1
|
Massenet J, Weiss-Gayet M, Bandukwala H, Bouchereau W, Gobert S, Magnan M, Hubas A, Nusbaum P, Desguerre I, Gitiaux C, Dilworth FJ, Chazaud B. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy. iScience 2024; 27:111350. [PMID: 39650736 PMCID: PMC11625291 DOI: 10.1016/j.isci.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles. Proliferation, differentiation, and fusion were unaltered in DMD-MuSCs, but with time, they lost their myogenic identity twice as fast as healthy MuSCs. The rapid drift toward a fibroblast-like cell identity was observed at the clonal level, and resulted from altered expression of epigenetic enzymes. Re-expression of CBX3, SMC3, H2AFV, and H3F3B prevented the MuSC identity drift. Among epigenetic changes, a closing of chromatin at the transcription factor MEF2B locus caused downregulation of its expression and loss of the myogenic fate. Re-expression of MEF2B in DMD-MuSCs restored their myogenic fate. MEF2B is key in the maintenance of myogenic identity in human MuSCs, which is altered in DMD.
Collapse
Affiliation(s)
- Jimmy Massenet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Hina Bandukwala
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Wilhelm Bouchereau
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Stéphanie Gobert
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Mélanie Magnan
- Institut Cochin, Université Paris-Cité, Inserm U1016, CNRS UMR8104, Paris, France
| | - Arnaud Hubas
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Patrick Nusbaum
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Isabelle Desguerre
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Université Paris Cité, IHU Imagine, 75015 Paris, France
| | - Cyril Gitiaux
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Service d’explorations Fonctionnelles, Unité de Neurophysiologie Clinique, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - F. Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| |
Collapse
|
2
|
Diao Z, Jia S, Itoyama E, Yoshioka H, Murakami M, Funaba M. A possibility of uncoupling protein 1 induction with the enhancement of myogenesis related to ruminal fermentation. Sci Rep 2024; 14:29857. [PMID: 39622913 PMCID: PMC11612152 DOI: 10.1038/s41598-024-81272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
The expression of uncoupling protein 1 (UCP1), which regulates energy expenditure, is limited to brown/beige adipocytes in most mammals; however, it is also detected in the skeletal muscles of cattle. We previously observed a positive relationship between Ucp1 and fast-twitch myosin heavy chain (Myh) expression in bovine skeletal muscles. In the present study, we explored the regulatory expression of Ucp1 in bovine myogenic cells using cell culture. Vitamin C and high-dose capsaicin, which induce the formation of fast-twitch myotubes in murine myogenic cells, did not stimulate myogenesis in bovine myosatellite cells. Treatment with 4-phenylbutyric acid (PBA), a histone deacetylase inhibitor that enhances histone acetylation, upregulates the expression of all myogenic regulatory factors (MRFs), except Myog, in bovine myogenic cells. Consistent with this, PBA increased the expression levels of acetylated lysine 27 of histone 3 (H3K27), the fast-twitch component MYH1/2, and Ucp1 in bovine myogenic cells. SB203580, an inhibitor of p38 MAP kinase, blocked PBA-induced myogenesis and Ucp1 upregulation. PBA is a butyric acid-related molecule, and cattle produce large amounts of volatile fatty acids (VFAs), including acetic acid, propionic acid, and butyric acid, through ruminal fermentation. Propionic acid treatment stimulated H3K27 acetylation, myogenesis, and Ucp1 induction. Thus, the upregulation of muscular Ucp1 may be related to myogenic stimulation through the modulation of histone acetylation status in cattle; we propose that the cattle-specific expression of muscular UCP1 results from VFA production through ruminal fermentation.
Collapse
Affiliation(s)
- Zhicheng Diao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shunhua Jia
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| | - Erina Itoyama
- Kyoto University Livestock Farm, Kyotanba, 622-0203, Japan
| | | | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan.
- Kyoto University Livestock Farm, Kyotanba, 622-0203, Japan.
| |
Collapse
|
3
|
Zhe Y, Wu Z, Yasenjian S, Zhong J, Jiang H, Zhang M, Chai Z, Xin J. Effect of NR1D1 on the proliferation and differentiation of yak skeletal muscle satellite cells. Front Vet Sci 2024; 11:1428117. [PMID: 39559540 PMCID: PMC11571325 DOI: 10.3389/fvets.2024.1428117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
The severe conditions at high altitudes, where yaks inhabit, contribute to delayed muscular growth and compromised tenderness of their muscle tissue. Myosatellite cells are responsible for the growth and regeneration of skeletal muscle after birth and have the potential to proliferate and differentiate, its development is closely related to meat quality, and the nuclear receptor gene NR1D1 is involved in muscle formation and skeletal muscle regulation. Therefore, in order to understand the effect of NR1D1 on muscle satellite cells, we identified the mRNA expression levels of marker genes specifically expressed in muscle satellite cells at different stages to determine the type of cells isolated. Eventually, we successfully constructed a primary cell line of yak muscle satellite cells. Then we constructed NR1D1 overexpression vector and interference RNA, and introduced them into isolated yak skeletal muscle satellite cells. We performed qPCR, CCK8, and fluorescence-specific to detect the expression of genes or abundance of proteins as markers of cell proliferation and differentiation. Compared with those in the control group, the expression levels of proliferation marker genes KI-67, CYCLIND1, and CYCLINA were significantly inhibited after NR1D1 overexpression, which was also supported by the CCK-8 test, whereas differentiation marker genes MYOD, MYOG, and MYF5 were significantly inhibited. Fluorescence-specific staining showed that KI-67 protein abundance and the number of microfilaments both decreased, while the opposite trend was observed after NR1D1 interference. In conclusion, we confirmed that NR1D1 inhibited the proliferation and differentiation of yak skeletal muscle satellite cells, which provides a theoretical basis for further research on the effect of NR1D1 on improving meat quality traits and meat production performance of yaks.
Collapse
Affiliation(s)
- Yuqi Zhe
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Sibinuer Yasenjian
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
4
|
Liu S, Hou P, Zhang W, Zuo M, Liu Z, Wang T, Zhou Y, Chen W, Feng C, Hu B, Fang J. Species variations in muscle stem cell-mediated immunosuppression on T cells. Sci Rep 2024; 14:23410. [PMID: 39379408 PMCID: PMC11461908 DOI: 10.1038/s41598-024-73684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Muscle stem cells (MuSCs) are effective in treating inflammatory diseases driven by overactive innate immune responses, such as colitis and acute lung injury, due to their immunomodulatory properties. However, their potential in treating diseases driven by adaptive immune responses is still uncertain. When primed with inflammatory cytokines, MuSCs strongly suppressed T cell activation and proliferation in vitro in co-culture with activated splenocytes or peripheral blood mononuclear cells. Systemic administration of MuSCs from both mice and humans alleviated pathologies in mice with concanavalin A-induced acute liver injury, characterized by hyperactivated T lymphocytes. Importantly, MuSCs showed significant species-specific differences in their immunoregulatory functions. In mouse MuSCs (mMuSCs), deletion or inhibition of inducible nitric oxide synthase (iNOS) reduced their immunosuppressive activity, and absence of iNOS negated their therapeutic effects in liver injury. Conversely, in human MuSCs (hMuSCs), knockdown or inhibition of indoleamine 2,3-dioxygenase (IDO) eliminated their immunosuppressive effects, and loss of IDO function rendered hMuSCs ineffective in treating liver injury in mice. These results reveal significant species-specific differences in the mechanisms by which MuSCs mediate T cell immunosuppression. Mouse MuSCs rely on iNOS, while human MuSCs depend on IDO expression. This highlights the need to consider species-specific responses when evaluating MuSCs' therapeutic potential in immune-related disorders.
Collapse
Affiliation(s)
- Shisong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Weijia Zhang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Muqiu Zuo
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanhong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Wang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yipeng Zhou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Bo Hu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Jiankai Fang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Suzuki N, Kanzaki M, Koide M, Izumi R, Fujita R, Takahashi T, Ogawa K, Yabe Y, Tsuchiya M, Suzuki M, Harada R, Ohno A, Ono H, Nakamura N, Ikeda K, Warita H, Osana S, Oikawa Y, Toyohara T, Abe T, Rui M, Ebihara S, Nagatomi R, Hagiwara Y, Aoki M. Sporadic inclusion body myositis-derived myotube culture revealed muscle cell-autonomous expression profiles. PLoS One 2024; 19:e0306021. [PMID: 39088432 PMCID: PMC11293708 DOI: 10.1371/journal.pone.0306021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masako Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Harada
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Iwate, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muliang Rui
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Balayan A, DeBoutray M, Molley TG, Ruoss S, Maceda M, Sevier A, Robertson CM, Ward SR, Engler AJ. Dispase/collagenase cocktail allows for coisolation of satellite cells and fibroadipogenic progenitors from human skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C1193-C1202. [PMID: 38581669 PMCID: PMC11193520 DOI: 10.1152/ajpcell.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.
Collapse
Affiliation(s)
- Alis Balayan
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
| | - Marie DeBoutray
- Department of ENT and Maxillofacial Surgery, Montpellier University, Montpellier, France
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Matthew Maceda
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Ashley Sevier
- California State University, Bakersfield, Bakersfield, California, United States
| | - Catherine M Robertson
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Samuel R Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
- Department of Radiology, UC San Diego, La Jolla, California, United States
| | - Adam J Engler
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, California, United States
| |
Collapse
|
7
|
Lee JH, Kim TK, Kang MC, Park M, Choi YS. Methods to Isolate Muscle Stem Cells for Cell-Based Cultured Meat Production: A Review. Animals (Basel) 2024; 14:819. [PMID: 38473203 DOI: 10.3390/ani14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Cultured meat production relies on various cell types, including muscle stem cells (MuSCs), embryonic stem cell lines, induced pluripotent cell lines, and naturally immortalized cell lines. MuSCs possess superior muscle differentiation capabilities compared to the other three cell lines, making them key for cultured meat development. Therefore, to produce cultured meat using MuSCs, they must first be effectively separated from muscles. At present, the methods used to isolate MuSCs from muscles include (1) the pre-plating method, using the ability of cells to adhere differently, which is a biological characteristic of MuSCs; (2) the density gradient centrifugation method, using the intrinsic density difference of cells, which is a physical characteristic of MuSCs; and (3) fluorescence- and magnetic-activated cell sorting methods, using the surface marker protein on the cell surface of MuSCs, which is a molecular characteristic of MuSCs. Further efficient and valuable methods for separating MuSCs are expected to be required as the cell-based cultured meat industry develops. Thus, we take a closer look at the four methods currently in use and discuss future development directions in this review.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minkyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
8
|
Fan D, Yao Y, Liu Y, Yan C, Li F, Wang S, Yu M, Xie B, Tang Z. Regulation of myo-miR-24-3p on the Myogenesis and Fiber Type Transformation of Skeletal Muscle. Genes (Basel) 2024; 15:269. [PMID: 38540328 PMCID: PMC10970682 DOI: 10.3390/genes15030269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays critical roles in providing a protein source and contributing to meat production. It is well known that microRNAs (miRNAs) exert important effects on various biological processes in muscle, including cell fate determination, muscle fiber morphology, and structure development. However, the role of miRNA in skeletal muscle development remains incompletely understood. In this study, we observed a critical miRNA, miR-24-3p, which exhibited higher expression levels in Tongcheng (obese-type) pigs compared to Landrace (lean-type) pigs. Furthermore, we found that miR-24-3p was highly expressed in the dorsal muscle of pigs and the quadriceps muscle of mice. Functionally, miR-24-3p was found to inhibit proliferation and promote differentiation in muscle cells. Additionally, miR-24-3p was shown to facilitate the conversion of slow muscle fibers to fast muscle fibers and influence the expression of GLUT4, a glucose transporter. Moreover, in a mouse model of skeletal muscle injury, we demonstrated that overexpression of miR-24-3p promoted rapid myogenesis and contributed to skeletal muscle regeneration. Furthermore, miR-24-3p was found to regulate the expression of target genes, including Nek4, Pim1, Nlk, Pskh1, and Mapk14. Collectively, our findings provide evidence that miR-24-3p plays a regulatory role in myogenesis and fiber type conversion. These findings contribute to our understanding of human muscle health and have implications for improving meat production traits in livestock.
Collapse
Affiliation(s)
- Danyang Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (D.F.); (Y.L.); (M.Y.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Yilong Yao
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Yanwen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (D.F.); (Y.L.); (M.Y.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Chao Yan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fanqinyu Li
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Shilong Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (D.F.); (Y.L.); (M.Y.)
| | - Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning 530001, China;
| | - Zhonglin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (D.F.); (Y.L.); (M.Y.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (C.Y.); (F.L.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
9
|
Robinson KG, Marsh AG, Lee SK, Hicks J, Romero B, Batish M, Crowgey EL, Shrader MW, Akins RE. DNA Methylation Analysis Reveals Distinct Patterns in Satellite Cell-Derived Myogenic Progenitor Cells of Subjects with Spastic Cerebral Palsy. J Pers Med 2022; 12:jpm12121978. [PMID: 36556199 PMCID: PMC9780849 DOI: 10.3390/jpm12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Spastic type cerebral palsy (CP) is a complex neuromuscular disorder that involves altered skeletal muscle microanatomy and growth, but little is known about the mechanisms contributing to muscle pathophysiology and dysfunction. Traditional genomic approaches have provided limited insight regarding disease onset and severity, but recent epigenomic studies indicate that DNA methylation patterns can be altered in CP. Here, we examined whether a diagnosis of spastic CP is associated with intrinsic DNA methylation differences in myoblasts and myotubes derived from muscle resident stem cell populations (satellite cells; SCs). Twelve subjects were enrolled (6 CP; 6 control) with informed consent/assent. Skeletal muscle biopsies were obtained during orthopedic surgeries, and SCs were isolated and cultured to establish patient-specific myoblast cell lines capable of proliferation and differentiation in culture. DNA methylation analyses indicated significant differences at 525 individual CpG sites in proliferating SC-derived myoblasts (MB) and 1774 CpG sites in differentiating SC-derived myotubes (MT). Of these, 79 CpG sites were common in both culture types. The distribution of differentially methylated 1 Mbp chromosomal segments indicated distinct regional hypo- and hyper-methylation patterns, and significant enrichment of differentially methylated sites on chromosomes 12, 13, 14, 15, 18, and 20. Average methylation load across 2000 bp regions flanking transcriptional start sites was significantly different in 3 genes in MBs, and 10 genes in MTs. SC derived MBs isolated from study participants with spastic CP exhibited fundamental differences in DNA methylation compared to controls at multiple levels of organization that may reveal new targets for studies of mechanisms contributing to muscle dysregulation in spastic CP.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Adam G. Marsh
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Stephanie K. Lee
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Jonathan Hicks
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Brigette Romero
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin L. Crowgey
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - M. Wade Shrader
- Department of Orthopedics, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Robert E. Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
10
|
Koike H, Manabe I, Oishi Y. Mechanisms of cooperative cell-cell interactions in skeletal muscle regeneration. Inflamm Regen 2022; 42:48. [DOI: 10.1186/s41232-022-00234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractSkeletal muscles have an extraordinary capacity to regenerate themselves when injured. Skeletal muscle stem cells, called satellite cells, play a central role in muscle regeneration via three major steps: activation, proliferation, and differentiation. These steps are affected by multiple types of cells, such as immune cells, fibro-adipogenic progenitor cells, and vascular endothelial cells. The widespread use of single-cell sequencing technologies has enabled the identification of novel cell subpopulations associated with muscle regeneration and their regulatory mechanisms. This review summarizes the dynamism of the cellular community that controls and promotes muscle regeneration, with a particular focus on skeletal muscle stem cells.
Collapse
|
11
|
Casadevall C, Sancho-Muñoz A, Vicente I, Pascual-Guardia S, Admetlló M, Gea J. Influence of COPD systemic environment on the myogenic function of muscle precursor cells in vitro. Respir Res 2022; 23:282. [PMID: 36242002 PMCID: PMC9569059 DOI: 10.1186/s12931-022-02203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Loss of muscle mass and function are well-recognized systemic manifestations of chronic obstructive pulmonary disease (COPD). Acute exacerbations, in turn, significantly contribute to upgrade these systemic comorbidities. Involvement of myogenic precursors in muscle mass maintenance and recovery is poorly understood. The aim of the present study was to investigate the effects of the vascular systemic environment from stable and exacerbated COPD patients on the myogenic behavior of human muscle precursor cells (MPC) in vitro. Methods: Serum from healthy controls and from stable and exacerbated COPD patients (before and after Methylprednisolone treatment) was used to stimulate human MPC cultures. Proliferation analysis was assessed through BrdU incorporation assays. MPC differentiation was examined through real-time RT-PCR, western blot and immunofluorescence analysis. Results: Stimulation of MPCs with serum obtained from stable COPD patients did not affect myogenic precursor cell function. The vascular systemic environment during an acute exacerbation exerted a mitotic effect on MPCs without altering myogenic differentiation outcome. After Methylprednisolone treatment of acute exacerbated COPD patients, however, the mitotic effect was further amplified, but it was followed by a deficient differentiation capacity. Moreover, these effects were prevented when cells were co-treated with the glucocorticoid receptor antagonist Mifepristone. Conclusion: Our findings suggest that MPC capacity is inherently preserved in COPD patients, but is compromised after systemic administration of MP. This finding strengthens the concept that glucocorticoid treatment over the long term can negatively impact myogenic stem cell fate decisions and interfere with muscle mass recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02203-6.
Collapse
Affiliation(s)
- Carme Casadevall
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain. .,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Antonio Sancho-Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Ignacio Vicente
- Hospital de l'Esperança, Av. Santuario, Ptge. de Sant Josep la Muntanya 12, 08024, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Mireia Admetlló
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Joaquim Gea
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| |
Collapse
|
12
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
13
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Ruan T, Harney D, Koay YC, Loo L, Larance M, Caron L. Anabolic Factors and Myokines Improve Differentiation of Human Embryonic Stem Cell Derived Skeletal Muscle Cells. Cells 2022; 11:cells11060963. [PMID: 35326414 PMCID: PMC8946006 DOI: 10.3390/cells11060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle weakness is linked to many adverse health outcomes. Current research to identify new drugs has often been inconclusive due to lack of adequate cellular models. We previously developed a scalable monolayer system to differentiate human embryonic stem cells (hESCs) into mature skeletal muscle cells (SkMCs) within 26 days without cell sorting or genetic manipulation. Here, building on our previous work, we show that differentiation and fusion of myotubes can be further enhanced using the anabolic factors testosterone (T) and follistatin (F) in combination with a cocktail of myokines (C). Importantly, combined TFC treatment significantly enhanced both the hESC-SkMC fusion index and the expression levels of various skeletal muscle markers, including the motor protein myosin heavy chain (MyHC). Transcriptomic and proteomic analysis revealed oxidative phosphorylation as the most up-regulated pathway, and a significantly higher level of ATP and increased mitochondrial mass were also observed in TFC-treated hESC-SkMCs, suggesting enhanced energy metabolism is coupled with improved muscle differentiation. This cellular model will be a powerful tool for studying in vitro myogenesis and for drug discovery pertaining to further enhancing muscle development or treating muscle diseases.
Collapse
Affiliation(s)
- Travis Ruan
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (T.R.); (L.L.)
| | - Dylan Harney
- Larance Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (D.H.); (M.L.)
| | - Yen Chin Koay
- Cardiometabolic Disease Group, Heart Research Institute, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Lipin Loo
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (T.R.); (L.L.)
| | - Mark Larance
- Larance Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (D.H.); (M.L.)
| | - Leslie Caron
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (T.R.); (L.L.)
- MMG, Marseille Medical Genetics, Aix Marseille Univ, INSERM U1251, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
15
|
Li Y, Chen W, Ogawa K, Koide M, Takahashi T, Hagiwara Y, Itoi E, Aizawa T, Tsuchiya M, Izumi R, Suzuki N, Aoki M, Kanzaki M. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis. Sci Rep 2022; 12:1082. [PMID: 35058512 PMCID: PMC8776910 DOI: 10.1038/s41598-022-05029-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a “feeder-supported in vitro exercise model” using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our “feeder-supported in vitro exercise model” enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Kazumi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
16
|
Chien P, Xi H, Pyle AD. Recapitulating human myogenesis ex vivo using human pluripotent stem cells. Exp Cell Res 2021; 411:112990. [PMID: 34973262 DOI: 10.1016/j.yexcr.2021.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.
Collapse
Affiliation(s)
- Peggie Chien
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Haibin Xi
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
18
|
Cell Types Used for Cultured Meat Production and the Importance of Myokines. Foods 2021; 10:foods10102318. [PMID: 34681367 PMCID: PMC8534705 DOI: 10.3390/foods10102318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
The world’s population continues to increase, meaning we require more consistent protein supply to meet demand. Despite the availability of plant-based protein alternatives, animal meat remains a popular, high-quality protein source. Research studies have focused on cultured meat (meat grown in vitro) as a safe and more efficient alternative to traditional meat. Cultured meat is produced by in vitro myogenesis, which involves the processing of muscle satellite and mature muscle cells. Meat culture efficiency is largely determined by the culture conditions, such as the cell type and cell culture medium used and the biomolecular composition. Protein production can be enhanced by providing the optimum biochemical and physical conditions for skeletal muscle cell growth, while myoblasts play important roles in skeletal muscle formation and growth. This review describes the cell types used to produce cultured meat and the biological effects of various myokines and cytokines, such as interleukin-6, leukemia inhibitory factor, interleukin-4, interleukin-15, and interleukin-1β, on skeletal muscle and myogenesis and their potential roles in cultured meat production.
Collapse
|
19
|
Goullée H, Taylor RL, Forrest ARR, Laing NG, Ravenscroft G, Clayton JS. Improved CRISPR/Cas9 gene editing in primary human myoblasts using low confluency cultures on Matrigel. Skelet Muscle 2021; 11:23. [PMID: 34551826 PMCID: PMC8456651 DOI: 10.1186/s13395-021-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect. There are currently no commercial lipofection protocols tailored for primary myoblasts, and most generic guidelines simply recommend transfecting healthy cells at high confluency. This study aimed to maximize CRISPR/Cas9 transfection and editing in primary human myoblasts. Methods Since increased cell proliferation is associated with increased transfection efficiency, we investigated two factors known to influence myoblast proliferation: cell confluency, and a basement membrane matrix, Matrigel. CRISPR/Cas9 editing was performed by delivering Cas9 ribonucleoprotein complexes via lipofection into primary human myoblasts, cultured in wells with or without a Matrigel coating, at low (~ 40%) or high (~ 80%) confluency. Results Cells transfected at low confluency on Matrigel-coated wells had the highest levels of transfection, and were most effectively edited across three different target loci, achieving a maximum editing efficiency of 93.8%. On average, editing under these conditions was >4-fold higher compared to commercial recommendations (high confluency, uncoated wells). Conclusion This study presents a simple, effective and economical method of maximizing CRISPR/Cas9-mediated gene editing in primary human myoblasts. This protocol could be a valuable tool for improving the genetic manipulation of cultured human skeletal muscle cells, and potentially be adapted for use in other cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00278-1.
Collapse
Affiliation(s)
- Hayley Goullée
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Alistair R R Forrest
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Joshua S Clayton
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia. .,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
20
|
Kostyuk SV, Proskurnina EV, Ershova ES, Kameneva LV, Malinovskaya EM, Savinova EA, Sergeeva VA, Umriukhin PE, Dolgikh OA, Khakina EA, Kraevaya OA, Troshin PA, Kutsev SI, Veiko NN. The Phosphonate Derivative of C 60 Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22179284. [PMID: 34502190 PMCID: PMC8431706 DOI: 10.3390/ijms22179284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7–14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Correspondence:
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Larisa V. Kameneva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena M. Malinovskaya
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Savinova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Vasilina A. Sergeeva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Mohovaya Str. 11-4, 125009 Moscow, Russia
| | - Olga A. Dolgikh
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavylova St. 28, B-334, 119991 Moscow, Russia;
| | - Olga A. Kraevaya
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Pavel A. Troshin
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Natalia N. Veiko
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| |
Collapse
|
21
|
Romagnoli C, Sharma P, Zonefrati R, Palmini G, Lucattelli E, Ward DT, Ellinger I, Innocenti M, Brandi ML. Study of the Expression and Function of Calcium-Sensing Receptor in Human Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22147282. [PMID: 34298895 PMCID: PMC8304165 DOI: 10.3390/ijms22147282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle has an outstanding capacity for regeneration in response to injuries, but there are disorders in which this process is seriously impaired, such as sarcopenia. Pharmacological treatments to restore muscle trophism are not available, therefore, the identification of suitable therapeutic targets that could be useful for the treatment of skeletal reduced myogenesis is highly desirable. In this in vitro study, we explored the expression and function of the calcium-sensing receptor (CaSR) in human skeletal muscle tissues and their derived satellite cells. The results obtained from analyses with various techniques of gene and protein CaSR expression and of its secondary messengers in response to calcium (Ca2+) and CaSR drugs have demonstrated that this receptor is not present in human skeletal muscle tissues, neither in the established satellite cells, nor during in vitro myogenic differentiation. Taken together, our data suggest that, although CaSR is a very important drug target in physiology and pathology, this receptor probably does not have any physiological role in skeletal muscle in normal conditions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Preeti Sharma
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
- Fondazione Italiana Ricerca sulla Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Elena Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50139 Florence, Italy; (E.L.); (M.I.)
| | - Donald T. Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Marco Innocenti
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50139 Florence, Italy; (E.L.); (M.I.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
- Fondazione Italiana Ricerca sulla Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
22
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
23
|
Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020; 2:840-848. [PMID: 32694821 DOI: 10.1038/s42255-020-0188-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
24
|
Xing HY, Liu N, Zhou MW. Satellite cell proliferation and myofiber cross-section area increase after electrical stimulation following sciatic nerve crush injury in rats. Chin Med J (Engl) 2020; 133:1952-1960. [PMID: 32826459 PMCID: PMC7462209 DOI: 10.1097/cm9.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Electrical stimulation has been recommended as an effective therapy to prevent muscle atrophy after nerve injury. However, the effect of electrical stimulation on the proliferation of satellite cells in denervated muscles has not yet been fully elucidated. This study was aimed to evaluate the changes in satellite cell proliferation after electrical stimulation in nerve injury and to determine whether these changes are related to the restoration of myofiber cross-section area (CSA). METHODS Sciatic nerve crush injury was performed in 48 male Sprague-Dawley rats. In half (24/48) of the rats, the gastrocnemius was electrically stimulated transcutaneously on a daily basis after injury, while the other half were not stimulated. Another group of 24 male Sprague-Dawley rats were used as sham operation controls without injury or stimulation. The rats were euthanized 2, 4, and 6 weeks later. After 5-bromo-2'-deoxyuridine (BrdU) labeling, the gastrocnemia were harvested for the detection of paired box protein 7 (Pax7), BrdU, myofiber CSA, and myonuclei number per fiber. All data were analyzed using two-way analysis of variance and Bonferroni post-hoc test. RESULTS The percentages of Pax7-positive nuclei (10.81 ± 0.56%) and BrdU-positive nuclei (34.29 ± 3.87%) in stimulated muscles were significantly higher compared to those in non-stimulated muscles (2.58 ± 0.33% and 1.30 ± 0.09%, respectively, Bonferroni t = 15.91 and 18.14, P < 0.05). The numbers of myonuclei per fiber (2.19 ± 0.24) and myofiber CSA (1906.86 ± 116.51 μm) were also increased in the stimulated muscles (Bonferroni t = 3.57 and 2.73, P < 0.05), and both were positively correlated with the Pax7-positive satellite cell content (R = 0.52 and 0.60, P < 0.01). There was no significant difference in the ratio of myofiber CSA/myonuclei number per fiber among the three groups. CONCLUSIONS Our results indicate that satellite cell proliferation is promoted by electrical stimulation after nerve injury, which may be correlated with an increase in myonuclei number and myofiber CSA.
Collapse
Affiliation(s)
- Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | | | | |
Collapse
|
25
|
Romagnoli C, Zonefrati R, Sharma P, Innocenti M, Cianferotti L, Brandi ML. Characterization of Skeletal Muscle Endocrine Control in an In Vitro Model of Myogenesis. Calcif Tissue Int 2020; 107:18-30. [PMID: 32107602 PMCID: PMC7271047 DOI: 10.1007/s00223-020-00678-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Skeletal muscle has remarkable regenerative abilities regulated by a highly orchestrated process involving the activation of cellular and molecular responses, which are dependent on satellite cells. These cells maintain the stem cell population and provide numerous myogenic cells that proliferate, differentiate, fuse and lead to new myofiber formation for a functional contractile tissue. We have isolated and characterized satellite cells obtained from human biopsies and established an in vitro model of myogenesis, evaluating muscle regeneration, monitoring the dynamic increases of the specific myogenic regulatory factors and the final formation of multinucleated myofibers. As the skeletal muscle is an endocrine tissue able of producing many substances that can act on distant organs, and it can be physiologically modulated by a variety of hormones, we embarked in a project of characterization of muscle cell endocrinology machinery. The expression of a large array of hormone receptors was quantified during the process of myogenesis. The results obtained showed a significant and generalized increase of all the tested hormone receptors along the process of differentiation of human cultured cells from myoblasts to myocytes. Interestingly, also the production of the myokine irisin increased in a parallel manner. These findings point to the human cultured myoblasts as an ideal model to characterize the skeletal muscle endocrine machinery and its hormonal regulation.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Roberto Zonefrati
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Preeti Sharma
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Marco Innocenti
- grid.8404.80000 0004 1757 2304Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Luisella Cianferotti
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Maria Luisa Brandi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| |
Collapse
|
26
|
Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells 2020; 9:E1385. [PMID: 32498474 PMCID: PMC7348939 DOI: 10.3390/cells9061385] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia has been defined as a progressive decline of skeletal muscle mass, strength, and functions in elderly people. It is accompanied by physical frailty, functional disability, falls, hospitalization, and mortality, and is becoming a major geriatric disorder owing to the increasing life expectancy and growing older population worldwide. Experimental models are critical to understand the pathophysiology of sarcopenia and develop therapeutic strategies. Although its etiologies remain to be further elucidated, several mechanisms of sarcopenia have been identified, including cellular senescence, proteostasis imbalance, oxidative stress, and "inflammaging." In this article, we address three main aspects. First, we describe the fundamental aging mechanisms. Next, we discuss both in vitro and in vivo experimental models based on molecular mechanisms that have the potential to elucidate the biochemical processes integral to sarcopenia. The use of appropriate models to reflect sarcopenia and/or its underlying pathways will enable researchers to understand sarcopenia and develop novel therapeutic strategies for sarcopenia. Lastly, we discuss the possible molecular targets and the current status of drug candidates for sarcopenia treatment. In conclusion, the development of experimental models for sarcopenia is essential to discover molecular targets that are valuable as biochemical biomarkers and/or therapeutic targets for sarcopenia.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Sujin Kim
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| |
Collapse
|
27
|
Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, Hicks M, Gonzalez K, Fujiwara W, Marzi J, Liebscher S, Spencer M, Van Handel B, Evseenko D, Schenke-Layland K, Plath K, Pyle AD. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell 2020; 27:158-176.e10. [PMID: 32396864 PMCID: PMC7367475 DOI: 10.1016/j.stem.2020.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.
Collapse
Affiliation(s)
- Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Langerman
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sabri
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Courtney S Young
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shahab Younesi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Gonzalez
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Marzi
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melissa Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Baht GS, Bareja A, Lee DE, Rao RR, Huang R, Huebner JL, Bartlett DB, Hart CR, Gibson JR, Lanza IR, Kraus VB, Gregory SG, Spiegelman BM, White JP. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat Metab 2020; 2:278-289. [PMID: 32694780 PMCID: PMC7504545 DOI: 10.1038/s42255-020-0184-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/17/2020] [Indexed: 01/14/2023]
Abstract
The immune system plays a multifunctional role throughout the regenerative process, regulating both pro-/anti-inflammatory phases and progenitor cell function. In the present study, we identify the myokine/cytokine Meteorin-like (Metrnl) as a critical regulator of muscle regeneration. Mice genetically lacking Metrnl have impaired muscle regeneration associated with a reduction in immune cell infiltration and an inability to transition towards an anti-inflammatory phenotype. Isochronic parabiosis, joining wild-type and whole-body Metrnl knock-out (KO) mice, returns Metrnl expression in the injured muscle and improves muscle repair, providing supportive evidence for Metrnl secretion from infiltrating immune cells. Macrophage-specific Metrnl KO mice are also deficient in muscle repair. During muscle regeneration, Metrnl works, in part, through Stat3 activation in macrophages, resulting in differentiation to an anti-inflammatory phenotype. With regard to myogenesis, Metrnl induces macrophage-dependent insulin-like growth factor 1 production, which has a direct effect on primary muscle satellite cell proliferation. Perturbations in this pathway inhibit efficacy of Metrnl in the regenerative process. Together, these studies identify Metrnl as an important regulator of muscle regeneration and a potential therapeutic target to enhance tissue repair.
Collapse
Affiliation(s)
- Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rajesh R Rao
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Rong Huang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Corey R Hart
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
29
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
30
|
Venturelli M, Schena F, Naro F, Reggiani C, Pereira Guimarães M, de Almeida Costa Campos Y, Costa Moreira O, Fernandes da Silva S, Silva Marques de Azevedo PH, Dixit A, Srivastav S, Hinkley JM, Seaborne RA, Viggars M, Sharples AP, Mahmassani ZS, Drummond MJ, Gondin J. Commentaries on Viewpoint: "Muscle memory" not mediated by myonuclear number? Secondary analysis of human detraining data. J Appl Physiol (1985) 2019; 127:1817-1820. [PMID: 31829831 PMCID: PMC11734999 DOI: 10.1152/japplphysiol.00754.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- ZRS, Science and Research Center, Koper, Slovenia
| | - Miller Pereira Guimarães
- Study Group and Research in Exercise Physiology, Federal University of São Paulo, Santos, Brazil
- Postgraduate Program in Human Movement Sciences and Rehabilitation, Federal University of São Paulo, Santos, SP, Brazil
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil
- Presbyterian College Gammon, Lavras, Brazil
- Mineiro Center for Higher Education, Campo Belo, Brazil
| | - Yuri de Almeida Costa Campos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil
- Postgraduate Program of the Faculty of Physical Education and Sports of the University of Juiz de Fora, Juiz de Fora, Brazil
| | - Osvaldo Costa Moreira
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil
- Institute of Biological Sciences and Health, Federal University of Viçosa, Campus Florestal, Florestal, Brazil
| | - Sandro Fernandes da Silva
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil
- Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Paulo Henrique Silva Marques de Azevedo
- Study Group and Research in Exercise Physiology, Federal University of São Paulo, Santos, Brazil
- Postgraduate Program in Human Movement Sciences and Rehabilitation, Federal University of São Paulo, Santos, SP, Brazil
| | - Abinav Dixit
- Department of Physiology, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase II, Jodhpur- 342005, Rajasthan, India
| | - Shival Srivastav
- Department of Physiology, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase II, Jodhpur- 342005, Rajasthan, India
| | - J. Matthew Hinkley
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, Florida
| | - Robert A. Seaborne
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark Viggars
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam P. Sharples
- Department of Physicial Performance, Norwegian School of Sport Science, Olso, Norway
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Ziad S. Mahmassani
- University of Utah, Department of Physical Therapy and Athletic Training, Salt Lake City, Utah
| | - Micah J. Drummond
- University of Utah, Department of Physical Therapy and Athletic Training, Salt Lake City, Utah
| | - Julien Gondin
- Institut NeuroMyoGène (INMG)-CNRS 5310–INSERM U1217-UCBL1 Faculté de Médecine, Lyon, France
| |
Collapse
|
31
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
32
|
Meyers CA, Xu J, Zhang L, Chang L, Wang Y, Asatrian G, Ding C, Yan N, Zou E, Broderick K, Lee M, Peault B, James AW. Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Eng Part A 2019; 25:1658-1666. [PMID: 31020920 DOI: 10.1089/ten.tea.2019.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesenchymal progenitor cell population defined by their perivascular residence. PSC are increasingly studied for their application in skeletal regenerative medicine. PSC from subcutaneous white adipose tissue are most commonly isolated via fluorescence-activated cell sorting (FACS), and defined as a bipartite population of CD146+CD34-CD31-CD45- pericytes and CD34+CD146-CD31-CD45- adventitial cells. FACS poses several challenges for clinical translation, including requirements for facilities, equipment, and personnel. The purpose of this study is to identify if magnetic-activated cell sorting (MACS) is a feasible method to derive PSC, and to determine if MACS-derived PSC are comparable to our previous experience with FACS-derived PSC. In brief, CD146+ pericytes and CD34+ adventitial cells were enriched from human lipoaspirate using a multistep column approach. Next, cell identity and purity were analyzed by flow cytometry. In vitro multilineage differentiation studies were performed with MACS-defined PSC subsets. Finally, in vivo application was performed in nonhealing calvarial bone defects in Scid mice. Results showed that human CD146+ pericytes and CD34+ adventitial cells may be enriched by MACS, with defined purity, anticipated cell surface marker expression, and capacity for multilineage differentiation. In vivo, MACS-derived PSC induce ossification of bone defects. These data document the feasibility of a MACS approach for the enrichment and application of PSC in the field of tissue engineering and regenerative medicine. Impact Statement Our findings suggest that perivascular stem/stromal cells, and in particular adventitial cells, may be isolated by magnetic-activated cell sorting and applied as an uncultured autologous stem cell therapy in a same-day setting for bone defect repair.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Leititia Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Greg Asatrian
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, California
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
33
|
Chen W, Nyasha MR, Koide M, Tsuchiya M, Suzuki N, Hagiwara Y, Aoki M, Kanzaki M. In vitro exercise model using contractile human and mouse hybrid myotubes. Sci Rep 2019; 9:11914. [PMID: 31417107 PMCID: PMC6695424 DOI: 10.1038/s41598-019-48316-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023] Open
Abstract
Contraction of cultured myotubes with application of electric pulse stimulation (EPS) has been utilized for investigating cellular responses associated with actual contractile activity. However, cultured myotubes derived from human subjects often exhibit relatively poor EPS-evoked contractile activity, resulting in minimal contraction-inducible responses (i.e. myokine secretion). We herein describe an “in vitro exercise model”, using hybrid myotubes comprised of human myoblasts and murine C2C12 myoblasts, exhibiting vigorous contractile activity in response to EPS. Species-specific analyses including RT-PCR and the BioPlex assay allowed us to separately evaluate contraction-inducible gene expressions and myokine secretions from human and mouse constituents of hybrid myotubes. The hybrid myotubes, half of which had arisen from primary human satellite cells obtained from biopsy samples, exhibited remarkable increases in the secretions of human cytokines (myokines) including interleukins (IL-6, IL-8, IL-10, and IL16), CXC chemokines (CXCL1, CXCL2, CXCL5, CXCL6, CXCL10), CC chemokines (CCL1, CCL2, CCL7, CCL8, CCL11, CCL13, CCL16, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL27), and IFN-γ in response to EPS-evoked contractile activity. Together, these results indicate that inadequacies arising from human muscle cells are effectively overcome by fusing them with murine C2C12 cells, thereby supporting the development of contractility and the resulting cellular responses of human-origin muscle cells. Our approach, using hybrid myotubes, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Mazvita R Nyasha
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 981-8522, Sendai, Japan
| | - Naoki Suzuki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masashi Aoki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
34
|
Davis BNJ, Santoso JW, Walker MJ, Oliver CE, Cunningham MM, Boehm CA, Dawes D, Lasater SL, Huffman K, Kraus WE, Truskey GA. Modeling the Effect of TNF-α upon Drug-Induced Toxicity in Human, Tissue-Engineered Myobundles. Ann Biomed Eng 2019; 47:1596-1610. [PMID: 30963383 DOI: 10.1007/s10439-019-02263-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
A number of significant muscle diseases, such as cachexia, sarcopenia, systemic chronic inflammation, along with inflammatory myopathies share TNF-α-dominated inflammation in their pathogenesis. In addition, inflammatory episodes may increase susceptibility to drug toxicity. To assess the effect of TNF-α-induced inflammation on drug responses, we engineered 3D, human skeletal myobundles, chronically exposed them to TNF-α during maturation, and measured the combined response of TNF-α and the chemotherapeutic doxorubicin on muscle function. First, the myobundle inflammatory environment was characterized by assessing the effects of TNF-α on 2D human skeletal muscle cultures and 3D human myobundles. High doses of TNF-α inhibited maturation in human 2D cultures and maturation and function in 3D myobundles. Then, a tetanus force dose-response curve was constructed to characterize doxorubicin's effects on function alone. The combination of TNF-α and 10 nM doxorubicin exhibited a synergistic effect on both twitch and tetanus force production. Overall, the results demonstrated that inflammation of a 3D, human skeletal muscle inflammatory system alters the response to doxorubicin.
Collapse
Affiliation(s)
- Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Jeffrey W Santoso
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michaela J Walker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Catherine E Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michael M Cunningham
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian A Boehm
- Department of Textile Technology, RWTH Aachen University, 52062, Aachen, Germany
| | - Danielle Dawes
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Samantha L Lasater
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Kim Huffman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cardiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA. .,, 1395 FCIEMS, 101 Science Drive, Durham, NC, 27708-0281, USA.
| |
Collapse
|
35
|
Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019; 9:3454. [PMID: 30837559 PMCID: PMC6401155 DOI: 10.1038/s41598-019-40042-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.
Collapse
|
36
|
Hinken AC, Billin AN. Isolation of Skeletal Muscle Stem Cells for Phenotypic Screens for Modulators of Proliferation. Methods Mol Biol 2019; 1787:77-86. [PMID: 29736711 DOI: 10.1007/978-1-4939-7847-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle contains a population of resident stem cells known as muscle stem cells (MuSC) or satellite cells. This population of cells is required for regeneration of functional myofibers after damage. Aging reduces the proliferative response of satellite cells post-injury. This deficient response is thought to contribute to slowed recovery of muscle function after damage in the elderly and may also contribute to age-related loss of muscle function (sarcopenia). Numerous techniques are now available for the isolation of highly purified satellite cells from mice and humans (Sherwood, et al. Cell 119:543-554, 2004; Cerletti, et al. Cell 134:37-47; 2008; Conboy, et al. Methods Mol Biol 621:165-173, 2010; Bareja, et al. PLoS One 9:e90398; 2014; Castiglioni et al. Stem Cell Rep 2:92-106, 2014; Charville, et al. Stem Cell Rep 5:621-632, 2015; Liu et al. Nat Protoc 10:1612-1624, 2015; Sincennes et al. Methods Mol Biol 1556:41-50, 2017), thus opening an opportunity to use satellite cells in phenotypic screens for regulators of satellite cell proliferation and differentiation. In this chapter, we describe a technique for the prospective isolation of mouse satellite cells that we have recently used in a phenotypic screen of a focused set of small molecules.
Collapse
Affiliation(s)
- Aaron C Hinken
- GlaxoSmithKline, Muscle Metabolism Discovery Performance Unit, King of Prussia, PA, USA.
| | | |
Collapse
|
37
|
Houghton MJ, Kerimi A, Mouly V, Tumova S, Williamson G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism. FASEB J 2018; 33:1887-1898. [PMID: 30183376 DOI: 10.1096/fj.201801209r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gut microbiome supplies essential metabolites such as short-chain fatty acids to skeletal muscle mitochondria, and the composition and activity of the microbiota is in turn affected by muscle fitness. To further our understanding of the complex interactions between the gut microbiome and muscle, we examined the effect of microbiota-derived phenolic metabolites on the ability of human muscle cells to take up and metabolize glucose. As a model, we used the differentiated human skeletal muscle myoblast line, LHCN-M2, which expresses typical muscle phenotypic markers. We initially tested a selected panel of parent phenolic compounds and microbial metabolites, and their respective phenolic conjugates, as found in blood. Several of the tested compounds increased glucose uptake and metabolism, notably in high glucose- and insulin-treated myotubes. One of the most effective was isovanillic acid 3 -O-sulfate (IVAS), a metabolite from the microbiome found in the blood, primarily derived from consumed cyanidin 3 -O-glucoside, a major compound in berry fruits. IVAS stimulated a dose-dependent increase in glucose transport through glucose transporter GLUT4- and PI3K-dependent mechanisms. IVAS also up-regulated GLUT1, GLUT4, and PI3K p85α protein, and increased phosphorylation of Akt. The stimulation of glucose uptake and metabolism by a unique microbiome metabolite provides a novel link among diet, gut microbiota, and skeletal muscle energy source utilization.-Houghton, M. J., Kerimi, A., Mouly, V., Tumova, S., Williamson, G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism.
Collapse
Affiliation(s)
- Michael J Houghton
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Unite Mixte de Recherche Scientifique 974, Paris, France
| | - Sarka Tumova
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
38
|
Wang S, Zhang B, Addicks GC, Zhang H, J Menzies K, Zhang H. Muscle Stem Cell Immunostaining. ACTA ACUST UNITED AC 2018; 8:e47. [PMID: 30106515 DOI: 10.1002/cpmo.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscle stem cells (MuSCs) are essential for maintaining muscle homeostasis by providing progenitor cells for muscle regeneration after injury and in muscular diseases. MuSC properties dynamically change, reflecting physiology or pathological status. For instance, MuSCs are activated after muscle injury, but become exhausted in late stages of Duchenne Muscular Dystrophy (DMD) disease and senescent during aging. Therefore, characterization of MuSCs, including proliferation, activation, senescence, and apoptosis, etc., is very important in applying MuSC knowledge to regenerative medicine, such as in the treatment of DMD and to improve muscle function in aging. Here, we describe a detailed method for characterizing MuSCs in situ using immunostaining techniques in the mouse. This method can also be easily adapted to analyze other skeletal muscle properties. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shuaiyu Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education and The Department of Histology and Embryology of Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| | - Bao Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education and The Department of Histology and Embryology of Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| | - Gregory C Addicks
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottowa, Ottawa, Ontario, Canada
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education and The Department of Histology and Embryology of Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| |
Collapse
|
39
|
White JP, Billin AN, Campbell ME, Russell AJ, Huffman KM, Kraus WE. The AMPK/p27 Kip1 Axis Regulates Autophagy/Apoptosis Decisions in Aged Skeletal Muscle Stem Cells. Stem Cell Reports 2018; 11:425-439. [PMID: 30033086 PMCID: PMC6093087 DOI: 10.1016/j.stemcr.2018.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle stem cell (MuSC) function declines with age and contributes to impaired muscle regeneration in older individuals. Acting through AMPK/p27Kip1, we have identified a pathway regulating the balance between autophagy, apoptosis, and senescence in aged MuSCs. While p27Kip1 is implicated in MuSC aging, its precise role and molecular mechanism have not been elucidated. Age-related MuSC dysfunction was associated with reduced autophagy, increased apoptosis, and hypophosphorylation of AMPK and its downstream target p27Kip1. AMPK activation or ectopic expression of a phosphomimetic p27Kip1 mutant was sufficient to suppress in vitro apoptosis, increase proliferation, and improve in vivo transplantation efficiency of aged MuSCs. Moreover, activation of the AMPK/p27Kip1 pathway reduced markers of cell senescence in aged cells, which was, in part, dependent on p27Kip1 phosphorylation. Thus, the AMPK/p27Kip1 pathway likely regulates the autophagy/apoptosis balance in aged MuSCs and may be a potential target for improving muscle regeneration in older individuals.
Collapse
Affiliation(s)
- James P White
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Andrew N Billin
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Milton E Campbell
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Alan J Russell
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Division of Rheumatology, Duke University School of Medicine, Durham, NC 27701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Division of Cardiology, Duke University School of Medicine, Durham, NC 27701, USA
| |
Collapse
|
40
|
Koide M, Hagiwara Y, Tsuchiya M, Kanzaki M, Hatakeyama H, Tanaka Y, Minowa T, Takemura T, Ando A, Sekiguchi T, Yabe Y, Itoi E. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration. TOHOKU J EXP MED 2018; 244:15-24. [PMID: 29311489 DOI: 10.1620/tjem.244.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.
Collapse
Affiliation(s)
- Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | | | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University
| | - Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Yukinori Tanaka
- Department of Oral Immunology, Tohoku University Graduate School of Dentistry
| | | | | | - Akira Ando
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
41
|
Ali Z, Chandrasekera PC, Pippin JJ. Animal research for type 2 diabetes mellitus, its limited translation for clinical benefit, and the way forward. Altern Lab Anim 2018; 46:13-22. [PMID: 29553794 DOI: 10.1177/026119291804600101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have reached pandemic proportions worldwide, and considerable research efforts have been dedicated to investigating disease pathology and therapeutic options. The two hallmark features of T2DM, insulin resistance and pancreatic dysfunction, have been studied extensively by using various animal models. Despite the knowledge acquired from such models, particularly mechanistic discoveries that sometimes mimic human T2DM mechanisms or pathways, many details of human T2DM pathogenesis remain unknown, therapeutic options remain limited, and a cure has eluded research. Emerging human data have raised concern regarding inter-species differences at many levels (e.g. in gene regulation, pancreatic cytoarchitecture, glucose transport, and insulin secretion regulation), and the subsequent impact of these differences on the clinical translation of animal research findings. Therefore, it is important to recognise and address the translational gap between basic animal-based research and the clinical advances needed to prevent and treat T2DM. The purpose of this report is to identify some limitations of T2DM animal research, and to propose how greater human relevance and applicability of hypothesis-driven basic T2DM research could be achieved through the use of human-based data acquisition at various biological levels. This report addresses how in vitro, in vivo and in silico technologies could be used to investigate particular aspects of human glucose regulation. We do not propose that T2DM animal research has been without value in the identification of mechanisms, pathways, or potential targets for therapies, nor do we claim that human-based methods can provide all the answers. We recognise that the ultimate goal of T2DM animal research is to identify ways to advance the prevention, recognition and treatment of T2DM in humans, but postulate that this is where the use of animal models falls short, despite decades of effort. The best way to achieve this goal is by prioritising human-centred research.
Collapse
Affiliation(s)
- Zeeshan Ali
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - John J Pippin
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| |
Collapse
|
42
|
Rotini A, Martínez-Sarrà E, Duelen R, Costamagna D, Di Filippo ES, Giacomazzi G, Grosemans H, Fulle S, Sampaolesi M. Aging affects the in vivo regenerative potential of human mesoangioblasts. Aging Cell 2018; 17. [PMID: 29397577 PMCID: PMC5847873 DOI: 10.1111/acel.12714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 01/29/2023] Open
Abstract
Sarcopenia is the age‐related loss of muscle mass, strength, and function. Although the role of human satellite cells (SCs) as adult skeletal muscle stem cells has been deeply investigated, little is known about the impact of aging on muscle interstitial stem cells. Here, we isolated the non‐SC CD56– fraction from human muscle biopsies of young and elderly subjects. The elderly interstitial cell population contained a higher number of CD15+ and PDGFRα+ cells when compared to young samples. In addition, we found that the CD56–/ALP+ cells were well represented as a multipotent stem cell population inside the CD56– fraction. CD56–/ALP+/CD15– cells were clonogenic, and since they were myogenic and expressed NG2, α‐SMA and PDGFRβ can be considered mesoangioblasts (MABs). Interestingly, elderly MABs displayed a dramatic impairment in the myogenic differentiation ability in vitro and when transplanted in dystrophic immunodeficient Sgcb‐null Rag2‐null γc‐null mice. In addition, elderly MABs proliferated less, but yet retained other multilineage capabilities. Overall, our results indicate that aging negatively impacted on the regenerative potential of MABs and this should be carefully considered for potential therapeutic applications of MABs.
Collapse
Affiliation(s)
- Alessio Rotini
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
- Department of Neuroscience, Imaging and Clinical Sciences; University “G. d'Annunzio” Chieti-Pescara; Chieti Italy
- Interuniversity Institute of Myology; Chieti Italy
| | - Ester Martínez-Sarrà
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Domiziana Costamagna
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences; University “G. d'Annunzio” Chieti-Pescara; Chieti Italy
- Interuniversity Institute of Myology; Chieti Italy
| | - Giorgia Giacomazzi
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences; University “G. d'Annunzio” Chieti-Pescara; Chieti Italy
- Interuniversity Institute of Myology; Chieti Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory; Stem Cell Institute of Leuven; Unit of Stem Cell Research; Cluster of Stem Cell and Developmental Biology; Department of Development and Regeneration; University of Leuven; Leuven Belgium
- Interuniversity Institute of Myology; Chieti Italy
- Human Anatomy Unit; Department of Public Health, Experimental and Forensic Medicine; University of Pavia; Pavia Italy
| |
Collapse
|
43
|
Garcia SM, Tamaki S, Lee S, Wong A, Jose A, Dreux J, Kouklis G, Sbitany H, Seth R, Knott PD, Heaton C, Ryan WR, Kim EA, Hansen SL, Hoffman WY, Pomerantz JH. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells. Stem Cell Reports 2018; 10:1160-1174. [PMID: 29478895 PMCID: PMC5918346 DOI: 10.1016/j.stemcr.2018.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 02/03/2023] Open
Abstract
Investigation of human muscle regeneration requires robust methods to purify and transplant muscle stem and progenitor cells that collectively constitute the human satellite cell (HuSC) pool. Existing approaches have yet to make HuSCs widely accessible for researchers, and as a result human muscle stem cell research has advanced slowly. Here, we describe a robust and predictable HuSC purification process that is effective for each human skeletal muscle tested and the development of storage protocols and transplantation models in dystrophin-deficient and wild-type recipients. Enzymatic digestion, magnetic column depletion, and 6-marker flow-cytometric purification enable separation of 104 highly enriched HuSCs per gram of muscle. Cryostorage of HuSCs preserves viability, phenotype, and transplantation potential. Development of enhanced and species-specific transplantation protocols enabled serial HuSC xenotransplantation and recovery. These protocols and models provide an accessible system for basic and translational investigation and clinical development of HuSCs. High-efficiency purification permits serial transplantation of human satellite stem cells Cryopreservation preserves satellite cell function and phenotype 1 gram of adult skeletal muscle yields 104 highly purified satellite cells Purified uncultured endogenous human satellite cells can be stored and shared
Collapse
Affiliation(s)
- Steven M Garcia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Stanley Tamaki
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Solomon Lee
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Alvin Wong
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Anthony Jose
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Joanna Dreux
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Gayle Kouklis
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Hani Sbitany
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Rahul Seth
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - P Daniel Knott
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Chase Heaton
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - William R Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Esther A Kim
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Scott L Hansen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - William Y Hoffman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Jason H Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Cid‐Díaz T, Santos‐Zas I, González‐Sánchez J, Gurriarán‐Rodríguez U, Mosteiro CS, Casabiell X, García‐Caballero T, Mouly V, Pazos Y, Camiña JP. Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. J Cachexia Sarcopenia Muscle 2017; 8:974-990. [PMID: 28675664 PMCID: PMC5700440 DOI: 10.1002/jcsm.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/09/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Many pathological states characterized by muscle atrophy are associated with an increase in circulating glucocorticoids and poor patient prognosis, making it an important target for treatment. The development of treatments for glucocorticoid-induced and wasting disorder-related skeletal muscle atrophy should be designed based on how the particular transcriptional program is orchestrated and how the balance of muscle protein synthesis and degradation is deregulated. Here, we investigated whether the obestatin/GPR39 system, an autocrine/paracrine signaling system acting on myogenesis and with anabolic effects on the skeletal muscle, could protect against glucocorticoid-induced muscle cell atrophy. METHODS In the present study, we have utilized mouse C2C12 myotube cultures to examine whether the obestatin/GPR39 signaling pathways can affect the atrophy induced by the synthetic glucocorticoid dexamethasone. We have extended these findings to in vitro effects on human atrophy using human KM155C25 myotubes. RESULTS The activation of the obestatin/GPR39 system protects from glucocorticoid-induced atrophy by regulation of Akt, PKD/PKCμ, CAMKII and AMPK signaling and its downstream targets in the control of protein synthesis, ubiquitin-proteasome system and autophagy-lysosome system in mouse cells. We compared mouse and human myotube cells in their response to glucocorticoid and identified differences in both the triggering of the atrophic program and the response to obestatin stimulation. Notably, we demonstrate that specific patterns of post-translational modifications of FoxO4 and FoxO1 play a key role in directing FoxO activity in response to obestatin in human myotubes. CONCLUSIONS Our findings emphasize the function of the obestatin/GPR39 system in coordinating a variety of pathways involved in the regulation of protein degradation during catabolic conditions.
Collapse
Affiliation(s)
- Tania Cid‐Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Icía Santos‐Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jessica González‐Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Uxía Gurriarán‐Rodríguez
- Sprott Center for Stem Cell ResearchOttawa Hospital Research Institute501 Smyth RoadOttawaOntarioK1H 8L6Canada
| | - Carlos S. Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Xesús Casabiell
- Departamento de FisiologíaFacultad de Veterinaria, Universidad de Santiago de Compostela (USC)Carballo Calero s/n27002LugoSpain
| | - Tomás García‐Caballero
- Departamento de Ciencias MorfológicasFacultad de Medicina, USCSan Francisco s/n15704Santiago de CompostelaSpain
| | - Vincent Mouly
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology47 Boulevard de l'hôpital75013ParisFrance
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jesús P. Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| |
Collapse
|
45
|
Andriani Y, Chua JMW, Chua BYJ, Phang IY, Shyh-Chang N, Tan WS. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes. Acta Biomater 2017; 57:115-126. [PMID: 28435079 DOI: 10.1016/j.actbio.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. STATEMENT OF SIGNIFICANCE We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models.
Collapse
|
46
|
Quarta M, Cromie M, Chacon R, Blonigan J, Garcia V, Akimenko I, Hamer M, Paine P, Stok M, Shrager JB, Rando TA. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun 2017. [PMID: 28631758 PMCID: PMC5481841 DOI: 10.1038/ncomms15613] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.
Collapse
Affiliation(s)
- Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Melinda Cromie
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Robert Chacon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Justin Blonigan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Victor Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Igor Akimenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Mark Hamer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Patrick Paine
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Merel Stok
- Erasmus Medical Center, Department of Hematology and Department of Pediatrics, Rotterdam 3000, The Netherlands
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine and VA Palo Alto Health Care System, Stanford, California 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| |
Collapse
|
47
|
Obestatin controls skeletal muscle fiber-type determination. Sci Rep 2017; 7:2137. [PMID: 28522824 PMCID: PMC5437042 DOI: 10.1038/s41598-017-02337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/11/2017] [Indexed: 01/27/2023] Open
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle growth and repair by inducing both G-protein-dependent and -independent mechanisms linking the activated GPR39 receptor with distinct sets of accessory and effector proteins. In this work, we describe a new level of activity where obestatin signaling plays a role in the formation, contractile properties and metabolic profile of skeletal muscle through determination of oxidative fiber type. Our data indicate that obestatin regulates Mef2 activity and PGC-1α expression. Both mechanisms result in a shift in muscle metabolism and function. The increase in Mef2 and PGC-1α signaling activates oxidative capacity, whereas Akt/mTOR signaling positively regulates myofiber growth. Taken together, these data indicate that the obestatin signaling acts on muscle fiber-type program in skeletal muscle.
Collapse
|
48
|
Garcia SM, Tamaki S, Xu X, Pomerantz JH. Human Satellite Cell Isolation and Xenotransplantation. Methods Mol Biol 2017; 1668:105-123. [PMID: 28842905 DOI: 10.1007/978-1-4939-7283-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Satellite cells are mononucleated cells of the skeletal muscle lineage that exist beneath the basal lamina juxtaposed to the sarcolemma of skeletal muscle fibers. It is widely accepted that satellite cells mediate skeletal muscle regeneration. Within the satellite cell pool of adult muscle are skeletal muscle stem cells (MuSCs), also called satellite stem cells, which fulfill criteria of tissue stem cells: They proliferate and their progeny either occupies the adult MuSC niche during self-renewal or differentiates to regenerate mature muscle fibers. Here, we describe robust methods for the isolation of enriched populations of human satellite cells containing MuSCs from fresh human muscle, utilizing mechanical and enzymatic dissociation and purification by fluorescence-activated cell sorting. We also describe a process for xenotransplantation of human satellite cells into mouse muscle by injection into irradiated, immunodeficient, mouse leg muscle with concurrent notexin or bupivacaine muscle injury to increase engraftment efficiency. The engraftment of human MuSCs and the formation of human muscle can then be analyzed by histological and immunofluorescence staining, or subjected to in vivo experimentation.
Collapse
Affiliation(s)
- Steven M Garcia
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Stanley Tamaki
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoti Xu
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA. .,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
49
|
Gayraud-Morel B, Pala F, Sakai H, Tajbakhsh S. Isolation of Muscle Stem Cells from Mouse Skeletal Muscle. Methods Mol Biol 2017; 1556:23-39. [PMID: 28247343 DOI: 10.1007/978-1-4939-6771-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isolation of muscle stem cells from skeletal muscle is a critical step for the study of skeletal myogenesis and regeneration. Although stem cell isolation has been performed for decades, the emergence of flow cytometry with defined cell surface markers, or transgenic mouse models, has allowed the efficient isolation of highly enriched stem cell populations. Here, we describe the isolation of mouse muscle stem cells using two different combinations of enzyme treatments allowing the release of mononucleated muscle stem cells from their niche. Mouse muscle stem cells can be further isolated as a highly enriched population by flow cytometry using fluorescent reporters or cell surface markers. We will present advantages and drawbacks of these different approaches.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France.
| | - Francesca Pala
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Hiroshi Sakai
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| |
Collapse
|
50
|
Quarta M, Brett JO, DiMarco R, De Morree A, Boutet SC, Chacon R, Gibbons MC, Garcia VA, Su J, Shrager JB, Heilshorn S, Rando TA. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 2016; 34:752-9. [PMID: 27240197 PMCID: PMC4942359 DOI: 10.1038/nbt.3576] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
Abstract
A promising therapeutic strategy for diverse genetic disorders involves transplantation of autologous stem cells that have been genetically corrected ex vivo. A major challenge in such approaches is a loss of stem cell potency during culture. Here we describe an artificial niche for maintaining muscle stem cells (MuSCs) in vitro in a potent, quiescent state. Using a machine learning method, we identified a molecular signature of quiescence and used it to screen for factors that could maintain mouse MuSC quiescence, thus defining a quiescence medium (QM). We also engineered muscle fibers that mimic the native myofiber of the MuSC niche. Mouse MuSCs maintained in QM on engineered fibers showed enhanced potential for engraftment, tissue regeneration and self-renewal after transplantation in mice. An artificial niche adapted to human cells similarly extended the quiescence of human MuSCs in vitro and enhanced their potency in vivo. Our approach for maintaining quiescence may be applicable to stem cells isolated from other tissues.
Collapse
Affiliation(s)
- Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jamie O. Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Rebecca DiMarco
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Antoine De Morree
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
| | - Stephane C. Boutet
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
| | - Robert Chacon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Michael C. Gibbons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Victor A. Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - James Su
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Joseph B. Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|