1
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
2
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
3
|
A Systematic Review of the Distribution of Tick-Borne Pathogens in Wild Animals and Their Ticks in the Mediterranean Rim between 2000 and 2021. Microorganisms 2022; 10:microorganisms10091858. [PMID: 36144460 PMCID: PMC9504443 DOI: 10.3390/microorganisms10091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tick-borne pathogens (TBPs) can be divided into three groups: bacteria, parasites, and viruses. They are transmitted by a wide range of tick species and cause a variety of human, animal, and zoonotic diseases. A total of 148 publications were found on tick-borne pathogens in wild animals, reporting on 85 species of pathogens from 35 tick species and 17 wild animal hosts between 2000 and February 2021. The main TBPs reported were of bacterial origin, including Anaplasma spp. and Rickettsia spp. A total of 72.2% of the TBPs came from infected ticks collected from wild animals. The main tick genus positive for TBPs was Ixodes. This genus was mainly reported in Western Europe, which was the focus of most of the publications (66.9%). It was followed by the Hyalomma genus, which was mainly reported in other areas of the Mediterranean Rim. These TBPs and TBP-positive tick genera were reported to have come from a total of 17 wild animal hosts. The main hosts reported were game mammals such as red deer and wild boars, but small vertebrates such as birds and rodents were also found to be infected. Of the 148 publications, 12.8% investigated publications on Mediterranean islands, and 36.8% of all the TBPs were reported in seven tick genera and 11 wild animal hosts there. The main TBP-positive wild animals and tick genera reported on these islands were birds and Hyalomma spp. Despite the small percentage of publications focusing on ticks, they reveal the importance of islands when monitoring TBPs in wild animals. This is especially true for wild birds, which may disseminate their ticks and TBPs along their migration path.
Collapse
|
4
|
O'Brien CA, Huang B, Warrilow D, Hazlewood JE, Bielefeldt-Ohmann H, Hall-Mendelin S, Pegg CL, Harrison JJ, Paramitha D, Newton ND, Schulz BL, Suhrbier A, Hobson-Peters J, Hall RA. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasit Vectors 2022; 15:59. [PMID: 35180893 PMCID: PMC8857802 DOI: 10.1186/s13071-022-05176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background A subset of Australians who have been bitten by ticks experience a complex of chronic and debilitating symptoms which cannot be attributed to the known pathogenic species of bacteria present in Australia. As a result, there has been a renewed effort to identify and characterise viruses in Australian terrestrial ticks. Recent transcriptome sequencing of Ixodes and Amblyomma ticks has revealed the presence of multiple virus sequences. However, without virus isolates our ability to understand the host range and pathogenesis of newly identified viruses is limited. We have established a successful method for high-throughput virus discovery and isolation in mosquitoes using antibodies to double-stranded RNA. In this study we sought to characterise five archival tick-borne viruses to adapt our virus discovery protocol for Australian ticks. Methods We performed virus characterisation using a combination of bioinformatic sequence analysis and in vitro techniques including replication kinetics, antigenic profiling, virus purification and mass spectrometry. Results Our sequence analysis of Nugget virus, Catch-me-Cave virus and Finch Creek virus revealed marked genetic stability in isolates collected from the same location approximately 30 years apart. We demonstrate that the Ixodes scapularis-derived ISE6 cell line supports replication of Australian members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families, including Saumarez Reef virus (SREV), a flavivirus isolated from the soft tick Ornithodoros capensis. While antibodies against double-stranded RNA could be used to detect replication of a tick-borne reovirus and mosquito-borne flavivirus, the tick-borne flaviviruses Gadgets Gully virus and SREV could not be detected using this method. Finally, four novel virus-like sequences were identified in transcriptome sequencing of the Australian native tick Ixodes holocyclus. Conclusions Genetic and antigenic characterisations of archival viruses in this study confirm that three viruses described in 2002 represent contemporary isolates of virus species first identified 30 years prior. Our findings with antibodies to double-stranded RNA highlight an unusual characteristic shared by two Australian tick-borne flaviviruses. Finally, comparative growth kinetics analyses of Australian tick-borne members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families in ISE6 and BSR cells will provide a useful resource for isolation of Australian tick-borne viruses using existing cell lines. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05176-z.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Andreas Suhrbier
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
5
|
Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-García L, Amaral R, Aguilera-Sepúlveda P, Pifarré M, Molina-López R, Obón E, Nicolás O, Lecollinet S, Jiménez-Clavero MÁ, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019. Viruses 2021; 13:v13122404. [PMID: 34960673 PMCID: PMC8708358 DOI: 10.3390/v13122404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.
Collapse
Affiliation(s)
- Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Eduard Jose-Cunilleras
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Servei Medicina Interna Equina, Fundació Hospital Clínic Veterinari (UAB), 08193 Bellaterra, Spain
| | - Mercè Soler
- Servei de Prevenció en Salut Animal, Departament d’Acció Climàtica, Alimentació i Agenda Rural (DACC), 08007 Barcelona, Spain;
| | - Lola Pailler-García
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Maria Pifarré
- Centre de Fauna dels Aiguamolls de l’Empordà, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 17486 Castelló d’Empúries, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Olga Nicolás
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
- Parc Natural de l’Alt Pirineu, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25595 Llavorsí, Spain
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| |
Collapse
|
6
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
7
|
Gomard Y, Flores O, Vittecoq M, Blanchon T, Toty C, Duron O, Mavingui P, Tortosa P, McCoy KD. Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). MICROBIAL ECOLOGY 2021; 81:770-783. [PMID: 33025063 DOI: 10.1007/s00248-020-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Olivier Flores
- Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), CIRAD, Saint-Pierre, La Réunion, France
| | - Marion Vittecoq
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Thomas Blanchon
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Céline Toty
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
8
|
Palomar AM, Veiga J, Portillo A, Santibáñez S, Václav R, Santibáñez P, Oteo JA, Valera F. Novel Genotypes of Nidicolous Argas Ticks and Their Associated Microorganisms From Spain. Front Vet Sci 2021; 8:637837. [PMID: 33855055 PMCID: PMC8039128 DOI: 10.3389/fvets.2021.637837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/24/2021] [Indexed: 12/01/2022] Open
Abstract
The knowledge of the distribution, richness and epidemiological importance of soft ticks of the genus Argas is incomplete. In Spain, five Argas species have been recorded, including three ornitophilic nidicolous ticks, but their associated microorganisms remain unknown. This study aimed to investigate ticks from bird nests and their microorganisms. Ticks were collected extensively from natural cavities and nest-boxes used by European rollers (Coracias garrulus) and little owls (Athene noctua) in Southeastern and Central Spain. Ticks were morphologically and genetically identified and corresponding DNA/RNA tick extracts were analyzed [individually (n = 150) or pooled (n = 43)] using specific PCR assays for bacteria (Anaplasmataceae, Bartonella, Borrelia, Coxiella/Rickettsiella, and Rickettsia spp.), viruses (Flaviviruses, Orthonairoviruses, and Phenuiviruses), and protozoa (Babesia/Theileria spp.). Six Argas genotypes were identified, of which only those of Argas reflexus (n = 8) were identified to the species level. Two other genotypes were closely related to each other and to Argas vulgaris (n = 83) and Argas polonicus (n = 33), respectively. These two species have not been previously reported from Western Europe. Two additional genotypes (n = 4) clustered with Argas persicus, previously reported in Spain. The remaining genotype (n = 22) showed low sequence identity with any Argas species, being most similar to the African Argas africolumbae. The microbiological screening revealed infection with a rickettsial strain belonging to Rickettsia fournieri and Candidatus Rickettsia vini group in 74.7% of ticks, mainly comprising ticks genetically related to A. vulgaris and A. polonicus. Other tick endosymbionts belonging to Coxiella, Francisella and Rickettsiella species were detected in ten, one and one tick pools, respectively. In addition, one Babesia genotype, closely related to avian Babesia species, was found in one tick pool. Lastly, Anaplasmataceae, Bartonella, Borrelia, and viruses were not detected. In conclusion, five novel Argas genotypes and their associated microorganisms with unproven pathogenicity are reported for Spain. The re-use of nests between and within years by different bird species appears to be ideal for the transmission of tick-borne microorganisms in cavity-nesting birds of semiarid areas. Further work should be performed to clarify the taxonomy and the potential role of soft Argas ticks and their microorganisms in the epidemiology of zoonoses.
Collapse
Affiliation(s)
- Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Jesús Veiga
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas -Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, Almería, Spain
| | - Aránzazu Portillo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Sonia Santibáñez
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paula Santibáñez
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - José A Oteo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas -Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
9
|
Constant O, Bollore K, Clé M, Barthelemy J, Foulongne V, Chenet B, Gomis D, Virolle L, Gutierrez S, Desmetz C, Moares RA, Beck C, Lecollinet S, Salinas S, Simonin Y. Evidence of Exposure to USUV and WNV in Zoo Animals in France. Pathogens 2020; 9:pathogens9121005. [PMID: 33266071 PMCID: PMC7760666 DOI: 10.3390/pathogens9121005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are zoonotic arboviruses. These flaviviruses are mainly maintained in the environment through an enzootic cycle involving mosquitoes and birds. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Nevertheless, there is little data regarding the involvement of other mammals in the epidemiology of these arboviruses. In this study, we performed a serosurvey to assess exposure to these viruses in captive birds and mammals in a zoo situated in the south of France, an area described for the circulation of these two viruses. A total of 411 samples comprising of 70 species were collected over 16 years from 2003 to 2019. The samples were first tested by a competitive enzyme-linked immunosorbent assay. The positive sera were then tested using virus-specific microneutralization tests against USUV and WNV. USUV seroprevalence in birds was 10 times higher than that of WNV (14.59% versus 1.46%, respectively). Among birds, greater rhea (Rhea Americana) and common peafowl (Pavo cristatus) exhibited the highest USUV seroprevalence. Infections occurred mainly between 2016-2018 corresponding to a period of high circulation of these viruses in Europe. In mammalian species, antibodies against WNV were detected in one dama gazelle (Nanger dama) whereas serological evidence of USUV infection was observed in several Canidae, especially in African wild dogs (Lycaon pictus). Our study helps to better understand the exposure of captive species to WNV and USUV and to identify potential host species to include in surveillance programs in zoos.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Karine Bollore
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Marion Clé
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Baptiste Chenet
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - David Gomis
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - Laurie Virolle
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | | | - Caroline Desmetz
- bBioCommunication en CardioMétabolique (BC2M), Montpellier University, 34000 Montpellier, France;
| | - Rayane Amaral Moares
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
- Correspondence: ; Tel.: +33-(0)4-3435-9114
| |
Collapse
|
10
|
Rataud A, Dupraz M, Toty C, Blanchon T, Vittecoq M, Choquet R, McCoy KD. Evaluating Functional Dispersal in a Nest Ectoparasite and Its Eco-Epidemiological Implications. Front Vet Sci 2020; 7:570157. [PMID: 33195558 PMCID: PMC7604267 DOI: 10.3389/fvets.2020.570157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Functional dispersal (between-site movement, with or without subsequent reproduction) is a key trait acting on the ecological and evolutionary trajectories of a species, with potential cascading effects on other members of the local community. It is often difficult to quantify, and particularly so for small organisms such as parasites. Understanding this life history trait can help us identify the drivers of population dynamics and, in the case of vectors, the circulation of associated infectious agents. In the present study, functional dispersal of the soft tick Ornithodoros maritimus was studied at a small scale, within a colony of yellow-legged gulls (Larus michahellis). Previous work showed a random distribution of infectious agents in this tick at the within-colony scale, suggesting frequent tick movement among nests. This observation contrasts with the presumed strong endophilic nature described for this tick group. By combining an experimental field study, where both nest success and tick origin were manipulated, with Capture-Mark-Recapture modeling, dispersal rates between nests were estimated taking into account tick capture probability and survival, and considering an effect of tick sex. As expected, tick survival probability was higher in successful nests, where hosts were readily available for the blood meal, than in unsuccessful nests, but capture probability was lower. Dispersal was low overall, regardless of nest state or tick sex, and there was no evidence for tick homing behavior; ticks from foreign nests did not disperse more than ticks in their nest of origin. These results confirm the strong endophilic nature of this tick species, highlighting the importance of life cycle plasticity for adjusting to changes in host availability. However, results also raise questions with respect to the previously described within-colony distribution of infectious agents in ticks, suggesting that tick dispersal either occurs over longer temporal scales and/or that transient host movements outside the breeding period result in vector exposure to a diverse range of infectious agents.
Collapse
Affiliation(s)
- Amalia Rataud
- MIVEGEC, Univ Montpellier - CNRS - IRD, Centre IRD, Montpellier, France.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marlène Dupraz
- MIVEGEC, Univ Montpellier - CNRS - IRD, Centre IRD, Montpellier, France
| | - Céline Toty
- MIVEGEC, Univ Montpellier - CNRS - IRD, Centre IRD, Montpellier, France
| | - Thomas Blanchon
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Marion Vittecoq
- MIVEGEC, Univ Montpellier - CNRS - IRD, Centre IRD, Montpellier, France.,Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Rémi Choquet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Karen D McCoy
- MIVEGEC, Univ Montpellier - CNRS - IRD, Centre IRD, Montpellier, France.,Center for Research on the Ecology and Evolution of Disease (CREES), Montpellier, France
| |
Collapse
|
11
|
Khan JS, Provencher JF, Forbes MR, Mallory ML, Lebarbenchon C, McCoy KD. Parasites of seabirds: A survey of effects and ecological implications. ADVANCES IN MARINE BIOLOGY 2019; 82:1-50. [PMID: 31229148 PMCID: PMC7172769 DOI: 10.1016/bs.amb.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.
Collapse
Affiliation(s)
- Junaid S Khan
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - Jennifer F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, Saint Denis, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, UMR 5290 CNRS-IRD-University of Montpellier, Centre IRD, Montpellier, France
| |
Collapse
|
12
|
Gamble A, Ramos R, Parra-Torres Y, Mercier A, Galal L, Pearce-Duvet J, Villena I, Montalvo T, González-Solís J, Hammouda A, Oro D, Selmi S, Boulinier T. Exposure of yellow-legged gulls to Toxoplasma gondii along the Western Mediterranean coasts: Tales from a sentinel. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:221-228. [PMID: 30891402 PMCID: PMC6404646 DOI: 10.1016/j.ijppaw.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023]
Abstract
Efficiently tracking and anticipating the dynamics of infectious agents in wild populations requires the gathering of large numbers of samples, if possible at several locations and points in time, which can be a challenge for some species. Testing for the presence of specific maternal antibodies in egg yolks sampled on the colonies could represent an efficient way to quantify the exposure of breeding females to infectious agents, particularly when using an abundant and widespread species, such as the yellow-legged gull (Larus michahellis). We used such an approach to explore spatio-temporal patterns of exposure to Toxoplasma gondii, a pathogenic protozoan responsible of toxoplasmosis in humans and other warm-blooded vertebrates. First, we tested the validity of this approach by exploring the repeatability of the detection of specific antibodies at the egg level using two different immunoassays and at the clutch level using an occupancy model. Then, samples gathered in 15 colonies from France, Spain and Tunisia were analysed using an immunoassay detecting antibodies specifically directed against T. gondii. Prevalence of specific antibodies in eggs was overall high while varying significantly among colonies. These results revealed that T. gondii circulated at a large spatial scale in the western Mediterranean yellow-legged gull population, highlighting its potential role in the maintenance community of this parasite. Additionally, this study illustrates how species commensal to human populations like large gulls can be used as wildlife sentinels for the tracking of infectious agents at the human-wildlife interface, notably by sampling eggs.
Collapse
Affiliation(s)
- Amandine Gamble
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Raül Ramos
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Parra-Torres
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Aurélien Mercier
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France.,Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, 87042 Limoges, France
| | - Lokman Galal
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Jessica Pearce-Duvet
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Isabelle Villena
- Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie - Mycologie, EA 3800, UFR Médecine, SFR CAP-SANTÉ, Reims, France.,Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Hôpital Maison Blanche, CHU Reims, Reims, France
| | - Tomás Montalvo
- Servei de Vigilància i Control de Plagues Urbanes, Agència de Salut Pública de Barcelona, Barcelona, Spain.,CIBER Epidemiologia y salud Pública (CIBERESP), Madrid, Spain
| | - Jacob González-Solís
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Abdessalem Hammouda
- UR "Ecologie de la Faune Terrestre" (UR17ES44), Faculté des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Daniel Oro
- IMEDEA, CSIC-UIB, Esporles, Spain.,CEAB, CSIC, Blanes, Spain
| | - Slaheddine Selmi
- UR "Ecologie de la Faune Terrestre" (UR17ES44), Faculté des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Thierry Boulinier
- CEFE, CNRS, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
13
|
Romeo C, Lecollinet S, Caballero J, Isla J, Luzzago C, Ferrari N, García-Bocanegra I. Are tree squirrels involved in the circulation of flaviviruses in Italy? Transbound Emerg Dis 2018; 65:1372-1376. [PMID: 29635877 DOI: 10.1111/tbed.12874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 11/30/2022]
Abstract
West Nile virus (WNV), Usutu virus (USUV) and tick-borne encephalitis virus (TBEV) are emerging zoonotic flaviviruses (family Flaviviridae), which have circulated in Europe in the past decade. A cross-sectional study was conducted to assess exposure to these antigenically related flaviviruses in eastern grey squirrels (Sciurus carolinensis) in Italy. Seventeen out of 158 (10.8%; CI95% : 5.9-15.6) squirrels' sera tested through bELISA had antibodies against flaviviruses. Specific neutralizing antibodies to WNV, USUV and TBEV were detected by virus neutralization tests. Our results indicate that tree squirrels are exposed to Culex and tick-borne zoonotic flaviviruses in Italy. Moreover, this study shows for the first time USUV and TBEV exposure in grey squirrels, broadening the host range reported for these viruses. Even though further studies are needed to define the real role of tree squirrels in the epidemiology of flaviviruses in Europe, this study highlights that serology could be an effective approach for future investigations aimed at broadening our knowledge about the species exposed to these zoonotic infections.
Collapse
Affiliation(s)
- C Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - S Lecollinet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - J Caballero
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| | - J Isla
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| | - C Luzzago
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Coordinated Research Center "EpiSoMI", Università degli Studi di Milano, Milan, Italy
| | - N Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Coordinated Research Center "EpiSoMI", Università degli Studi di Milano, Milan, Italy
| | - I García-Bocanegra
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| |
Collapse
|
14
|
Strand TM, Lundkvist Å, Olsen B, Gustafsson L. Breeding consequences of flavivirus infection in the collared flycatcher. BMC Evol Biol 2018; 18:13. [PMID: 29402209 PMCID: PMC5800009 DOI: 10.1186/s12862-018-1121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background The breeding consequences of virus infections have rarely been studied in avian natural breeding populations. In this paper we investigated the links between humoral immunity following a natural flavivirus infection and reproduction in a wild bird population of collared flycatcher (Ficedula albicollis). We analyzed plasma from 744 birds for antibodies and correlated these results to a number of reproductive components. Results Nearly one third (27.8%) of the sampled collared flycatchers were found seropositive for flavivirus. Males had significantly more frequently flavivirus antibodies (32.3%) than females (25.1%). Seropositive females differed significantly from seronegative females in four traits: they had earlier lay date, higher body weight, higher survival rate and were older than seronegative females. The females did not differ in clutch size, number of fledged young or number of recruited young. Seropositive males had female partners with earlier lay date, i.e. the males bred earlier and they also produced more fledged young than seronegative males. In contrast, the males did not differ in clutch size, number of recruited young, male weight, age or survival. Interestingly, seropositive males had larger ornament, forehead badge size, than seronegative males. Conclusions Collared flycatchers with an antibody response against flavivirus were more successful than birds with no antibody response, for any of the measured life history traits. The positive link between flavivirus antibody presence and life-history trait levels suggest that it is condition dependent in the collared flycatcher.
Collapse
Affiliation(s)
- Tanja M Strand
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden. .,Present Address: National Veterinary Institute (SVA), SE-75189, Uppsala, Sweden.
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Uppsala, Sweden
| | - Lars Gustafsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden.,Department of Animal Ecology/ Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Garnier R, Ramos R, Sanz‐Aguilar A, Poisbleau M, Weimerskirch H, Burthe S, Tornos J, Boulinier T. Interpreting
ELISA
analyses from wild animal samples: Some recurrent issues and solutions. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romain Garnier
- Department of Veterinary MedicineDisease Dynamics UnitUniversity of Cambridge Cambridge UK
| | - Raül Ramos
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsUniversitat de Barcelona Barcelona Spain
| | - Ana Sanz‐Aguilar
- Population Ecology GroupInstituto Mediterráneo de Estudios AvanzadosIMEDEA (CSIC‐UIB) Esporles Islas Baleares Spain
| | - Maud Poisbleau
- Department of Biology – Behavioural Ecology & Ecophysiology GroupUniversity of Antwerp Wilrijk Belgium
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de ChizéCNRS – Université de la Rochelle Villiers en Bois France
| | - Sarah Burthe
- Centre for Ecology & Hydrology Penicuik Midlothian UK
| | - Jeremy Tornos
- CEFE CNRS Université de Montpellier Montpellier France
| | | |
Collapse
|
16
|
Kada S, McCoy KD, Boulinier T. Impact of life stage-dependent dispersal on the colonization dynamics of host patches by ticks and tick-borne infectious agents. Parasit Vectors 2017; 10:375. [PMID: 28778181 PMCID: PMC5544987 DOI: 10.1186/s13071-017-2261-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND When colonization and gene flow depend on host-mediated dispersal, a key factor affecting vector dispersal potential is the time spent on the host for the blood meal, a characteristic that can vary strongly among life history stages. Using a 2-patch vector-pathogen population model and seabird ticks as biological examples, we explore how vector colonization rates and the spread of infectious agents may be shaped by life stage-dependent dispersal. We contrast hard (Ixodidae) and soft (Argasidae) tick systems, which differ strongly in blood- feeding traits. RESULTS We find that vector life history characteristics (i.e. length of blood meal) and demographic constraints (Allee effects) condition the colonization potential of ticks; hard ticks, which take a single, long blood meal per life stage, should have much higher colonization rates than soft ticks, which take repeated short meals. Moreover, this dispersal potential has direct consequences for the spread of vector-borne infectious agents, in particular when transmission is transovarial. CONCLUSIONS These results have clear implications for predicting the dynamics of vector and disease spread in the context of large-scale environmental change. The findings highlight the need to include life-stage dispersal in models that aim to predict species and disease distributions, and provide testable predictions related to the population genetic structure of vectors and pathogens along expansion fronts.
Collapse
Affiliation(s)
- Sarah Kada
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| | - Karen D. McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR CNRS 5290 - UR IRD 224 - Université Montpellier, Centre IRD, 34394 Montpellier, France
| | - Thierry Boulinier
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
17
|
Dupraz M, Toty C, Devillers E, Blanchon T, Elguero E, Vittecoq M, Moutailler S, McCoy KD. Population structure of the soft tick Ornithodoros maritimus and its associated infectious agents within a colony of its seabird host Larus michahellis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:122-130. [PMID: 28620577 PMCID: PMC5460746 DOI: 10.1016/j.ijppaw.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
The epidemiology of vector-borne zoonoses depends on the movement of both hosts and vectors, which can differ greatly in intensity across spatial scales. Because of their life history traits and small size, vector dispersal may be frequent, but limited in distance. However, little information is available on vector movement patterns at local spatial scales, and particularly for ticks, transmitting the greatest diversity of recognized infectious agents. To test the degree to which ticks can disperse and disseminate pathogens at local scales, we investigated the temporal dynamics and population structure of the soft tick Ornithodoros maritimus within a colony of its seabird host, the Yellow-legged gull Larus michahellis. Ticks were repeatedly sampled at a series of nests during the host breeding season. In half of the nests, ticks were collected (removal sampling), in the other half, ticks were counted and returned to the nest. A subsample of ticks was screened for known bacteria, viruses and parasites using a high throughput real-time PCR system to examine their distribution within the colony. The results indicate a temporal dynamic in the presence of tick life stages over the season, with the simultaneous appearance of juvenile ticks and hatched chicks, but no among-nest spatial structure in tick abundance. Removal sampling significantly reduced tick numbers, but only from the fourth visit onward. Seven bacterial isolates, one parasite species and one viral isolate were detected but no spatial structure in their presence within the colony was found. These results suggest weak isolation among nests and that tick dispersal is likely frequent enough to quickly recolonize locally-emptied patches and disseminate pathogens across the colony. Vector-mediated movements at local scales may therefore play a key role in pathogen emergence and needs to be considered in conjunction with host movements for predicting pathogen circulation and for establishing effective control strategies. A temporal dynamic in the abundance of tick stages was found over the season. Destructive sampling reduced tick abundance near the end of the sampling period. No spatial structure in the ticks or infectious agents was detected. Relatively frequent tick movements among nests were suggested.
Collapse
Affiliation(s)
- Marlene Dupraz
- MIVEGEC UMR 5290 CNRS IRD UM, Centre IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
- Corresponding author.
| | - Céline Toty
- MIVEGEC UMR 5290 CNRS IRD UM, Centre IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Elodie Devillers
- UMR Bipar, Anses, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Thomas Blanchon
- Centre de recherche de la Tour du Valat, 13200 Arles, France
| | - Eric Elguero
- MIVEGEC UMR 5290 CNRS IRD UM, Centre IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Marion Vittecoq
- Centre de recherche de la Tour du Valat, 13200 Arles, France
| | - Sara Moutailler
- UMR Bipar, Anses, INRA, ENVA, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Karen D. McCoy
- MIVEGEC UMR 5290 CNRS IRD UM, Centre IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
18
|
Ixodoidea of the Western Palaearctic: A review of available literature for identification of species. Ticks Tick Borne Dis 2017; 8:512-525. [PMID: 28286142 DOI: 10.1016/j.ttbdis.2017.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
We aim to produce a review of the most important literature references necessary for the identification of ticks of the families Ixodidae and Argasidae in Europe and northern Africa (i.e. the Western Palaearctic region). The purpose of this paper is to pinpoint a set of critically selected papers that contain reliable information on morphology, taxonomic keys, and comparative discussions which are critical for the identification of the ticks reported in the target region. When necessary, comments are provided on the systematic position of a species, or on suitable papers already addressing the issue. This review includes a list of 216 references which cover all Ixodoidea species reported as permanent residents of the Western Palaearctic, namely 28 species of the genus Ixodes, two Dermacentor, seven Haemaphysalis, nine Hyalomma, eight Rhipicephalus, five Argas and about seven species of Ornithodoros.
Collapse
|
19
|
García-Bocanegra I, Paniagua J, Gutiérrez-Guzmán AV, Lecollinet S, Boadella M, Arenas-Montes A, Cano-Terriza D, Lowenski S, Gortázar C, Höfle U. Spatio-temporal trends and risk factors affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants. BMC Vet Res 2016; 12:249. [PMID: 27829427 PMCID: PMC5103426 DOI: 10.1186/s12917-016-0876-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/29/2016] [Indexed: 02/05/2023] Open
Abstract
Background During the last decade, the spread of many flaviviruses (Genus Flavivirus) has been reported, representing an emerging threat for both animal and human health. To further study utility of wild ruminant samples in West Nile virus (WNV) surveillance, we assessed spatio–temporal trends and factors associated with WNV and cross-reacting flaviviruses exposure, particularly Usutu virus (USUV) and Meaban virus (MBV), in wild ruminants in Spain. Serum samples from 4693 wild ruminants, including 3073 free-living red deer (Cervus elaphus), 201 fallow deer (Dama dama), 125 mouflon (Ovis aries musimon), 32 roe deer (Capreolus capreolus) and 1262 farmed red deer collected in 2003–2014, were screened for WNV and antigenically-related flavivirus antibodies using a blocking ELISA (bELISA). Positive samples were tested for neutralizing antibodies against WNV, USUV and MBV by virus micro-neutralization tests. Results Mean flavivirus seroprevalence according to bELISA was 3.4 ± 0.5 % in red deer, 1.0 ± 1.4 % in fallow deer, 2.4 ± 2.7 % in mouflon and 0 % in roe deer. A multivariate logistic regression model revealed as main risk factors for seropositivity in red deer; year (2011), the specific south-coastal bioregion (bioregion 5) and presence of wetlands. Red deer had neutralizing antibodies against WNV, USUV and MBV. Conclusions The results indicate endemic circulation of WNV, USUV and MBV in Spanish red deer, even in areas without known flavivirus outbreaks. WNV antibodies detected in a free-living red deer yearling sampled in 2010, confirmed circulation this year. Co-circulation of WNV and USUV was detected in bioregions 3 and 5, and of WNV and MBV in bioregion 3. Sampling of hunted and farmed wild ruminants, specifically of red deer yearlings, could be a complementary way to national surveillance programs to monitor the activity of emerging flaviviruses.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Jorge Paniagua
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Ana V Gutiérrez-Guzmán
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Sylvie Lecollinet
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, F-94703, France
| | - Mariana Boadella
- Sabiotec, Camino de Moledores s.n., Ed. Polivalente UCLM, 13005, Ciudad Real, Spain
| | - Antonio Arenas-Montes
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Steeve Lowenski
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, F-94703, France
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Ursula Höfle
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
20
|
Monitoring of West Nile virus, Usutu virus and Meaban virus in waterfowl used as decoys and wild raptors in southern Spain. Comp Immunol Microbiol Infect Dis 2016; 49:58-64. [PMID: 27865265 DOI: 10.1016/j.cimid.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/23/2022]
Abstract
In the last decade, the number of emerging flaviviruses described worldwide has increased considerably, with wild birds acting as the main reservoir hosts of these viruses. We carried out an epidemiological survey to determine the seroprevalence of antigenically related flaviviruses, particularly West Nile virus (WNV), Usutu virus (USUV) and Meaban virus (MBV), in waterfowl used as decoys and wild raptors in Andalusia (southern Spain), the region considered to have the highest risk of flaviviruses circulation in Spain. The overall flaviviruses seroprevalence according to bELISA was 13.0% in both in decoys (n=1052) and wild raptors (n=123). Specific antibodies against WNV, USUV and MBV were confirmed by micro virus neutralization tests in 12, 38 and 4 of the seropositive decoys, respectively. This is the first study on WNV and USUV infections in decoys and the first report of MBV infections in waterfowl and raptors. Moreover we report the first description of WNV infections in short-toed snake eagle (Circaetus gallicus) and Montagu's harrier (Circus pygargus). The seropositivity obtained indicates widespread but not homogeneous distribution of WNV and USUV in Andalusia. The results also confirm endemic circulation of WNV, USUV and MBV in both decoys and wild raptors in southern Spain. Our results highlight the need to implement surveillance and control programs not only for WNV but also for other related flaviviruses. Further research is needed to determine the eco-epidemiological role that waterfowl and wild raptors play in the transmission of emerging flaviviruses, especially in decoys, given their close interactions with humans.
Collapse
|
21
|
Boulinier T, Kada S, Ponchon A, Dupraz M, Dietrich M, Gamble A, Bourret V, Duriez O, Bazire R, Tornos J, Tveraa T, Chambert T, Garnier R, McCoy KD. Migration, Prospecting, Dispersal? What Host Movement Matters for Infectious Agent Circulation? Integr Comp Biol 2016; 56:330-42. [PMID: 27252195 DOI: 10.1093/icb/icw015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.
Collapse
Affiliation(s)
- Thierry Boulinier
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Sarah Kada
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Aurore Ponchon
- Eco-ethology Research Group, ISPA, 1149-041 Lisbon, Portugal
| | - Marlène Dupraz
- MIVEGEC, CNRS-IRD-Université Montpellier, UMR 5190, 34394 Montpellier, France
| | - Muriel Dietrich
- Department of Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Amandine Gamble
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Vincent Bourret
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Olivier Duriez
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Romain Bazire
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Jérémy Tornos
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Torkild Tveraa
- Norwegian Institute for Nature Research, Fram Center, 9296 Tromsoe, Norway
| | - Thierry Chambert
- Department of Ecosystem Science and Management, Pennsylvania State University, PA 16802, USA
| | - Romain Garnier
- **Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge CB3 0ES, UK
| | - Karen D McCoy
- MIVEGEC, CNRS-IRD-Université Montpellier, UMR 5190, 34394 Montpellier, France
| |
Collapse
|
22
|
McCoy KD, Dietrich M, Jaeger A, Wilkinson DA, Bastien M, Lagadec E, Boulinier T, Pascalis H, Tortosa P, Le Corre M, Dellagi K, Lebarbenchon C. The role of seabirds of the Iles Eparses as reservoirs and disseminators of parasites and pathogens. ACTA OECOLOGICA (MONTROUGE, FRANCE) 2016; 72:98-109. [PMID: 32288503 PMCID: PMC7128210 DOI: 10.1016/j.actao.2015.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
Abstract
The role of birds as reservoirs and disseminators of parasites and pathogens has received much attention over the past several years due to their high vagility. Seabirds are particularly interesting hosts in this respect. In addition to incredible long-distance movements during migration, foraging and prospecting, these birds are long-lived, site faithful and breed in dense aggregations in specific colony locations. These different characteristics can favor both the local maintenance and large-scale dissemination of parasites and pathogens. The Iles Eparses provide breeding and feeding grounds for more than 3 million breeding pairs of seabirds including at least 13 species. Breeding colonies on these islands are relatively undisturbed by human activities and represent natural metapopulations in which seabird population dynamics, movement and dispersal can be studied in relation to that of circulating parasites and pathogens. In this review, we summarize previous knowledge and recently-acquired data on the parasites and pathogens found in association with seabirds of the Iles Eparses. These studies have revealed the presence of a rich diversity of infectious agents (viruses, bacteria and parasites) carried by the birds and/or their local ectoparasites (ticks and louse flies). Many of these agents are widespread and found in other ecosystems confirming a role for seabirds in their large scale dissemination and maintenance. The heterogeneous distribution of parasites and infectious agents among islands and seabird species suggests that relatively independent metacommunities of interacting species may exist within the western Indian Ocean. In this context, we discuss how the patterns and determinants of seabird movements may alter parasite and pathogen circulation. We conclude by outlining key aspects for future research given the baseline data now available and current concerns in eco-epidemiology and biodiversity conservation.
Collapse
Affiliation(s)
- Karen D. McCoy
- MIVEGEC (Maladies Infectieuses et Vecteurs: Evolution, Génétique, Ecologie, Contrôle) UMR 5290 CNRS-IRD-Université de Montpellier, Centre IRD, 34393 Montpellier, France
| | - Muriel Dietrich
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
| | - Audrey Jaeger
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR ENTROPIE, Université de la Réunion-IRD-CNRS, CS92003, 97744 Saint Denis, Reunion Island, France
| | - David A. Wilkinson
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Matthieu Bastien
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Erwan Lagadec
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université de Montpellier UMR 5175, 34293 Montpellier, France
| | - Hervé Pascalis
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Pablo Tortosa
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Matthieu Le Corre
- UMR ENTROPIE, Université de la Réunion-IRD-CNRS, CS92003, 97744 Saint Denis, Reunion Island, France
| | - Koussay Dellagi
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| | - Camille Lebarbenchon
- CRVOI (Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien), 97490 Sainte Clotilde, Reunion Island, France
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, 97490 Sainte Clotilde, Reunion Island, France
| |
Collapse
|
23
|
Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, Ribas MP, Blanch-Lázaro B, Fernández-Aguilar X, Antilles N, López-Soria S, Lorca-Oró C, Dubey JP, Almería S. Toxoplasma gondii Infection in Seagull Chicks Is Related to the Consumption of Freshwater Food Resources. PLoS One 2016; 11:e0150249. [PMID: 26974667 PMCID: PMC4790883 DOI: 10.1371/journal.pone.0150249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 02/11/2016] [Indexed: 02/05/2023] Open
Abstract
Understanding the spread of Toxoplasma gondii (T. gondii) in wild birds, particularly in those with opportunistic feeding behavior, is of interest for elucidating the epidemiological involvement of these birds in the maintenance and dissemination of the parasite. Overall, from 2009 to 2011, we collected sera from 525 seagull chicks (Yellow-legged gull (Larus michahellis) and Audouin's gull (L. audouinii)) from 6 breeding colonies in Spain and tested them using the modified agglutination test (MAT) for the presence of antibodies against T. gondii. Chick age was estimated from bill length. Main food source of seagull chicks was evaluated using stable isotope analyses from growing scapular feathers. Overall T. gondii seroprevalence was 21.0% (IC95% 17.5-24.4). A generalized linear mixed-effects model indicated that year (2009) and food source (freshwater) were risk factors associated to the individual risk of infection by T. gondii, while age (days) was close to significance. Freshwater food origin was related to the highest seroprevalence levels, followed by marine origin, supporting freshwater and sewages as important routes of dispersion of T. gondii. Year differences could indicate fluctuating rates of exposure of seagull chicks to T. gondii. Age ranged from 4 to 30 days and seropositivity tended to increase with age (P = 0.07), supporting that seropositivity is related to T. gondii infection rather than to maternal transfer of antibodies, which in gulls is known to sharply decrease with chick age. This study is the first to report T. gondii antibodies in Yellow-legged and Audouin's gulls, thereby extending the range of intermediate hosts for this parasite and underscoring the complexity of its epidemiology.
Collapse
Affiliation(s)
- Oscar Cabezón
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail:
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Virginia Morera
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain
| | | | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain
| | - Sebastian Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria P. Ribas
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Berta Blanch-Lázaro
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Fernández-Aguilar
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Noelia Antilles
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Lorca-Oró
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agriculture Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Sonia Almería
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Sanitat i d’Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
24
|
Cano-Terriza D, Guerra R, Lecollinet S, Cerdà-Cuéllar M, Cabezón O, Almería S, García-Bocanegra I. Epidemiological survey of zoonotic pathogens in feral pigeons (Columba livia var. domestica) and sympatric zoo species in Southern Spain. Comp Immunol Microbiol Infect Dis 2015; 43:22-7. [PMID: 26616657 DOI: 10.1016/j.cimid.2015.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/23/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
A cross-sectional study was carried out to determine the prevalence of pathogenic zoonotic agents (flaviviruses, avian influenza viruses (AIVs), Salmonella spp. and Toxoplasma gondii) in feral pigeons and sympatric zoo animals from Córdoba (Southern Spain) between 2013 and 2014. Antibodies against flaviviruses were detected in 7.8% out of 142 (CI95%: 3.7-11.8) pigeons, and 8.2% of 49 (CI95%: 0.9-15.4) of zoo animals tested. Antibodies with specificity against West Nile virus (WNV) and Usutu virus (USUV) were confirmed both in pigeons and in zoo birds. Even though seropositivity to AIVs was not detected in any of the analyzed pigeons, 17.9% of 28 (CI95%: 3.7-32.0) zoo birds tested showed positive results. Salmonella spp. was not isolated in any of 152 fecal samples collected from pigeons, while 6.8% of 44 zoo animals were positive. Antibodies against T. gondii were found in 9.2% of 142 (CI95%: 4.8-13.6) feral pigeons and 26.9% of 108 (CI95%: 19.6-34.1) zoo animals. This is the first study on flaviviruses and T. gondii in feral pigeons and captive zoo species in Spain. Antibodies against WNV and USUV detected in non-migratory pigeons and captive zoo animals indicate local circulation of these emerging pathogens in the study area. T. gondii was widespread in species analyzed. This finding could be of importance for Public Health and Conservation of endangered species present in zoo parks. Pigeons and zoo animals may be included as sentinel species for monitoring zoonotic pathogens in urban areas.
Collapse
Affiliation(s)
- David Cano-Terriza
- Department de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Campus de Rabanales, 14071 Córdoba, Spain
| | - Rafael Guerra
- Parque Zoológico Municipal de Córdoba (PZMC), Avenida Linneo s/n, 14071 Córdoba, Spain
| | - Sylvie Lecollinet
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort F-94703, France
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Oscar Cabezón
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Department de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Barcelona 08193, Bellaterra, Spain
| | - Sonia Almería
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain; Department de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona 08193, Bellaterra, Spain
| | - Ignacio García-Bocanegra
- Department de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
25
|
A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:678084. [PMID: 26457301 PMCID: PMC4589573 DOI: 10.1155/2015/678084] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using the Drosophila S2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases.
Collapse
|
26
|
Serological evidence for the circulation of flaviviruses in seabird populations of the western Indian Ocean. Epidemiol Infect 2015; 144:652-60. [PMID: 26194365 DOI: 10.1017/s0950268815001661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Birds play a central role in the epidemiology of several flaviviruses of concern for public and veterinary health. Seabirds represent the most abundant and widespread avifauna in the western Indian Ocean and may play an important role as host reservoirs and spreaders of arthropod-borne pathogens such as flaviviruses. We report the results of a serological investigation based on blood samples collected from nine seabird species from seven islands in the Indian Ocean. Using a commercial competitive enzyme-linked immunosorbent assay directed against the prototypic West Nile flavivirus, antibodies against flaviviruses were detected in the serum of 47 of the 855 seabirds tested. They were detected in bird samples from three islands and from four bird species. Seroneutralization tests on adults and chicks suggested that great frigatebirds (Fregata minor) from Europa were infected by West Nile virus during their non-breeding period, and that Usutu virus probably circulated within bird colonies on Tromelin and on Juan de Nova. Real-time polymerase chain reactions performed on bird blood samples did not yield positive results precluding the genetic characterization of flavivirus using RNA sequencing. Our findings stress the need to further investigate flavivirus infections in arthropod vectors present in seabird colonies.
Collapse
|
27
|
Maceda-Veiga A, Figuerola J, Martínez-Silvestre A, Viscor G, Ferrari N, Pacheco M. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:322-332. [PMID: 25668285 DOI: 10.1016/j.scitotenv.2015.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Blood analyses have great potential in studies of ecology, ecotoxicology and veterinary science in wild vertebrates based on advances in human and domestic animal medicine. The major caveat for field researchers, however, is that the 'rules' for human or domestic animal haematology do not always apply to wildlife. The present overview shows the strengths and limitations of blood analyses in wild vertebrates, and proposes a standardisation of pre-analytical procedures plus some suggestions for a more systematic examination of blood smears to increase the diagnostic value of blood data. By discussing the common problems that field researchers face with blood variables, we also aim to highlight common ground enabling new researchers in the field to accurately collect blood samples and interpret and place their haematological findings into the overall picture of an ecological or eco-toxicological study. Besides showing the practicality and ecological relevance of simple blood variables, this study illustrates the suitability of blood samples for the application of cutting-edge analytical procedures for expanding the current repertoire of diagnostic tools in wildlife monitoring and ecosystem health assessment.
Collapse
Affiliation(s)
- Alberto Maceda-Veiga
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Institute of Research in Biodiversity (IRBio), Facultat de Biologia, Universitat de Barcelona, ES-08028 Barcelona, Spain.
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana-CSIC, ES-41092 Sevilla, Spain
| | | | - Ginés Viscor
- Department of Animal Physiology (Biology), Universitat de Barcelona, ES-08028 Barcelona, Spain
| | - Nicola Ferrari
- Department of Veterinary Sciences and Public Health, Università degli Studi di Milano, IT-16 20133 Milan, Italy
| | - Mário Pacheco
- Department of Biology, Centre for Environmental and Marine Studies-CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Saegerman C, Alba-Casals A, García-Bocanegra I, Dal Pozzo F, van Galen G. Clinical Sentinel Surveillance of Equine West Nile Fever, Spain. Transbound Emerg Dis 2014; 63:184-93. [DOI: 10.1111/tbed.12243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- C. Saegerman
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - A. Alba-Casals
- Centre de Recerca en Sanitat Animal (CReSA); UAB-IRTA; Barcelona Spain
| | - I. García-Bocanegra
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3); Córdoba Spain
| | - F. Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - G. van Galen
- Large Animal Clinic, Internal Medicine and Surgery; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|