - Derya İlem-Özdemir
- School of Pharmacy, Department of Radiopharmacy, Ege University, 35040 Bornova, Izmir, Turkey
| | - Amanda Dos Santos Cavalcanti
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil; State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Daniel Escorsim Machado
- State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Jamila Alessandra Perini
- State University of Rio de Janeiro, Research Laboratory of Pharmaceutical Sciences, Rio de Janeiro 23070200, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil; State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Brazil.
| |
Collapse
|
12
|
Gape PMD, Schultz MK, Stasiuk GJ, Terry SYA. Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review. Pharmaceuticals (Basel) 2024; 17:334. [PMID: 38543120 PMCID: PMC10974115 DOI: 10.3390/ph17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols.
Collapse
Affiliation(s)
- Paul M. D. Gape
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Michael K. Schultz
- Departments of Radiology, Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA;
- Perspective Therapeutics, Coralville, IA 52241, USA
| | - Graeme J. Stasiuk
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Samantha Y. A. Terry
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| |
Collapse
|
13
|
Lee D, Li M, Liu D, Baumhover NJ, Sagastume EA, Marks BM, Rastogi P, Pigge FC, Menda Y, Johnson FL, Schultz MK. Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2024; 51:1147-1162. [PMID: 37955792 PMCID: PMC10881741 DOI: 10.1007/s00259-023-06494-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.
Collapse
Affiliation(s)
- Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | - Dijie Liu
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | | | | | | | - Prerna Rastogi
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - F Christopher Pigge
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA
| | - Yusuf Menda
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Michael K Schultz
- Perspective Therapeutics, Inc., Coralville, IA, USA.
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA.
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
14
|
Morgan KA, Wichmann CW, Osellame LD, Cao Z, Guo N, Scott AM, Donnelly PS. Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX. Chem Sci 2024; 15:3372-3381. [PMID: 38425522 PMCID: PMC10901495 DOI: 10.1039/d3sc06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| | - Christian W Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
- Department of Medicine, University of Melbourne Melbourne Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| |
Collapse
|
15
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
17
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
18
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
19
|
Lim A, Andriotty M, Yusufaly T, Agasthya G, Lee B, Wang C. A fast Monte Carlo cell-by-cell simulation for radiobiological effects in targeted radionuclide therapy using pre-calculated single-particle track standard DNA damage data. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1284558. [PMID: 39380956 PMCID: PMC11460290 DOI: 10.3389/fnume.2023.1284558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 10/10/2024]
Abstract
Introduction We developed a new method that drastically speeds up radiobiological Monte Carlo radiation-track-structure (MC-RTS) calculations on a cell-by-cell basis. Methods The technique is based on random sampling and superposition of single-particle track (SPT) standard DNA damage (SDD) files from a "pre-calculated" data library, constructed using the RTS code TOPAS-nBio, with "time stamps" manually added to incorporate dose-rate effects. This time-stamped SDD file can then be input into MEDRAS, a mechanistic kinetic model that calculates various radiation-induced biological endpoints, such as DNA double-strand breaks (DSBs), misrepairs and chromosomal aberrations, and cell death. As a benchmark validation of the approach, we calculated the predicted energy-dependent DSB yield and the ratio of direct-to-total DNA damage, both of which agreed with published in vitro experimental data. We subsequently applied the method to perform a superfast cell-by-cell simulation of an experimental in vitro system consisting of neuroendocrine tumor cells uniformly incubated with 177Lu. Results and discussion The results for residual DSBs, both at 24 and 48 h post-irradiation, are in line with the published literature values. Our work serves as a proof-of-concept demonstration of the feasibility of a cost-effective "in silico clonogenic cell survival assay" for the computational design and development of radiopharmaceuticals and novel radiotherapy treatments more generally.
Collapse
Affiliation(s)
- A. Lim
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - M. Andriotty
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - T. Yusufaly
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - G. Agasthya
- Advanced Computing in Health Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - B. Lee
- Radiation Oncology Department, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - C. Wang
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
20
|
Han G, Hwang E, Lin F, Clift R, Kim D, Guest M, Bischoff E, Moran S, Li G. RYZ101 (Ac-225 DOTATATE) Opportunity beyond Gastroenteropancreatic Neuroendocrine Tumors: Preclinical Efficacy in Small-Cell Lung Cancer. Mol Cancer Ther 2023; 22:1434-1443. [PMID: 37616528 DOI: 10.1158/1535-7163.mct-23-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Overexpression of somatostatin receptors (SSTR), particularly SSTR2, is found in gastroenteropancreatic neuroendocrine tumors (GEP-NET), and subsets of other solid tumors such as small-cell lung cancer (SCLC). SCLC accounts for approximately 13% to 15% of lung cancer and lacks effective therapeutic options. IHC analysis indicates that up to 50% of SCLC tumors are SSTR2-positive, with a substantial subset showing high and homogenous expression. Peptide receptor radionuclide therapy with radiolabeled somatostatin analogue, Lu-177 DOTATATE, has been approved for GEP-NETs. Different strategies aimed at improving outcomes, such as the use of alpha-emitting radioisotopes, are currently being investigated. RYZ101 (Ac-225 DOTATATE) is comprised of the alpha-emitting radioisotope actinium-225, chemical chelator DOTA, and octreotate (TATE), a somatostatin analogue. In the cell-based competitive radioligand binding assay, RAYZ-10001-La (lanthanum surrogate for RYZ101) showed high binding affinity (Ki = 0.057 nmol/L) to human SSTR2 and >600-fold selectivity against other SSTR subtypes. RAYZ-10001-La exhibited efficient internalization to SSTR2-positive cells. In multiple SSTR2-expressing SCLC xenograft models, single-dose intravenous RYZ101 3 μCi (0.111 MBq) or 4 μCi (0.148 MBq) significantly inhibited tumor growth, with deeper responses, including sustained regression, observed in the models with higher SSTR2 levels. The antitumor effect was further enhanced when RYZ101 was combined with carboplatin and etoposide at clinically relevant doses. In summary, RYZ101 is a highly potent, alpha-emitting radiopharmaceutical agent, and preclinical data demonstrate the potential of RYZ101 for the treatment of patients with SSTR-positive cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary Li
- RayzeBio, Inc., San Diego, California
| |
Collapse
|
21
|
Pekeč T, Venkatachalapathy S, Shim AR, Paysan D, Grzmil M, Schibli R, Béhé M, Shivashankar GV. Detecting radio- and chemoresistant cells in 3D cancer co-cultures using chromatin biomarkers. Sci Rep 2023; 13:20662. [PMID: 38001169 PMCID: PMC10673941 DOI: 10.1038/s41598-023-47287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The heterogenous treatment response of tumor cells limits the effectiveness of cancer therapy. While this heterogeneity has been linked to cell-to-cell variability within the complex tumor microenvironment, a quantitative biomarker that identifies and characterizes treatment-resistant cell populations is still missing. Herein, we use chromatin organization as a cost-efficient readout of the cells' states to identify subpopulations that exhibit distinct responses to radiotherapy. To this end, we developed a 3D co-culture model of cancer spheroids and patient-derived fibroblasts treated with radiotherapy. Using the model we identified treatment-resistant cells that bypassed DNA damage checkpoints and exhibited an aggressive growth phenotype. Importantly, these cells featured more condensed chromatin which primed them for treatment evasion, as inhibiting chromatin condensation and DNA damage repair mechanisms improved the efficacy of not only radio- but also chemotherapy. Collectively, our work shows the potential of using chromatin organization to cost-effectively study the heterogeneous treatment susceptibility of cells and guide therapeutic design.
Collapse
Affiliation(s)
- Tina Pekeč
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Anne R Shim
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - G V Shivashankar
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Ocampo-García B, Cruz-Nova P, Jiménez-Mancilla N, Luna-Gutiérrez M, Oros-Pantoja R, Lara-Almazán N, Pérez-Velasco D, Santos-Cuevas C, Ferro-Flores G. 225Ac-iPSMA-RGD for Alpha-Therapy Dual Targeting of Stromal/Tumor Cell PSMA and Integrins. Int J Mol Sci 2023; 24:16553. [PMID: 38068876 PMCID: PMC10705946 DOI: 10.3390/ijms242316553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate-specific membrane antigens (PSMAs) are frequently overexpressed in both tumor stromal endothelial cells and malignant cells (stromal/tumor cells) of various cancers. The RGD (Arg-Gly-Asp) peptide sequence can specifically detect integrins involved in tumor angiogenesis. This study aimed to preclinically evaluate the cytotoxicity, biokinetics, dosimetry, and therapeutic efficacy of 225Ac-iPSMA-RGD to determine its potential as an improved radiopharmaceutical for alpha therapy compared with the 225Ac-iPSMA and 225Ac-RGD monomers. HEHA-HYNIC-iPSMA-RGD (iPSMA-RGD) was synthesized and characterized by FT-IR, UV-vis, and UPLC mass spectroscopy. The cytotoxicity of 225Ac-iPSMA-RGD was assessed in HCT116 colorectal cancer cells. Biodistribution, biokinetics, and therapeutic efficacy were evaluated in nude mice with induced HCT116 tumors. In vitro results showed increased DNA double-strand breaks through ROS generation, cell apoptosis, and death in HCT116 cells treated with 225Ac-iPSMA-RGD. The results also demonstrated in vivo cytotoxicity in cancer cells after treatment with 225Ac-iPSMA-RGD and biokinetic and dosimetric properties suitable for alpha therapy, delivering ablative radiation doses up to 237 Gy/3.7 kBq to HCT116 tumors in mice. Given the phenotype of HCT116 cancer cells, the results of this study warrant further dosimetric and clinical studies to determine the potential of 225Ac-iPSMA-RGD in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| | - Pedro Cruz-Nova
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| | | | - Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| | | | - Nancy Lara-Almazán
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| | - Diana Pérez-Velasco
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico;
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (P.C.-N.); (M.L.-G.); (N.L.-A.); (G.F.-F.)
| |
Collapse
|
23
|
Arbuznikova D, Eder M, Grosu AL, Meyer PT, Gratzke C, Zamboglou C, Eder AC. Towards Improving the Efficacy of PSMA-Targeting Radionuclide Therapy for Late-Stage Prostate Cancer-Combination Strategies. Curr Oncol Rep 2023; 25:1363-1374. [PMID: 37861915 PMCID: PMC10640479 DOI: 10.1007/s11912-023-01458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW [177Lu]Lu-PSMA-617 is a radiopharmaceutical that emits beta-minus radiation and targets prostate-specific membrane antigen (PSMA)-positive prostate cancer. Despite its clinical success, there are still patients not showing sufficient response rates. This review compiles latest studies aiming at therapy improvement in [177Lu]Lu-PSMA-617-naïve and -resistant patients by alternative or combination treatments. RECENT FINDINGS A variety of agents to combine with [177Lu]Lu-PSMA-617 are currently under investigation including alpha radiation-emitting pharmaceuticals, radiosensitizers, taxane chemotherapeutics, androgen receptor pathway inhibitors, immune checkpoint inhibitors, and external beam radiation. Actinium-225 (225Ac)-labeled PSMA-targeting inhibitors are the most studied pharmaceuticals for combination therapy or as an alternative for treatment after progression under [177Lu]Lu-PSMA-617 therapy. Alpha emitters seem to have a potential of achieving a response to PSMA-targeting radionuclide therapy in both initial non-responders or responders to [177Lu]Lu-PSMA-617 later developing treatment resistance. Emerging evidence for immunostimulatory effects of radiopharmaceuticals and first prospective studies support the combination of [177Lu]Lu-PSMA-617 and immune checkpoint inhibition for late-stage prostate cancer.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany.
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
24
|
Hassan M, Bokhari TH, Lodhi NA, Khosa MK, Usman M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem Biol Drug Des 2023; 102:1276-1292. [PMID: 37715360 DOI: 10.1111/cbdd.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400-100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225 Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225 Ac]Ac-PSMA-617, [225 Ac]Ac-DOTATOC, [225 Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.
Collapse
Affiliation(s)
- Maria Hassan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Nadeem Ahmed Lodhi
- Isotope Production Division, Pakistan institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | | | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
25
|
Beydağı G, Alan Selçuk N, Kabasakal L. Alpha Peptide Receptor Radionuclide Therapy in Neuroendocrine Tumors. NUCLEAR MEDICINE SEMINARS 2023; 9:109-115. [DOI: 10.4274/nts.galenos.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Bobba KN, Bidkar AP, Meher N, Fong C, Wadhwa A, Dhrona S, Sorlin A, Bidlingmaier S, Shuere B, He J, Wilson DM, Liu B, Seo Y, VanBrocklin HF, Flavell RR. Evaluation of 134Ce/ 134La as a PET Imaging Theranostic Pair for 225Ac α-Radiotherapeutics. J Nucl Med 2023; 64:1076-1082. [PMID: 37201957 PMCID: PMC10315697 DOI: 10.2967/jnumed.122.265355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Indexed: 05/20/2023] Open
Abstract
225Ac-targeted α-radiotherapy is a promising approach to treating malignancies, including prostate cancer. However, α-emitting isotopes are difficult to image because of low administered activities and a low fraction of suitable γ-emissions. The in vivo generator 134Ce/134La has been proposed as a potential PET imaging surrogate for the therapeutic nuclides 225Ac and 227Th. In this report, we detail efficient radiolabeling methods using the 225Ac-chelators DOTA and MACROPA. These methods were applied to radiolabeling of prostate cancer imaging agents, including PSMA-617 and MACROPA-PEG4-YS5, for evaluation of their in vivo pharmacokinetic characteristics and comparison to the corresponding 225Ac analogs. Methods: Radiolabeling was performed by mixing DOTA/MACROPA chelates with 134Ce/134La in NH4OAc, pH 8.0, at room temperature, and radiochemical yields were monitored by radio-thin-layer chromatography. In vivo biodistributions of 134Ce-DOTA/MACROPA.NH2 complexes were assayed through dynamic small-animal PET/CT imaging and ex vivo biodistribution studies over 1 h in healthy C57BL/6 mice, compared with free 134CeCl3 In vivo, preclinical imaging of 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5 was performed on 22Rv1 tumor-bearing male nu/nu-mice. Ex vivo biodistribution was performed for 134Ce/225Ac-MACROPA-PEG4-YS5 conjugates. Results: 134Ce-MACROPA.NH2 demonstrated near-quantitative labeling with 1:1 ligand-to-metal ratios at room temperature, whereas a 10:1 ligand-to-metal ratio and elevated temperatures were required for DOTA. Rapid urinary excretion and low liver and bone uptake were seen for 134Ce/225Ac-DOTA/MACROPA. NH2 conjugates in comparison to free 134CeCl3 confirmed high in vivo stability. An interesting observation during the radiolabeling of tumor-targeting vectors PSMA-617 and MACROPA-PEG4-YS5-that the daughter 134La was expelled from the chelate after the decay of parent 134Ce-was confirmed through radio-thin-layer chromatography and reverse-phase high-performance liquid chromatography. Both conjugates, 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5, displayed tumor uptake in 22Rv1 tumor-bearing mice. The ex vivo biodistribution of 134Ce-MACROPA.NH2, 134Ce-DOTA and 134Ce-MACROPA-PEG4-YS5 corroborated well with the respective 225Ac-conjugates. Conclusion: These results demonstrate the PET imaging potential for 134Ce/134La-labeled small-molecule and antibody agents. The similar 225Ac and 134Ce/134La-chemical and pharmacokinetic characteristics suggest that the 134Ce/134La pair may act as a PET imaging surrogate for 225Ac-based radioligand therapies.
Collapse
Affiliation(s)
- Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Cyril Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Alex Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Becka Shuere
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia;
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
27
|
Satapathy S, Chandekar KR, Bal C. Gastro-Enteric-Pancreatic Neuroendocrine Tumor Treatment: Actinium-225-DOTATATE and Combined Therapies. PET Clin 2023; 18:215-221. [PMID: 36858746 DOI: 10.1016/j.cpet.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The role of lutetium-177-DOTATATE in advanced well-differentiated gastro-entero-pancreatic neuroendocrine tumors is well established. However, there is a scope for improving treatment outcomes. Actinium-225-DOTATATE is a form of targeted alpha therapy (TAT) that results in more efficient tumor cell killing owing to the substantially higher linear energy transfer of alpha particles. Systemic TAT is also safe given that the shorter path length of the alpha particles spares the surrounding healthy tissue and results in relatively fewer adverse events. Combination therapies with radiosensitizing and other chemotherapeutic agents have also gained popularity, especially in the setting of higher grade and fluorodeoxyglucose-avid tumors.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
28
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
29
|
Koehler C, Sauter PF, Klasen B, Waldmann C, Pektor S, Bausbacher N, Lemke EA, Miederer M. Genetic Code Expansion for Site-Specific Labeling of Antibodies with Radioisotopes. ACS Chem Biol 2023; 18:443-448. [PMID: 36889678 PMCID: PMC10029752 DOI: 10.1021/acschembio.2c00634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Due to their target specificity, antibody-drug conjugates─monoclonal antibodies conjugated to a cytotoxic moiety─are efficient therapeutics that can kill malignant cells overexpressing a target gene. Linking an antibody with radioisotopes (radioimmunoconjugates) enables powerful diagnostics and/or closely related therapeutic applications, depending on the isotope. To generate site-specific radioimmunoconjugates, we utilized genetic code expansion and subsequent conjugation by inverse electron-demand Diels-Alder cycloaddition reactions. We show that, using this approach, site-specific labeling of trastuzumab with either zirconium-89 (89Zr) for diagnostics or lutetium-177 (177Lu) for therapeutics yields efficient radioimmunoconjugates. Positron emission tomography imaging revealed a high accumulation of site-specifically 89Zr-labeled trastuzumab in tumors after 24 h and low accumulation in other organs. The corresponding 177Lu-trastuzumab radioimmunoconjugates were comparably distributed in vivo.
Collapse
Affiliation(s)
- Christine Koehler
- VERAXA
Biotech GmbH, Carl-Friedrich
Gauß-Ring 5, 69124 Heidelberg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paul F. Sauter
- VERAXA
Biotech GmbH, Carl-Friedrich
Gauß-Ring 5, 69124 Heidelberg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Benedikt Klasen
- Department
of Chemistry, TRIGA site, Johannes Gutenberg
University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Christopher Waldmann
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefanie Pektor
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Nicole Bausbacher
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| | - Edward A. Lemke
- BIOCENTER, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- IMB
Institute
of Molecular Biology, gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Miederer
- Department
of Nuclear Medicine, University Medical
Center, Johannes Gutenberg University Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
30
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
31
|
Carlsson MJ, Fahrer J. Analyzing the Effects of HDAC Inhibitors on DNA Damage and Associated Cytotoxicity in Primary Hepatocytes. Methods Mol Biol 2023; 2589:241-252. [PMID: 36255629 DOI: 10.1007/978-1-0716-2788-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Primary hepatocytes are the gold standard in pharmaco- and toxicokinetic studies during preclinical development of drug candidates. Such cells are a valuable tool to identify potential hepatotoxicity, an important adverse drug reaction. Primary hepatocytes can be obtained not only from wild-type mice but also from genetically engineered knockout mouse strains. Liver perfusion yields murine primary hepatocytes (mpH) with high vitality, expressing an array of metabolic enzymes and transporters that are impaired or even absent in established liver cell lines. Furthermore, mpH display no genetic alterations and are proficient in the DNA damage response pathway. This makes mpH a suitable model to analyze the effects of histone deacetylase inhibitors on DNA damage and cell viability. Here, we report an efficient and fast protocol for the isolation of mpH by liver perfusion. These mpH can be used for downstream applications such as the detection of the DNA damage marker γH2AX by confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Max J Carlsson
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
32
|
Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:cancers14246114. [PMID: 36551599 PMCID: PMC9776394 DOI: 10.3390/cancers14246114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when localized, frequently metastasize and require management with systemic therapies, including somatostatin analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Although effective for disease control, these therapies eventually fail as a result of primary or secondary resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy, the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic resistance and options for management in human GEP-NETs are scant; however, preclinical and early-phase human studies have suggested that combination therapy targeting multiple pathways or novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.
Collapse
|
33
|
Shi M, Jakobsson V, Greifenstein L, Khong PL, Chen X, Baum RP, Zhang J. Alpha-peptide receptor radionuclide therapy using actinium-225 labeled somatostatin receptor agonists and antagonists. Front Med (Lausanne) 2022; 9:1034315. [PMID: 36569154 PMCID: PMC9767967 DOI: 10.3389/fmed.2022.1034315] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has over the last two decades emerged as a very promising approach to treat neuroendocrine tumors (NETs) with rapidly expanding clinical applications. By chelating a radiometal to a somatostatin receptor (SSTR) ligand, radiation can be delivered to cancer cells with high precision. Unlike conventional external beam radiotherapy, PRRT utilizes primarily β or α radiation derived from nuclear decay, which causes damage to cancer cells in the immediate proximity by irreversible direct or indirect ionization of the cells' DNA, which induces apoptosis. In addition, to avoid damage to surrounding normal cells, PRRT privileges the use of radionuclides that have little penetrating and more energetic (and thus more ionizing) radiations. To date, the most frequently radioisotopes are β- emitters, particularly Yttrium-90 (90Y) and Lutetium-177 (177Lu), labeled SSTR agonists. Current development of SSTR-targeting is triggering the shift from using SSTR agonists to antagonists for PRRT. Furthermore, targeted α-particle therapy (TAT), has attracted special attention for the treatment of tumors and offers an improved therapeutic option for patients resistant to conventional treatments or even beta-irradiation treatment. Due to its short range and high linear energy transfer (LET), α-particles significantly damage the targeted cancer cells while causing minimal cytotoxicity toward surrounding normal tissue. Actinium-225 (225Ac) has been developed into potent targeting drug constructs including somatostatin-receptor-based radiopharmaceuticals and is in early clinical use against multiple neuroendocrine tumor types. In this article, we give a review of preclinical and clinical applications of 225Ac-PRRT in NETs, discuss the strengths and challenges of 225Ac complexes being used in PRRT; and envision the prospect of 225Ac-PRRT as a future alternative in the treatment of NETs.
Collapse
Affiliation(s)
- Mengqi Shi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Academy for Precision Oncology, International Centers for Precision Oncology (ICPO), Wiesbaden, Germany
| | - Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Agency for Science, Technology, and Research (A*STAR), Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Sartor O, Baghian A. Prostate specific membrane antigen binding radiopharmaceuticals: Current data and new concepts. Front Med (Lausanne) 2022; 9:1060922. [PMID: 36561718 PMCID: PMC9763319 DOI: 10.3389/fmed.2022.1060922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) represents a validated target for prostate cancer therapeutics. The phase III VISION study with 177lutetium (177Lu)-PSMA-617 represented a pivotal step forward and the FDA has now approved this agent in advanced metastatic castrate-resistant prostate cancer (mCRPC). A number of other PSMA targeted radiopharmaceuticals are now under development. Some of these agents are targeted to PSMA via monoclonal antibodies such as J591 and TLX591. Others are targeted to PSMA via small molecules such as PSMA-617, PSMA I&T, MIP-1095, etc. In addition to the use of various ligands, multiple isotopes are now in clinical trials. Beta emitters in development include 177Lu, 131iodide (131I), and 67copper (67Cu). Targeted alpha emitters potentially include 225actinium (225Ac), 227thorium (227Th), and 212lead (212Pb). Phase III trials are underway with both 177Lu-PSMA-617 and 177Lu-PSMA I&T in mCRPC. Single dose phase I trials are complete with 225Ac-J591 but additional data are need to launch a phase III. Data are promising with 225Ac-PSMA-617 but concerns remain over salivary and renal toxicity. Tandem therapies are also considered combining both beta and alpha-targeted therapy. Taken together the field of PSMA targeted radiopharmaceuticals is rapidly developing. The targeted alpha therapies are particularly promising and several developmental paths forward are being considered in the near future.
Collapse
Affiliation(s)
- Oliver Sartor
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States,Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States,*Correspondence: Oliver Sartor,
| | - Ali Baghian
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States,Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
35
|
Berg-Larsen A, Mobergslien A, Moen I, Petros G, Kristian A, Gunvaldsen KS, Cruciani V, Wickstroem K, Bjerke RM, Karlsson J, Cuthbertson A. Tumor growth inhibition and immune system activation following treatment with thorium-227 conjugates and PD-1 check-point inhibition in the MC-38 murine model. Front Med (Lausanne) 2022; 9:1033303. [DOI: 10.3389/fmed.2022.1033303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted thorium-227 conjugates comprise the combination of a monoclonal antibody with specificity for a tumor cell antigen and a 3,2-HOPO chelator enabling complexation of thorium-227 (Th-227). The radiolabeled conjugate functions as an effective delivery system of alpha-particle radiation to the surface of the tumor cell inducing difficult to repair complex DNA damage and cell death. In addition, the mechanism of action of targeted alpha therapy (TAT) appears to involve a significant component linked to stimulation of the immune system. We report herein evidence of immune activation and long-lasting immune protection of a TAT in a syngeneic model using the MC-38 murine cell line. Firstly, MC-38 cells were irradiated ex vivo with the thorium labeled antibody before subcutaneous implantation into mice. These mice were then rechallenged with MC-38 cells contra-laterally. In the group receiving irradiated cells, 9 out of 10 animals had no measurable tumor growth compared to aggressive tumor growth in the control group. Secondly, in an efficacy study, 500 kBq/kg of thorium labeled antibody alone or in combination with PD-1 checkpoint inhibitor gave statistically significant tumor growth inhibition compared to vehicle control. Animals with no measurable tumors were once again rechallenged contra-laterally with MC-38 cells. The re-growth of tumors was significantly delayed (approx. 60 days) in the treatment group compared to age-matched controls (approx. 30 days) in the monotherapy group. Interestingly, in the TAT/ PD-1 combination group no re-growth was observed demonstrating the potential of combining a TAT with checkpoint inhibition therapy. Finally, tumors were excised from treated mice and analyzed by flow cytometry and immunohistochemistry (IHC). Analysis revealed significant infiltration of CD8+ T-cells and mature dendritic cells compared to vehicle controls. Together these results indicated that an ongoing immune response from treatment with alpha radiation could be enhanced by check-point inhibition.
Collapse
|
36
|
Spoormans K, Crabbé M, Struelens L, De Saint-Hubert M, Koole M. A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT). Pharmaceutics 2022; 14:2007. [PMID: 36297446 PMCID: PMC9608466 DOI: 10.3390/pharmaceutics14102007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Targeted radionuclide therapy (TRT) uses radiopharmaceuticals to specifically irradiate tumor cells while sparing healthy tissue. Response to this treatment highly depends on the absorbed dose. Tumor control probability (TCP) models aim to predict the tumor response based on the absorbed dose by taking into account the different characteristics of TRT. For instance, TRT employs radiation with a high linear energy transfer (LET), which results in an increased effectiveness. Furthermore, a heterogeneous radiopharmaceutical distribution could result in a heterogeneous dose distribution at a tissue, cellular as well as subcellular level, which will generally reduce the tumor response. Finally, the dose rate in TRT is protracted, relatively low, and variable over time. This allows cells to repair more DNA damage, which may reduce the effectiveness of TRT. Within this review, an overview is given on how these characteristics can be included in TCP models, while some experimental findings are also discussed. Many parameters in TCP models are preclinically determined and TCP models also play a role in the preclinical stage of radiopharmaceutical development; however, this all depends critically on the calculated absorbed dose. Accordingly, an overview of the existing preclinical dosimetry methods is given, together with their limitation and applications. It can be concluded that although the theoretical extension of TCP models from external beam radiotherapy towards TRT has been established quite well, the experimental confirmation is lacking. Thus, requiring additional comprehensive studies at the sub-cellular, cellular, and organ level, which should be provided with accurate preclinical dosimetry.
Collapse
Affiliation(s)
- Kaat Spoormans
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| | - Melissa Crabbé
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Lara Struelens
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Marijke De Saint-Hubert
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| |
Collapse
|
37
|
Koniar H, Rodríguez-Rodríguez C, Radchenko V, Yang H, Kunz P, Rahmim A, Uribe C, Schaffer P. SPECT imaging of 226Ac as a theranostic isotope for 225Ac radiopharmaceutical development. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8b5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The development of alpha-emitting radiopharmaceuticals using 225Ac (t
½ = 9.92 d) benefits from the quantitative determination of its biodistribution and is not always easy to directly measure. An element-equivalent matched-pair would allow for more accurate biodistribution and dosimetry estimates. 226Ac (t
½ = 29.4 h) is a candidate isotope for in vivo imaging of preclinical 225Ac radiopharmaceuticals, given its 158 keV and 230 keV gamma emissions making it suitable for quantitative SPECT imaging. This work aimed to conduct a performance assessment for 226Ac imaging and presents the first-ever 226Ac SPECT images. Approach. To establish imaging performance with regards to contrast and noise, image quality phantoms were scanned using a microSPECT/CT system. To assess the resolution, a hot rod phantom with cylindrical rods with diameters between 0.85 and 1.70 mm was additionally imaged. Two collimators were evaluated: a high-energy ultra-high resolution (HEUHR) collimator and an extra ultra-high sensitivity (UHS) collimator. Images were reconstructed from two distinct photopeaks at 158 keV and 230 keV. Main results. The HEUHR SPECT image measurements of high activity concentration regions were consistent with values determined independently via gamma spectroscopy, within 9% error. The lower energy 158 keV photopeak images demonstrated slightly better contrast recovery. In the resolution phantom, the UHS collimator only resolved rods ≥1.30 mm and ≥1.50 mm for the 158 keV and 230 keV photopeaks, respectively, while the HEUHR collimator clearly resolved all rods, with resolution <0.85 mm. Significance. Overall, the feasibility of preclinical imaging with 226Ac was demonstrated with quantitative SPECT imaging achieved for both its 158 keV and 230 keV photopeaks. The HEUHR collimator is recommended for imaging 226Ac activity distributions in small animals due to its resolution <0.85 mm. Future work will explore the feasibility of using 226Ac both as an element-equivalent isotope for 225Ac radiopharmaceuticals, or as a standalone therapeutic isotope.
Collapse
|
38
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
39
|
Comparison of the Anti-Tumour Activity of the Somatostatin Receptor (SST) Antagonist [177Lu]Lu-Satoreotide Tetraxetan and the Agonist [177Lu]Lu-DOTA-TATE in Mice Bearing AR42J SST2-Positive Tumours. Pharmaceuticals (Basel) 2022; 15:ph15091085. [PMID: 36145306 PMCID: PMC9506113 DOI: 10.3390/ph15091085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Limited experiments have compared the treatment effects of repetitive cycles of radiolabelled somatostatin (SST) analogues. In vitro and in vivo experiments were conducted in an AR42J cancer cell model, comparing the antagonist [177Lu]Lu-satoreotide tetraxetan with the agonist [177Lu]Lu-DOTA-TATE in terms of their binding properties, biodistribution, anti-tumour activity and toxicity. Histopathological and immunohistochemical examinations were performed at different timepoints. In the in vitro assays, [177Lu]Lu-satoreotide tetraxetan recognised twice as many SST2 binding sites as [177Lu]Lu-DOTA-TATE. In mice treated once a week for four consecutive weeks, [177Lu]Lu-satoreotide tetraxetan (15 MBq) revealed a significantly greater median time taken to reach a tumour volume of 850 mm3 (68 days) compared to [177Lu]Lu-DOTA-TATE at 15 MBq (43 days) or 30 MBq (48 days). This was associated with a higher tumour uptake, enhanced DNA damage and no or mild effects on body weight, haematological toxicity, or renal toxicity with [177Lu]Lu-satoreotide tetraxetan (15 MBq). At the end of the study, complete tumour senescence was noted in 20% of animals treated with [177Lu]Lu-satoreotide tetraxetan, in 13% of those treated with [177Lu]Lu-DOTA-TATE at 30 MBq, and in none of those treated with [177Lu]Lu-DOTA-TATE at 15 MBq. In conclusion, repeated administrations of [177Lu]Lu-satoreotide tetraxetan were able to potentiate peptide receptor radionuclide therapy with a higher tumour uptake, longer median survival, and enhanced DNA damage, with a favourable efficacy/safety profile compared to [177Lu]Lu-DOTA-TATE.
Collapse
|
40
|
Guerra Liberal FDC, Moreira H, Redmond KM, O’Sullivan JM, Alshehri AHD, Wright TC, Dunne VL, Campfield C, Biggart S, McMahon SJ, Prise KM. Differential responses to 223Ra and Alpha-particles exposure in prostate cancer driven by mitotic catastrophe. Front Oncol 2022; 12:877302. [PMID: 35965568 PMCID: PMC9367686 DOI: 10.3389/fonc.2022.877302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionRadium-223 (223Ra) has been shown to have an overall survival benefit in metastatic castration-resistant prostate cancer (mCRPC) involving bone. Despite its increased clinical usage, relatively little is known regarding the mechanism of action of 223Ra at the cellular level.MethodsWe evaluated the effects of 223Ra irradiation in a panel of cell lines and then compared them with standard X-ray and external alpha-particle irradiation, with a particular focus on cell survival and DNA damage repair kinetics.Results223Ra exposures had very high, cell-type-dependent RBE50% ranging from 7 to 15. This was significantly greater than external alpha irradiations (RBE50% from 1.4 to 2.1). These differences were shown to be partially related to the volume of 223Ra solution added, independent of the alpha-particle dose rate, suggesting a radiation-independent mechanism of effect. Both external alpha particles and 223Ra exposure were associated with delayed DNA repair, with similar kinetics. Additionally, the greater treatment efficacy of 223Ra was associated with increased levels of residual DNA damage and cell death by mitotic catastrophe.ConclusionsThese results suggest that 223Ra exposure may be associated with greater biological effects than would be expected by direct comparison with a similar dose of external alpha particles, highlighting important challenges for future therapeutic optimization.
Collapse
Affiliation(s)
- Francisco D. C. Guerra Liberal
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Francisco D. C. Guerra Liberal,
| | - Hugo Moreira
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Kelly M. Redmond
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Joe M. O’Sullivan
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Ali H. D. Alshehri
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Timothy C. Wright
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria L. Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Caoimhghin Campfield
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Sandra Biggart
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Stephen J. McMahon
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Kevin M. Prise
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
41
|
Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, Bilewicz R, Walczak R, Majka E, Mames A, Bruchertseifer F, Morgenstern A, Bilewicz A, Majkowska-Pilip A. Cubosomal Lipid Formulation for Combination Cancer Treatment: Delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213Bi. Mol Pharm 2022; 19:2818-2831. [PMID: 35849547 PMCID: PMC9346610 DOI: 10.1021/acs.molpharmaceut.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.
Collapse
Affiliation(s)
- Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Emilia Majka
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
42
|
Abstract
Theranostic applications with radio-isotopes currently are rapidly progressing and expand nuclear medicine application in clinical routine. Alpha emitting isotopes, in particular, have long been hypothesized to achieve relevant advances for the treatment of malignancies. Here, an overview of their properties and the knowledge of radiobiology is reviewed in view of clinical translation. Clinical evidence of radiopharmaceuticals based on alpha emitters is summarized with a focus on recent developments for treatment of metastasized castration resistant prostate cancer.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Nuclear Medicine, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
43
|
Evaluation of 134Ce as a PET imaging surrogate for antibody drug conjugates incorporating 225Ac. Nucl Med Biol 2022; 110-111:28-36. [DOI: 10.1016/j.nucmedbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
44
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
45
|
Tamborino G, Nonnekens J, De Saint-Hubert M, Struelens L, Feijtel D, de Jong M, Konijnenberg MW. Dosimetric Evaluation of the Effect of Receptor Heterogeneity on the Therapeutic Efficacy of Peptide Receptor Radionuclide Therapy: Correlation with DNA Damage Induction and In Vivo Survival. J Nucl Med 2022; 63:100-107. [PMID: 33837068 PMCID: PMC8717202 DOI: 10.2967/jnumed.121.262122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Our rationale was to build a refined dosimetry model for 177Lu-DOTATATE in vivo experiments enabling the correlation of absorbed dose with double-strand break (DSB) induction and cell death. Methods: Somatostatin receptor type 2 expression of NCI-H69 xenografted mice, injected with 177Lu-DOTATATE, was imaged at 0, 2, 5, and 11 d. This expression was used as input to reconstruct realistic 3-dimensional heterogeneous activity distributions and tissue geometries of both cancer and heathy cells. The resulting volumetric absorbed dose rate distributions were calculated using the GATE (Geant4 Application for Tomographic Emission) Monte Carlo code and compared with homogeneous dose rate distributions. The absorbed dose (0-2 d) on micrometer-scale sections was correlated with DSB induction, measured by γH2AX foci. Moreover, the absorbed dose on larger millimeter-scale sections delivered over the whole treatment (0-14 d) was correlated to the modeled in vivo survival to determine the radiosensitivity parameters α and β for comparison with experimental data (cell death assay, volume response) and external-beam radiotherapy. The DNA-damage repair half-life Tμ and proliferation doubling time TD were obtained by fitting the DSB and tumor volume data over time. Results: A linear correlation with a slope of 0.0223 DSB/cell mGy-1 between the absorbed dose and the number of DSBs per cell has been established. The heterogeneous dose distributions differed significantly from the homogeneous dose distributions, with their corresponding average S values diverging at 11 d by up to 58%. No significant difference between modeled in vivo survival was observed in the first 5 d when using heterogeneous and uniform dose distributions. The radiosensitivity parameter analysis for the in vivo survival correlation indicated that the minimal effective dose rates for cell kill was 13.72 and 7.40 mGy/h, with an α of 0.14 and 0.264 Gy-1, respectively, and an α/β of 100 Gy; decreasing the α/β led to a decrease in the minimal effective dose rate for cell kill. Within the linear quadratic model, the best matching in vivo survival correlation (α = 0.1 Gy-1, α/β = 100 Gy, Tμ = 60 h, TD = 14.5 d) indicated a relative biological effectiveness of 0.4 in comparison to external-beam radiotherapy. Conclusion: Our results demonstrated that accurate dosimetric modeling is crucial to establishing dose-response correlations enabling optimization of treatment protocols.
Collapse
Affiliation(s)
- Giulia Tamborino
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Lara Struelens
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
| | - Danny Feijtel
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands;
| |
Collapse
|
46
|
Gubbi S, Koch CA, Klubo-Gwiezdzinska J. Peptide Receptor Radionuclide Therapy in Thyroid Cancer. Front Endocrinol (Lausanne) 2022; 13:896287. [PMID: 35712243 PMCID: PMC9197113 DOI: 10.3389/fendo.2022.896287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
The treatment options that are currently available for management of metastatic, progressive radioactive iodine (RAI)-refractory differentiated thyroid cancers (DTCs), and medullary thyroid cancers (MTCs) are limited. While there are several systemic targeted therapies, such as tyrosine kinase inhibitors, that are being evaluated and implemented in the treatment of these cancers, such therapies are associated with serious, sometimes life-threatening, adverse events. Peptide receptor radionuclide therapy (PRRT) has the potential to be an effective and safe modality for treating patients with somatostatin receptor (SSTR)+ RAI-refractory DTCs and MTCs. MTCs and certain sub-types of RAI-refractory DTCs, such as Hürthle cell cancers which are less responsive to conventional modalities of treatment, have demonstrated a favorable response to treatment with PRRT. While the current literature offers hope for utilization of PRRT in thyroid cancer, several areas of this field remain to be investigated further, especially head-to-head comparisons with other systemic targeted therapies. In this review, we provide a comprehensive outlook on the current translational and clinical data on the use of various PRRTs, including diagnostic utility of somatostatin analogs, theranostic properties of PRRT, and the potential areas for future research.
Collapse
Affiliation(s)
- Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christian A. Koch
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA, United States
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Joanna Klubo-Gwiezdzinska,
| |
Collapse
|
47
|
Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, Radchenko V, Schaffer P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J Nucl Med 2022; 63:5-13. [PMID: 34503958 PMCID: PMC8717181 DOI: 10.2967/jnumed.121.262687] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Targeted α-therapy (TAT) is an emerging powerful tool treating late-stage cancers for which therapeutic options are limited. At the core of TAT are targeted radiopharmaceuticals, where isotopes are paired with targeting vectors to enable tissue- or cell-specific delivery of α-emitters. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (diethylenetriamine pentaacetic acid) are commonly used to chelate metallic radionuclides but have limitations. Significant efforts are underway to develop effective stable chelators for α-emitters and are at various stages of development and community adoption. Isotopes such as 149Tb, 212/213Bi, 212Pb (for 212Bi), 225Ac, and 226/227Th have found suitable chelators, although further studies, especially in vivo studies, are required. For others, including 223Ra, 230U, and, arguably 211At, the ideal chemistry remains elusive. This review summarizes the methods reported to date for the incorporation of 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U into radiopharmaceuticals, with a focus on new discoveries and remaining challenges.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin J Wilson
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Grzmil M, Imobersteg S, Blanc A, Frank S, Schibli R, Béhé MP. Therapeutic Response of CCKBR-Positive Tumors to Combinatory Treatment with Everolimus and the Radiolabeled Minigastrin Analogue [177Lu]Lu-PP-F11N. Pharmaceutics 2021; 13:pharmaceutics13122156. [PMID: 34959437 PMCID: PMC8708304 DOI: 10.3390/pharmaceutics13122156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
The inhibition of the mammalian target of rapamycin complex 1 (mTORC1) by everolimus (RAD001) was recently shown to enhance the tumor uptake of radiolabeled minigastrin. In this paper, we investigate if this finding can improve the in vivo therapeutic response to [177Lu]Lu-PP-F11N treatment. The N-terminal DOTA-conjugated gastrin analogue PP-F11N (DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) was used to evaluate treatment efficacy in the human A431/CCKBR xenograft nude mouse model in combination with RAD001. Both RAD001 and [177Lu]Lu-PP-F11N single treatments as well as their combination inhibited tumor growth and increased survival. In concomitantly treated mice, the average tumor size and median survival time were significantly reduced and extended, respectively, as compared to the monotherapies. The histological analysis of kidney and stomach dissected after treatment with RAD001 and [177Lu]Lu-PP-F11N did not indicate significant adverse effects. In conclusion, our study data demonstrate the potential of mTORC1 inhibition to substantially improve the therapeutic efficacy of radiolabeled minigastrin analogues in CCKBR-positive cancers.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
- Correspondence: ; Tel.: +41-56-310-28-57
| | - Stefan Imobersteg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, 4031 Basel, Switzerland;
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin P. Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| |
Collapse
|
49
|
Serencsits B, Chu B, Pandit-Taskar N, McDevitt MR, Dauer LT. Radiation Safety Considerations and Clinical Advantages of Alpha-Emitting Therapy Radionuclides. J Nucl Med Technol 2021; 50:10-16. [PMID: 34750237 DOI: 10.2967/jnmt.121.262294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-emitting radionuclides provide an effective means of delivering large radiation doses to targeted treatment locations. Radium-223 dichloride (223RaCl2) is FDA approved for treatment of metastatic castration-resistant prostate cancer (mCRPC) and Actinium-225 (225Ac-Lintuzumab) radiolabeled antibodies have been shown to be beneficial for patients with acute myeloid leukemia. In recent years, there is an increasing use of alpha emitters in theranostic agents with both small and large molecule constructs. The proper precautionary means for their use and surveying documentation of these isotopes in a clinical setting are an essential accompaniment to these treatments. Methods: Patient treatment data collected over a three-year period, as well as regulatory requirements and safety practices, are described. Commonly used radiation instrumentation was evaluated for their ability to identify potential radioactive material spills and contamination events during a clinical administration of 225Ac. These instruments were placed at 0.32 cm from a 1.0 cm 225Ac disk source for measurement purposes. Radiation background values, efficiencies, and minimal detectable activities were measured and calculated for each type of detector. Results: The median external measured patient dose rate from 223RaCl2 patients (n = 611) was 2.5 µSv hr-1 on contact and 0.2 µSv hr-1 at 1 meter immediately after administration. Similarly, 225Ac-Lintuzumab (n = 19) patients had median external dose rates of 2.0 µSv hr-1 on contact and 0.3 µSv hr-1 at 1 meter. For the measurement of 225Ac samples, a liquid scintillation counter was found to have the highest overall efficiency (97%), while a zinc sulfide (ZnS) alpha probe offered the lowest minimal detectable activity at 3 counts per minute. Conclusion: In this study, we report data from 630 patients who were undergoing treatment with alpha-emitting isotopes 223Ra and 225Ac. While alpha emitters have ability to deliver higher internal radiation dose to the tissues exposed as compared with other unsealed radionuclides, they typically present minimal external dose rate concerns. Additionally, alpha radiation can be efficiently detected with appropriate radiation instrumentation, such as a liquid scintillation counter or ZnS probe, that should be prioritized when surveying for spills of alpha-emitters.
Collapse
Affiliation(s)
| | - Bae Chu
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | | |
Collapse
|
50
|
Deblonde GJP, Mattocks JA, Dong Z, Wooddy PT, Cotruvo JA, Zavarin M. Capturing an elusive but critical element: Natural protein enables actinium chemistry. SCIENCE ADVANCES 2021; 7:eabk0273. [PMID: 34669462 PMCID: PMC8528432 DOI: 10.1126/sciadv.abk0273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying and limited knowledge of Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here, we demonstrate a straightforward strategy to purify medically relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry, using the recently discovered protein, lanmodulin. The stoichiometry, solution behavior, and formation constant of the 228Ac3+-lanmodulin complex and its 90Y3+/natY3+/natLa3+ analogs were experimentally determined, representing the first actinium-protein and strongest actinide(III)-protein complex (sub-picomolar Kd) to be characterized. Lanmodulin’s unparalleled properties enable the facile purification recovery of radiometals, even in the presence of >10+10 equivalents of competing ions and at ultratrace levels: down to 2 femtograms 90Y3+ and 40 attograms 228Ac3+. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potential in vivo applications.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Joseph A. Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Paul T. Wooddy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Mavrik Zavarin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|